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QUANTUM OF BANACH ALGEBRA

M. H. FAROUGHI

Abstract. A variety of Banach algebras is a non-empty class of Banach algebras, for
which there exists a family of laws such that its elements satisfy all of the laws. Each
variety has a unique core (see [3]) which is generated by it. Each Banach algebra is
not a core but, in this paper, we show that for each Banach algebra there exists a
cardinal number (quantum of that Banach algebra) which shows the elevation of that
Banach algebra for bearing a core. The class of all cores has interesting properties.
Also, in this paper, we shall show that each core of a variety is generated by essential
elements and each algebraic law of essential elements permeates to all of the elements
of all of the Banach algebras belonging to that variety, which shows the existence of
considerable structures in the cores.

1. Introduction

Throughout this paper by a polynomial we mean a polynomial in several non-commuting
variables without constant term and also we shall identify Banach algebras if they are
isometrically isomorphic. For each Banach algebra A and polynomial P , we define

‖P‖A = sup{‖P (x1, . . . , xn)‖ : xi ∈ A, ‖xi‖ ≤ 1}.

We shall denote the class of all polynomials by L.

Definition 1.1. By a law we mean a formal expression

‖P‖ ≤ K,

where P is a polynomial and K ∈ R. If A is a Banach algebra, then we say that A
satisfies the above law if

‖P‖A ≤ K,

and it is a homogeneous law, if P is a homogeneous polynomial.

Definition 1.2. Let V be a family of Banach algebras. We say that V is a variety of
Banach algebras, or simply a variety, if it is closed under taking (i) direct sums, (ii)
closed subalgebras, (iii) quotients (by closed ideals), and (iv) isometric isomorphisms.
Equivalently, V is a variety, if there exists a family of laws such that each element of V
satisfies all of the laws (see [3]).

Definition 1.3. Let V be a variety. For each polynomial P , we define

|P |V = inf{KP : every element of V satisfies the law ‖P‖ ≤ KP }.

Throughout this paper, for each Banach algebra A,A1 will be the unit ball of A.

2. The class of cores

In [4], the author has proved that each variety V can be obtained by means of the
family of laws

{‖P‖ ≤ |P |V }P∈L,
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and it has a worthy property: varieties can be compared by them. Also, for each variety
V there exists a Banach algebras A ∈ V (a generator of V) such that for all polynomials
P, ‖P‖A = |P |V , i.e., V is singly-generated (each element of V is a quotient of a closed
subalgebra of a direct sum of some copies of A up to isometric isomorphic). Each variety
has got many generators, but just one of them has a maximum property, namely the core
of that variety.

Definition 2.1. Let V be a variety. We say that A ∈ V is a core of the variety V , if
there is a sequence {ai}

∞
i=1 of members of A1, such that the subalgebra generated by

{a1, a2, . . .} is dense in A and

|P |V = ‖P (a1, . . . , an)‖

for all polynomials P = P (X1, . . . , Xn).

Definition 2.2. Let A be a normed algebra. We say that A is elevated, if there is a
sequence {ai}

∞
i=1 of members of A1, such that for each polynomial P = P (X1, . . . , Xn),

sup{‖P (x1, . . . , xn)‖ : xi ∈ A1} = ‖P (a1, . . . , an)‖.

The Lemma 2.3 and Theorem 2.4 are consequences of the text of [2].

Lemma 2.3. Let A be a Banach algebra. Then

(i) if A is a core of some variety V , then A is elevated,
(ii) if A is elevated, then there exists a closed subalgebra of A which is a core of V (A).

Proof. (i) Let A be a core of some variety V . Then there is a sequence {ai}
∞
i=1 of elements

of A1, such that for all polynomials P = P (X1, . . . , Xn),

|P |V = ‖P (a1, . . . , an)‖.

So we have

‖P‖A ≤ |P |V = ‖P (a1, . . . , an)‖ ≤ ‖P‖A.

Thus ‖P‖A = ‖P (a1, . . . , an)‖.
(ii) If A is elevated, then there exists a sequence {ai}

∞
i=1 of elements of A1, such that

for all polynomials P , ‖P‖A = ‖P (a1, . . . , an)‖. We have

|P |V (A) = ‖P‖A = ‖P (a1, . . . , an)‖.

Let A0 be the normed subalgebra of A generated by {a1, a2, . . .}. Let A0 be the closure
of A0 , then A0 ∈ V (A), and for all polynomials P , we have

‖P (a1, . . . , an)‖A0
= ‖P (a1, . . . , an)‖A = |p|V (A),

so A0 is a core of V (A). �

Theorem 2.4. Each variety has a unique core (up to isometric isomorphic).

Proof. For each variety V , there exist A ∈ V and a sequence {ai}
∞
i=1 in A1 such that,

for each polynomial P (X1, . . . , Xn),

‖P (a1, . . . , an)‖ ≤ ‖P‖A ≤ sup{‖P‖A : A ∈ V } = ‖P (a1, . . . , an)‖,

so A is elevated (see [2]). Hence by the Lemma 2.3, it has a core. Now, suppose that V
is a variety with two cores A and B. Hence there are sequence

{ai}
∞
i=1, {bi}

∞
i=1

of members of A1 andB1, respectively, such that for each polynomial P = P (X1, . . . , Xn),
we have

|P |V = ‖P (a1, . . . , an)‖

and

|P |V = ‖P (b1, . . . , bn)‖.
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Let A0, B0 be the normed subalgebra determined by {ai}
∞
i=1 and {bi}

∞
i=1, respectively.

Let Q : A0 → B0 be defined by

Q(P (a1, . . . , an)) = P (b1, . . . , bn)

where P (X1, . . . , Xn) is a polynomial. The mapping Q is well-defined, because, if
P (a1, . . . , an) = 0, then ‖P (b1, . . . , bn)‖ = 0. so P (b1, . . . , bn) = 0. The mapping Q
is a homomorphism of A0 onto B0, and also it is clear that Q is isometric. Thus A0, B0

are isometrically isomorphic. By definition 2.1, A0 = A and B0 = B, hence A is isomet-
rically isomorphic with B. �

The class of cores has wonderful properties and its study is worthy.

Definition 2.5. Let A be the core of a variety V . Let {an}
∞
n=1 be a sequence of elements

of A1 such that the algebra generated by {a1, a2, . . .} is dense in A and for all polynomials
P = P (X1, . . . , Xn),

|P |V = ‖P (a1, . . . , an)‖.

The sequence {an}
∞
n=1 will be called an essential sequence of A and for each i ∈ N, ai

will be called an essential element of A .

Theorem 2.6. Let V be a variety with the core A, and {an}
∞
n=1 be an essential sequence

of A. Let B ∈ V, and n, k ∈ N. Then for each x ∈ B1 and each essential elements
am1

, . . . , amn
, we have

(i) ‖xn‖ ≤ ‖am1
. . . amn

‖,
(ii) ‖xk‖ ≤ ‖ak + P (am1

, . . . amn
)‖ where P = P (X1, . . . , Xn) is a polynomial and a

is an essential element of A,
(iii) if V has a unital Banach algebra, then for each polynomial P = P (X1, . . .Xn),

‖P (1)‖ ≤ ‖P (am1
, . . . , amn

)‖.

Proof. (i) Consider the polynomial P = X1 . . . Xn where some of the Xi may repeat.
(ii) If for each 1 ≤ i ≤ n, a 6= ami

, then consider the polynomial Q(Y,X1, . . . , Xn) =
Y k + P (X1, . . . , Xn) where for each i ≥ 1, Y is different from Xi. Since

sup
y,x1,...,xn∈B1

‖Q(y, x1, . . . , xn)‖ ≤ ‖Q(ak, am1
, . . . , amn

)‖,

by substituting x1 = · · · = xn = 0, we obtain

‖xk‖ ≤ ‖ak + P (am1
, . . . , amn

)‖.

If for some 1 ≤ i ≤ n, a = ami
, then consider the polynomial

Q(X1, . . . , Xn) = Xk
i + P (X1, . . . , Xn).

(iii) It is straightforward. �

Corollary 2.7. Let V be a variety with the core A and {an}
∞
n=1 be an essential sequence

of A. Then

(i) if B ∈ V , then for each x ∈ B1 and each essential element a, r(x) ≤ r(a),
(ii) for each essential elements a and b, r(a) = r(b).

Theorem 2.8. Let V be a variety with the core A. Let {an}
∞
n=1 be an essential sequence

of A. Then

(i) if 1 is an essential element, then A is commutative,
(ii) if some of the essential elements of A satisfy an algebraic law, then all of the

members of all Banach algebras in V also satisfy the law.

Proof. (i) Let x, y ∈ A and let a be an essential element. Then

‖xy − yx‖ ≤ ‖XY − Y X‖A = ‖a1− 1a‖ = 0.

So xy = yx, which proves the theorem.
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(ii) Let P = P (X1, . . . , Xn) be a polynomial. Without lose of generality we can
suppose that P is a homogeneous polynomial (see [3]). Let for some essential elements
am1

, . . . , amn
, P (am1

, . . . , amn
) = 0. Let B ∈ V and x1, . . . , xn ∈ B1 . Then

‖P (x1, . . . , xn)‖ ≤ |P |V = ‖P (am1
, . . . , amn

)‖ = 0.

So P (x1, . . . , xn) = 0. Now, let y1, . . . , yn ∈ B. Then, there is k > 1 such that for each
1 ≤ i ≤ n, ‖yi‖/k < 1, so P (y1, . . . , yn) = 0, and the theorem is proved. �

Corollary 2.9. (i) If two essential elements of the core of a variety are commutative,
then all of the Banach algebras in that variety are commutative,

(ii) for a variety V , V = Nn, if and only if there exist essential elements am1
, . . . , amn

such that
am1

. . . amn
= 0.

Lemma 2.10. Let V be a variety with the core A. Then the essential elements are
linearly independent.

Proof. Let am1
, . . . , amn

be essential elements of A such that

λ1am1
+ · · · + λnamn

= 0.

Let λ1 6= 0. Then by the Theorem (2.8) for each essential element a, we have

λ1a+ λ2am2
+ · · · + λnamn

= 0.

Thus am1
= a, which implies that am1

= 0. But zero can not be an essential element.
So the lemma is proved. �

3. Elevated Banach algebras

If for some X , card(X) is the cardinal number of X , then for each Banach algebra A,
the set of all card(X) where the core of V (A) is a closed subalgebra of AX is not empty
(see [2]). Since the class of all cardinal numbers is well-ordered, it has a least element,
which we shall denote by QA and call it ”the quantum of A”(see [6]). It is clear that A
is elevated if and only if QA = 1.

The quantum of a Banach algebra shows its degree of elevation, moreover, the con-
dition of elevation of a Banach algebra is not simple, it seems just a few number of
Banach algebras can have it. But, indeed, they are uncountable. Now, we shall show
some properties of quantum of a Banach algebra.

Lemma 3.1. Let {Aα}α∈I be a non-empty family of Banach algebras such that for each
α ∈ I,QAα

= 1. Then

Q⊕Aα
= 1.

Proof. Let for each α ∈ I, {aα
n}

∞
n=1 be a sequence of members of (Aα)1 such that for each

polynomial P = P (X1, . . . , Xn),

‖P‖Aα
= ‖P (aα

1 , . . . , a
α
n)‖.

Let

P =
n

∑

i=1

ciXi +
∑

1≤i1,i2≤n

ci1i2Xi1Xi2 + · · · +
∑

1≤i1,...,ik≤n

ci1...ik
Xi1 . . . Xik

.

Then we have

{P (aα
1 , . . . , a

α
n)}α

=

{ n
∑

i=1

cia
α
i +

∑

1≤i1,i2≤n

ci1i2a
α
i1
aα

i2
+ · · · +

∑

1≤i1,...,ik≤n

ci1...ik
aα

i1
. . . aα

ik

}

α

=

n
∑

i=1

ci{a
α
i }α +

∑

1≤i1,i2≤n

ci1i2{a
α
i1
}α{a

α
i2
}α + · · · +

∑

1≤i1,...,ik≤n

ci1...ik
{aα

i1
}α . . . {a

α
ik
}α.
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Thus,
‖P‖⊕Aα

= sup
α∈I

‖P‖Aα
= sup

α∈I

‖P (aα
1 , . . . , a

α
n)‖

= ‖{P (aα
1 , . . . , a

α
n)}α∈I‖ = ‖P ({aα

1 }α∈I , . . . , {a
α
n}α∈I)‖.

But for each n ∈ N, {aα
n}α∈I ∈ (⊕α∈IAα)1. So the lemma is proved. �

Lemma 3.2. Let {Aα}α∈I be a non-empty family of Banach algebras. Let there exist
α1 ∈ I such that Aα1

is elevated, and for each polynomial P = P (X1, . . . , Xn),

‖P‖Aβ
≤ ‖P‖Aα1

, β ∈ I.

Then Q⊕Aα
= 1.

Proof. Let P = P (X1, . . . , Xn) be a polynomial. Let {an}
∞
n=1 be a sequence of members

of (Aα)1 such that ‖P‖Aα1
= ‖P (a1, . . . , an)‖. We have

‖P‖⊕Aβ
= sup

β∈I

‖P‖Aβ
= ‖P‖Aα1

= ‖P (a1, . . . , an)‖ = ‖P (b1, . . . , bn)‖,

where bi = (bi,α)α∈I , with

bi,α =

{

ai if α = α1,
0 if α 6= α1.

Since ‖bi‖ = ‖ai‖ ≤ 1, the lemma is proved. �

Lemma 3.3. Let A be a Banach algebra and let Y be a non-empty set. Then

QAY ≤ QA ≤ cardY.QAY .

Proof. Let Z be a set such that cardZ = QAY . For each f ∈ AY ×Z , define fz(y) =
f(y, z), then fz ∈ AY . Let ef (z) = fz, then ef ∈ (AY )Z . Hence f → ef is an isometric
isomorphism of AY ×Z onto (AY )Z . So the core of V (AY ) is a closed subalgebra of (AY )Z .
Therefore, the core of V (A) is a closed subalgebra of AY ×Z . Hence,

QA ≤ card (Y × Z) = cardY.QAY .

Now, suppose that the core of V (A) is a closed subalgebra of AX , where cardX = QA.
Since AX is a closed subalgebra of (AY )X , hence QA = cardX ≥ QAY , and the lemma
is proved. �

Let A be a Banach algebra and let X be a set such that cardX = QA. We shall
denote AX by AQA .

Theorem 3.4. Let A be a Banach algebra. Then

QAm = QA (m ∈ N).

Proof. Let QAm = 1, and let {(a1
i , . . . , a

m
i )}∞i=1 be a sequence of members of (Am)1 such

that for all polynomials P = P (X1, . . . , Xn),

‖P‖Am = ‖P ((a1
1, . . . , a

m
1 ), . . . , (a1

n, . . . , a
m
n ))‖.

Then we have,

‖P‖A = ‖P‖Am = ‖(P (a1
1, . . . , a

1
n), . . . , P (am

1 , . . . , a
m
n ))‖

= ‖(P (a1
1, . . . , a

1
n)), . . . , (P (am

1 , . . . , a
m
n ))‖

= sup{‖P (a1
1, . . . , a

1
n)‖, . . . , ‖P (am

1 , . . . , a
m
n )‖}.

Now, let c : N → {ak
i : 1 ≤ k ≤ m, 1 ≤ i} be a surjective mapping. Then {ci}

∞
1 is a

sequence of members of (Am)1 such that for some ci1 , . . . , cin
,

‖P‖A = ‖P (ci1 , . . . , cin
)‖.

Hence QA = 1. Since Q(Am)QAm = 1, Q(AQAm )m = 1. Thus, QAQAm = 1. Hence,

QA ≤ QAm . By the Lemma (3.3), QAm ≤ QA, and the theorem is proved. �

Let for each n ∈ N,n = card {1, . . . , n}.
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Lemma 3.5. Let A be a Banach algebra. If QA > 1, then QA ≥ ℵ.

Proof. Let for some n ∈ N , QA ≤ n. Then AQA is elevated. So An is elevated. Thus
QAn = 1, so by the Theorem (3.3), QA = 1, which is an contradiction. �

Lemma 3.6. Let A be a Banach algebra. Then

QA ≤ (cardA)c,

where c = cardR.

Proof. Let M be the core of V (A). Let {ai}
∞
i=1 be a sequence of members of (M)1 such

that for each polynomial P = P (X1, . . . , Xn), ‖P‖A = ‖P (a1, . . . , an)‖, and let M0 be

the algebra generated by {a1, . . .}. Then M is a closed subalgebra of (A)A
M0

1 . Since

M0 = {P (am1
, . . . , amn

) : P (X1, . . . , Xn) is a polynomial}.

So cardM0 ≤ c. Therefore,

QA ≤ cardAM0

1 ≤ (cardA)card M0 ≤ (cardA)c.

�

Lemma 3.7. Let c = cardR .Then

ℵ ≤ QC ≤ cc.

Proof. Since ‖X + Y ‖C = ‖X − Y ‖C = 2, by a simple calculating we see that C is not
elevated. Hence, QC > 1. Therefore, QC ≥ ℵ, and by the Lemma (3.3) , QC ≤ cc. So
the theorem is proved. �

Lemma 3.8. Let A,B be two Banach algebras. Then

QA⊕B ≤ QAQB.

Proof. Let cardX = QA and cardY = QB . Let

ψ : (A⊕B)X×Y −→ (AX )Y ⊕ (BY )X

be defined by
ψ(f) = (ePA◦f , e

′
PB◦f ), f ∈ (A⊕B)X×Y ,

where PA, PB are the projections onto A and B, respectively, and the maps

ePA◦f : Y −→ AX , e′PB◦f : X −→ BY

are defined by
ePA◦f (y) = PA ◦ fy, e′PB◦f (x) = PB ◦ fx

where the maps fy : X −→ A⊕B and fx : Y −→ A⊕B are defined by

fy(x) = f(x, y), fx(y) = f(x, y).

It is easily verified that ψ is an isometric isomorphism. Since AX and BY are elevated,
by Lemma 3.1, (AX )Y and (BY )X are elevated. Therefore, (AX)Y ⊕ (BY )X is elevated.
Hence (A⊕B)X×Y is an elevated element of the variety V (A⊕B), so QA⊕B ≤ cardX×
Y = QAQB . �
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