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NEVANLINNA TYPE FAMILIES OF LINEAR RELATIONS AND THE
DILATION THEOREM

VADIM MOGILEVSKII

Abstract. Let H1 be a subspace in a Hilbert space H0 and let eC(H0,H1) be the

set of all closed linear relations from H0 to H1. We introduce a Nevanlinna type

class eR+(H0,H1) of holomorphic functions with values in eC(H0,H1) and investigate

its properties. In particular we prove the existence of a dilation for every function

τ+(·) ∈ eR+(H0,H1). In what follows these results will be used for the derivation

of the Krein type formula for generalized resolvents of a symmetric operator with
arbitrary (not necessarily equal) deficiency indices.

1. Introduction

Let H be a Hilbert space and let C̃(H) be the set of all closed linear relations in H.
Recall that a holomorphic function (family of linear relations) τ(·) : C+ ∪ C− → C̃(H)
belongs to the Nevanlinna class R̃(H), if τ(λ) is a maximal dissipative linear relation
for all λ ∈ C+ and τ∗(λ) = τ(λ), λ ∈ C+ ∪ C−. It is well known that the class R̃(H)
possesses a number of the interesting properties. In particular, for a function τ(·) ∈ R̃(H)
there is a Hilbert space H1 and a selfadjoint linear relation θ̃ ∈ C̃(H⊕ H1) (a dilation of
the function τ(·)) such that the following equality holds [11, 6]

(1.1) PH(θ̃ − λ)−1 � H = −(τ(λ) + λ)−1, λ ∈ C+ ∪ C−.

Here PH is the orthoprojector in H⊕H1 onto H. Formula (1.1) is implied by the Naimark
theorem [1, 12]. Note also that Nevanlinna families of linear relations naturally appear
in the Krein-Naimark formula for generalized resolvents of a symmetric operator with
equal defect numbers (see [8, 9, 2] and references therein).

Assume now that H1 is a subspace in a Hilbert space H0 and C̃(H0,H1) is the set of
all closed linear relations from H0 to H1. In the present paper we introduce a Nevanlinna
type class R̃+(H0,H1) of holomorphic functions τ+(·) : C+ → C̃(H0,H1) and investigate
its properties. The main result of the paper is Theorem 4.6 that may be considered as
an analog of the dilation theorem in the form (1.1). Namely, we prove the existence of a
dilation θ̃ (in a generalized form) for a function τ+(·) ∈ R̃+(H0,H1) and describe some
properties of θ̃ in terms of τ+(·).

In the forthcoming paper we will present the main result of our investigations, the
Krein-Naimark type formula for a symmetric operator A with arbitrary (not necessarily
equal) defect numbers. The proof of this formula is based on Theorem 4.6. Moreover
in this formula the class R̃+(H0,H1) plays the role similar to that of the class R̃(H) in
the Krein-Naimark formula. Namely, the functions τ+(·) ∈ R̃+(H0,H1) appear in this
formula as parameters allowing to describe all generalized resolvents of A. Therefore the
class R̃+(H0,H1) may be considered as a natural generalization of the Navanlinna class
to the case H1 ⊂ H0, H1 6= H0.
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2. Preliminaries

2.1. Notations. The following notations will be used throughout the paper: H, H de-
note Hilbert spaces; [H1,H2] is the set of all bounded linear operators defined on H1

with values in H2 ; C(H1,H2) is the set of all operators B ∈ [H1,H2] with ||B|| ≤ 1;
A � L is the restriction of an operator A onto the linear manifold L; PL is the orthogonal
projector in H onto the subspace L ⊂ H; C+ (C−) is the upper (lower) half-plain of the
complex plain. We also let [H] := [H,H] and C(H) := C(H,H).

For a Hilbert space H we denote by dim H its dimension. Moreover we write dim H <
∞, if H is finite-dimensional and dim H = ∞, if H is an infinite-dimensional not necessarily
separable Hilbert space.

Let H0 and H1 be Hilbert spaces. A linear manifold T ⊂ H0 ⊕H1 is called a linear
relation in H0 ⊕ H1 (from H0 to H1). We denote by C̃(H0,H1) (C̃(H)) the set of all
closed linear relations(closed subspaces) in H0 ⊕ H1 (in H ⊕ H). For a linear relation
T ⊂ H0 ⊕ H1 we denote by D(T ), R(T ), KerT and T (0) the domain, the range, the
kernel and the multivalued part of T respectively.

If T is a relation in H0⊕H1, then the inverse T−1 and adjoint T ∗ relations are defined
as

T−1 = {{f ′, f} : {f, f ′} ∈ T}, T−1 ⊂ H1 ⊕H0,(2.1)

T ∗ = {{g, g′} ∈ H1 ⊕H0 : (f ′, g) = (f, g′), {f, f ′} ∈ T}, T ∗ ∈ C̃(H1,H0).(2.2)

A closed linear operator T from H0 to H1 is identified with its graph grT ∈ C̃(H0,H1).
For a linear relation T ∈ C̃(H0,H1) we write 0 ∈ ρ(T ) if KerT = {0} andR(T ) = H1,

which is equivalent to the condition T−1 ∈ [H1,H0]. Moreover we denote by ρ(T ) = {λ ∈
C : 0 ∈ ρ(T − λ)} the resolvent set of a linear relation T ∈ C̃(H).

2.2. Linear relations and holomorphic functions. Let H, H0 H1 be Hilbert spaces
and let K = (K0 K1)> ∈ [H,H0 ⊕ H1]. For a (not necessary closed) linear relation
θ ⊂ H0 ⊕H1 we write θ = {K0,K1;H} if KerK = {0} (that is KerK0 ∩KerK1 = {0})
and

θ = KH = {{K0h, K1h} : h ∈ H}.
Similarly let C = (C0 C1) ∈ [H0 ⊕H1,H]. For a linear relation θ ∈ C̃(H0,H1) we write
θ = {(C0, C1);H} if R(C) = H and

θ = KerC = {{h0, h1} ∈ H0 ⊕H1 : C0h0 + C1h1 = 0}.

It is clear that every linear relation θ ∈ C̃(H0,H1) admits both representations θ =
{K0,K1;H} and θ = {(C0, C1);H ′}. Moreover the equalities dim H = dim θ, dim H ′ =
codim θ are valid.

Lemma 2.1. 1) Let K0 ∈ [H,H0], K1 ∈ [H,H1] and let B ∈ [H0,H1] be an ope-
rator such that 0 ∈ ρ(K1 − BK0). Then KerK0 ∩ KerK1 = {0} and the equality
θ = {K0,K1;H} define a closed linear relation θ ∈ C̃(H0,H1) such that 0 ∈ ρ(θ − B).
Moreover in this case

(2.3) (θ −B)−1 = K0(K1 −BK0)−1.

2) Assume that θ = {K0,K1;H} ∈ C̃(H0,H1), τ = {N1, N0;H ′} ∈ C̃(H1,H0) and
there is an operator B ∈ [H0,H1] such that 0 ∈ ρ(K1 − BK0) ∩ ρ(N0 − B∗N1) (i.e.,
0 ∈ ρ(θ −B) ∩ ρ(τ −B∗)). Then the following equivalence holds

(2.4) τ = θ∗ ⇐⇒ N∗
0 K0 = N∗

1 K1.
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Proof. 1) Since Ker(K1 −BK0) = {0}, it follows that KerK0 ∩KerK1 = {0}. Let now
θ = {K0,K1;H} be a linear relation in H0 ⊕H1. Then

(2.5) θ −B = {K0,K1 −BK0;H}

and hence R(θ − B) = R(K1 − BK0) = H1, Ker(θ − B) = K0 Ker(K1 − BK0) = {0}.
Consequently 0 ∈ ρ(θ − B) and therefore the relation θ is closed. Finally the equality
(2.3) is implied by (2.5).

2) Since (θ − B)−1 = K0(K1 − BK0)−1 and (τ − B∗)−1 = N1(N0 − B∗N1)−1, the
following chain of equivalences is valid

τ = θ∗ ⇐⇒ (θ −B)−1 = (τ −B∗)−1∗ ⇐⇒ K0(K1 −BK0)−1 = (N∗
0 −N∗

1 B)−1N∗
1

⇐⇒ (N∗
0 −N∗

1 B)K0 = N∗
1 (K1 −BK0).

This yields the equivalence (2.4). �

Let D be an open set in C and let K0(·) : D → [H,H0], K1(·) : D → [H,H1]
be a pair of holomorphic operator functions. Such a pair will be called admissible if
KerK0(λ) ∩KerK1(λ) = {0}, λ ∈ D.

Definition 2.2. Let {K0(·),K1(·)} and {K ′
0(·),K ′

1(·)} be two admissible pairs of holo-
morphic operator functions, Kj : D → [H,Hj ], K ′

j : D → [H ′,Hj ], j ∈ {0, 1}. Two such
pairs are said to be equivalent if K ′

0(λ) = K0(λ)ϕ(λ) and K ′
1(λ) = K1(λ)ϕ(λ) for some

operator function ϕ(·) : D → [H ′,H], which is holomorphic and invertible on D.

Definition 2.3. (cf. [7]). A function τ(·), defined on an open set D ⊂ C with values in
C̃(H0,H1) is called holomorphic on D if there exist a Hilbert space H and an admissible
pair of holomorphic operator functions Kj(·) : D → [H,Hj ], j ∈ {0, 1} such that

(2.6) τ(λ) = {K0(λ),K1(λ);H} = {{K0(λ)h, K1(λ)h} : h ∈ H}, λ ∈ D.

It is clear that two pairs {K0(·),K1(·)} and {K ′
0(·),K ′

1(·)} define by (2.6) the same
holomorphic function τ(·), if and only if they are equivalent. Therefore we will identify
(by means of (2.6)) a holomorphic C̃(H0,H1)-valued function τ(·) and the corresponding
class of equivalent admissible pairs {K0(·),K1(·)}.

Proposition 2.4. (cf. [7]). Let τ(·) : D → C̃(H0,H1) be a C̃(H0,H1)-valued function
and let N(·) : D → [H0,H1] be a holomorphic operator function such that 0 ∈ ρ(τ(λ) −
N(λ)), λ ∈ D. Then the function τ(·) is holomorphic on D if and only if so is an
operator function (τ(λ)−N(λ))−1, λ ∈ D.

Proof. Let τ(·) be a holomorphic function with the corresponding representation (2.6).
Then

τ(λ)−N(λ) = {{K0(λ)h, (K1(λ)−N(λ)K0(λ))h} : h ∈ H}
and the pair {K0(λ),K1(λ) − N(λ)K0(λ)} is admissible because so is the pair {K0(λ),
K1(λ)}. Therefore τ(λ) − N(λ) = {K0(λ),K1(λ) − N(λ)K0(λ);H}, λ ∈ D and hens
(τ(λ)−N(λ))−1 = K0(λ)(K1(λ)−N(λ)K0(λ))−1. This imply that the function (τ(λ)−
N(λ))−1 is holomorphic.

Conversely assume that S(λ) := (τ(λ)−N(λ))−1 is a holomorphic operator function.
It is clear that τ(λ) = {S(λ), IH1 + N(λ)S(λ);H1}, λ ∈ D and the pair {S(λ), IH1 +
N(λ)S(λ)} is admissible. Hence by Definition 2.3 τ(·) is a holomorphic function. �

Corollary 2.5. Suppose that τ(·) : D → C̃(H) is a C̃(H)-valued function and there is a
point µ ∈ C such that µ ∈ ρ(τ(λ)) for every λ ∈ D. Then τ(·) is holomorphic on D if
and only if so is the operator function (τ(λ)− µ)−1, λ ∈ D.
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3. Linear relations from a Hilbert space to its subspace

Let H1 be a subspace in a Hilbert space H0 and let H2 = H0	H1. Denote by Pi the
orthoprojector in H0 onto Hi, i ∈ {1, 2} and introduce the operators

J01 =
(

P2 −iIH1

iP1 0

)
:H0 ⊕H1→H0 ⊕H1, J10 =

(
0 −iP1

iIH1 P2

)
:H1 ⊕H0→H1 ⊕H0,

(3.1)

U01 =
(

P1 0
iP2 IH1

)
:H0 ⊕H1→H1 ⊕H0, U10 =

(
IH1 −iP2

0 P1

)
:H1 ⊕H0→H0 ⊕H1.

(3.2)

It is easily seen that J01 and J10 are signature operators, i.e., J01 = (J01)∗ = (J01)−1

and J10 = (J10)∗ = (J10)−1. Furthermore since U10 = U∗01 and U10U01 = IH0⊕H1 ,
U01U10 = IH1⊕H0 , it follows that U01 and U10 are unitary operators and U10 = (U01)−1.

For every linear relation θ ∈ C̃(H0,H1) we put

(3.3) θ× = J01(θ⊥) = (J01θ)⊥, θ× ∈ C̃(H0,H1).

It is clear that θ× is the set of all vectors k̂ = {k0, k1} ∈ H0 ⊕H1 such that

(3.4) (k1, h0)− (k0, h1) + i(P2k0, P2h0) = 0, {h0, h1} ∈ θ.

If H1 = H0 := H, then a linear relation θ× ∈ C̃(H) coincides with θ∗. In the next
proposition we show that in the general case (i.e., if H1 ⊂ H0) θ× possesses a number of
properties similar that of θ∗.

Proposition 3.1. 1) The linear relations θ× ∈ C̃(H0,H1) and θ∗ ∈ C̃(H1,H0) are
connected via θ∗ = U01θ

×, θ× = U10θ
∗;

2) θ×× = θ;
3) θ1 ⊂ θ2 ⇐⇒ θ×2 ⊂ θ×1 ;
4) Let θ = {K0,K1;H}, where K0 = (K01 K02)> : H → H1⊕H2 and K1 ∈ [H,H1].

Then θ× = {(C̃0, C̃1);H} where

(3.5) C̃0 = (K∗
1 − iK∗

02) : H1 ⊕H2 → H, C̃1 = −K∗
01 ∈ [H1,H].

Similarly let θ = {(C0, C1);H} where C0 = (C01 C02) : H1⊕H2 → H and C1 ∈ [H1,H].
Then θ× = {K̃0, K̃1;H} where

(3.6) K̃0 = (−C∗1 − iC∗02)
> : H → H1 ⊕H2, K̃1 = C∗01 ∈ [H,H1].

If in particular B is a bounded operator from H0 to H1 and B = (B1 B2) : H1 ⊕H2 →
H1, then B× is a linear relation defined by

(3.7) B× = {(IH1 − iB∗2)>, B∗1 ;H1}.

Proof. 1) Let {k0, k1} ∈ θ× and let {l1, l0} = U01{k0, k1}, that is l1 = P1k0 and l0 =
iP2k0 + k1. Then by (3.4)

(l0, h0)− (l1, h1) = i(P2k0, P2h0) + (k1, h0)− (k0, h1) = 0, {h0, h1} ∈ θ.

Hence {l1, l0} ∈ θ∗ and therefore U01θ
× ⊂ θ∗.

Let now {l1, l0} ∈ θ∗ and let {k0, k1} = U10{l1, l0}, so that k0 = l1 − iP2l0 and
k1 = P1l0. Then

(k1, h0)− (k0, h1) + i(P2k0, P2h0) = (l0, h0)− (l1, h1) = 0, {h0, h1} ∈ θ,

that is {k0, k1} ∈ θ×. Hence U10θ
∗ ⊂ θ×, which yields the desired statement.

2) It follows from (3.3) that

θ×× = J01[(θ×)⊥] = J01(J01θ) = J2
01θ = θ.
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3) If θ1 ⊂ θ2, then θ⊥2 ⊂ θ⊥1 and by (3.3) θ×2 ⊂ θ×1 . Conversely if θ×2 ⊂ θ×1 , then
θ1 = θ××1 ⊂ θ××2 = θ2.

4) Let K = (K0 K1)> ∈ [H,H0 ⊕H1]. Then θ = KH and by (3.3)

θ× = (J01KH)⊥ = Ker(J01K)∗ = Ker(K∗J01) = Ker C̃,

where

(3.8) C̃ = K∗J01 = (K∗
0 K∗

1 )
(

P2 −iIH1

iP1 0

)
= (iK∗

1P1 + K∗
02P2 − iK∗

01).

Moreover since KerK = {0} and R(K) = R(K)(= θ), one has R(K∗) = H and therefore
R(C̃) = H. This and (3.8) yield the first part of the statement 4).

To prove the second part consider a linear relation θ̃ = {K̃0, K̃1;H}, where K̃0 and
K̃1 are given by (3.6). It follows from (3.5) that θ̃× = {(C0, C1);H} = θ. Therefore
θ× = θ̃ = {K̃0, K̃1;H}.

Finally formula (3.7) is implied by (3.6) and the obvious relation B = {(B,−IH1);H1}.
�

Let H1 be a subspace in a Hilbert space H0. For a linear relation θ ∈ C̃(H0,H1) we
let

(3.9) ϕθ(ĥ) = 2Im(h1, h0) + ||P2h0||2, ĥ = {h0, h1} ∈ θ.

Definition 3.2. A linear relation θ ∈ C̃(H0,H1) belongs to the class:
1) Dis0(H0,H1) (Ac0(H0,H1)), if ϕθ(ĥ) ≥ 0 (ϕθ(ĥ) ≤ 0) for all ĥ ∈ θ;
2) Sym0(H0,H1), if θ ⊂ θ×;
3) Self(H0,H1), if θ = θ×.

It is easily seen that θ ∈ Sym0(H0,H1) ⇐⇒ ϕθ(ĥ) = 0, ĥ ∈ θ.

Definition 3.3. A linear relation θ ∈ C̃(H0,H1) belongs to one of the classes Dis(H0,H1),
Ac(H0,H1) or Sym(H0,H1) if it belongs to the class Dis0(H0,H1), Ac0(H0,H1) or
Sym0(H0,H1) respectively and there are not extensions θ̃ ⊃ θ, θ̃ 6= θ in the corres-
ponding class.

Note that in the case H0 = H1 =: H the classes Dis(H,H), Ac(H,H), Sym(H,H)
and Self(H,H) coincide with the sets of all maximal dissipative, maximal accumulative,
maximal symmetric and selfadjoint linear relations in H respectively.

In the next proposition we describe classes Dis, Ac, Sym and Self in the form conve-
nient for applications.

Proposition 3.4. 1) Assume that θ is a (not necessary closed) linear relation in H0⊕H1

and θ = {K0,K1;H}, where K0 = (K01 K02)> : H → H1 ⊕ H2, K1 ∈ [H,H1].
Moreover let

(3.10) Sθ := 2Im(K∗
01K1) + K∗

02K02, Sθ ∈ [H].

Then:
i) θ ∈ Dis(H0,H1) if and only if Sθ ≥ 0 and

(3.11) 0 ∈ ρ(K1 + λK0) for some (equivalently for every) λ ∈ C+;

ii) θ ∈ Ac(H0,H1) if and only if Sθ ≤ 0 and

(3.12) 0 ∈ ρ(K1 + λK01) for some (equivalently for every) λ ∈ C−;
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iii) θ ∈ Sym(H0,H1) (θ ∈ Self(H0,H1)) if and only if Sθ = 0 and at least one of the
condition (respectively both the conditions) (3.11), (3.12) is fulfilled. Therefore
θ ∈ Self(H0,H1) if and only if θ ∈ Dis(H0,H1) ∩Ac(H0,H1).

2) Let θ = {(C0, C1);H} ∈ C̃(H0,H1), where C0 = (C01 C02) : H1 ⊕ H2 → H,
C1 ∈ [H1,H] and let

S̃θ := 2Im(C1C
∗
01)− C02C

∗
02, S̃θ ∈ [H].

Then:
i) θ ∈ Dis(H0,H1) if and only if S̃θ ≥ 0 and

(3.13) 0 ∈ ρ(C01 − λC1) for some (equivalently for every) λ ∈ C+;

ii) θ ∈ Ac(H0,H1) if and only if S̃θ ≤ 0 and

(3.14) 0 ∈ ρ(C0 − λC1P1) for some (equivalently for every) λ ∈ C−;

iii) θ ∈ Sym(H0,H1) (θ ∈ Self(H0,H1)) if and only if S̃θ = 0 and at least one of
the condition (respectively both the conditions) (3.13), (3.14) is fulfilled.

Proof. 1) Let ĥ = {h0, h1} ∈ θ, where h0 = K0h, h1 = K1h, h ∈ H. Then in view
of (3.9)

ϕθ(ĥ) = 2Im(K1h, K0h) + ||P2K0h||2 = ((2Im(K∗
01K1) + K∗

02K02)h, h) = (Sθh, h)

and, therefore, the following equivalences hold

(3.15) θ ∈ Dis0(H0,H1) ⇐⇒ Sθ ≥ 0, θ ∈ Ac0(H0,H1) ⇐⇒ Sθ ≤ 0,

θ ∈ Sym0(H0,H1) ⇐⇒ Sθ = 0.

Let further λ ∈ C− and let

(3.16) Yλ =
1√

−2Imλ

(
−λP1 +

√
−2Imλ P2 IH1

−λP1 IH1

)
: H0 ⊕H1 → H0 ⊕H1,

(3.17) Zλ =
1

i
√
−2Imλ

(
P1 + i

√
−2Imλ P2 −IH1

λP1 −λIH1

)
: H0 ⊕H1 → H0 ⊕H1.

The immediate checking shows that YλZλ = ZλYλ = I. Hence 0 ∈ ρ(Yλ) and Zλ =
(Yλ)−1. Furthermore introduce the invertible operator Fλ ∈ [H0] by

Fλ =
(

IH1 0
0 −λ−1

√
−2ImλIH2

)
: H1 ⊕H2 → H1 ⊕H2.

Consider the (Cayley) transform

(3.18) C̃(H0,H1) 3 θ → τ = τ(θ) := Yλθ ∈ C̃(H0,H1), λ ∈ C−
Clearly, τ = {N0, N1;H} where

(3.19) N0 = (K1 − λK01

√
−2ImλK02)> = Fλ(K1 − λK0), N1 = K1 − λK01.

Moreover since 0 ∈ ρ(Yλ), the transform (3.18) bijectively maps the set C̃(H0,H1) onto
itself.

It follows from (3.19) that

N∗
1 N1 −N∗

0 N0 = 2Imλ Sθ.

Therefore in view of (3.15) the following assertions hold: 1) θ ∈ Dis0(H0,H1) iff τ is a
closed contraction from R(N0) to H1; 2) θ ∈ Ac0(H0,H1) iff τ−1 is a closed contraction
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from R(N1) to H0; 3) θ ∈ Sym0(H0,H1) iff τ is an isometry from R(N0)(= R(N0)) onto
R(N1). This and Definition 3.3 yield

θ ∈ Dis(H0,H1) ⇐⇒ τ ∈ C(H0,H1) ⇐⇒ Sθ ≥ 0 and R(N0) = H0,(3.20)

θ ∈ Ac(H0,H1) ⇐⇒ τ−1 ∈ C(H1,H0) ⇐⇒ Sθ ≤ 0 and R(N1) = H1,(3.21)

θ ∈ Sym(H0,H1) ⇐⇒ τ is an isometry such that D(τ) = H0 or (and) R(τ) = H1

⇐⇒ Sθ = 0 and R(N0) = H0 or (and) R(N1) = H1.

Combining (3.20),(3.21) with (3.19) we arrive at the desired statements for the classes
Dis, Ac and Sym.

Next we show that

(3.22) τ(θ×) = (τ(θ))−1∗, θ ∈ C̃(H0,H1).

Letting

J ′ =
(

IH0 0
0 −IH1

)
: H0 ⊕H1 → H0 ⊕H1

one obtains θ−1∗ = J ′θ⊥, θ ∈ C̃(H0,H1). Moreover it easily seen that for every invertible
operator X ∈ [H0 ⊕ H1] the equality (Xθ)⊥ = X−1∗θ⊥ holds. This and (3.18) yield
(τ(θ))−1∗ = J ′(Yλθ)⊥ = J ′Y −1∗

λ θ⊥. On the other hand in view of (3.3) one has τ(θ×) =
Yλθ× = YλJ01θ

⊥. Thus (3.22) is equivalent to the relation

YλJ01θ
⊥ = J ′Y −1∗

λ θ⊥

which in turn follows from the directly verified equality YλJ01Y
∗
λ = J ′.

Now in view of (3.22) and (3.20), (3.21) one has

θ = θ× ⇐⇒ τ(θ) = (τ(θ))−1∗ ⇐⇒ τ(θ) ∈ C(H0,H1) and (τ(θ))−1 ∈ C(H1,H0)

⇐⇒ θ ∈ Dis(H0,H1) ∩Ac(H0,H1).

This yields the required statement for the class Self(H0,H1).
2) It follows from (3.22) that τ(θ) ∈ C(H0,H1) ⇐⇒ (τ(θ×))−1 ∈ C(H1,H0).

Therefore by (3.20), (3.21) the following equivalence holds

(3.23) θ ∈ Dis(H0,H1) ⇐⇒ θ× ∈ Ac(H0,H1).

Let now θ = {(C0, C1);H}. Then by Proposition 3.1,4) θ× = {K̃0, K̃1;H}, where K̃0

and K̃1 are defined by (3.6). Hence,

Sθ× = −2Im(C1C
∗
01) + C02C

∗
02 = −S̃θ

and by (3.6)

K̃1 + λK̃0 =
(

C∗01 − λC∗1
−iλC∗02

)
= Φλ

(
C∗01 − λC∗1

C∗02

)
, K̃1 + λK̃01 = C∗01 − λC∗1 ,

where Φλ = diag(IH1 ,−iλIH2) ∈ [H1 ⊕H2]. Therefore

(K̃1 + λK̃0)∗ = (C01 − λC1 C02)Φ∗λ = (C0 − λC1P1)Φ∗λ, (K̃1 + λK̃01)∗ = C01 − λC1,

which in view of the inclusion 0 ∈ ρ(Φ∗λ) yields the equivalences

0 ∈ ρ(K̃1 + λK̃0) ⇐⇒ 0 ∈ ρ(C0 − λC1P1), λ ∈ C+,

0 ∈ ρ(K̃1 + λK̃01) ⇐⇒ 0 ∈ ρ(C01 − λC1), λ ∈ C−.

Now the desired statement is implied by (3.23) and the statement 1). �

It is known that a maximal accretive (dissipative, symmetric) linear relation θ ∈ C̃(H)
admits the orthogonal decomposition in the operator and multivalued parts. In the next
corollary we specify a similar result for the classes Ac, Dis, Sym and Self.
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Corollary 3.5. Suppose that a linear relation θ ∈ C̃(H0,H1) belongs to one of the classes
Dis, Ac, Sym or Self and let H′1 := H1 	 θ(0), H′0 := H0 	 θ(0) so that H′1 ⊂ H′0 and
H′0 	H′1 = H2(= H0 	H1). Then

(3.24) θ = θs ⊕ θ̂(0), θ̂(0) = {0} ⊕ θ(0),

where θs is an operator from H′0 to H′1 with D(θs) = D(θ), which belongs to the same
class (in H′0 ⊕H′1) as θ.

Proof. We prove the corollary for θ ∈ Ac(H0,H1), since for other classes the proof is
similar. Put in (3.18) λ = −i and consider the Cayley transform τ = Y−iθ. It follows
from (3.21) that τ = {N, IH1 ;H1} where N = τ−1 ∈ [H1,H0] and ||N || ≤ 1. Moreover
θ = (Y−i)−1τ = Z−iτ where Z−i is the operator (3.17). Hence θ has the representation
θ = {K0,K1;H1} with operators K0 ∈ [H1,H0] and K1 ∈ [H1] given by

(3.25) K0 =
1
2i

[(P1 + i
√

2P2)N − IH1 ], K1 =
1
2
(P1N + IH1).

Let H′′1 = {h1 ∈ H1 : Nh1 = h1}, H′0 = H0 	 H′′1 and H′1 = H1 	 H′′1 . Since N is a
contraction, it follows that

N =
(

N ′ 0
0 I

)
: H′1 ⊕H′′1 → H′0 ⊕H′′1 .

This and (3.25) imply that

K0 =
(

K ′
0 0

0 0

)
: H′1 ⊕H′′1 → H′0 ⊕H′′1 , K1 =

(
K ′

1 0
0 I

)
: H′1 ⊕H′′1 → H′1 ⊕H′′1

where K ′
0 ∈ [H′1,H′0] and K ′

1 ∈ [H′1] are some operators. Letting now θs := {K ′
0,K

′
1;H′1} ∈

C̃(H′0,H′1) and taking into account Proposition 3.4, 1) one obtains the desired state-
ment. �

In the next proposition we show that a linear relation θ ∈ Self(H0,H1) has the nor-
malized representation. Note that for selfadjoint relations this result is well known (see
for instance [10, 3]).

Proposition 3.6. A linear relation θ ∈ C̃(H0,H1) belongs to the class Self(H0,H1) if
and only if there is a representation θ = {K0,K1;H1} with operators K0 = (K01 K02)> :
H1 → H1 ⊕H2 and K1 ∈ [H1] satisfying the relations
(3.26)
K∗

01K1−K∗
1K01 + iK∗

02K02 = 0, K∗
01K01 +K∗

1K1 +K∗
02K02 = IH1 , 2K02K

∗
02 = IH2 ,

(3.27) K01K
∗
1 −K1K

∗
01 = 0, K01K

∗
01 + K1K

∗
1 = IH1 , (K1 + iK01)K∗

02 = 0.

Proof. Let θ ∈ Self(H0,H1). Put in (3.18) λ = −i and consider the Cayley transform
τ = Y−iθ. It was shown under the proof of Proposition 3.4 that τ = grV = {IH0 , V ;H0}
where V is a unitary operator from H0 onto H1. Hence θ = Z−i(grV ) where Z−i is
the operator (3.17). This implies that the linear relation θ has a representation θ =
{K0,K1;H1} with

K0 =
1
2
(P1 + i

√
2P2 − V )V ∗ =

1
2
(P1V

∗ + i
√

2P2V
∗ − IH1),(3.28)

K1 =
i

2
(P1 + V )V ∗ =

i

2
(P1V

∗ + IH1).(3.29)
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Let V = (V1 V2)(∈ [H1 ⊕ H2,H1]) and V ∗ = (V ∗1 V ∗2 )>(∈ [H1,H1 ⊕ H2]) be block-
matrix representations of the operators V and V ∗ respectively. Then by (3.28) and (3.29)
one has

(3.30) K01(= P1K0) =
1
2
(V ∗1 − IH1), K02(= P2K0) =

i√
2
V ∗2 , K1 =

i

2
(V ∗1 + IH1).

Moreover since V ∗V = IH0 and V V ∗ = IH1 , it follows that

V ∗1 V1 = I, V ∗2 V2 = I, V ∗1 V2 = 0, V1V
∗
1 + V2V

∗
2 = I.

Now the immediate calculations give the relations (3.26) and (3.27) for the operators
(3.30).

Conversely, assume that the representation θ = {K0,K1;H1} satisfies (3.26), (3.27)
and let Sθ be the operator (3.10). Then by the first equality in (3.26) one has Sθ = 0.
Moreover, the relations (3.26) and (3.27) yield

(K∗
1 + iK∗

01)(K1 − iK01) = (K1 − iK01)(K∗
1 + iK∗

01) = IH1 ,

so that 0 ∈ ρ(K1 − iK01).
Next consider the operators X := diag (IH1 ,

√
2IH2) ∈ [H1 ⊕H2] and

N := X(K1 + iK0) =
(

K1 + iK01√
2K02

)
: H1 → H1 ⊕H2.

Clearly, N∗ = (K∗
1 − iK∗

01

√
2K∗

02) and in view of (3.26), (3.27) one has

N∗N = (K∗
1 − iK∗

01)(K1 + iK01) + 2K∗
02K02 = IH1 ,

NN∗ =
(

(K1 + iK01)(K∗
1 − iK∗

01)
√

2(K1 + iK01)K∗
02√

2K02(K∗
1 − iK∗

01) 2K02K
∗
02

)
=

(
IH1 0
0 IH2

)
= IH0 .

Hence 0 ∈ ρ(N) and therefore 0 ∈ ρ(K1 + iK0). Now Proposition 3.4 imply the inclusion
θ ∈ Self(H0,H1). �

Remark 3.7. i) If θ = {K0,K1;H} ∈ Dis(H0,H1), then by (3.11) dim H = dimH0

and hence dim θ = dimH0, codim θ = dimH1. Therefore every linear relation θ ∈
Dis(H0,H1) admits the representations θ = {K0,K1;H0} = {(C0, C1);H1}. Similarly it
follows from (3.12) that every θ ∈ Ac(H0,H1) can be represented as θ = {K0,K1;H1} =
{(C0, C1);H0}. Observe also that for θ ∈ Self(H0,H1) the equality dim θ = dimH0 =
dimH1 is valid. Therefore if H1 6= H0, then the set Self(H0,H1) is not empty if and
only if dimH0 = dimH1 = ∞.

ii) If θ = {K0,K1;H1} ∈ Ac(H0,H1), then by Proposition 3.4 0 ∈ ρ(K1 − iK01).
Therefore for a linear relation θ ∈ Ac(H0,H1) there is a unique representation θ =
{K ′

0,K
′
1;H1} such that K ′

1 − iK ′
01 = IH1 .

4. The class R̃(H0,H1) and the dilation theorem

4.1. The class R̃(H0,H1) and its properties. Let H1 be a subspace in a Hilbert
space H0, H2 = H0 	 H1 and let τ+(·) : C+ → C̃(H0,H1), τ−(·) : C− → C̃(H1,H0) be
holomorphic functions. Then by Definition 2.3

(4.1) τ+(λ) = {K0(λ),K1(λ);H+} = {(K01(λ) K02(λ))>,K1(λ);H+}, λ ∈ C+,

where H+ is an auxiliary Hilbert space, Kj(·) : C+ → [H+,Hj ], j ∈ {0, 1} are holomor-
phic operator functions and
(4.2)
K0(λ) = (K01(λ) K02(λ))> (∈ [H+,H1 ⊕H2]), K0j(·) : C+ → [H+,Hj ], j ∈ {1, 2}

is the block-matrix representation of the operator function K0(·).
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Similarly the function τ−(·) admits the representation

(4.3) τ−(z) = {N1(z), N0(z);H−} = {N1(z), (N01(z) N02(z))>;H−}, z ∈ C−,

where H− is a Hilbert space, Nj(·) : C− → [H−,Hj ], j ∈ {0, 1} are holomorphic operator
functions and
(4.4)
N0(z) = (N01(z) N02(z))> (∈ [H−,H1 ⊕H2]), N0j(·) : C− → [H−,Hj ], j ∈ {1, 2}

is the block-matrix representation of the operator function N0(·).

Definition 4.1. A holomorphic C̃(H0,H1)-valued function τ+(·) : C+ → C̃(H0,H1)
belongs to the class R̃+(H0,H1), if −τ+(λ) ∈ Ac(H0,H1) for every λ ∈ C+.

Definition 4.2. A pair of holomorphic functions τ+(·) : C+ → C̃(H0,H1) and τ−(·) :
C− → C̃(H1,H0) belongs to the class R̃(H0,H1) if τ+(·) ∈ R̃+(H0,H1) and τ−(λ) =
τ∗+(λ) for every λ ∈ C+. In what follows such a pair of functions τ+(·) and τ−(·) will be
denoted by τ = {τ+, τ−}.

A pair of functions τ = {τ+(·), τ−(·)} ∈ R̃(H0,H1) is referred to the class R̃0(H0,H1)
if τ+(λ) = τ+, λ ∈ C+; τ−(z) = τ−, z ∈ C− (ı,e., the functions τ+(·) and τ−(·) are
constant on their domains) and −τ+ ∈ Self(H0,H1).

In the case H1 = H0 := H we put R̃+(H) := R̃+(H,H) and R̃(H) := R̃(H,H).

Let τ = {τ+, τ−} ∈ R̃(H0,H1) and let (4.1), (4.3) be representations of τ+ and τ−.
Then in view of Remark 3.7 dim H+ = dimH1, dim H− = dimH0 and, therefore, there
exist representations (4.1), (4.3) with H+ = H1 and H− = H0. At the same time the
spaces H+ and H− can be chosen equal if and only if dimH1 = dimH0. In particular
such a choice is possible if τ ∈ R̃0(H0,H1).

In the following proposition we describe classes R̃+(H0,H1) and R̃(H0,H1) in terms
of the corresponding pairs {K0(·),K1(·)} and {N1(·), N0(·)}.

Proposition 4.3. 1) The equality (4.1) establishes a bijective correspondence between
all functions τ+(·) ∈ R̃+(H0,H1) and all pairs {K0(·),K1(·)} of holomorphic operator
functions satisfying the relations

(4.5) 2Im(K∗
01(λ)K1(λ))−K∗

02(λ)K02(λ) ≥ 0, 0 ∈ ρ(K1(λ) + iK01(λ)), λ ∈ C+.

2) The equalities (4.1) and (4.3) establish a bijective correspondence between all pairs
τ = {τ+, τ−} ∈ R̃(H0,H1) and all pairs {K0(·),K1(·)}, {N1(·), N0(·)} of holomorphic
operator functions satisfying (4.5) and the following relations

2Im(N∗
1 (z)N01(z))−N∗

02(z)N02(z) ≤ 0, 0 ∈ ρ(N0(z))− iN1(z)), z ∈ C−,(4.6)

N∗
0 (λ)K0(λ)−N∗

1 (λ)K1(λ) = 0, λ ∈ C+.(4.7)

Moreover a pair τ = {τ+, τ−} belongs to the class R̃0(H0,H1) if and only if it admits the
representation (4.1), (4.3) such that: i) H+ = H−; ii) Kj(λ) = Kj , λ ∈ C+; Nj(z) =
Nj , z ∈ C−, j ∈ {0, 1} (i.e., the functions Kj(·) and Nj(·) are constant on their
domains); iii) operators Kj and Nj satisfy (4.5)–(4.7) and the following condition

(4.8) N1 = K01, N01 = K1, N02 = −iK02.

Proof. 1) Let a function τ+(·) belongs to the class R̃+(H0,H1). Then according to
Definition 2.3 it admits the representation (4.1), where {K0(·),K1(·)} is an admis-
sible pair. Consequently, KerK0(λ) ∩ Ker(−K1(λ)) = {0} and therefore −τ+(λ) =
{K0(λ),−K1(λ);H+}, λ ∈ C+. Now (4.5) is implied by the inclusion−τ+(λ)∈Ac(H0,H1)
and Proposition 3.4, 1).
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Conversely, let a pair {K0(·),K1(·)} of holomorphic operator-functions satisfies (4.5).
Since Ker(K1(λ)+ iK01(λ)) = {0}, this pair is admissible. Moreover in view of (4.5) and
Proposition 3.4, 1) a linear relation τ ′(λ) := {K0(λ),−K1(λ);H+} belongs to the class
Ac(H0,H1) (for every λ ∈ C+) and ,therefore, is closed. Consequently, the equality (4.1)
defines a holomorphic C̃(H0,H1)-valued function τ+(λ) = −τ ′(λ) and −τ+(λ) = τ ′(λ) ∈
Ac(H0,H1), λ ∈ C+. Hence τ+(·) ∈ R̃+(H0,H1).

2) Assume that τ = {τ+, τ−} ∈ R̃(H0,H1) and (4.1), (4.3) is the representation of
τ+(·) and τ−(·) respectively. The statement 1) imply that the operator functions K0(·)
and K1(·) satisfy (4.5). Let U10 be the operator (3.2) and let τ̃(z) = U10(−τ−(z)), so
that τ̃(z) ∈ C̃(H0,H1) and

(4.9) τ̃(z) = {(N1(z) iN02(z))>,−N01(z);H−}, z ∈ C−.

It follows from Proposition 3.1 ,1) that τ̃(z) = U10(−τ+(z))∗ = (−τ+(z))×, z ∈ C−.
Therefore by (3.23) τ̃(z) ∈ Dis(H0,H1). Applying now Proposition 3.4, 1) to (4.9) we
arrive at the relations (4.6). Furthermore, (4.7) immediately follows from the represen-
tations (4.1), (4.3) and the equality τ−(λ) = τ∗+(λ).

Conversely, let pairs {K0(·),K1(·)} and {N1(·), N0(·)} satisfy (4.5) – (4.7). It follows
from the statement 1) that (4.1) defines a function τ+(·) ∈ R̃+(H0,H1). Let now B =
−i P1 ∈ [H0,H1], so that B∗ = i IH1 ∈ [H1,H0]. Then by (4.5) and (4.6)

0 ∈ ρ(K1(λ)−BK0(λ)) ∩ ρ(N0(z)−B∗N1(z)), λ ∈ C+, z ∈ C−.

This and Lemma 2.1, 1) show that for every z ∈ C− a linear relation τ−(z) = {N1(z),
N0(z),H−} is closed. Therefore the equality (4.3) defines a holomorphic C̃(H1,H0)-
valued function τ−(·). Finally, applying Lemma 2.1, 2) to the linear relations τ+(λ) =
{K0(λ),K1(λ;H+)} and τ−(λ) = {N1(λ), N0(λ);H−)} and taking into account (4.7) we
arrive at the equality τ−(λ) = τ∗+(λ), λ ∈ C+. Thus a pair τ := {τ+(·), τ−(·)} belongs to
the class R̃(H0,H1).

It remains to describe the class R̃0(H0,H1). Let τ+ ∈ C̃(H0,H1) and τ− ∈ C̃(H1,H0)
be a pair of linear relations such that τ− = τ∗+. Then by Proposition 3.1,1) −τ− =
(−τ+)∗ = U01(−τ+)× where U01 is the operator (3.2). This implies the equivalence

(4.10) −τ+ ∈ Self(H0,H1) ⇐⇒ −τ− = U01(−τ+).

Moreover if τ+ = {(K01 K02)>,K1;H+} then by (3.2)

(4.11) U01(−τ+) = {K01, (−K1 iK02)>;H+}.

Now the desired statement for the class R̃0(H0,H1) is implied by (4.10), (4.11) and the
description of the class R̃(H0,H1). �

Remark 4.4. i) It follows from Proposition 4.3 that for every pair τ = {τ+, τ−} ∈
R̃(H0,H1) there exists a unique representation (4.1), (4.3) such that H+ = H1,H− = H0

and K1(λ) + iK01(λ) = IH1 , λ ∈ C+; N0(z)− iN1(z) = IH0 , z ∈ C−.
ii) In the case H1 = H0 := H the class R̃(H)(= R̃(H,H)) coincides with the well

known class of Nevanlinna functions with values in C̃(H) [8, 3, 4, 5]. More precisely, the
equality

τ(λ) =

{
τ+(λ), λ ∈ C+

τ−(λ), λ ∈ C−

gives a bijective correspondence between all pairs τ = {τ+(·), τ−(·)} ∈ R̃(H) and all
Nevanlinna functions τ(·) : C+ ∪ C− → C̃(H). Observe also that for the class R̃(H)
Proposition 4.3 was obtained in [3].
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In view of Proposition 4.3 we will identify a function τ+(·) ∈ R̃+(H0,H1) and the
corresponding class of equivalent (in the sense of Definition 2.2) pairs of operator func-
tions {K0(·),K1(·)} satisfying (4.5). Similarly a pair of functions τ = {τ+(·), τ−(·)} ∈
R̃(H0,H1) will be identified with two classes of equivalent pairs {K0(·),K1(·)} and
{N1(·), N0(·)} which satisfy (4.5)–(4.7).

4.2. The dilation theorem. Assume that H1 is a subspace in a Hilbert space H0 and
H2 = H0 	 H1. Denote by H′ a Hilbert space with dim H′ = ∞, if dimH2 < ∞, and
dim H′ = dimH2, if dimH2 = ∞. Since dim(H′ ⊕H2) = dim H′, there exists a unitary
operator V = (V1 V2) : H′ ⊕H2 → H′ from H′ ⊕H2 onto H′. Moreover without loss of
generality one may consider that Ker(V1 − IH′) = {0}.

Let θ be a linear relation in H0 ⊕H1 with the representation θ = {K0,K1;H}, K0 =
(K01 K02)> ∈ [H,H1 ⊕H2], K1 ∈ [H,H1]. Put H′ := H′ ⊕H2 ⊕H1 and consider the
operators

K ′
0 =

− i
2 (V1 − I) − i

2V2 0
0 i

2IH2 − i√
2
K02

0 0 K01

 : H′ ⊕H2 ⊕H → H′ ⊕H2 ⊕H1︸ ︷︷ ︸
H′

,(4.12)

K ′
1 =

 1
2 (V1 + I) 1

2V2 0
0 1

2IH2
1√
2
K02

0 0 K1

 : H′ ⊕H2 ⊕H → H′ ⊕H2 ⊕H1︸ ︷︷ ︸
H′

.(4.13)

Denote by θ′ a linear relation in H′ given by θ′ := {K ′
0,K

′
1;H′}.

Lemma 4.5. 1) A linear relation θ belongs to one of the classes Dis(H0,H1),Ac(H0,H1),
Sym(H0,H1) or Self(H0,H1) if and only if θ′ is a maximal dissipative, maximal accu-
mulative, maximal symmetric or selfadjoint linear relation in H′ respectively.

2) If θ ∈ Self(H0,H1), then θ′(0) = θ(0)(⊂ H1).

Proof. 1) Since V ∗V = IH′⊕H2 and V V ∗ = IH′ , it follows that

V ∗1 V1 = I, V ∗2 V2 = I, V ∗1 V2 = 0, V1V
∗
1 + V2V

∗
2 = I.

Hence by the immediate calculation one obtains

2Im(K
′∗
0 K ′

1) = diag(0, 0, 2Im(K∗
01K1) + K∗

02K02).

Moreover, K ′
1 − iK ′

0 = diag(IH′ , IH2 ,K1 − iK01) and

K ′
1 + iK ′

0 =

V1 V2 0
0 0

√
2K02

0 0 K1 + iK01

 : H′ ⊕H2 ⊕H → H′ ⊕H2 ⊕H1.

Therefore K ′
1 + iK ′

0 = V ⊕ X(K1 + iK0), where X = diag(IH1 ,
√

2IH2) ∈ [H1 ⊕ H2].
This and Proposition 3.4, 1) yield the desired statement.

2) If θ ∈ Self(H0,H1), then by Proposition 3.4, 1)

−2Im(K∗
1K01) + K∗

02K02 = 0.

Hence KerK01 ⊂ KerK02 and, therefore, Ker K01 = KerK0. This and (4.12) show that
KerK ′

0 = {{0, 0, h} ∈ H′ : h ∈ KerK0}. Consequently,

θ′(0) = K ′
1 KerK ′

0 = {{0, 0,K1h} : h ∈ KerK0} = θ(0).

�

Now we are ready to prove the main result of the paper – the dilation theorem.
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Theorem 4.6. Suppose that H0 and H1 are Hilbert spaces, H1 is a subspace in H0, H2 =
H0	H1 and H̃0 := H0⊕H1, H̃1 := H1⊕H1 , so that H̃1 ⊂ H̃0 and H̃0	H̃1 = H2. Then
for every linear relation θ̃ ∈ Self(H̃0, H̃1) there exists a representation θ̃ = {K̃0, K̃1; H̃1}
with the following properties:

i) the operators K̃0 ∈ [H̃1, H̃0] and K̃1 ∈ [H̃1] have the block-matrix representations

(4.14) K̃0 =
(

K1 K2

K3 K4

)
: H1⊕H1 → H0⊕H1, K̃1 =

(
N1 N2

N3 N4

)
: H1⊕H1 → H1⊕H1

such that 0 ∈ ρ(N4 − λK4), λ ∈ C+;
ii) the equalities

K0(λ) = −K1 + K2(N4 − λK4)−1(N3 − λK3), λ ∈ C+,(4.15)

K1(λ) = N1 −N2(N4 − λK4)−1(N3 − λK3), λ ∈ C+(4.16)

define holomorphic operator functions K0(·) : C+ → [H1,H0] and K1(·) : C+ → [H1]
such that the function τ+(λ) := {K0(λ),K1(λ);H1}, λ ∈ C+ belongs to the class
R̃+(H0,H1).

Conversely, assume that H1 is a subspace in a Hilbert space H0. Then every function
τ+(·) ∈ R̃+(H0,H1) admits the representation τ+(λ) = {K0(λ),K1(λ);H1}, λ ∈ C+

with the following properties: there exist a Hilbert space H1 and operators K̃0 ∈ [H1 ⊕
H1,H0 ⊕ H1], K̃1 ∈ [H1 ⊕ H1] with the block-matrix representations (4.14) such that a
linear relation θ̃ := {K̃0, K̃1;H1 ⊕ H1} belongs to the class Self(H0 ⊕ H1,H1 ⊕ H1) and
the operator functions K0(·), K1(·) satisfy the equalities (4.15), (4.16).

Proof. 1) First we prove the theorem for the case H0 = H1 := H. It is well known [11, 6]
that for every selfadjoint linear relation θ̃ ∈ C̃(H⊕ H1) the equality

(4.17) −(τ+(λ) + λ)−1 = PH(θ̃ − λ)−1 � H, λ ∈ C+

uniquely defines a function τ+(·) ∈ R̃+(H). Conversely, for every function τ+(·) ∈ R̃+(H)
there are a Hilbert space H1 and a selfadjoint linear relation θ̃ ∈ C̃(H ⊕ H1) such that
(4.17) holds.

Let now θ̃ = θ̃∗ ∈ C̃(H ⊕ H1). Then by Remark 3.7, ii) there is a representation
θ̃ = {K̃0, K̃1;H⊕H1} such that K̃1−i K̃0 = I. Therefore the block-matrix representations
(4.14) satisfy the relations

(4.18) N1 − iK1 = I, N2 = iK2, N3 = iK3, N4 − iK4 = I.

In view of (4.14) one has

(4.19) Im(K̃∗
0 K̃1) =

(
∗ ∗
∗ Im(K∗

2N2) + Im(K∗
4N4)

)
.

Since Im(K̃∗
0 K̃1) = 0, it follows from (4.19) and the second equality in (4.18) that

Im(K∗
4N4) = −Im(K∗

2N2) = −K∗
2K2 ≤ 0.

Moreover by (4.18) 0 ∈ ρ(N4 − iK4). Consequently, θ4 := {K4, N4;H1} is a maximal
accumulative linear relation in H1, so that 0 ∈ ρ(N4 − λK4), λ ∈ C+.

Let K0(λ) and K1(λ) be operator functions (4.15), (4.16) and let τ+(λ) = {K0(λ),K1(λ);H}.
We show that

(4.20) PHK̃0(K̃1 − λK̃0)−1 � H = −K0(λ)(K1(λ) + λK0(λ))−1, λ ∈ C+.
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Using the Frobenius formula one derives

(K̃1 − λK̃0)−1 =
(

N1 − λK1 N2 − λK2

N3 − λK3 N4 − λK4

)−1

=
(

S1(λ) ∗
S2(λ) ∗

)
,

where

S1(λ) = [N1 − λK1 − (N2 − λK2)(N4 − λK4)−1(N3 − λK3)]−1 = (K1(λ) + λK0(λ))−1,

S2(λ) = −(N4 − λK4)−1(N3 − λK3)(K1(λ) + λK0(λ))−1.

Hence

PHK̃0(K̃1 − λK̃0)−1 � H = K1S1(λ) + K2S2(λ)

=
(
K1 −K2(N4 − λK4)−1(N3 − λK3)

)
(K1(λ) + λK0(λ))−1

= −K0(λ)(K1(λ) + λK0(λ))−1,

which proves (4.20). Since (θ̃ − λ)−1 = K̃0(K̃1 − λK̃0)−1 and −(τ+(λ) + λ)−1 =
−K0(λ)(K1(λ)+λK0(λ))−1, it follows from (4.20) that the function τ+(λ) satisfies (4.17).
Therefore τ+(·) ∈ R̃+(H).

Conversely assume that τ+(·) ∈ R̃+(H). Then by Remark 4.4, i) there is a unique
representation τ+(λ) = {K0(λ),K1(λ);H)} such that

(4.21) K1(λ) + iK0(λ) = IH, λ ∈ C+.

Let H1 be a Hilbert space and let θ̃ ∈ C̃(H⊕H1) be a selfadjoint linear relation such that
(4.17) holds. Assume that θ̃ = {K̃0, K̃1;H⊕H1} where K̃1− i K̃0 = I and the operators
K̃0, K̃1 has the block-matrix representations (4.14). Denote by K̂0(λ) and K̂1(λ) the
operator functions given by (4.15) and (4.16) respectively. It follows from (4.18) that

(4.22) K̂1(λ) + i K̂0(λ) = IH, λ ∈ C+.

Moreover it was shown in the first part of the proof that the function τ̂+(λ) := {K̂0(λ),
K̂1(λ);H} satisfies (4.17). Hence τ̂+(λ) = τ+(λ) and by (4.21), (4.22) Kj(λ) = K̂j(λ),
λ ∈ C+, j ∈ {0, 1}. Thus the functions K0(λ) and K1(λ) satisfy (4.15), (4.16).

2) Now assume that H1 ⊂ H0, H̃j = Hj ⊕ H1, j ∈ {0, 1}, θ̃ ∈ Self(H̃0, H̃1) and
prove the first statement of the theorem. It follows from Remark 3.7, ii) that there is a
representation

(4.23) θ̃ = {K̃0, K̃1; H̃1}, K̃0 = (K̃01 K̃02)> : H̃1 → H̃1 ⊕H2, K̃1 ∈ [H̃1]

such that

(4.24) K̃1 − i K̃01 = I eH1
.

Let (4.14) be the block-matrix representation of the operators K̃0 and K̃1. Using the
decomposition H0 = H2 ⊕H1 one can rewrite the first equality in (4.14) as

(4.25) K̃0 =

K12 K22

K11 K21

K3 K4

 : H1 ⊕ H1︸ ︷︷ ︸eH1

→ H2 ⊕H1 ⊕ H1︸ ︷︷ ︸eH1

.

Hence the operators K̃01 ∈ [H̃1] and K̃02 ∈ [H̃1,H2] take the form

(4.26) K̃01 =
(

K11 K21

K3 K4

)
: H1⊕H1 → H1⊕H1, K̃02 =

(
K12 K22

)
: H1⊕H1 → H2.

Moreover (4.25) and the first equality in (4.14) imply

(4.27) K1 = (K12 K11)> : H1 → H2 ⊕H1, K2 = (K22 K21)> : H1 → H2 ⊕H1.
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Next consider the operators (4.12) and (4.13) corresponding to the linear relation (4.23).
It follows from (4.26) and (4.14) that

(4.28) K̃ ′
0 =


− i

2 (V1 − I) − i
2V2 0 0

0 i
2IH2 − i√

2
K12 − i√

2
K22

0 0 K11 K21

0 0 K3 K4

 ∈ [H′ ⊕H2 ⊕H1 ⊕ H1︸ ︷︷ ︸eH1

],

(4.29) K̃ ′
1 =


1
2 (V1 + I) 1

2V2 0 0
0 1

2IH2
1√
2
K12

1√
2
K22

0 0 N1 N2

0 0 N3 N4

 ∈ [H′ ⊕H2 ⊕H1 ⊕ H1︸ ︷︷ ︸eH1

].

Letting H′ := H′ ⊕H2 ⊕H1 one presents (4.28) and (4.29) as

(4.30) K̃ ′
0 =

(
K ′

1 K ′
2

K ′
3 K4

)
∈ [H′ ⊕ H1], K̃ ′

1 =
(

N ′
1 N ′

2

N ′
3 N4

)
∈ [H′ ⊕ H1]

where

K ′
1 =

− i
2 (V1 − I) − i

2V2 0
0 i

2IH2 − i√
2
K12

0 0 K11

 , K ′
2 =

 0
− i√

2
K22

K21

 , K ′
3 = (0 0 K3),

(4.31)

N ′
1 =

 1
2 (V1 + I) 1

2V2 0
0 1

2IH2
1√
2
K12

0 0 N1

 , N ′
2 =

 0
1√
2
K22

N2

 , N ′
3 = (0 0 N3).

(4.32)

Since θ̃ ∈ Self(H̃0, H̃1), it follows from Lemma 4.5 that

(4.33) θ̃′ := {K̃ ′
0, K̃

′
1;H′ ⊕ H1}

is a selfadjoint linear relation in H′⊕H1. Moreover in view of (4.24) K̃ ′
1− i K̃ ′

0 = I. This
and part 1) of the proof imply that 0 ∈ ρ(N4 − λK4), λ ∈ C+ and the equalities
(4.34)
K ′

0(λ) = −K ′
1+K ′

2(N4−λK4)−1(N ′
3−λK ′

3), K ′
1(λ) = N ′

1−N ′
2(N4−λK4)−1(N ′

3−λK ′
3)

define operator functions K ′
j(·) : C+ → [H′], j ∈ {0, 1} such that the function τ ′+(λ) :=

{K ′
0(λ),K ′

1(λ);H′} belongs to the class R̃+(H′).
Assume now that K0(λ) and K1(λ) are operator functions (4.15), (4.16), K0(λ) =

(K01(λ) K02(λ)) (∈ [H1,H1 ⊕ H2]) is the block-matrix representation of K0(λ) and
τ+(λ) := {K0(λ),K1(λ);H1}, λ ∈ C+. It follows from (4.27) that

K01(λ) = P1K0(λ) = −K11 + K21(N4 − λK4)−1(N3 − λK3),(4.35)

K02(λ) = P2K0(λ) = −K12 + K22(N4 − λK4)−1(N3 − λK3), λ ∈ C+.(4.36)

Now we are ready to prove the inclusion τ+(·) ∈ R̃+(H0,H1). The immediate calculation
with taking into account of (4.31) and (4.32) gives

(4.37)

−K ′
0(λ) =

− i
2 (V1 − I) − i

2V2 0
0 i

2IH2
i√
2
K02(λ)

0 0 −K01(λ)

 ,

K ′
1(λ) =

 1
2 (V1 + I) 1

2V2 0
0 1

2IH2 − 1√
2
K02(λ)

0 0 K1(λ)

 .
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Since −τ ′+(λ) = {−K ′
0(λ),K ′

1(λ);H′} is a maximal accretive linear relation in H′, it fol-
lows from (4.37) and Lemma 4.5 that −τ+(λ) = {−K0(λ),K1(λ);H1} ∈ Ac(H0,H1), λ ∈
C+. Hence τ+(·) ∈ R̃+(H0,H1).

3) Let us prove the second statement of the theorem. Assume that τ+(·) ∈ R̃+(H0,H1)
and

(4.38) τ+(λ) = {K0(λ),K1(λ);H1}, K0(λ) = (K01(λ) K02(λ))>(∈ [H1,H1 ⊕H2])

is a representation of τ+(·) such that K1(λ) + iK01(λ) = IH1 , λ ∈ C+. Let H′ be a
Hilbert space with dim H′ = dim(H′ ⊕ H2) and let V = (V1 V2) ∈ [H′ ⊕ H2,H

′] be a
unitary operator from H′ ⊕H2 onto H′ (here H2 = H0 	H1). Put H′ = H′ ⊕H2 ⊕H1

and consider the operator functions K ′
j(·) : C+ → [H′], j ∈ {0, 1} defined by (4.37). It

follows from Lemma 4.5 that the function τ ′+(λ) := {K ′
0(λ),K ′

1(λ);H′} belongs to the
class R̃+(H′). Moreover the equality

(4.39) K ′
1(λ) + iK ′

0(λ) = IH′ , λ ∈ C+

is valid. Therefore according to part 1) of the proof there exist a Hilbert space H1

and operators K̃ ′
j , j ∈ {0, 1} with the block-matrix representations (4.30) such that

θ̃′ := {K̃ ′
0, K̃

′
1;H′ ⊕ H1} is a selfadjoint linear relation in H′ ⊕ H1 and the operator

functions K ′
j(λ), j ∈ {0, 1} satisfy (4.34). Moreover the following equality holds

(4.40) K̃ ′
1 − i K̃ ′

0 = I.

It follows from (4.30) and (4.40) that N ′
3−iK ′

3 = 0. Therefore K ′
0(i) = −K ′

1, K ′
1(i) =

N ′
1 and by (4.37) the operators (4.30) take the form (in the decomposition H′ ⊕ H1 =

H′ ⊕H2 ⊕H1 ⊕ H1)
(4.41)

K̃ ′
0 =


− i

2 (V1 − I) − i
2V2 0 X1

0 i
2IH2 ∗ ∗

0 0 ∗ ∗
X2 X3 ∗ ∗

 , K̃ ′
1 =


1
2 (V1 + I) 1

2V2 0 Y1

0 1
2IH2 ∗ ∗

0 0 ∗ ∗
Y2 Y3 ∗ ∗

 .

Let U := (K̃ ′
1 + i K̃ ′

0)(K̃
′
1 − i K̃ ′

0)
−1 be a Cayley transform of θ̃′. Then by (4.40) U =

K̃ ′
1 + i K̃ ′

0, so that

(4.42) U =


V1 V2 0 Y1 + iX1

0 0 ∗ ∗
0 0 ∗ ∗

Y2 + iX2 Y3 + iX3 ∗ ∗

 .

Since V = (V1 V2) and U are unitary operators, the equality (4.42) gives Yj + iXj =
0, j ∈ {1, 2, 3}. Moreover combining (4.40) and (4.41) one obtains Yj − iXj = 0, j ∈
{1, 2, 3}. Hence Xj = Yj = 0, j ∈ {1, 2, 3} and in view of (4.40) the equalities (4.41) can
be rewritten as (4.28), (4.29).

Let now K̃0 be the operator (4.25) with entries taken from (4.28) and let K̃1 be the
second operator in (4.14) with entries taken from (4.29). Furthermore let K1 and K2 be
operators (4.27), so that K̃0 has the block-matrix representation (4.14). Then by Lemma
4.5 a linear relation θ̃ := {K̃0, K̃1;H1⊕H1} belongs to the class Self{H0⊕H1,H1⊕H1}.
Moreover the same calculations as in the part 2) of the proof leads to the equalities (4.35),
(4.36) for K0j(λ), j ∈ {1, 2} and (4.16) for K1(λ). Thus the given operator functions
K0(·) and K1(·) satisfy (4.15) and (4.16). �
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One can easily verify that under the assumptions of Theorem 4.6 a linear relation θ̃
and a function τ+(·) are connected via

(4.43) −(τ+(λ) + λP1)−1 = PH0(θ̃ − λP̃1)−1 � H1, λ ∈ C+

where P̃1 ∈ [H̃0, H̃1] is the orthoprojector in H̃0 onto H̃1 and P1 ∈ [H0,H1] is the
orthoprojector in H0 onto H1. Therefore formulas (4.15) and (4.16) define the same
function τ+(λ) for different representations θ̃ = {K̃0, K̃1; H̃1} of the linear relation θ̃.
This allows is to introduce the following definition.

Definition 4.7. Let H0, H1 be Hilbert spaces and let H1 be a subspace in H0. A
linear relation θ̃ ∈ Self(H0⊕H1,H1⊕H1) will be called a dilation of a C̃(H0,H1)-valued
function τ+(·) ∈ R̃+(H0,H1), if there exist representations θ̃ = {K̃0, K̃1;H1 ⊕ H1} and
τ+(λ) = {K0(λ),K1(λ);H1}, λ ∈ C+ such that the block-matrix representations (4.14)
of K̃0 and K̃1 satisfy the equalities (4.15) and (4.16).

A function τ+(·) ∈ R̃+(H0,H1) will be called a compression of a linear relation θ̃ ∈
Self(H0 ⊕ H1,H1 ⊕ H1), if θ̃ is a dilation of τ+(·).

It is clear that θ̃ is a dilation of τ+(·) (or, equivalently, τ+(·) is a compression of θ̃) if
and only if the equality (4.43) holds. Moreover in view of Theorem 4.6 for every function
τ+(·) ∈ R̃+(H0,H1) there exists a dilation θ̃ ∈ Self(H0 ⊕ H1,H1 ⊕ H1). Note that for
Nevanlinna functions with values in C̃(H) this result is well known [11, 6].

Definition 4.8. A linear relation θ̃ ∈ Self{H0 ⊕ H1,H1 ⊕ H1} will be called minimal
(with respect to H0) if there are not decompositions

(4.44) H1 = H′1 ⊕ H′′1 , θ̃ = θ̂ ⊕ θ′′

with H′′1 6= {0} and linear relations θ̂ ∈ Self(H0 ⊕ H′1,H1 ⊕ H′1), θ′′ = (θ′′)∗ ∈ C̃(H′′1).

It is well known that in the case H0 = H1 := H a linear relation θ̃ = θ̃∗ ∈ C̃(H⊕ H1)
admits the unique representation (4.44) where θ̂ = θ̂∗ ∈ C̃(H⊕H′1) is a minimal relation
with respect to H and θ′′ = (θ′′)∗ ∈ C̃(H′′1). Moreover the subspace H′1 is defined by

H′1 = span{PH1(θ − λ)−1 � H : λ ∈ C+ ∪ C−}.
In the next lemma we prove similar result for the general case H1 ⊂ H0.

Lemma 4.9. For every θ̃ ∈ Self{H0⊕H1,H1⊕H1} there exists the unique representation
(4.44) where θ̂ ∈ Self(H0 ⊕ H′1,H1 ⊕ H′1) is a minimal relation with respect to H0 and
θ′′ = (θ′′)∗ ∈ C̃(H′′1).

Proof. Let (4.23) be the representation of θ̃ such that (4.24) holds. As in the proof of
Theorem 4.6 consider the operators (4.28), (4.29) and the selfadjoint linear relation θ̃′

defined by (4.33). It is easily seen that every decomposition

H1 = H′1 ⊕ H′′1 , θ̃′ = θ̂′ ⊕ θ′′

with θ̂′ = (θ̂′)∗ ∈ C̃(H′⊕H′1) and θ′′ = (θ′′)∗ ∈ C̃(H′′1) generates the decomposition (4.44)
of θ̃ with θ̂ ∈ Self{H0 ⊕ H′1,H1 ⊕ H′1}. This and the validity of the lemma for θ̃′ yield
the desired statement for θ̃. �

Let H0, H′1 and H′′1 be Hilbert spaces, let H1 be a subspace in H0 and let H̃′j :=
Hj ⊕ H′1, H̃′′j := Hj ⊕ H′′1 , j ∈ {0, 1}. Clearly, H̃′1 ⊂ H̃′0 and H̃′′1 ⊂ H̃′′0 . With a unitary
operator V ∈ [H′1,H

′′
1 ] we associate unitary operators Uj ∈ [H̃′j , H̃′′j ], j ∈ {0, 1} and

ŨV ∈ [H̃′0 ⊕ H̃′1, H̃′′0 ⊕ H̃′′1 ] defined by

U0 = IH0 ⊕ V, U1 = U0 � H̃′1 = IH1 ⊕ V, ŨV = U0 ⊕ U1.
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Definition 4.10. The dilations θ̃ ∈ Self(H0⊕H′1,H1⊕H′1) and η̃ ∈ Self(H0⊕H′′1 ,H1⊕H′′1)
of a function τ+(·) ∈ R̃+(H0,H1) will be called unitary equivalent if there is a unitary
operator V ∈ [H′1,H

′′
1 ] such that η̃ = ŨV θ̃.

It is known that every Nevanlinna function with values in C̃(H) has a minimal dilation
and every two such dilations are unitary equivalent. In the next proposition we generalize
this assertion to the class R̃+(H0,H1).

Proposition 4.11. 1) For every function τ+(·) ∈ R̃+(H0,H1) there exists a minimal
dilation θ̃ ∈ Self(H0 ⊕ H1,H1 ⊕ H1).

2) Every two minimal dilations θ̃1 and θ̃2 of a function τ+(·) ∈ R̃+(H0,H1) are unitary
equivalent.

Proof. The statement 1) directly follows from Theorem 4.6 and Lemma 4.9. The state-
ment 2) can be proved similarly Lemma 4.9 by the passage to the selfadjoint dilations θ̃′1
and θ̃′2 of the form (4.33). �

Let H0 = H1 := H and let θ̃ ∈ C̃(H⊕H1) be a selfadjoint dilation of a function τ+(·) ∈
R̃+(H). It is well known that θ̃(0) ⊂ H1 if and only if s− lim

y→+∞
i y(τ+(iy) + iy)−1 = IH.

Similar result for the case H1 ⊂ H0 can be found in the next proposition.

Proposition 4.12. Assume that τ+(·) ∈ R̃+(H0,H1) and let (4.1) be a representation
of the function τ+(λ). Then:

1) a function

(4.45) τ1+(λ) = {K01(λ),K1(λ);H+}, λ ∈ C+

belongs to the class R̃+(H1) , so that there exists the strong limit
(4.46)
F∞ := s− lim

y→+∞
i yK01(i y)

(
K1(i y) + i yK01(i y)

)−1(= s− lim
y→+∞

i y(τ1+(i y) + i y)−1
)

and 0 ≤ F∞ ≤ IH1 .
2) if θ̃ ∈ Self(H0 ⊕ H1,H1 ⊕ H1) is a dilation of τ+(·), then the following equivalence

holds

(4.47) θ̃(0) ⊂ H1 ⇐⇒ F∞ = IH1 .

If in addition θ̃ is a simple dilation, then the condition F∞ = IH1 is necessary and
sufficient for θ̃ to be an operator.

Proof. 1) It follows from (4.5) that 2Im(K∗
01(λ)K1(λ)) ≥ 0 and 0 ∈ ρ(K1(λ)+iK01(λ)), λ ∈

C+. Hence τ1+(·) ∈ R̃+(H1)
2) Assume that (4.23) is the representation of θ̃, (4.14) is the block-matrix repre-

sentation of the operators K̃j and Kj(λ), j ∈ {0, 1} are the operator functions (4.15),
(4.16). Next consider the operators (4.28), (4.29), the Hilbert space H′ := H′ ⊕H2 ⊕H1

and the operator functions K ′
j(λ), j ∈ {0, 1} given by (4.34). Put θ̃′ = {K̃ ′

0, K̃
′
1;H′ ⊕

H1}, τ ′+(λ) = {K ′
0(λ),K ′

1(λ);H′} and let

F ′∞ := s− lim
y→+∞

i yK ′
0(i y)

(
K ′

1(i y) + i yK ′
0(i y)

)−1
.

Since θ̃′ is a selfadjoint dilation of τ ′+(·) ∈ R̃+(H′), the equivalence θ̃′(0) ⊂ H1 ⇐⇒
F ′∞ = IH′ is valid. Moreover in view of Lemma 4.5, 2) θ̃′(0) = θ̃(0). This yields the
equivalence

θ̃(0) ⊂ H1 ⇐⇒ F ′∞ = IH′ .
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Thus to prove (4.47) it is sufficient to show that

(4.48) F ′∞ = IH′ ⇐⇒ F∞ = IH1 .

Put in (4.37) S′ = i
2 (V1−I), T ′ = 1

2 (V1+I) and consider a linear relation η = {S′, T ′;H′}.
Since V1 ∈ [H′] is an isometry and Ker(V1 − I) = {0}, it follows that η is a maximal
symmetric operator in H′ and C− ⊂ ρ(η). Therefore 0 ∈ ρ(T ′ + i yS′), y > 0 and

(4.49) s− lim
y→+∞

i yS′(T ′ + i yS′)−1 = s− lim
y→+∞

i y(η + i y)−1 = IH′ .

The immediate calculation with taking into account of (4.37) gives

(4.50) i yK ′
0(i y)

(
K ′

1(i y) + i yK ′
0(i y)

)−1 =

i yS′(T ′ + i yS′)−1 ∗ ∗
0 y

y+1IH2 ∗
0 0 Φ(i y)


where Φ(i y) = i yK01(i y)

(
K1(i y) + i yK01(i y)

)−1. Since (F ′∞)∗ = F ′∞, it follows from
(4.50) and (4.49) that F ′∞ = diag(IH′ , IH2 , F∞). This leads to (4.48) and, consequently,
to (4.47).

Finally the last statement is implied by (4.47) and Corollary 3.5. �
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