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TWO-WEIGHTED INEQUALITY FOR PARABOLIC SUBLINEAR

OPERATORS IN LEBESGUE SPACES

F. M. MUSHTAGOV

Abstract. In this paper, the author establishes the boundedness in weighted Lp

spaces on R
n+1 with a parabolic metric for a large class of sublinear operators gene-

rated by parabolic Calderon-Zygmund kernels. The conditions of these theorems are
satisfied by many important operators in analysis. Sufficient conditions on weighted
functions ω and ω1 are given so that certain parabolic sublinear operator is bounded
from the weighted Lebesgue spaces Lp,ω(Rn+1) into Lp,ω1

(Rn+1).

In this paper we shall prove the boundedness in weighted Lp spaces on R
n+1 with a

parabolic metric of some sublinear operators generated by parabolic Calderon-Zygmund
kernels. We point out that the condition (2) (see below) was first introduced by So-
ria and Weiss in [11]. The condition (2) is satisfied by many interesting operators in
harmonic analysis, such as the parabolic Calderon–Zygmund operators, parabolic maxi-
mal operators, parabolic Hardy–Littlewood maximal operators, and so on. See [11] for
details.

Let R
n be the n-dimensional Euclidean space of points x′ = (x1, . . . , xn), |x′|2 =∑n

i=1 x2
i and denote by x = (x′, t) = (x1, . . . , xn, t) a point in R

n+1. An almost every-
where positive and locally integrable function ω : R

n+1 → R will be called a weight. We
shall denote by Lp,ω(Rn+1) the set of all measurable function f on R

n+1 such that the
norm

‖f‖Lp,ω(Rn+1) ≡ ‖f‖p,ω;Rn+1 =

(∫

Rn+1

|f(x)|pω(x) dx

)1/p

, 1 ≤ p < ∞,

is finite.
Let us now endow R

n+1 with the following parabolic metric introduced by Fabes and
Riviére in [4]:

(1) d(x, y) = ρ(x − y), where ρ(x) =

√
|x′|2 +

√
|x′|4 + 4t2

2
.

A ball with respect to the metric d centered at zero and of radius r is the ellipsoid

Er(0) =

{
x ∈ Rn+1 :

|x′|2

r2
+

t2

r4
< 1

}
.

Obviously, the unit sphere with respect to this metric coincides with the unit sphere in
R

n+1, i.e.,

∂E1(0) ≡ Σn+1 =
{
x ∈ Rn+1 : |x| =

( n∑

i=1

x2
i + t2

)1/2

= 1
}
.

Let
d̃(x, y) = ρ̃(x − y), ρ̃(x) = max(|x′|, |t|1/2),
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I be a parabolic cylinder centered at some point x of radius r, that is, I ≡ Ir(x) =
{y = (y′, τ) ∈ R

n+1 : |x′ − y′| < r, |t − τ | < r2}. It is easy to see that for any ellipsoid
Er there exist cylinders I and I with measures comparable with rn+2 and such that
I ⊂ Er ⊂ I . Obviously, this implies an equivalence of both metrics and the topologies
induced by them. Later we shall use this equivalence without making reference to, except
if required.

It is worth noting that ρ(x) has been employed in the study of singular integral
operators with Calderón-Zygmund kernels of mixed homogeneity (see [4]).

Definition 1. A function K defined on R
n+1 \ {0} is said to be a parabolic Calderon-

Zygmund (PCZ) kernel in the space R
n+1 if

i) K ∈ C∞(Rn+1 \ {0}) ;
ii) K(rx′, r2t) = r−(n+2)K(x′, t) for each r > 0, x = (x′, t) ∈ R

n+1 \ {0};
iii)

∫
Σn+1

K(x)dσ = 0 , where dσ is the element of area of the sphere Σn+1.

First, we establish the boundedness in weighted Lp spaces for a large class of sublinear
operators.

Theorem 2. Let p ∈ (1,∞) and let T be a sublinear operator bounded from Lp(R
n+1)

to Lp(R
n+1) such that, for any f ∈ L1(R

n+1) with compact support and x /∈ supp f ,

(2) |Tf(x)| ≤ c

∫

Rn+1

|f(y)|

ρn+2(x − y)
dy,

where c is independent of f and x.
Moreover, let ω(x), ω1(x) be weight functions on R

n+1 and the following three condi-
tions be satisfied:

(a) there exist b > 0 such that

sup
ρ(x)/4<ρ(y)≤4ρ(x)

ω1(y) ≤ b ω(x) for a.e. x ∈ R
n+1,

(b) A ≡ sup
r>0

(∫

ρ(x)>2r

ω1(x)ρ(x)−(n+2)pdx

)(∫

ρ(x)<r

ω1−p′

(x) dx

)p−1

< ∞,

(c) B ≡ sup
r>0

(∫

ρ(x)<r

ω1(x) dx

)(∫

ρ(x)>2r

ω1−p′

(x)ρ(x)−(n+2)p′

dx

)p−1

< ∞.

Then there exists a constant c1 such that for all f ∈ Lp,ω(Rn+1)

(3)

∫

Rn+1

|Tf(x)|pω1(x) dx ≤ c1

∫

Rn+1

|f(x)|pω(x) dx.

Moreover, condition (a) can be replaced by the condition
(a1) there exist b > 0 such that

ω1(x)

(
sup

ρ(x)/4≤ρ(y)≤4ρ(x)

1

ω(y)

)
≤ b for a.e. x ∈ R

n+1.

Proof. For k ∈ Z we define Ek = {x ∈ R
n+1 : 2k < ρ(x) ≤ 2k+1}, Ek,1 = {x ∈ R

n+1 :
ρ(x) ≤ 2k−1}, Ek,2 = {x ∈ R

n+1 : 2k−1 < ρ(x) ≤ 2k+2}, Ek,3 = {x ∈ R
n+1 : ρ(x) >

2k+2}. Then Ek,2 = Ek−1 ∪Ek ∪ Ek+1 and the multiplicity of the covering {Ek,2}k∈Z is
equal to 3.
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Given f ∈ Lp,ω(Rn+1), we write

(4)

|Tf(x)| =
∑

k∈Z

|Tf(x)|χEk
(x) ≤

∑

k∈Z

|Tfk,1(x)|χEk
(x)

+
∑

k∈Z

|Tfk,2(x)|χEk
(x) +

∑

k∈Z

|Tfk,3(x)|χEk
(x)

≡ T1f(x) + T2f(x) + T3f(x),

where χEk
is the characteristic function of the set Ek, fk,i = fχEk,i

, i = 1, 2, 3.

First we estimate ‖T1f‖Lp,ω1

. Note that for x ∈ Ek, y ∈ Ek,1 we have ρ(y) ≤ 2k−1 ≤

ρ(x)/2. Moreover, Ek ∩ supp fk,1 = ∅ and ρ(x − y) ≥ ρ(x)/2. Hence by (2)

T1f(x) ≤ c
∑

k∈Z

(∫

Rn

|fk,1(y)|

ρn+2(x − y)
dy

)
χEk

(x)

≤ c

∫

ρ(y)≤ρ(x)/2

ρ(x − y)−n−2|f(y)| dy ≤ 2n+2cρ(x)−n−2

∫

ρ(y)≤ρ(x)/2

|f(y)| dy

for any x ∈ Ek. Hence we have

∫

Rn+1

|T1f(x)|pω1(x) dx ≤ 2n+2c

∫

Rn+1

(∫

ρ(y)<ρ(x)/2

|f(y)| dy

)p

ρ(x)−(n+2)pω1(x) dx.

Since A < ∞, the Hardy inequality

∫

Rn+1

ω1(x)ρ(x)−(n+2)p

(∫

ρ(y)<ρ(x)/2

|f(y)| dy

)p

dx ≤ C

∫

Rn+1

|f(x)|pω(x) dx

holds and C ≤ c′A where c′ depends on n and p. In fact the condition A < ∞ is necessary
and sufficient for the validity of this inequality (see [1], [7]). Hence, we obtain

(5)

∫

Rn+1

|T1f(x)|pω1(x) dx ≤ c2

∫

Rn+1

|f(x)|pω(x) dx,

where c2 > 0 is independent of f .
Next we estimate ‖T3f‖Lp,ω1

. As is easy to verify, for x ∈ Ek, y ∈ Ek,3 we have

ρ(y) > 2ρ(x) and ρ(x − y) ≥ ρ(y)/2. Since Ek ∩ supp fk,3 = ∅, for x ∈ Ek by (2) we
obtain

T3f(x) ≤ c

∫

ρ(y)>2ρ(x)

|f(y)|

ρ(x − y)n+2
dy ≤ 2n+2c

∫

ρ(y)>2ρ(x)

|f(y)|ρ(y)−n−2dy.

Hence we have
∫

Rn+1

|T3f(x)|pω1(x) dx ≤ 2n+2c

∫

Rn+1

(∫

ρ(y)>2ρ(x)

|f(y)|ρ(y)−n−2dy

)p

ω1(x) dx.

Since B < ∞, the Hardy inequality

∫

Rn+1

ω1(x)

(∫

ρ(y)<ρ(x)/2

|f(y)|ρ(y)−n−2dy

)p

dx ≤ C

∫

Rn+1

|f(x)|pω(x) dx

holds and C ≤ c′B, where c′ depends on n and p. In fact the condition B < ∞ is
necessary and sufficient for the validity of this inequality (see [1], [7]). Hence, we obtain

(6)

∫

Rn+1

|T3f(x)|pω1(x) dx ≤ c3

∫

Rn+1

|f(x)|pω(x) dx,

where c3 > 0 is independent of f .
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Finally, we estimate ‖T2f‖Lp,ω1

. By the Lp(R
n+1) boundedness of T and condition

(a) we have

∫

Rn+1

|T2f(x)|pω1(x) dx =

∫

Rn+1

(
∑

k∈Z

|Tfk,2(x)|χEk
(x)

)p

ω1(x) dx

=

∫

Rn+1

(
∑

k∈Z

|Tfk,2(x)|p χEk
(x)

)
ω1(x) dx =

∑

k∈Z

∫

Ek

|Tfk,2(x)|p ω1(x) dx

≤
∑

k∈Z

sup
x∈Ek

ω1(x)

∫

Rn+1

|Tfk,2(x)|p dx ≤ ‖T‖p
∑

k∈Z

sup
x∈Ek

ω1(x)

∫

Rn+1

|fk,2(x)|p dx

= ‖T‖p
∑

k∈Z

sup
y∈Ek

ω1(y)

∫

Ek,2

|f(x)|pdx,

where ‖T‖ ≡ ‖T‖Lp(Rn+1)→Lp(Rn+1). Since, for x ∈ Ek,2, 2k−1 < ρ(x) ≤ 2k+2, we have
by condition (a)

sup
y∈Ek

ω1(y) = sup
2k−1<ρ(y)≤2k+2

ω1(y) ≤ sup
ρ(x)/4<ρ(y)≤4ρ(x)

ω1(y) ≤ bω(x)

for almost all x ∈ Ek,2. Therefore

(7)

∫

Rn+1

|T2f(x)|pω1(x) dx ≤ ‖T‖pb
∑

k∈Z

∫

Ek,2

|f(x)|pω(x) dx

≤ c4

∫

Rn+1

|f(x)|pω(x) dx,

where c4 = 3‖T‖pb, since the multiplicity of covering {Ek,2}k∈Z is equal to 3.
Inequalities (4), (5), (6), (7) imply (3) which completes the proof. �

Let K be a parabolic Calderon–Zygmund kernel and T the corresponding integral
operator

Tf(x) = p.v.

∫

Rn+1

K(x − y)f(y) dy.

Then T satisfies the condition (2). See [3] for details. Thus, we have

Corollary 3. Let p ∈ (1,∞), K be a parabolic Calderon–Zygmund kernel and T be the
corresponding integral operator. Moreover, let ω(x), ω1(x) be weight functions on R

n+1

and conditions (a), (b), (c) be satisfied. Then inequality (3) is valid.

Note that Corollary 3 for singular integral operators with Calderon-Zygmund kernels
was proved in [8] and for singular integral operators, defined on homogeneous groups, in
[10], [6] (see also [5]).

Theorem 4. Let p ∈ (1,∞), T be a sublinear operator satisfying (2). Moreover, let
ω(t), ω1(t) be weight functions on R and the following three conditions be satisfied:

(a′) there exist b > 0 such that

sup
|t|/4<|τ |≤4|t|

ω1(τ) ≤ b ω(t) for a.e. t ∈ R,

(b′)

A′ ≡ sup
τ

(∫

|t|>2|τ |

ω1(t)|t|
−pdτ

)(∫

|t|<|τ |

ω1−p′

(t) dt

)p−1

< ∞,
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(c′)

B′ ≡ sup
τ

(∫

|t|<|τ |

ω1(t) dt

)(∫

|t|>2|τ |

ω1−p′

(t)|t|−p′

dt

)p−1

< ∞.

Then there exists a constant c1, independent of f , such that for all f ∈ Lp,ω(Rn+1)

(8)

∫

Rn+1

|Tf(x)|pω1(t) dx′dt ≤ c1

∫

Rn+1

|f(x)|pω(t) dx′dt.

Moreover, condition (a′) can be replaced by the condition
(a′

1) there exist b > 0 such that

ω1(t)

(
sup

|t|/4≤|τ |≤4|t|

1

ω(t)

)
≤ b for a.e. t ∈ R.

Proof. For k ∈ Z we define Fk = {x = (x′, t) ∈ Rn+1 : 2k < |t| ≤ 2k+1}, Fk,1 =
{x = (x′, t) ∈ Rn+1 : |t| ≤ 2k−1}, Fk,2 = {x = (x′, t) ∈ Rn+1 : 2k−1 < |t| ≤ 2k+2},
Fk,3 = {x = (x′, t) ∈ Rn+1 : |t| > 2k+2}. Then Fk,2 = Fk−1 ∪ Fk ∪ Fk+1 and the
multiplicity of the covering {Fk,2}k∈Z is equal to 3.

Given f ∈ Lp,ω(Rn+1), we write

(9)

|Tf(x)| =
∑

k∈Z

|Tf(x)|χFk
(x) ≤

∑

k∈Z

|Tfk,1(x)|χFk
(x)

+
∑

k∈Z

|Tfk,2(x)|χFk
(x) +

∑

k∈Z

|Tfk,3(x)|χFk
(x)

≡ T1f(x) + T2f(x) + T3f(x),

where χFk
is the characteristic function of the set Fk , fk,i = fχFk,i

, i = 1, 2, 3. We
shall estimate ‖T1f‖Lp,ω1

. Note that for x = (x′, t) ∈ Fk, y = (y′, τ) ∈ Fk,1 we have

|τ | ≤ 2k−1 ≤ |t|/2. Moreover, Fk ∩ supp fk,1 = ∅ and |t − τ | ≥ |t|/2. Hence by (2)

T1f(x) ≤ c
∑

k∈Z

(∫

Rn+1

|fk,1(y)|

ρ(x − y)n+2
dy

)
χFk

(t)

≤ c

∫

Rn

∫

|τ |<|t|/2

|f(y)|

ρ(x − y)n+2
dy ≤ c5

∫

Rn

∫

|τ |<|t|/2

|f(y)|
(
|x′ − y′| + |t|1/2

)n+2 dy′dτ

for any x ∈ Fk. Using this last inequality we have
∫

Rn+1

|T1f(x)|pω1(t) dx′dt

≤ c5

{∫

Rn+1

(∫

Rn

∫

|τ |<|t|/2

|f(y)|
(
|x′ − y′| + |t|1/2

)n+2 dy′dτ

)p

ω1(t) dx

}1/p

.

For x = (x′, t) ∈ R
n+1 let

I(t) =

∫

Rn

(∫

|τ |<|t|/2

∫

Rn

|f(y′, τ)|

(|x′ − y′| + |t|1/2)n+2
dy

)p

dx′

=

∫

Rn

(∫

|τ |<|t|/2

(∫

Rn

|f(y′, τ)|

(|x′ − y′| + |t|1/2)n+2
dy′

)
dτ

)p

dx′.
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Using the Minkowski and Young inequalities we obtain

I(t) ≤

[∫

|τ |<|t|/2

(∫

Rn

|f(y′, τ)|pdy′

)1/p(∫

Rn

dy′

(|y′| + |t|1/2)n+2

)
dτ

]p

=

(∫

|τ |<|t|/2

‖f(·, τ)‖p,Rndτ

)p(∫

Rn

dy′

(|y′| + |t|1/2)n+2

)p

=
c6

|t|p

(∫

|τ |<|t|/2

‖f(·, τ)‖p,Rndτ

)p(∫

Rn

dy′

(|y′| + 1)n+2

)p

=
c7

|t|p

(∫

|τ |<|t|/2

‖f(·, τ)‖p,Rndτ

)p

.

Integrating over R we get

∫

Rn+1

|T1f(x)|pω1(t) dx′dt ≤ c8

∫

R

ω1(t)|t|
−p

(∫

|τ |<|t|/2

‖f(·, τ)‖p,Rndτ

)p

dt.

Since A′ < ∞, the Hardy inequality

∫

R

ω1(t)|t|
−p

(∫

|τ |<|t|/2

‖f(·, τ)‖p,Rndτ

)p

≤ C

∫

R

‖f(·, τ)‖p
p,Rnω(τ) dτ

holds and C ≤ c′A′ where c′ depends only on p. In fact the condition A′ < ∞ is necessary
and sufficient for the validity of this inequality, (see [2], [9]). Hence, we obtain

(10)

∫

Rn+1

|T1f(x)|pω1(t) dx′dt ≤ c9

∫

R

‖f(·, τ)‖p
p,Rnω(τ) dτ = c9‖f‖

p
Lp,ω(Rn+1).

Let us estimate ‖T3f‖Lp,ω1

. As is easy to verify, for x ∈ Fk, y ∈ Fk,3 we have |τ | > 2|t|

and |t − τ | ≥ |τ |/2. For x ∈ Fk we obtain

T3f(x) ≤ c5

∫

Rn

∫

|τ |>2|t|

|f(y)|
(
|x′ − y′| + |τ |1/2

)n+2 dy′dτ.

Using this last inequality we have

‖T3f‖Lp,ω1
(Rn+1)

≤ c5





∫

Rn+1



∫

Rn

∫

|τ |>2|t|

|f(y)|
(
|x′ − y′| + |τ |1/2

)n+2 dy′dτ




p

ω(t) dx





1/p

.

For x = (x′, t) ∈ R
n+1 let

I1(t) =

∫

Rn

(∫

|τ |>2|t|

∫

Rn

|f(y′, τ)|

(|x′ − y′| + |τ |1/2
)n+2

dy

)p

dx′

=

∫

Rn

(∫

|τ |>2|t|

(∫

Rn

|f(y′, τ)|

(|x′ − y′| + |τ |1/2)n+2
dy′

)
dτ

)p

dx′.
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Using the Minkowski and Young inequalities we obtain

I1(t) ≤

[∫

|τ |>2|t|

(∫

Rn

|f(y′, τ)|pdy′

)1/p
(∫

Rn

dy′

(|y′| + |τ |1/2
)n+2

)
dτ

]p

=

(∫

|τ |>2|t|

‖f(·, τ)‖p,Rndτ

)p(∫

Rn

dy′

(|y′| + |τ |1/2
)n+2

)p

= c6

(∫

|τ |>2|t|

|τ |−p‖f(·, τ)‖p,Rndτ

)p(∫

Rn

dy′

(|y′| + 1)n+2

)p

= c7

(∫

|τ |>2|t|

|τ |−p‖f(·, τ)‖p,Rndτ

)p

.

Integrating over R we get
∫

Rn+1

|T3f(x)|pω1(t) dx′dt ≤ c8

∫

R

ω1(t)

(∫

|τ |>2|t|

‖f(·, τ)‖p,Rn |τ |−p dτ

)p

dt.

Since B′ < ∞, the Hardy inequality
∫

R

ω1(t)

(∫

|τ |>2|t|

‖f(·, τ)‖p,Rn |τ |−p
dτ

)p

≤ C

∫

R

‖f(·, τ)‖p
p,Rnω(τ) dτ

holds and C ≤ c′B′ where c′ depends on n and p. In fact the condition B′ < ∞ is
necessary and sufficient for the validity of this inequality (see [2], [9]). Hence, we obtain

(11) ‖T3f‖Lp,ω1
(Rn+1) ≤ c9

(∫

R

‖f(·, τ)‖p
p,Rnω(τ) dτ

)1/p

= c9‖f‖
p
Lp,ω(Rn+1).

Finally, we estimate ‖T2f‖Lp,ω1

. By the Lp(R
n+1) boundedness of T we have

∫

Rn+1

|T2f(x)|pω1(t) dx =

∫

Rn+1

(
∑

k∈Z

|Tfk,2(x)|χFk
(t)

)p

ω1(t) dx

=

∫

Rn+1

(
∑

k∈Z

|Tfk,2(x)|p χFk
(t)

)
ω1(t) dx =

∑

k∈Z

∫

Fk

|Tfk,2(x)|p ω1(t) dx

≤
∑

k∈Z

sup
x∈Fk

ω1(t)

∫

Rn+1

|Tfk,2(x)|p dx ≤ ‖T‖p
∑

k∈Z

sup
x∈Fk

ω1(t)

∫

Rn+1

|fk,2(x)|p dx

= ‖T‖p
∑

k∈Z

sup
y∈Fk

ω1(τ)

∫

Fk,2

|f(x)|pdx,

where ‖T‖ ≡ ‖T‖Lp(Rn+1)→Lp(Rn+1). Since, for x ∈ Fk,2, 2k−1 < |t| ≤ 2k+2, we have by
condition (a′)

sup
y∈Fk

ω1(τ) = sup
2k−1<|τ |≤2k+2

ω1(τ) ≤ sup
|t|/4<|τ |≤4|t|

ω1(τ) ≤ bω(t)

for almost all x ∈ Fk,2. Therefore

(12)

∫

Rn+1

|T2f(x)|pω1(t) dx ≤ ‖T‖pb
∑

k∈Z

∫

Fk,2

|f(x)|pω(t) dx

≤ c10

∫

Rn+1

|f(x)|pω(t) dx,

where c10 = 3‖T‖pb, since the multiplicity of covering {Fk,2}k∈Z is equal to 3.
Inequalities (9), (10), (11), (12) imply (8) which completes the proof. �
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Corollary 5. Let p ∈ (1,∞), K be a parabolic Calderon–Zygmund kernel and T be the
corresponding integral operator. Moreover, let ω(t),ω1(t) be weight functions on R

n+1

and conditions (a′), (b′), (c′) be satisfied. Then inequality (8) is valid.

Note that, two-weighted inequalities (3) for singular integrals were obtained in [12],
[13], [14], [5], [15] and etc.
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