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SOME RESULTS ON THE SPACE OF HOLOMORPHIC FUNCTIONS
TAKING THEIR VALUES IN B-SPACES

B. AQZZOUZ, M. T. BELGHITI, M. H. ELALJ, AND R. NOUIRA

Abstract. We define a space of holomorphic functions O1(U, E/F ), where U is an
open pseudo-convex subset of Cn, E is a b-space and F is a bornologically closed
subspace of E, and we prove that the b-spaces O1(U, E/F ) and O(U, E)/O(U, F ) are
isomorphic.

1. Introduction and notations

The Bartle-Graves theorem [3] says that a surjective bounded linear mapping between
Banach spaces has a right inverse which is continuous (but not necessary linear) and
bounded on bounded subsets. In this paper we shall study a problem which arises from
the Bartle-Graves theorem for holomorphic functions between b-spaces in the sense of
L. Waelbroeck [12], which is a class more general than the class of bornological spaces
(locally convex spaces), in the sense of N. Bourbaki [8]. More precisely, a b-space is a
bornological inductive limit of Banach spaces.

Since the functor projective limit lim←− is left exact and generally not exact on the cate-
gory of b-spaces b [7], the bounded linear mapping O (U, u) : O (U,E) −→ O (U,F ) ,
f 7−→ u ◦ f is not necessary bornologically surjective whenever u : E −→ F is a
bornologically surjective bounded linear mapping between b-spaces. It follows that
O (U,E/F ) 6= O (U,E) /O (U,F ), where U is an open pseudo-convex subset of Cn, E is a
b-space, F is a bornologically closed subspace of E and O (U,E) = lim←−V ∈CU

(O (V ) εE).
In this paper, we shall construct a new b-space of holomorphic functions O1 (U,E)

as the kernel of the operator ∂ : E (U,E) −→ E (U,E) ⊗ Cn∗, where Cn∗ is the space of
antilinear forms on Cn, and we will show that the two b-spaces O (U,E) /O (U,F ) and
O1 (U,E/F ) are isomorphic where E (U,E) is the space of functions f : U −→ E such
that for all x ∈ U there exist a coordinate neighbourhood Ux of x and a completant
bounded subset Bx of E such that f ∈ C∞ (Ux, EBx).

For this, we shall need to prove that if U is an open subset of IRn and u : E −→ F is
a bornologically surjective bounded linear mapping between b-spaces, then the bounded
linear mapping E (U, u) : E (U,E) −→ E (U,F ) , f 7−→ u ◦ f is bornologically surjective.
As a consequence, if E is a b-space and F is a bornologically closed subspace of E, then
E (U,E/F ) = E (U,E) /E (U,F ). For r ∈ IN, we define the space of functions of class Cr

taking their values in a b-space and we shall prove that if U is a smooth manifold, V is
an open subset of U , which is relatively compact and E is a b-space, then Cr(V ,E) '
Cr(V )εE where ε is the ε-product in the category of b-spaces. If U is a smooth manifold,
countable at infinity, we shall prove that the functors C∞ (U, .) and b (E ′ (U)i , .) are
isomorphic on the category of b-spaces where E ′ (U) is the space of distribution with
compact support on U , on which we put the equicontinuous boundedness. Next, if U is a
connected open subset of Cn and E a b-space, we will define two b-spaces of holomorphic
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functions, the first one is O (U,E) = lim←−V ∈CU
(O (V ) εE), where CU is the set of all open

relatively compact subsets of U , and the second one is O1 (U,E) defined as the kernel
of the operator ∂ : E (U,E) −→ E (U,E) ⊗ Cn∗. We will define a natural morphism
i : O (U,E) /O (U,F ) −→ O1 (U,E/F ) which is injective, and we shall prove that if U
is an open pseudo-convex subset of Cn, E is a b-space and F a bornologically closed
subspace of E, then O1 (V,E/F ) is naturally isomorphic to the projective limit of the
projective system of b-spaces (O (V,E) /O (V, F ))V ∈CU

, where V ranges over the set of
open relatively compact subsets of U . Finally, we will deduce that the two b-spaces
O (U,E) /O (U,F ) and O1 (U,E/F ) are isomorphic.

Let us fix some notations and recall some definitions that will be used in this paper.
Let E.V. be the category of vector spaces and linear mappings over the scalar field IR
or lC, and Ban the category of Banach spaces and bounded linear mappings.

1- Let E be a real or complex vector space, and let B be an absolutely convex set
of E. Let EB be the vector space generated by B i.e. EB = ∪λ>0λB. The Minkowski
functional of B, ‖x‖B = inf{λ > 0 : x ∈ λB} is a semi-norm on EB . It is a norm if and
only if B does not contain any nonzero subspace of E. The set B is completant if its
Minkowski functional is a Banach norm.

A bounded structure β on a vector space E is defined by a set of ”bounded” subsets
of E with the following properties:
1) Every finite subset of E is bounded; 2) every union of two bounded subsets is bounded;
3) every subset of a bounded subset is bounded; 4) a set homothetic to a bounded subset
is bounded; 5) each bounded subset is contained in a completant bounded subset.

A b-space (E, β) is a vector space E with a boundedness β. A subspace F of a b-space
E is bornologically closed if the subspace F ∩ EB is closed in EB for every completant
bounded subset B of E.

Given two b-spaces (E, βE) and (F, βF ), a linear mapping u : E −→ F is bounded, if
it maps bounded subsets of E into bounded subsets of F. The mapping u : E −→ F is
bornologically surjective if for every B′ ∈ βF , there exists B ∈ βE such that u(B) = B′.
Let (E, βE) be a b-space. A b-subspace of E is a subspace F with a boundedness βF

such that (F, βF ) is a b-space and βF ⊆ βE . We denote by b(E1, E2) the space of all
bounded linear mappings E1 −→ E2 and by b the category of b-spaces and bounded
linear mappings.

Let E be a topological vector space, a subset B is bounded for the von Neumann
boundedness of E if it is absorbed by all neighbourhoods of the origin. The von Neumann
boundedness is a vector boundedness, it is separated if and only if the topological vector
space is separated. If E is a locally convex space, its von Neumann boundedness is convex
(i.e.is stable under the formation of convex hulls) but there exist topological vector spaces
E whose topologies are not locally convex but their von Neumann boundedness are convex
(for example, take I a set not countable and lC(I) with the strongest vector topology).

If E is a locally convex space in which each bounded closed absolutely convex set is
completant, then the space E endowed with its von Neumann boundedness is a b-space.
For more information about b-spaces we refer the reader to [6] and [12].

2- The ε-product of two Banach spaces E and F is the Banach space EεF of linear
mappings E′ −→ F whose restrictions to the closed unit ball BE′ of E′ are σ(E′, E)-
continuous, endowed with the norm of uniform convergence on BE′ where E′ is the
topological dual of E. It follows from Proposition 2 of [11] that the ε-product is symmetric
i.e. the Banach spaces EεF and FεE are isometrically isomorphic. If Ei, Fi are Banach
spaces and ui : Ei −→ Fi are bounded linear mappings, i = 1, 2, the ε-product of u1 and
u2 is the bounded linear mapping: u1εu2 : E1εE2 −→ F1εF2, f 7−→ u2 ◦ f ◦ u′1 , where
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u′1 is the dual mapping of u1. It is clear that u1εu2 is injective whenever ui is injective
for i = 1, 2.

If G is a Banach space and F is a closed subspace of a Banach space E, then GεF is
a closed subspace of GεE. For more information about the ε-product we refer the reader
to [11] and [8].

3- Recall that a bounded linear mapping u : E −→ F between two Banach spaces is
nuclear if there exist bounded sequences (x′n)n ⊂ E′ and (yn)n ⊂ F , and there exists
(λn)n ⊂ l1 such that, for all x ∈ E we have u(x) =

∑+∞
n=1 λnx′n(x)yn. A b-space G is

nuclear if all bounded completant subset B of G is included in a bounded completant
subset A of G such that the inclusion mapping iAB : GB −→ GA is nuclear. See [6] for
more information about nuclear b-spaces.

2. Main results

Let G be a b-space and E a Banach space, if A and B are completant bounded
subsets of G such that A ⊂ B, the mapping GAεE −→ GBεE is injective. So we define
GεE = ∪B (GBεE).

An element of GεE belongs to some Banach space GAεE, where A is a completant
bounded subset of G. So it is a bounded linear mapping (GA)

′ −→ E whose restriction
to the closed unit ball of (GA)

′
is continuous for the weak topology σ((GA)

′
, GA) where

(GA)
′
is the topological dual of the Banach space GA.

The b-space GεE is called the ε-product of G and E. It is clear that if F is a
bornologically closed subspace of G, the space FεE is a bornologically closed subspace
of GεE.

Now if G and E are two b-spaces, the ε-product of G and E is the b-space GεE =
∪B,CGBεEC , where B and C respectively ranges over the bounded completant subsets
of G and E respectively.

Let U be an open subset of IRn and let CU be the set of all open relatively compact
subsets of U . If V ∈ CU , the space E (V ) with its von Neumann boundedness is a nuclear
b-space, and then defines an exact functor E (V ) ε. = E(V, .) on the category b. If E is
a b-space and F is a bornologically closed subspace of E, the b-space

E(V,E/F ) = E (V ) ε(E/F )

is defined as

(E (V ) εE)/(E (V ) εF ) = E (V,E) /E (V, F ) .

If W,V ∈ CU such that W ⊂ V , we have a bounded linear mapping

Ψ : E (V ) −→ E (W ) , f 7−→ f|W

where f|W is the restriction of f to W . We can show that (E (V ))V ∈CU
is a projective

system in the category b. If E is a b-space the family (E (V ) εE)V ∈CU
is also a projective

system in b, and then has a projective limit in the category b.
We define

E (U,E) = lim←−V ∈CU
(E (V ) εE,

where CU is the set of all open relatively compact subsets of U .

Proposition 2.1. Let U be an open subset of IRn and u : E −→ F a bornologically
surjective bounded linear mapping between b-spaces. Then the bounded linear mapping
E (U, u) : cal E(U,E) −→ E (U,F ) , f 7−→ u ◦ f is bornologically surjective.
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Proof. Let (Vi)i∈I be a locally finite open covering of U , such that, for all i ∈ I, the set
Vi is relatively compact. Let (ϕi)i∈I be a partition of unit subordinate to the covering
(Vi)i∈I of U. Since each b-space E (Vi) is nuclear, the bounded linear mapping

E (Vi, u) = IdE(Vi)εu : E (Vi) εE −→ E (Vi) εF

is bornologically surjective. If we apply the projective limit functor lim←−Vi , we obtain the
following bounded linear mapping

E (U, u) = lim←−Vi
(IdE(Vi)εu) : lim←−Vi

(E (Vi) εE) −→ lim←−Vi
(E (Vi) εF ) .

We shall prove that E (U, u) is bornologically surjective. Let B be a bounded subset of
lim←−Vi (E (Vi) εF ). Since the set

Bi = {gi = g|
Vi

: g ∈ B}

is bounded in E (Vi) εF , there exists a bounded subset Ci of E (Vi) εE such that
E (Vi, u) (Ci) = Bi.

Let

C =
{∑

i

ϕifi : there exists g ∈ B with E (Vi, u) (fi) = gi and for all i ∈ I, fi ∈ Ci

}
.

It is a bounded subset of E(U,E) = lim←−Vi (E (Vi) εE) and E (U, u) (C) = B. �

Corollary 2.2. Let U be an open subset of IRn, E a b-space and F a bornologically
closed subspace of E. Then E(U,E/F ) = E (U,E) /E (U,F ).

Proof. In fact, in the category b, the b-space E/F defines the following exact sequence:

(0, v, w, 0) : 0 −→ F −→ E −→ E/F −→ 0.

Its image by the functor E (U, .) : b −→ b is the following left exact sequence:

(0, E (U, v) , E (U,w)) : 0 −→ E (U,F ) −→ E (U,E) −→ E (U,E/F ) .

We would like to prove the exactness of the sequence

(0, E (U, v) , E (U,w) , 0) : 0 −→ E (U,F ) −→ E (U,E) −→ E (U,E/F ) −→ 0

in the category b. It is clear that the mapping E (U, v) is injective, and by Proposition 2.1,
the bounded linear mapping

E (U,w) : E (U,E) −→ E (U,E/F )

is bornologically surjective.
It remains to show that the image of E (U,F ) by the mapping E (U, v) coincides (vecto-

rially and bornologically) with the kernel of E (U,w). This is clear, by what we have just
proved in Proposition 2.1, the image of E (U, v) is E (U, v(E)). But this space coincides
with the kernel of E (U,w) (i.e. the b-space E(U,w−1 (0))). Considered as a mapping
from F to w−1 (0), v is bornologically surjective, and by Proposition 2.1, the bounded
linear mapping

E (U, v) : E (U,F ) −→ E
(
U,w−1 (0)

)
is bornologically surjective. But clearly

E
(
U,w−1 (0)

)
= (E (U,w))−1 (0) ,

and the sequence

0 −→ E (U,F ) −→ E (U,E) −→ E (U,E/F ) −→ 0

is then exact in the category b. �
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Definition 2.3. Let U be an open subset of IRn, r ∈ IN∗ and E a b-space. Then
f ∈ Cr (U,E) if for each x ∈ U , there exists a neighbourhood Ux of x and a bounded
completant subset Bx of E such that f|Ux

∈ Cr
b (Ux, EBx) where Cr

b (Ux, EBx) is the
space of mappings Ux −→ EBx

of class Cr such that the function and its derivatives (up
to r) are bounded.

A subset B of Cr (U,E) is bounded if for each x ∈ U , there exists a neighbourhood
Ux of x and a bounded completant subset Bx of E such that for any k ∈ IN with k ≤ r,
the set DkBx|Ux

= {Dkf|Ux
: f ∈ Bx} is bounded in Cr

b (Ux, EBx).

Proposition 2.4. Let U be a smooth manifold, V an open relatively compact subset of
U and E a b-space. Then Cr(V ,E) ' Cr(V )εE.

Proof. For the Banach space EB , it is well known that Cr(V ,EB) ' Cr(V )εEB where
B ranges over bounded completant subsets of E. If we apply the inductive limit lim−→B ,
which is an exact functor on the category b [7], we obtain the following isomorphism

lim−→BCr(V ,EB) ' lim−→B(Cr(V )εEB).

By definition we have
Cr(V ,E) = lim−→BCr(V ,EB)

and
Cr(V )εE = lim−→B(Cr(V )εEB).

This shows the Proposition. �

When the manifold U is countable at infinity, the functor Cr (U, .) is the projective
limit of a countable family of functors Cr(Vm, .), where Vm is an open relatively compact
subset of U.

More precisely, a manifold is countable at infinity if it is the union of an increasing se-
quence of open sets, each of them being relatively compact in the interior of the following
one. Then the spaces Cr (Vm, E) and the restriction mappings

Cr (Vm, E) −→ Cr (Vn, E) (for n ≤ m)

constitute a projective system, whose projective limit can be considered.

Proposition 2.5. Let U be a smooth manifold, countable at infinity. For all r ∈ IN∗,
the functors Cr (U, .), lim←−mCr (Vm, .) and lim←−m Cr

(
V m, .

)
are naturally isomorphic on

the category b.

Proof. The isomorphism

lim←−m Cr (Vm, .) ' lim←−m Cr
(
V m, .

)
is clear as Vn is relatively compact in the interior of Vn+1, for any Banach space E, there
exist restriction mappings

Cr (Vn+1, E) −→ Cr (Vn, E) ,

Cr
(
V n+1, E

)
−→ Cr

(
V n, E

)
and

Cr (Vn+1, E) −→ Cr
(
V n, E

)
which make commutative the following diagram:

Cr
(
V n+1, E

)
−→ Cr

(
V n, E

)
↓ ↗ ↓
Cr (Vn+1, E) −→ Cr (Vn, E)

.
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Now, if E is a Banach space, it is clear that Cr (U,E) is isomorphic to lim←−mCr
(
V m, E

)
.

If E is a b-space, let f ∈ Cr (U,E). As V m is compact for each m, there exists a bounded
completant subset Bm of E such that f|V m

∈ Cr
(
V m, EBm

)
.

Also, if C is a bounded subset of Cr (U,E), for each m, there exists a bounded com-
pletant subset Bm of E such that C|V m

= {f|V m
, f ∈ C} is bounded in Cr

(
V m, EBm

)
.

Thus a bounded linear mapping

Cr (U,E) −→ lim←−mCr
(
V n, E

)
can be constructed. It is easy to see that this mapping is an isomorphism. �

Now we define a functor of functions of class C∞ taking their values in a b-space that
we call C∞ (U, .). For each r ∈ IN, we have defined Cr (U, .). If r′ ≥ r, we have a natural
bounded linear mapping Cr′(U) −→ Cr(U). The family (Cr(U))r∈IN is a projective
system, and then has a projective limit in the category b [7].

Definition 2.6. Let U be a manifold. Then C∞ (U, .) ' lim←−rC
r (U, .).

For each r ∈ IN, the functor Cr (U, .) : b −→ b is left exact. A projective limit of
exact or of left exact functors is left exact. The functor C∞ (U, .) : b −→ b is therefore
left exact which is not exact.

Remark 2.7.
1- By G. M. Khenkin [10] and W. Kaballo [9], if the dimension of the manifold U is

less than one, the functor Cr (U, .) is not exact on the category b.
2- If r ∈ IR+\IN, we denote by Cr (X) the space of functions of class C [r] on X such

that for all k ∈ INn, |k| ≤ [r], Dkf is continuously o-Hölderian of exponent r − [r].
By J. Frampton and A. Tromba [4], and a paper of the first author [1], the functor
Cr (U, .) : b −→ b is exact, and it follows that if E is a b-space and F is a bornologically
closed subspace of E, we have

Cr (X, E/F ) = Cr (X, E) /Cr (X, F ) .

Let U be a smooth manifold, countable at infinity, we denote by EFré (U) the space of
infinitely differentiable mappings on U , with the topology of uniform convergence of the
functions and their derivatives on compact subsets of U . It is clear that the topology of
EFré (U) is defined by the family of semi-norms (pn,r)(n,r)∈IN×IN, where

pn,r(f) = sup
{
Dkf (x) : |k| ≤ r, x ∈ V n

}
and (Vn)n is a sequence of open relatively compact subsets of U such that for all n ∈ IN,
Vn is contained in the interior of Vn+1.

It is also clear that EFré (U) is a Fréchet space which is a projective limit of the
projective system (Cr

(
V n

)
)(n,r)∈IN×IN in the category of separated locally convex spaces

ELCS.
Let U be a smooth manifold, countable at infinity, we denote by E ′ (U), the space of

distributions with compact support on U , on which we take the equicontinuous bound-
edness i.e. a subset B of E ′ (U) is bounded if it is equicontinuous. It is a b-space which
is the bornological dual of the Fréchet space EFré (U).

Proposition 2.8. If U is a smooth manifold, countable at infinity, the functors
C∞ (U, .) and b(E ′ (U) , .) are isomorphic on the category b.

Proof. The b-space C∞ (U,E) is the projective limit of the projective system

(Cr
(
V n, E

)
)(n,r)∈IN×IN.
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By Proposition 2.4, we have Cr
(
V n, E

)
' Cr

(
V n

)
εE, and hence we can write

C∞ (U,E) ' lim←−r∈INlim←−n∈INCr
(
V n, E

)
' lim←−r∈INlim←−n∈IN(Cr

(
V n

)
εE)

' (lim←−n∈INlim←−r∈IN(Cr
(
V n

)
)εE).

On the other hand, the b-space Cr
(
V n

)
εE is isomorphic to the b-space of bounded lin-

ear mappings
(
Cr

(
V n

))′ −→ E which are weakly continuous on the unit ball B(Cr(V n))′ ,

so it is included in b
(
Cr

(
V n

)′
, E

)
. Now, when r′ < r, we have an inclusion mapping

v : Cr
(
V n

)
−→ Cr′

(
V n

)
which is compact. So any bounded linear mapping

u :
(
Cr

(
V n

))′ −→ E,

when composed with the adjoint mapping

v
′
: (Cr′

(
V n

)
)
′
−→ (Cr

(
V n

)
)
′

of the inclusion mapping v is weakly continuous and belongs to Cr′
(
V n

)
εE. We have

constructed the following mappings:

Cr
(
V n

)
εE −→ b

(
Cr

(
V n

)′
, E

)
−→ Cr′

(
V n

)
εE.

This shows that

lim←−r∈INCr
(
V n

)
εE ' lim←−r∈INb

(
Cr

(
V n

)′
, E

)
and thus

C∞ (U,E) ' lim←−n∈INlim←−r∈IN b
(
Cr

(
V n

)′
, E

)
.

Now, as the space EFré (U) is the projective limit of the system
(
Cr

(
V n

))
(n,r)∈IN× IN,

we obtain
E ′ (U) ' lim←−n∈INlim←−r∈INCr

(
V n

)′
and hence

b (E ′ (U) , E) ' lim←−n∈INlim←−r∈INb
(
Cr

(
V n

)′
, E

)
.

This proves the proposition. �

Remark 2.9. If E is a Banach space, we can show that C∞ (U,E) = (EFré (U,E))b, where
(EFré (U,E))b is the space EFré (U,E) with its von Neumann boundedness.

Let U be a connected open subset of Cn and let CU be the set of all open relatively
compact subsets of U. If V ∈ CU , the space O (V ) with its von Neumann boundedness
is a nuclear b-space. If E is a b-space and F a bornologically closed subspace of E,
O (V ) ε (E/F ), which is isomorphic to O (V,E/F ), is defined as

(O (V ) εE) / (O (V ) εF ) = O (V,E) /O (V, F ) .

As, we proved in [2], for nuclear b-spaces, the bounded linear mapping β (Y, u) :
O (V,E) −→ O (V, F ) , f 7−→ u ◦ f is bornologically surjective whenever u : E −→ F is a
bornologically surjective bounded linear mapping between two b-spaces. And hence, the
functor O(V, .) : b −→ b is exact. Since the sequence

0 −→ F −→ E −→ E/F −→ 0

is exact in the category b, its image by the exact functor O(V, .) is the following exact
sequence:

0 −→ O (V, F ) −→ O (V,E) −→ O (V,E/F ) −→ 0,
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and the result follows.
If W,V ∈ CU are such that W ⊂ V , since U is connected, we have an injective bounded

linear mapping
Ψ : O (V ) −→ O (W ) , f 7−→ f|W .

We can show that (O (V ))V ∈CU
is a projective system in the category b. If E is a b-space

the family (O (V ) εE)V ∈CU
is also a projective system, and then has a projective limit in

the category b.

Definition 2.10. If U is a connected open subset of Cn and E is a b-space, we define
the b-space O (U,E) = lim←−V ∈CU

(O (V ) εE).

Definition 2.11. We define another b-space O1 (U,E) as the kernel of the following
morphism ∂ : E (U,E) −→ E (U,E) ⊗ Cn∗, where E (U,E) = lim←−V ∈CU

(E (V ) εE) and
Cn∗ is the space of antilinear forms on Cn.

This defines the following left exact complex in the category b :

(0, i, ∂) : 0 −→ O1 (U,E) i−→ E (U,E) ∂−→ E (U,E)⊗ Cn∗.

If E is a b-space and F a bornologically closed subspace of E, our objectif is to show
that O1 (U,E/F ) is naturally isomorphic to O (U,E) /O (U,F ) where U is a pseudo-
convex and where O (U,F ) is a bornologically closed subspace of the b-space O (U,E).

It follows from Corollary 2.2, that E (U,E/F ) = E (U,E) /E (U,F ). Then we can see
that the b-space O1 (U,E/F ) is defined as the quotient of the b-space (∂)−1(E (U,E)⊗
Cn∗) by the bornologically closed subspace E (U,F ), where

(∂)−1(E (U,E)⊗ Cn∗) = {f ∈ E (U,E) : ∂f ∈ E (U,F )⊗ Cn∗}
which is a b-space for the following boundedness: a subset B is bounded in
(∂)−1(E (U,E)⊗Cn∗) if it is bounded in E (U,E) and ∂B = {∂f : f ∈ B} is bounded in
E (U,F )⊗ Cn∗.

Proposition 2.12. A natural bounded linear mapping i : O (U,E) /O (U,F ) −→
O1 (U,E/F ) exists which is injective.

Proof. It follows from the following left exact complex:

(0, i, ∂) : 0 −→ O1 (U,E/F ) −→ E (U,E/F ) −→ E (U,E/F )⊗ Cn∗

that inclusion mapping

O (U,E) −→ (∂)−1(E (U,E)⊗ Cn∗)

is bounded and its restriction O (U,F ) −→ E (U,F ) is also bounded. This induces a
bounded linear mapping

O (U,E) /O (U,F ) −→ (∂)−1(E (U,E)⊗ Cn∗)/E (U,F ) .

Consequently, we obtain the following commutative diagram:

O (U,E) /O (U,F )
↙ ↘

O1 (U,E/F ) −→ E (U,E/F )

where the bounded linear mapping

O1 (U,E/F ) −→ E (U,E/F )

is injective. It follows that the bounded linear mapping

O (U,E) /O (U,F ) −→ O1 (U,E/F )

is also injective. This ends the proof. �
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Proposition 2.13. Let U be an open pseudo-convex subset of Cn, E a b-space and F a
bornologically closed subspace of E. Then the b-space O1 (U,E/F ) is naturally isomorphic
to the projective limit of the family of b-spaces (O (V,E) /O (V, F ))V , where V ranges
over open relatively compact subsets of U .

Proof. Consider f ∈ O1 (U,E/F ) and let f1 be an element of the class of equivalence of
f . Then ∂f1 ∈ E (U,F ) ⊗ C∗n. A function gV ∈ O (V, F ) exists such that ∂f1|V

= ∂gV

if V is a relatively compact subset of U .
In other words, f1|V

− gV ∈ O (V, F ), and this shows that O1 (U,E/F ) is the projective
limit of the b-spaces O (V,E) /O (V, F ), where V is an open relatively compact of U . �

Proposition 2.14. Let U be an open pseudo-convex subset of Cn, E a b-space
and F a bornologically closed subspace of E. Then the b-spaces O1 (U,E/F ) and
O (U,E) /O (U,F ) are naturally isomorphic.

Proof. To give an element of O (U,E) /O (U,F ) we must consider an open covering (Vi)i∈I

of U , and for all i ∈ I, give an element fi of O (Vi, E) in such a way that

fi|Vi∩Vj
− fj|Vi∩Vj

∈ O(Vi ∩ Vj , F ) .

Consider a partition of the unity, subordinate to the covering (Vi)i∈I of U. Let f =∑
i ϕifi, this function belongs to E (U,E) . Also from the fact that ∂f = 0 and on Vi∩Vj

we have ∂f =
∑

i fi∂ϕi i.e.

∂f = fi∂ϕi + fj∂ϕj = fi∂ϕi + fj∂(1− ϕi) = (fi − fj)∂ϕi .

This shows that
fi|Vi∩Vj

− fj|Vi∩Vj
∈ O (Vi ∩ Vj , F )

and then ∂f ∈ E (U,F )⊗ C∗n i.e. f ∈ O1 (U,E/F ) .
In this way, we have a bounded linear mapping

O (U,E) /O (U,F ) −→ O1 (U,E/F ) .

We want to find a bounded linear mapping

O1 (U,E/F ) −→ O (U,E) /O (U,F ) .

Let f ∈ O1 (U,E/F ) . Choose an open covering (Vi)i of U, such that each Vi is a
pseudo-convex and relatively compact subset in U. Let f1 be an element of the class of
equivalence of f. By Proposition 2.13, we find fi ∈ E (Vi,E) such that f|V i

−fi ∈ O (Vi, F ).
We see that

fi|Vi∩Vj
− fj|Vi∩Vj

= (fi|Vi∩Vj
− f1|Vi∩Vj

) + (f1|Vi∩Vj
− fj|Vi∩Vj

) ∈ O (Vi ∩ Vj , F ) .

In this way, we have found a bounded linear mapping

O1 (U,E/F ) −→ O (U,E) /O (U,F )

which is the inverse of the above mapping. This shows the Proposition. �

Remark 2.15.
1- If F is of finite dimension, then E/F is isomorphic to a b-space G, and in this

situation, we have O1 (U,E/F ) = O1 (U,G) ' O (U,G) = O (U,E) /O (U,F ).
2- If F is of finite codimension (for example m), then the b-space E/F (which is of

finite dimension) is isomorphic to the b-space Cm, and hence

O1 (U, Cm) = Ker
(
∂ : E (U,E/F ) −→ E (U,E/F )⊗ Cn∗)

' O (U, Cm) = O (U,E/F ) = O (U,E) /O(U,F ).
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In fact, if f ∈ O1 (U, Cm), then ∂f = 0, and hence
∑m

i=1
∂f

∂zi
= 0. Since the system

{∂zi : i = 1, ...,m} is free, it follows that ∂f

∂zi
= 0 for each i = 1, ...,m, and hence f is

holomorphic from U into Cm.

Finally, we give an example.
In C2, we take the sets

V1=
{

(z1, z2) : −1 < Re (z1) ≤ 0, |Im (z1)| < 1,
1
2

< |z2| < 1
}

,

D= {z ∈ C : −1 < Re (z) < 1, − 1 < Im (z) < 1}
and

D1 =
{

z ∈ C : −1
2

< Re (z1) <
1
2
, − 1

2
< Im (z) <

1
2

}
.

Let E/F be a b-space, there exists a bounded subset B of O (D,E) which is not
bounded in O (D,F ) but its restriction to D1 is bounded in O (V1, F ) .

We consider Ψ ∈ E (D) such that Ψ (z) = 1 when z ∈ D \D1 and 0 /∈ supp (Ψ). The
mapping

g : (z1, z2) 7−→ Ψ(z2)
f (z1)

z2
= g (z1, z2)

belongs to O1(V1, E/F ). We have that Ψ (z2) = 1 when z2 ∈ D. There f ∈ B ⊂ O (D,E).
If (z1, z2) ∈ V1 and |z2| < 1

2 , we see that when |z1| < 1
2 , we have ∂f ∈ E (D,F ) ⊗ C∗n

and in this region, ∂g ∈ E (D,F )⊗ C∗n.
If we consider a bounded subset B of O (D,E) whose restriction to D\D1 is bounded

in O (D\D1, F ), we obtain a bounded subset B1 of O1(V1, E/F ). This function should
be an element of O1(V1, E | F ). Consider now the integral

1
2πi

∫
g

(
z1, re

it
)
dt = −f1 (z1) .

This function belongs to O (D,E). For each f ∈ B, it is clear that f − f1 ∈ E (D,F ),
the function f1 vanishes on a not empty open set, i.e. f1 = 0. We had assumed that
f /∈ O (D,F ). We have a contradiction.
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