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UNIFORM EQUICONTINUITY FOR SEQUENCES OF
HOMOMORPHISMS INTO THE RING OF MEASURABLE

OPERATORS

V. I. CHILIN AND S. N. LITVINOV

Abstract. We introduce a notion of uniform equicontinuity for sequences of func-
tions with the values in the space of measurable operators. Then we show that all the
implications of the classical Banach Principle on the almost everywhere convergence
of sequences of linear operators remain valid in a non-commutative setting.

0. Introduction

Let (Ω,Σ, µ) be a probability space. Denote by L = L(Ω,Σ, µ) the set of all (classes
of) complex-valued measurable functions on Ω. Let τµ stand for the measure topology
in L. The classical Banach Principle may be stated as follows.

Let (X, ‖ · ‖) be a Banach space, and let an : (X, ‖ · ‖) → (L, τµ) be a sequence of
continuous linear maps. Consider the following properties of the sequence {an}:

(i) {an(x)} converges almost everywhere (a.e.) for every x ∈ X;
(ii) a?(x)(ω) = sup

n
|an(x)(ω)| < ∞ a.e.;

(iii) a?(x)(ω) < ∞ a.e., and the maximal operator a? : (X, ‖ · ‖) → (L, τµ) is contin-
uous at 0;

(iv) the set {x ∈ X : {an(x)} converges a.e.} is closed in X.
Implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) always hold. If, in addition, there is a set D ⊂ X,
D = X, such that {an(x)} converges a.e. for every x ∈ D, then all four conditions
(i)–(iv) are equivalent.

A non-commutative Banach Principle for measurable operators affiliated with a semifi-
nite von Neumann algebra was established in [1]. In particular, a non-commutative coun-
terpart of condition (ii), which we call pointwise uniform boundedness, was suggested.
In [2] the classical Banach Principle was extended to any topological group of second
Baire category.

In the present article we propose a non-commutative version of condition (iii) which
we call uniform equicontinuity of the sequence {an} at 0. Then, for a complete metrizable
topological group X, we show that all the implications stated above hold true in the non-
commutative setting with a semifinite von Neumann algebra for both almost uniform and
bilateral almost uniform convergences.

1. Preliminaries

Let M be a semifinite von Neumann algebra acting on a Hilbert space H, and let
P (M) be the complete lattice of all projections in M . A densely-defined closed operator
x in H is said to be affiliated with M if y′x ⊂ xy′ for every y′ ∈ M ′, where M ′ is the
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commutant of the algebra M . Let τ be a faithful normal semifinite trace on M . If I is
the identity of M and e⊥ = I − e, e ∈ P (M), then an operator x affiliated with M is
said to be τ -measurable if for each ε > 0 there exists e ∈ P (M) with τ(e⊥) ≤ ε such that
eH lies in the domain of x. We will denote by L = L(M, τ) the set of all τ -measurable
operators affiliated with M . Let ‖ · ‖ stand for the uniform norm in M . The measure
topology, tτ , in L is the one given by the system

{V (ε, δ) = {x ∈ L : ‖ xe ‖≤ δ for some e ∈ P (M) with τ(e⊥) ≤ ε} : ε > 0, δ > 0}
of neighborhoods of zero.

Remark 1.1. If in definition of V (ε, δ) one replaces the condition ‖ xe ‖≤ δ by the
”two-sided” ‖ exe ‖≤ δ, then the same topology tτ will be generated [3].

Theorem 1.2. ([4], see also [5]). Equipped with the measure topology, L is a complete
metrizable topological *-algebra.

A sequence {yn} ⊂ L is said to converge almost uniformly (a.u.) (bilaterally almost
uniformly (b.a.u.)) to y ∈ L if for any given ε > 0 there exists a projection e ∈ P (M)
with τ(e⊥) ≤ ε satisfying ‖ (y− yn)e ‖→ 0 (respectively, ‖ e(y− yn)e ‖→ 0) as n →∞.

Clearly yn → y a.u. implies yn → y b.a.u. It is also known ([4], see also [1]) that
yn → y in tτ implies that there is a subsequence {ynk

} ⊂ {yn} converging to y a.u.

Proposition 1.3. For a sequence {yn} ⊂ L, the following are equivalent:
(i) {yn} converges a.u. (b.a.u.) in L;
(ii) for every ε > 0 there exists e ∈ P (M) with τ(e⊥) ≤ ε such that

‖ (ym − yn)e ‖→ 0 (respectively, ‖ e(ym − yn)e ‖→ 0) as m,n →∞.

Proof. We provide a proof for the a.u. convergence; in the case of the b.a.u. convergence,
the proof is similar. The implication (i) ⇒ (ii) is trivial.

(ii) ⇒ (i). Condition (ii) implies that the sequence {yn} is fundamental in measure.
Therefore, by Theorem 1.2, there is y ∈ L such that yn → y in tτ . Fix ε > 0 and
choose p ∈ P (M), τ(p⊥) ≤ ε/2, such that ‖ (ym − yn)e ‖→ 0 as m,n → ∞. Because
{yn} ⊂ L, it is possible to construct q ∈ P (M) with τ(q⊥) ≤ ε/2 satisfying {ynq} ⊂ M .
If e = p ∧ q, then τ(e⊥) ≤ ε, yne = ynqe ∈ M , and

‖ yme− yne ‖=‖ (ym − yn)pe ‖≤‖ (ym − yn)e ‖→ 0,

m, n →∞. Therefore, there exists y(e) ∈ M such that ‖ yne− y(e) ‖→ 0. In particular,
yne → y(e) in tτ . On the other hand, yne → ye in tτ , which implies that y(e) = ye.
Hence, ‖ (yn − y)e ‖→ 0, i.e., yn → y a.u. �

Let (X, t) be a topological space, x0 ∈ X, and let an : X → L be such that an(x0) =
y0, n = 1, 2, . . . . The family {an} is equicontinuous at x0 if, given ε > 0 and δ > 0, there
is a neighborhood U of x0 in (X, t) such that anU ⊂ y0 + V (ε, δ), n = 1, 2, . . . , i.e., for
every x ∈ U and every n one can find a projection e = e(x, n) ∈ P (M) with τ(e⊥) ≤ ε
satisfying ‖ (an(x)− y0)e ‖≤ δ.

Definition 1.4. Let (X, t) be a topological space, and let an : X → L and x0 ∈ X be
such that an(x0) = y0, n = 1, 2, . . . . Let x0 ∈ E ⊂ X. The family {an} will be called
uniformly equicontinuous at x0 on E if, given ε > 0, δ > 0, there is a neighborhood U of
x0 in (X, t) such that for every x ∈ E

⋂
U there exists a projection e = e(x) ∈ P (M),

τ(e⊥) ≤ ε, satisfying sup
n
‖ (an(x)− y0)e ‖≤ δ.

We will need the following two technical lemmas.

Lemma 1.5 [1]. If f is the spectral projection of b ∈ M , 0 ≤ b ≤ I, corresponding to the
interval [ 12 , 1], then

(i) τ(f⊥) ≤ 2τ(I − b);
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(ii) f = bd for some d ∈ M , 0 ≤ d ≤ 2 · I.
Let E be any set. If an : E → L, x ∈ E, and b ∈ M are such that {an(x)b} ⊂

M ({ban(x)b} ⊂ M), then we denote

S(x, b) = S({an}, x, b) = sup
n
‖ an(x)b ‖

(respectively,
SB(x, b) = SB({an}, x, b) = sup

n
‖ ban(x)b ‖).

Lemma 1.6. Let (X, +) be a semigroup, and let an : X → L be a sequence of additive
maps. Assume that x ∈ X is such that for every ε > 0 there exist a sequence {xk} ⊂ X
and a projection p ∈ P (M) with τ(p⊥) ≤ ε satisfying

(i) {an(x + xk)} converges a.u. (b.a.u.) as n →∞ for every k;
(ii) S(xk, p) → 0 (respectively, SB(xk, p) → 0) as k →∞.

Then the sequence {an(x)} converges a.u. (respectively, b.a.u.) in L.

Proof. We will prove this lemma for the a.u. convergence; proof for the b.a.u. conver-
gence is similar. Fix ε > 0 and choose {xk} ⊂ X and p ∈ P (M), τ(p⊥) ≤ ε/2, such that
conditions (i) and (ii) hold. Pick δ > 0 and let k0 = k0(δ) be such that S(xk0 , p) ≤ δ/3.
By Proposition 1.3, there exists a projection q ∈ P (M) with τ(q⊥) ≤ ε/2 and a positive
integer N for which the inequality

‖ (am(x + xk0)− an(x + xk0))q ‖≤ δ/3

holds whenever m,n ≥ N . If we define e = p ∧ q, then τ(e⊥) ≤ ε and
‖ (am(x)− an(x))e ‖ ≤ ‖ (am(x + xk0)− an(x + xk0))e ‖

+ ‖ am(xk0)e ‖ + ‖ an(xk0)e ‖≤ δ; m,n ≥ N.

Therefore, by Proposition 1.3, the sequence {an(x} converges a.u. in L. �

2. The case of the almost uniform convergence

Let E be any set. A sequence an : E → L will be called pointwise uniformly bounded
on E if, given x ∈ E and ε > 0, there is a projection e ∈ P (M) such that τ(e⊥) ≤ ε and
S(x, e) < ∞.

Let (X, +, t) be a metrizable topological group, 0 ∈ E ⊂ X, and let an : X → L,
an(0) = a1(0), n = 2, 3, . . . . In this section we will examine relationships among the
following properties of the sequence {an}:

(CNV(E)) Almost uniform convergence on E: {an(x)} converges a.u. for every x ∈ E;
(BND(E)) Pointwise uniform boundedness on E;
(CNT(E)) Uniform equicontinuity at 0 on E (see Definition 1.4);
(CLS(E)) Closedness in E of the set C = {x ∈ E : {an(x)} converges a.u.}.

Proposition 2.1. Any (CNV(E)) sequence an : X → L is (BND(E)).

Proof. Pick x ∈ E and let ε > 0. Since the sequence {an(x)} converges a.u., there is
ax ∈ L and p ∈ P (M) with τ(p⊥) ≤ ε/2 such that ‖ (an(x)−ax)p ‖→ 0, n →∞. Because
an(x), ax ∈ L, it is possible to construct such a projection q ∈ P (M) that τ(q⊥) ≤ ε/2
and an(x)q, axq ∈ M , n = 1, 2, . . . . Defining e = p ∧ q, we obtain τ(e⊥) ≤ ε and

‖ an(x)e− axe ‖ = ‖ (an(x)− ax)pe ‖ ≤ ‖ (an(x)− ax)p ‖→ 0.

Consequently, ‖ an(x)e ‖→‖ axe ‖ and S(x, e) = sup
n
‖ an(x)e ‖< ∞. �

Theorem 2.2. Let (X, t) be complete, 0 ∈ E ⊂ X. Assume that E = E, E+E ⊂ E, and
let an : (X, +, t) → (L,+, tτ ) be a (BND(E)) sequence of continuous homomorphisms.
Then the sequence {an} is (CNT(E)).
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Proof. Fix ε > 0 and δ > 0. For a positive integer l define the set

El = {x ∈ E : S(x, b) ≤ l for some 0 6= b ∈ M with 0 ≤ b ≤ I, τ(I − b) ≤ ε/4}.

Show that the set El is closed in (E, t). Take x ∈ El and let {ym} ⊂ El be such that
ym → x in t. Then we have a1(ym)∗ → a1(x)∗ in tτ , hence, there exists a subsequence
{y(1)

m } ⊂ {ym} for which a1(y
(1)
m )∗ → a1(x)∗ a.u. By the same reasoning, one can find a

subsequence {y(2)
m } ⊂ {y(1)

m } satistying a2(y
(2)
m )∗ → a2(x)∗ a.u. Repeating this process,

for every n ≥ 3, we choose a subsequence {y(n)
m } ⊂ {y(n−1)

m } such that an(y(n)
m )∗ → an(x)∗

a.u. as m →∞. Define xm = y
(m)
m . Since {xm}m≥n is a subsequence of {y(n)

m }, we have

an(xm)∗ → an(x)∗ a.u., m →∞, n = 1, 2, . . .

By definition of El, one can find a sequence {bm} ⊂ M , 0 ≤ bm ≤ I, τ(I − bm) ≤ ε/4,
such that S(xm, bm) ≤ l for every m. Since the unit ball in M is compact in the weak
operator topology, there is a subnet {bα} ⊂ {bm} and b ∈ M for which bα → b weakly.
Clearly 0 ≤ b ≤ I. Besides, by the well-known inequality (see, for example [6]),

τ(I − b) ≤ lim inf
α

τ(I − bα) ≤ ε/4.

Show that S(x, b) ≤ l. Fix n. Because an(xm)∗ → an(x)∗ a.u., given σ > 0, there is a
projection h ∈ P (M) satisfying τ(h⊥) ≤ σ and

‖ h(an(xm)− an(x) ‖=‖ (an(xm)∗ − an(x)∗h ‖→ 0, m →∞.

We shall verify first that ‖ han(x)b ‖≤ l. For every ξ, η ∈ H we have

(2.1)
| (h(an(xm)bm − an(x)b)ξ, η) |

≤| (h(an(xm)− an(x))bmξ, η) | + | ((bm − b)ξ, an(x)∗hη) | .

Fix ν > 0 and let m0 be such that

(2.2) ‖ (an(xm)− an(x) ‖< ν

whenever m ≥ m0. Next, since bα → b weakly, there is such an index α(ν) that

(2.3) | ((bα − b)ξ, an(x)∗hη) |< ν

for all α ≥ α(ν). Remembering that {bα} is a subnet of {bm}, one finds such an index
α(m0) that {bα}α≥α(m0) ⊂ {bm}m≥m0 . In particular, if α0 ≥ max {α(ν), α(m0)}, then
bα0 = bm1 for some m1 ≥ m0. It follows now from (2.1)–(2.3) that

| (han(x)bξ, η) | ≤ | (han(xm1)bm1ξ, η) |
+ | (h(an(xm1)− an(x))bm1ξ, η) | + | ((bm1 − b)ξ, an(x)∗hη) |
≤ l· ‖ ξ ‖ · ‖ η ‖ + ‖ h(an(xm1)− an(x) ‖ · ‖ bm1 ‖ · ‖ ξ ‖ · ‖ η ‖ +ν

≤ l + 2ν

for all ξ, η ∈ H with ‖ ξ ‖=‖ η ‖= 1. Therefore,

‖ han(x)b ‖= sup
‖ξ‖=‖η‖=1

‖ (han(x)bξ, η ‖≤ l.

Now, let us pick hj ∈ P (M) such that τ(h⊥j ) ≤ σj = 1/j, j = 1, 2, . . . , and

‖ hj(an(xm)− an(x) ‖→ 0 as m →∞.

Let ξ, ‖ ξ ‖≤ 1, belong to the domain, D, of the operator an(x)b ∈ L. Take η ∈ H,
‖ η ‖≤ 1. Since hj → I weakly and ‖ hjan(x)b ‖≤ l for all j = 1, 2, . . ., we have

| (an(x)bξ, η) |= lim
j→∞

‖ (hjan(x)bξ, η) ‖≤ lim sup
j→∞

‖ hjan(x)b ‖ · ‖ ξ ‖ · ‖ η ‖≤ l.
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Therefore, ‖ an(x)bξ ‖≤ l for every ξ ∈ D with ‖ ξ ‖≤ 1. This means that an(x)b ∈ M
and ‖ an(x)b ‖≤ l, i.e. x ∈ El, hence El is closed in (E, t).

Note that, due to Lemma 1.5, condition (BND(E)) is equivalent to the following:
Given x ∈ E and ε > 0, there is 0 6= b ∈ M, 0 ≤ b ≤ I, such that τ(I − b) ≤ ε and

S(x, b) < ∞.
Taking this and definition of El into account, we obtain

E =
∞⋃

l=1

El.

Because E = E, the metric space (E, t) is complete. Therefore, by the Baire category
theorem, it is possible to find l0 and an open set U0 such that E ∩ U0 ⊂ El0 . In other
words, for every z ∈ E ∩ U0 there exists bz ∈ M, 0 ≤ bz ≤ I, τ(I − bz) ≤ ε/4, satisfying

S(z, bz) ≤ l0.

Let z ∈ E ∩U0, and let fz be the spectral projection of the operator bz corresponding to
the interval [1/2, 1]. Then, by Lemma 1.5, we have τ(f⊥z ) ≤ ε/2 and also

S(z, fz) ≤ 2 · S(z, bz) ≤ 2l0.

Pick any x0 ∈ E∩U0, and let V0 be such an open neighborhood of zero that x0+V0 ⊂ U0.
Let k0 be a positive integer such that k−1

0 · 4l0 ≤ δ. Take W0 to be such an open
neighborhood of zero that k0 ·W0 ⊂ V0. Pick x ∈ E ∩W0, and let z = x0 + k0 · x. Since
E + E ⊂ E, we have z ∈ E; besides, z ∈ U0, so z ∈ E ∩ U0. Thus, defining e = fz ∧ fx0 ,
we get τ(e⊥) ≤ ε and also

S(x, e) = k−1
0 · S(k0x, e) = k−1

0 · S(z − x0, e)

≤ k−1
0 · (S(z, e) + S(x0, e)) ≤ k−1

0 · 4l0 ≤ δ.

Therefore, the sequence {an} satisfies condition (CNT(E)). �

Remarks. 1. If X is a topological vector space over Q, then clearly (CNT(E)) implies
(BND(E)).
2. There is an error in [1] (bottom of p. 37). This error can be fixed by introducing
necessary changes accordingly with the first part of the proof of Theorem 2.2.

Theorem 2.3. Any (CNT(X)) sequence an : X → L of homomorphisms is (CLS(X)).

Proof. Pick x ∈ C and fix ε > 0. Since {an} is a (CNT(X)) sequence, for every positive
integer k, it is possible to find an open neighborhood Uk of 0 ∈ (X, t) such that, given
x ∈ Uk, there exists ex ∈ P (M), τ(e⊥x ) ≤ ε/2k, satisfying S(x, ex) ≤ 1/k. Let {ym} ⊂ C
be such that ym → x in t. Then we have xm = ym − x → 0 in t, hence, for every k there
exists xk = xmk

∈ Uk. It follows now that there is ek = exk
∈ P (M) with τ(e⊥k ) ≤ ε/2k

for which the inequality S(xk, ek) ≤ 1/k holds. Letting e = ∧∞k=1ek, we obtain τ(e⊥) ≤ ε
and S(xk, e) ≤ S(xk, ek) → 0 as k → ∞. Taking into account that x + xk = yk ∈ C,
i.e. {an(x + xk)} converges a.u., k = 1, 2, . . . , by Lemma 1.6, we conclude that {an(x)}
converges a.u. as well. Therefore, x ∈ C and = C, meaning that the sequence {an} is
(CLS(X)). �

Theorem 2.4. Let X be complete, and let an : X → L be a (CNV(D)) sequence of
continuous homomorphisms. If D = X, then all four conditions (CNV(X))–(CLS(X))
are equivalent.

Proof. By Proposition 2.1, (CNV(X)) implies (BND(X)), while Theorems 2.2 and 2.3
entail implications (BND(X)) ⇒ (CNT(X)) and (CNT(X)) ⇒ (CLS(X)), respectively.
Finally, (CLS(X)) together with (CNV(D)), D = X, allow us to conclude that (CNV(X))
holds, which ends the proof. �
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3. The case of the bilateral almost uniform convergence

Let E be a set. A sequence an : E → L is called pointwise bilaterally uniformly
bounded on E if for every x ∈ E and ε > 0, there is a projection e ∈ P (M), τ(e⊥) ≤ ε,
such that SB(x, e) < ∞.

Let (X, +, t) be a metrizable topological group. Let 0 ∈ E ⊂ X. In this section
we will discuss relationships among the following properties of a sequence an : X → L,
an(0) = a1(0), n = 2, 3, . . . :

(B.CNV(E)) Bilateral almost uniform convergence on E:
{an(x)} converges b.a.u. for every x ∈ E;

(B.BND(E)) Pointwise bilateral uniform boundedness on E;
(B.CNT(E)) Bilateral uniform equicontinuity at 0 on E:

given ε > 0, δ > 0, there exist a neighborhood U of 0 ∈ (X, t) such that
for every x ∈ E ∩ U there is e = e(x) ∈ P (M) with τ(e⊥) ≤ ε
satisfying SB(x, e) ≤ δ;

(B.CLS(E)) Closedness in E of the set CB = {x ∈ E : {an(x)} converges b.a.u.}.
Remark. Due to Remark 1.1, conditions (B.CNT(E)) and (CNT(E)) are equivalent.

Proof of the next statement is similar to that of Proposition 1.3.

Proposition 3.1. Every (B.CNV(E)) sequence an : X → L is (B.BND(E)).

Let (X, +,≤) be an ordered group, i.e. (X, +) is a group with a partial order ” ≤ ”
such that x + z ≤ y + z for all x, y, z ∈ X with x ≤ y. A homomorphism a : X → L is
called positive if a(x) ≥ 0 for every x ∈ X+ = {y ∈ X : y ≥ 0}.
Theorem 3.2. Let (X, +,≤, t) be a ordered complete metrizable topological group. Let
E = E ⊂ X+ and E +E ⊂ E. Then every (B.BND(E)) sequence an : X → L of positive
continuous homomorphisms is (B.CNT(E)).

Proof. Fix ε > 0, δ > 0. For a positive integer l define

El =
{

x ∈ E : sup
n
‖ an(x)1/2b ‖≤ l for some 0 6= b ∈ M with 0 ≤ b ≤ I, τ(I − b) ≤ ε

4

}
.

Let {ym} ⊂ El be such that ym → x in t. Since E = E, we have x ∈ E ⊂ X+.
Repeating verbatim the argument of the proof of Theorem 2.7 in [3], one can verify
that x ∈ El, i.e. the set El is closed. Next, by Lemma 1.5, condition (B.BND(E)) is
equivalent to the following:

Given x ∈ E and ε > 0, there is 0 6= b ∈ M , 0 ≤ b ≤ I, such that τ(I − b) ≤ ε and
SB(x, b) ≤ ∞.

Consequently, exactly as it is done in [3], we get

E =
∞⋃

l=1

El.

Because X is complete and E = E ⊂ X, (E, t) is a complete metric space, which allows
us to apply the Baire category theorem. It follows that there exist such l0 and an open
set U0 ⊂ (X, t) that

E ∩ U0 ⊂ El0 ,

i.e., given z ∈ E ∩ U0, there exists bz ∈ M , 0 ≤ bz ≤ I, satisfying τ(I − bz) ≤ ε/4 and

sup
n
‖ an(z)1/2bz ‖≤ l0.
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Therefore, if z ∈ E ∩ U0 and fz is the spectral projection of bz corresponding to the
interval [1/2, 1], by Lemma 1.5, τ(f⊥z ) ≤ ε/2 and also

SB(z, fz) = sup
n
‖ fzan(z)fz ‖

= sup
n
‖ an(z)1/2fz ‖2≤ sup

n
(2 ‖ an(z)1/2bz ‖)2 ≤ 4l20.

Now, repeating the ending of the proof of Theorem 2.2, we conclude that the sequence
{an} is (B.CNT(E)). �

Proposition 3.3. Let (X, +,≤, t) be a ordered complete metrizable topological group with
X+ = X+. Assume that for every neighborhood 0 ∈ U ⊂ (X, t) the set U ∩X+−U ∩X+

is also an neighborhood of 0. Then every (B.BND(X+)) sequence an : X → L of positive
continuous homomorphisms is (B.CNT(X)).

Proof. Given ε > 0, δ > 0, setting E = X+ in Theorem 3.2, one can find a neighborhood
0 ∈ U ⊂ (X, t) such that for every x ∈ X+ ∩ U there is e ∈ P (M), τ(e⊥) ≤ ε, with
SB(x, e) ≤ δ/2. Therefore, for every z from the neighborhood U ∩X+ −U ∩X+ of zero
we have SB(z, e) ≤ δ, which means that {an} is a (B.CNT(X)) sequence. �

With a slight modification of the proof of Theorem 2.3 utilizing Lemma 1.6 we obtain
the following.

Theorem 3.4. If (X, +, t) is a metrizable topological group, then every (B.CNT(X))
sequence an : X → L of homomorphisms is (B.CLS(X)).

Theorem 3.5. Let (X, +,≤, t) be as in Proposition 3.3. Assume that a sequence an :
X → L of positive continuous homomorphisms is (B.CNV(D)) with D = X. Then all
four conditions (B.CNV(X))–(B.CLS(X)) are equivalent.

Proof. (B.CNV(X)) implies (B.CNV(X+)), hence, by Proposition 3.1, properties
(B.BND(X)) and (B.BND(X+)) hold. Due to Proposition 3.3, we arrive at (B.CNT(X)),
which, by Theorem 3.4, implies (B.CLS(X)). Finally, (B.CLS(X)) together with
(B.CNV(D)), D = X, yield (B.CNV(X)), and the proof is complete. �
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