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A SPECTRAL ANALYSIS OF SOME INDEFINITE DIFFERENTIAL
OPERATORS

A. S. KOSTENKO

Abstract. We investigate the main spectral properties of quasi–Hermitian exten-
sions of the minimal symmetric operator Lmin generated by the differential expression

− sgn x
|x|α

d2

dx2 (α > −1) in L2(R, |x|α). We describe their spectra, calculate the resol-

vents, and obtain a similarity criterion to a normal operator in terms of boundary
conditions at zero. As an application of these results we describe the main spectral

properties of the operator sgn x
|x|α

“
− d2

dx2 + cδ
”

, α > −1.

1. Introduction

Let us recall that two closed operators T1 and T2 acting in a Hilbert space H are
called similar if there exists a bounded operator C with a bounded inverse C−1 such that
T1 = C−1T2C.

Denote by L2(R, |x|α), α > −1, the Hilbert function space of equivalence classes of
Lebesgue measurable functions f(·) such that

∫
R |f(x)|2|x|αdx < ∞; the inner-product

of f, g ∈ L2(R, |x|α) is defined by (f, g) :=
∫

R f(x)g(x)|x|αdx. Let us consider in
L2(R, |x|α) the following symmetric operator:

(1) Lmin = − sgnx
|x|α

d2

dx2
, dom(Lmin) = {f ∈ dom(L) : f(0) = f ′(0) = 0}.

Here dom(L) stands for a domain of the operator

(2) L := − sgnx
|x|α

d2

dx2
,

dom(L) := {f ∈ L2(R, |x|α) : f, f ′ ∈W 1
1,loc(R), Lf ∈ L2(R, |x|α)}.

The aim of the paper is to describe all quasi–Hermitian extensions L̃ of Lmin (see [1])
similar to a self–adjoint operator.

Let A be an elliptic operator and let r(·) be an indefinite weight. The Riesz basis
property of eigenfunctions of the weighted spectral problem

(Ay)(x) = λr(x)y(x)

has been investigated in connection with some mechanical and physical problems (see
[2, 24] and references therein). If the operator 1

rA has a nonempty continuous spectrum,
then in place of the Riesz basis property it is naturally to consider a problem of similarity
to a self–adjoint (normal) operator.

In particular, the model operator L of the form (2) has been studied by B. Ćurgus
and B. Najman [4] (α = 0 ) and by A. Fleige and B. Najman [9] (α > −1). Using the
Krein–Langer theory of definitizable operators in Krein spaces (see [19]), they proved the
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similarity of L to a self–adjoint operator. Different proofs and generalizations of these
facts have been proposed in [7, 8, 13, 14, 17] (see also references therein).

In recent papers of M. M. Faddeev and R. G. Shterenberg [7] and I. M. Karabash and
M. M. Malamud [17], the operator

(3) Lq := sgnx
(
− d2

dx2
+ q(x)

)
with a nonconstant potential q(·) has been investigated. More precisely, necessary and
sufficient conditions for operator (3) to be similar to a self–adjoint one are obtained in
[7] (the case of a decaying potential) and in [17] (the cases of both decaying and finite
zone potentials q(·)).

In the paper [15] proper extensions of Lmin which are similar to a self–adjoint or
normal operator have been described for the case α = 0.

Differential operators with an indefinite weight are of interest for one more reason.
The characteristic function W (·) of the operator 1

rA as well as the corresponding J-form
J − W ∗JW is unbounded in C+ (see Remark 3 in Section 6). Therefore, the known
sufficient conditions of similarity to a self–adjoint operator (see [21] and the references
therein) cannot be applied here.

The paper is organized as follows. Section 2 is preparatory. Here we present the
Naboko–Malamud resolvent similarity criterion ([20, 23]) and necessary facts concerning
boundary triplets and the corresponding Weyl functions ([5, 6]).

In Section 3 we investigate the Krein–Feller differential operator L+ naturally con-
nected with the operator Lmin. In Theorem 3 we find an explicit form of one of the Weyl
functions corresponding to the operator L+,

M(λ) =
1

(−λ)1/(2+α)
, λ ∈ C \ R+.

It allows us to describe the main spectral properties of Lmin and its quasi–Hermitian
extensions. More precisely, in Section 4 we construct a boundary triplet for Lmin and
obtain the corresponding Weyl function (Theorem 4). Moreover, we describe the spectra
of proper extensions and calculate their resolvents (Lemmas 1–2). Finally, in Section 5
we prove our main result (Theorem 5). This is a similarity criterion to a self–adjoint
operator. In order to illustrate these results, in Section 6 (see Theorem 8) we obtain a
simple similarity criterion for operators with local point interactions at zero,

Lc :=
sgnx
|x|α

(
− d2

dx2
+ cδ

)
, c ∈ C \ {0}.

The results of the paper have been announced in [18].
Throughout the paper we use the following notation: H,H denote separable Hilbert

spaces. The set of all bounded linear operators from H to H is denoted by [H,H] or [H] if
H = H. C(H) stands for the set of closed densely defined operators in H. Let T be a linear
operator in a Hilbert space H. In what follows dom(T ), ker(T ), ran(T ) are the domain,
kernel, range of T , respectively. We denote by σ(T ), σr(T ), σc(T ) the point, residual and
continuous spectra of T . By σp(T ) the set of eigenvalues of T is indicated. We denote
the resolvent set by ρ(T ); RT (λ) := (T − λI)−1, λ ∈ ρ(T ), is the resolvent of T . Recall
that σr(T ) = {λ ∈ σ(T ) \ σp(T ) : ran(T − λI) 6= H}, σc(T ) = σ(T ) \ (σp(T )

⋃
σr(T )).

If T is a symmetric operator, we denote by Nλ := ker(T ∗−λ) the deficiency subspaces
of T and by n±(A) := dim N±i its deficiency indices.

We set C± := {λ ∈ C : ± Imλ > 0}, R+ := [0,+∞), R− := (−∞, 0]. By χI(t) we
denote the characteristic function of the interval I, i.e., χI(t) = 1 for t ∈ I, χI(t) = 0
for t 6∈ I. Finally, we set χ±(t) := χR±(t).
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2. Preliminaries

2.1. Similarity criterion. Our approach is based on the concept of boundary triplets
(see [10], [6]) and the resolvent similarity criterion obtained by S. N. Naboko [23] and
M. M. Malamud [20] (in [3] this criterion was obtained under an additional assumption
that the operator T ∈ C(H) is a generator of C0-group).

Theorem 1. ([20, 23]). A closed operator T in a Hilbert space H is similar to a self-
adjoint one if and only if σ(A) ⊂ R and for all f ∈ H the inequalities

(4)

sup
ε>0

+∞∫
−∞

ε ‖RT (µ+ iε) f‖2 dµ ≤ C ‖f‖2 ,

sup
ε>0

+∞∫
−∞

ε ‖RT∗ (µ+ iε) f‖2 dµ ≤ C∗ ‖f‖2 ,

are valid with constants C and C∗ independent of f .

2.2. Boundary triplets and Weyl functions. Let A ∈ C(H) be a closed symmetric
operator with equal deficiency indices n+(A) = n−(A). Without loss of generality we
may assume that A is simple. This means that A has no self-adjoint parts.

We recall the definition of a boundary triplet which may be considered as an abstract
version of the second Green formula.

Definition 1. ([10]). A triplet Π = {H,Γ0,Γ1} consisting of an auxiliary Hilbert space
H and linear mappings

(5) Γj : dom(A∗) −→ H, j ∈ {0, 1},

is called a boundary triplet for the adjoint operator A∗ of A if the following two conditions
are satisfied:

(i) The second Green formula

(6) (A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom(A∗),

takes place and
(ii) the mapping

(7) Γ : dom(A∗) −→ H⊕H, Γf := {Γ0f,Γ1f},

is surjective.

Note that the boundary triplet for the adjoint A∗ of the symmetric operator A is
not unique. With each boundary triplet we associate two self–adjoint extensions Ai :=
A∗| ker(Γi), i ∈ {0, 1}.

Definition 2. ([6]). The proper extension Ã ⊃ A is called an almost solvable if there
exists a boundary triplet Π = {H,Γ0,Γ1} and an operator B ∈ [H] such that

(8) dom(Ã) = dom(AB) := ker(Γ1 −BΓ0).

The set of almost solvable extensions is denoted by AsA. Note that the class AsA

is sufficiently wide. According to [6] any proper extension having two regular points
λ1, λ2 ∈ C such that Imλ1 · Imλ2 < 0, belongs to AsA. All proper (in other terminology
quasi-Hermitian, see [1]) extensions belong to the class AsA if n±(A) <∞ (see [6]).

Weyl function is an important tool in the direct and inverse spectral theory of singular
Sturm–Liouville operators. In [5, 6] a concept of Weyl function was introduced for an
arbitrary symmetric operator A with infinite deficiency indices n+(A) = n−(A).
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Definition 3. ([5]). Let Π = {H,Γ0,Γ1} be a boundary triplet for the operator A∗. The
Weyl function of A corresponding to the boundary triplet {H,Γ0,Γ1} is a unique mapping

(9) M(·) : ρ(A0) −→ [H]

satisfying

(10) Γ1fλ = M(λ)Γ0fλ, fλ ∈ Nλ = ker(A∗ − λI), λ ∈ ρ(A0).

It is well known (see [5, 6]) that the above implicit definition of the Weyl function
is correct and M(·) is an R-function obeying 0 ∈ ρ(Im(M(i))). The Weyl function
immediately provides some information about the “spectral properties” of almost solvable
extensions of the symmetric operator A.

Proposition 1. ([6]). Suppose that Π = {H,Γ0,Γ1} is a boundary triplet for A∗, M(·)
is the corresponding Weyl function, λ ∈ ρ(A0) and B ∈ [H]. Then:

1) λ ∈ ρ(AB) if and only if 0 ∈ ρ(B −M(λ));
2) λ ∈ σi(AB) if and only if 0 ∈ σi(B −M(λ)), i ∈ {p, r, c}.

We also need the following connection discovered in [5, 6] between the Krein formula
for resolvents and boundary triplets.

Theorem 2. ([5, 6]). Let Ã be an almost solvable extension of A (Ã ∈ AsA), i.e.,
Ã = AB with B ∈ [H] for some boundary triplet Π = {H,Γ0,Γ1}. Then

(11) (AB − λ)−1 = (A0 − λ)−1 + γ(λ)(B −M(λ))−1γ∗(λ), λ ∈ ρ(AB).

Here γ(λ) := (Γ0|Nλ)−1 is a so–called gamma–field of the operator A corresponding to
the boundary triplet Π.

3. Krein–Feller differential operator

We start with the operator L+ := P+ ·Lmin; here P+ denote the orthogonal projection
in L2(R; |x|α) onto L2(R+; |x|α). Evidently, L+ is a minimal Krein–Feller differential
operator in L2(R+; |x|α) corresponding to the string Sα with the mass distribution
mα(x), i.e.,

(12)
L+ := − d2

dmα(x)dx
, dom(L+) = P+(dom(Lmin));

mα(x) = x1+α/(1 + α), α > −1.

Notice that L+ is a simple closed symmetric operator.
Following [12] we denote by ϕα(x, λ) and ψα(x, λ) the solutions of the equation

(13) − d2u(x)
dmα(x) dx

− λu(x) = 0, x > 0,

satisfying boundary conditions at zero u(0) = 1, u′(0) = 0, and u(0) = 0, u′(0) = 1,
respectively. Then the following limit exists

(14) Γα(λ) := lim
x→+∞

ψα(x, λ)
ϕα(x, λ)

= lim
x→+∞

ψ′α(x, λ)
ϕ′α(x, λ)

, λ /∈ [0,+∞) ,

and the function Γα(·) belongs to the Krein–Stieltjes class S (see [11]), i.e., it admits the
representation

(15) Γα(λ) =

+∞∫
0

dτα(s)
s− λ

, λ /∈ [0,+∞) ;

+∞∫
0

dτα(s)
1 + s

< +∞.
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Here τα(·) is a nondecreasing function defined on R+, obeying

τα(0) = 0, τα(s) =
1
2

(τα(s+ 0) + τα(s− 0)) .

τα(·) is called a general spectral function of the string Sα.
We denote by z1/(2+α), z ∈ C, the branch of the complex root with a cut along the

negative semi-axis R− such that (−1 + i0)1/(2+α) = eiπ/(2+α).

Proposition 2. ([18]). Let the operator L+ be defined by (12). Then

(16) Γα(λ) =
Cα

(−λ)1/(2+α)
, Cα := Γα(−1) > 0, λ ∈ C \ R+.

Moreover,

(17) τα(x) = Cα ·
(2 + α) · sin(π/(2 + α))

π(1 + α)
· x(1+α)/(2+α), x ≥ 0,

is the general spectral function of the string Sα.

Proof. It is obvious that
dmα(ρx)

dx
= (ρx)α = ρα dmα(x)

dx
, ρ > 0.

Hence

(18) ϕ(ρx, λ) = ϕ(x, ρ2+αλ) , ψ(ρx, λ) = ρψ(x, ρ2+αλ) .

By (14), we obtain

(19) Γ(λ) = ρΓ(ρ2+αλ), ρ > 0.

Putting λ = −1, we get

(20) Γ(−1) = ρ1/(2+α)Γ(−ρ), ρ > 0.

Finally, (20) yields (16), since Γ(·) is analytic in C \ R+.
Equation (17) follows from (15)–(16) and the Stieltjes inversion formula (see [11]). �

Theorem 3. A triplet Π+ = {C,Γ+
0 ,Γ

+
1 }, where

(21) Γ+
j : dom(L∗+) → C, j ∈ {0, 1}, Γ+

1 f = f(0), Γ+
0 f = −f ′(0), f ∈ dom(L∗+),

forms a boundary triplet for L∗+. The corresponding Weyl function M+(·) is

(22) M+(λ) := Γα(λ) =
Cα

(−λ)1/(2+α)
, λ ∈ C \ R+.

Proof. Since
+∞∫
0

t2dm(t) = +∞, we have n±(L+) = 1 (see [12]). Furthermore, the

Lagrange identity holds for the adjoint operator L∗+ (see [12]), i.e.,

(23)
(L∗+u, v)− (u, L∗+v) = u′(0)v(0)− u(0)v′(0)

= Γ+
1 (u) · Γ+

0 (v)− Γ+
0 (u) · Γ+

1 (v), u, v ∈ dom(L∗+).

Then, by Definition 1, Π+ is a boundary triplet for L∗+.
Note also that for all f ∈ dom(L∗+) the following limit exists: limx→+∞ f(x) = 0.

Using (14), one gets

(24) yα(·, λ) := ψ(·, λ)− Γα(λ)ϕ(·, λ) ∈ Nλ, Nλ = {cyα(·, λ) : c ∈ C}.
Combining Definition 3 with (21), we obtain

(25) M+(λ) =
Γ+

1 (yα(·, λ))
Γ+

0 (yα(·, λ))
=
−Γα(λ)
−1

= Γα(λ).
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�

Corollary 1. Let the function yα(·, λ) be of the form (24) and λ = µ + iε ∈ C \ R+.
Then

(26) ‖yα(·, µ+ iε)‖2L2(R+,xα) =
Cα

ε
· Im 1

(−µ− iε)1/(2+α)
.

Proof. Using the functional model of the operator L+ in the Hilbert space L2(R+, dτα)
(see [6, 22]), we obtain

(27)
‖yα(·, λ)‖2L2(R+,xα) =

∫ +∞

0

1
|t− λ|2

dτα(t)

=
1

Imλ

∫ +∞

0

Im
1

t− λ
dτα(t) =

1
Imλ

Im Γα(λ).

Equality (16) completes the proof. �

Corollary 2. The spectral kernel of the operator L+ is continuous and coincides with
positive semi-axis R+.

Proof. By (26), we see that R+ does not belong to the set of regular type points of
the operator L+. Hence R+ is a spectral kernel of L+. Moreover, L+ is a simple
symmetric operator with deficiency indices n±(L+) = 1, then (see [1]) the spectral kernel
is continuous. �

4. Proper extensions of Lmin

The following result is a simple corollary of Theorem 3.

Theorem 4. (i) The operator Lmin of the form (1) is a simple closed symmetric operator
in L2(R, |x|α) with deficiency indices n±(Lmin) = 2.

(ii) Let mappings Γi : dom(L∗min) → C2, be given by

(28) Γ1f =
(

f ′(+0)
−f(−0)

)
, Γ0f =

(
f(+0)
f ′(−0)

)
.

Then Π = {C2,Γ0,Γ1} is a boundary triplet for L∗min.
(iii) The corresponding Weyl function M(·) is

(29) M(λ) :=
(
−1/Γα(λ) 0

0 −Γα(−λ)

)
, λ ∈ C \ R.

Here Γα(·) is defined by (16).

Proof. (i) is obvious. Moreover, by (23), one gets for all f, g ∈ dom(Lmin∗)
(30)
(L∗minf, g)− (f, L∗ming) = f ′(+0)g(+0) + f ′(−0)g(−0)− f(+0)g′(+0)− f(−0)g′(−0)

= (Γ1f,Γ0g)C2 − (Γ0f,Γ1g)C2 .

This proves (ii).
Note that the defect subspace of the operator Lmin has the form

(31) Nλ(Lmin) = span{y+
α (x, λ); y−α (x, λ)},

where

(32) y+
α (x, λ) :=

{
ψα(x, λ)− Γα(λ)ϕα(x, λ), x > 0,
0, x < 0;
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(33) y−α (x, λ) :=
{ 0, x > 0,

ψα(−x,−λ)− Γα(−λ)ϕα(−x,−λ), x < 0.

By Definition 3, after simple calculations one obtains (29). �

Corollary 3. The gamma–field γ(·) corresponding to the triplet Π is

(34) γ(λ)
(
c+

c−

)
= − c+

Γα(λ)
y+

α (x, λ)− c−y−α (x, λ).

Here Γα(λ) and y±α (x, λ) are defined by (16) and (32)–(33), respectively.

Let us remark that all quasi–Hermitian extensions of the operator Lmin are almost
solvable, because n±(Lmin) = 2 <∞. In what follows we confine ourselves to the almost
solvable extensions described by the boundary triplet Π of the form (28):

(35) LB = − sgnx
|x|α

d2

dx2
, dom(LB) = {f ∈ dom(L∗min) : Γ1f = BΓ0f}.

Here B =
(
b11 b12
b21 b22

)
is a 2×2–matrix with complex coefficients. In this case boundary

conditions at zero take the form

(36)

{
f ′(+0) = b11f(+0) + b12f

′(−0),

−f(−0) = b21f(+0) + b22f
′(−0).

Equality (29) allows us to describe the spectrum of the operator LB . Let us determine
the function ΨB(·) : C+ → C by the following way

(37) ΨB(λ) := det(B −M(λ)), λ ∈ C+;

(38) ΨB(µ) := lim
ε↓+0

det(B −M(µ+ iε)), µ ∈ R ∪ {∞}, ε > 0.

Here M(·) is given by (29) and (16).
Note that ΨB(·) is analytic on C+ and continuous on R \ {0}. Furthermore, it is

obvious that

(39)
ΨB(λ) =

e−iπ/(2+α)b22
Cα

λ1/(2+α) + b11b22 − b12b21 + e−iπ/(2+α) + b11Cα
1

λ1/(2+α)
,

λ ∈ C+ \ {0}.

It follows from (39) that ΨB(·) has at most two zeroes (a zero of multiplicity k is counted
as k zeroes).

Lemma 1. ([18]). Let B =
(
b11 b12
b21 b22

)
∈ C2×2 and |b12| + |b21| 6= 0; let LB be an

almost solvable extension of the form (35)–(36). Then:
(i) σc(LB) = R and σp(LB) ∩ R = ∅;
(ii) σp(LB)∩C+ = {λ ∈ C+ : ΨB(λ) = 0} and σp(LB)∩C− = {λ ∈ C− : ΨB∗(λ) =

0}.

Proof. (i) The spectrum of a quasi–Hermitian extension of a simple symmetric operator
A with finite deficiency indices consists of the spectral kernel of A and the eigenvalues
(see [1]). It is obvious that the spectral kernel of Lmin is continuous and coincides with
R (cf. Corollary 2). Hence σc(LB) = R. Moreover, the condition |b12|+ |b21| 6= 0 implies
σp(LB) ∩ R = ∅.

(ii) trivially, follows from Proposition 1. �
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Remark 1. Since L∗B = LB∗ , the operator LB is self–adjoint exactly when B = B∗.
If B is a self–adjoint matrix and the condition |b12| + |b21| 6= 0 holds, then σ(LB) =
σc(LB) = R. In other words, the spectrum of the self–adjoint extension type (35)–(36)
with nonseparate boundary conditions is continuous and coincide with R.

Remark 2. Suppose that |b12|+ |b21| = 0, i. e., the operator LB has a separate boundary
conditions. Such type operators are well studied and this case is not of interest.

Let us determine the following functions for all f ∈ L2(R, |x|α)

(40) F+
α (f, λ) :=

+∞∫
0

f(t)y+
α (t, λ)dt, F−α (f, λ) :=

0∫
−∞

f(t)y−α (t, λ)dt, λ ∈ C \ R.

Lemma 2. Let B ∈ C2×2 and |b12| + |b21| 6= 0; let LB be of the form (35)–(36) and
L̃0 = Lmin| ker(Γ0). Then

(41)

(LB − λI)−1f(x) = (L̃0 − λI)−1f(x)

+
y+

α (x, λ)
ΨB(λ) · Γα(λ)

·
(
b22 + Γα(−λ)

Γα(λ)
F+

α (f, λ)− b12F
−
α (f, λ)

)
− y−α (x, λ)

ΨB(λ)
·
(
b21

F+
α (f, λ)
Γα(λ)

− (b11 + 1/Γα(λ))F−α (f, λ)
)
,

f ∈ L2(R, |x|α), λ ∈ ρ(LB).

Proof. Note that (see Corollary 1)

(42) γ∗(λ) : L2(R, |x|α) → C2 and γ∗(λ)f =
(
−F+

α (f, λ)/Γα(λ)
−F−α (f, λ)

)
, λ ∈ C \ R.

Combining (29), (34), (42) with Theorem 2, we obtain (41). �

5. Similarity to a self–adjoint operator

Here we present the main result of the paper, a criterion of similarity of LB to a
self–adjoint operator. To prove the main result we need two lemmas. The first of them
is known and trivial.

Lemma 3. If an operator T ∈ C(H) is similar to a normal one, then the inequality

(43) ‖(T − λI)−1‖H ≤ C

dist(λ, σ(T ))
holds with some constant C > 0.

Lemma 4. Let the functions Γα(λ), y±α (x, λ) and F±α (·, λ) be defined by (16), (32)–(33)
and (40), respectively. Then the inequalities

(44) sup
ε>0

∫ +∞

−∞
ε

∥∥∥∥y±α (x, µ+ iε)F±α (f, µ+ iε)
Γα(µ+ iε)

∥∥∥∥2

dµ ≤ C‖f‖2, f ∈ L2(R, |x|α);

(45) sup
ε>0

∫ +∞

−∞
ε

∥∥∥∥y±α (x, µ+ iε)F∓α (f, µ+ iε)
Γα(µ+ iε)

∥∥∥∥2

dµ ≤ C‖f‖2, f ∈ L2(R, |x|α);

hold for all f ∈ L2(R, |x|α) with some constant C > 0 independent of f .

Proof. Let us consider the self–adjoint operator LB0 of the form (35)-(36) with B0 =(
0 1
1 0

)
. It is clear that

Γα(−λ)
Γα(λ)

≡ e−iπ/(2+α), ΨB0(λ) ≡ −1 + e−iπ/(2+α), λ ∈ C+.
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Substituting f±(x) = f(x) · χR±(x) for f in (41), we obtain

(46)
∥∥∥(LB0 − λ)−1f± − (L̃0 − λ)−1f±

∥∥∥2

=
∥∥∥∥y±α (x, λ)F±α (f, λ)

Ψ0 · Γα(λ)

∥∥∥∥2

+
∥∥∥∥y∓α (x, λ)F∓α (f, λ)

Ψ0 · Γα(λ)

∥∥∥∥2

, λ ∈ C+.

Finally note that the operators LB0 and L̃0 are self–adjoint, hence, by Theorem 1, they
satisfy inequalities (4). Combining this fact with (46), we get (44)–(45). �

Theorem 5. (Main Theorem). Let

B =
(
b11 b12
b21 b22

)
∈ C2×2 and |b12|+ |b21| 6= 0;

and let ΨB(·) be defined by (37)–(38). The operator LB of the form (35)–(36) is similar
to a self–adjoint operator if and only if ΨB(·) and ΨB∗(·) have no zeroes in the closed
upper half-plane C+.

Proof. (Necessity). Suppose that LB is similar to a self-adjoint operator. Then LB has
a real spectrum, i. e., σ(LB) ⊂ R. Hence the functions ΨB(·) and ΨB∗(·) have no zeroes
in C+ (cf. Lemma 1 (ii)).

Let us prove that ΨB(·) and ΨB∗(·) have no zeroes in R∪{∞}. Assume the converse.
Without loss of generality we suppose that ΨB(·) has a zero in R ∪ {∞} and b12 6= 0.
Let us consider three cases.

i) Suppose that µ0 = µ0 6= 0 is a zero of the function ΨB(·). We put f−λ (x) :=
y−α (x, λ)/‖y−α (x, λ)‖. Substituting f−λ (·) for f(·) in (41), we obtain (in what follows ‖ · ‖
stands for the norm in the corresponding Hilbert space L2(R, |x|α))

(47)

∥∥∥(LB − λI)−1f−λ − (L̃0 − λI)−1f−λ

∥∥∥2

=
∥∥∥∥ y+

α (x, λ)
ΨB(λ) · Γα(λ)

b12F
−
α (f−λ , λ)

∥∥∥∥2

+
∥∥∥∥−y−α (x, λ)

ΨB(λ)
· (b11 + 1/Γα(λ))F−α (f−λ , λ)

∥∥∥∥2

≥ |b12|2 ·
‖y+

α (x, λ)‖2 · ‖y−α (x, λ)‖2

|ΨB(λ) · Γα(λ)|2
, λ ∈ ρ(LB).

Since the operator L̃0 is self–adjoint, then

‖(L̃0 − (µ0 + iε)I)−1‖ ≤ 1
ε
.

The function ΨB(·) admits an analytic continuation into µ0 6= 0 (see (39)), hence we get

(48) |ΨB(µ0 + iε)| = O(|ε|), ε→ 0.

Combining (47), (48) and (26), we obtain
(49)∥∥(LB − (µ0 + iε)I)−1

∥∥2 ≥
∥∥(LB − (µ0 + iε)I)−1f−λ (x)

∥∥2

≥ |b12|2 ·
‖y+

α (x, µ0 + iε)‖2 · ‖y−α (x, µ0 + iε)‖2

|ΨB(µ0 + iε) · Γα(µ0 + iε)|2
− 1
ε2

=
|b12|2 · |(µ0 + iε)|2/(2+α)

|ε|2|ΨB(µ0 + iε)|2
Im

1
(−µ0 − iε)1/(2+α)

Im
1

(µ0 + iε)1/(2+α)
− 1
ε2

=
|b12|2 · Im(−µ0 + iε)1/(2+α) Im(µ0 − iε)1/(2+α)

|ε|2|(µ0 + iε)|2/(2+α)|ΨB(µ0 + iε)|2
− 1
ε2

= O

(
1
|ε|3

)
, ε→ 0.

By Lemma 3, the operator LB is not similar to a normal operator. This is a contradiction.
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ii) If µ0 = 0 is a zero of ΨB(·), then ΨB(λ) = b22/Γα(λ) (cf. (39)). Arguing as above,
we obtain

(50)

∥∥∥(LB − iε)−1f−λ − (L̃0 − iε)−1f−λ

∥∥∥2

≥
∣∣∣∣b12b22

∣∣∣∣2 · ‖y+
α (x, iε)‖2 · ‖y−α (x, iε)‖2

=
∣∣∣∣b12b22

∣∣∣∣2 1
|ε|2

Im
1

(−iε)1/(2+α)
Im

1
(iε)1/(2+α)

= O

(
1

|ε|2+2/(2+α)

)
, ε→ 0.

This contradicts Lemma 3.
iii) Finally let ΨB(∞) = 0. Then ΨB(λ) = b11Γα(−λ). Using (41), one gets

(51)

| Imλ|2
∥∥∥(LB − λ)−1f−λ − (L̃0 − λ)−1f−λ

∥∥∥2

≥ | Imλ|2
∣∣∣∣b12b11

∣∣∣∣2 ‖y+
α (x, λ)‖2 · ‖y−α (x, λ)‖2

|Γα(λ)Γα(−λ)|2
=

∣∣∣∣b12b11
∣∣∣∣2 | Im Γα(λ) Im Γα(−λ)|

|Γα(λ)Γα(−λ)|2

=
∣∣∣∣ b12
b11cα

∣∣∣∣2 ∣∣∣Im(−λ)1/(2+α) Im(λ)1/(2+α)
∣∣∣ , λ ∈ C+.

It is obvious that the right part of (51) is unbounded in C+.
This contradiction concludes the proof of necessity.

(Sufficiency).
Suppose that the functions ΨB(·) and ΨB∗(·) have no zeroes in the closed upper

half-plane. Then, by Lemma 1, the operator LB has a real spectrum and σ(LB) = R.
Moreover, the inequalities

(52)
1

|ΨB(λ)|
≤ C1,

1
|ΨB∗(λ)|

≤ C1, λ ∈ C+, C1 > 0,

are valid. Using (52) and Lemma 4, we obtain that the resolvents of the operators LB

and LB∗ (see (41)) satisfy estimates (4). By Theorem 1, the operator LB is similar to a
self–adjoint one.

This concludes the proof of Theorem 5. �

At the end of this section we formulate the criterion of similarity of LB to a normal
operator.

Theorem 6. Let

B =
(
b11 b12
b21 b22

)
∈ C2×2 and |b12|+ |b21| 6= 0;

and let ΨB(·) be defined by (37)–(38). Then the operator LB of the form (35)–(36) is
similar to a normal operator if and only if the following conditions hold

(1) ΨB(·) and ΨB∗(·) have no zeroes in R ∪ {∞};
(2) ΨB(·) and ΨB∗(·) have no zeroes of the second order in C+.

Let us make several comments. Necessity is obvious. Actually, if the condition (1)
is failed, then the resolvent of the operator LB or LB∗ has a nonlinear growth in some
neighborhood of a real zero (see the proof of necessity of Theorem 5). If the function
ΨB(·) or ΨB∗(·) has a zero of the second order in C+, then it is not hard to show that
the resolvent of LB has a pole of the second order. This contradicts similarity of LB to
a normal operator.

The proof of sufficiency is similar to that contained in [16].
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6. Examples

6.1. On similarity of L to a self–adjoint operator. Let the matrix B be of the form

B =
(

0 b12
b21 0

)
. Then, by (39), we get

ΨB(λ) ≡ b12 · b21 + e−iπ/(α+2), ΨB∗(λ) ≡ b12 · b21 + e−iπ/(α+2), λ ∈ C+.

Hence, by Theorems 5–6, we easily obtain

Theorem 7. Suppose that

B =
(

0 b12
b21 0

)
∈ C2×2 and b12 · b21 6= e±iπ/(α+2).

Then
(i) σ(LB) = σc(LB) = R;
(ii) the operator LB is similar to a self–adjoint one.

Note that in the case b12 · b21 = e±iπ/(α+2) the point spectrum of LB coincides with
the upper or lower half-plane. Hence the operator LB is not similar to a normal one.

Remark 3. The result of A. Fleige and B. Najman [9] immediately follows from Theo-

rem 7. Actually, the operator L of the form (2) is the operator LB withB =
(

0 1
−1 0

)
.

Let us calculate the characteristic function WL(·) of the operator L. According to [6],
the characteristic function WL(·) has the form

WL(λ) = (B −M(λ))(B∗ −M(λ))−1,

since det((B0 − B∗0)/2i) = 1 6= 0. Here M(·) is defined by (29) and (16). After simple
calculations we get

(53) WL(λ) =
(

1− 2/Dα 2/(Dα · Γα(λ))
−2 · Γα(−λ)/Dα 1− 2/Dα

)
, Dα := 1 + e−iπ/(α+2).

We see that the characteristic function WL(·) as well as its J-form J −W ∗
L(·)JWL(·),

where J =
(

0 i
−i 0

)
, are unbounded in C+. Therefore known sufficient conditions of

similarity to a self–adjoint operator in terms of the characteristic functions (see [21]) are
not applicable.

Note that L is similar to an operator R = R∗ with absolutely continuous spectrum
R = Rac since WL(·) is unbounded only in neighborhoods of zero and infinity.

6.2. On similarity of sgn x
|x|α

(
− d2

dx2 + cδ
)

to a self–adjoint operator. Let δ be the
Dirac delta. The differential expression

(54) lc :=
1
|x|α

(
− d2

dx2
+ cδ

)
, c ∈ C \ {0},

generates in L2(R, |x|α) the following operator

(55)
Ac := − 1

|x|α
d2

dx2
,

dom(Ac) = {f ∈ dom(L∗min) : f(+0) = f(−0), f ′(+0)− f ′(−0) = cf(0)}.

Let us consider the operator Lc := JAc, where J : y(x) → sgnx · y(x).
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Theorem 8. Let Lc = sgn x
|x|α

(
− d2

dx2 + cδ
)

be the operator defined by (54) and (55) and
c ∈ C \ {0}. Then

(i) Lc is similar to a normal operator if and only if

(56) Re c 6= −1 + cos(π/(α+ 2))
sin(π/(α+ 2))

· | Im c|;

(ii) Lc is similar to a self–adjoint operator if and only if

(57) Re c > −1 + cos(π/(α+ 2))
sin(π/(α+ 2))

· | Im c|.

Proof. It is obvious that Lc is an almost solvable extension LB of the form (35)–(36)

with B =
(

c 1
−1 0

)
. By (39), we get

(58)

ΨB(λ) = 1 + e−iπ/(α+2) +
c · Cα

λ1/(α+2)
, ΨB∗(λ) = 1 + e−iπ/(α+2) +

c · Cα

λ1/(α+2)
, λ ∈ C+.

The function ΨB(·) or ΨB∗(·) has a real zero if and only if (56) does not valid. ΨB(·)
and ΨB∗(·) have no zeroes in the closed upper half-plane exactly when c satisfy (57).
Theorems 5–6 complete the proof. �

Remark 4. Note that c ∈ C satisfy (57) if it belongs to the angle Gβ with vertex zero
and the half–angle

β := arcctg
(
−1 + cos(π/(α+ 2))

sin(π/(α+ 2))

)
.
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17. I. M. Karabash, M. M. Malamud, On similarity of J-selfadjoint Sturm-Liouville operators with

finite-gap potential to selfadjoint ones, Dokl. Akad. Nauk 394 (2004), 17–21.
18. A. S. Kostenko, Similarity of indefinite Sturm-Liouville operators with singular potential to a

selfadjoint operator, Math. Notes 78 (2005), no. 1, 134–139.
19. H. Langer, Spectral functions of definitizable operators in Krein space, Lecture Notes in

Mathematics, Springer-Verlag, Berlin 948 (1982), 1–46.
20. M. M. Malamud, A criterion for similarity of a closed operator to a selfadjoint one, Ukrainian

Math. J. 37 (1985), 49–56.
21. M. M. Malamud, Similarity of a Triangular Operator to a Diagonal Operator, J. Math. Sciences

115 (2000), 2199–2222.
22. M. M. Malamud, S. M. Malamud, Spectral theory of operator measures in Hilbert space, St.

Petersburg Math. J. 15 (2004), no. 3, 1–53.
23. S. N. Naboko, On some conditions of similarity to unitary and selfadjoint operators, Funkt-

sional. Anal. i Prilozhen. 18 (1984), no. 1, 16–27.
24. S. G. Pyatkov, Indefinite elliptic spectral problems, Sibirsk. Mat. Zh. 39 (1998), no. 2, 409–426.

Department of Mathematics, Donets’k National University, 24 Universitets’ka, Donets’k,
83055, Ukraine

E-mail address: duzer@skif.net; duzer80@mail.ru

Received 12/09/2005


