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STRONG MATRIX MOMENT PROBLEM OF HAMBURGER

K. K. SIMONOV

Abstract. In this paper we consider the strong matrix moment problem on the real
line. We obtain a necessary and sufficient condition for uniqueness and find all the
solutions for the completely indeterminate case. We use M. G. Krĕın’s theory of
representations for Hermitian operators and technique of boundary triplets and the
corresponding Weyl functions.

1. Introduction

In this paper we consider the following problem. Given a bisequence of self-adjoint
N×N -matrices {Sk}+∞−∞, find all the self-adjoint nonnegative BorelN×N -matrix measures
dΣ on R obeying the identities

(1)
∫ +∞

−∞
tk dΣ(t) = Sk (k = 0,±1,±2, . . .).

This problem is called the strong full matrix moment problem of Hamburger. The matrices
{Sk}+∞−∞ are called moments and the measure dΣ is called a solution of the moment
problem (1).

Let us recall that for the classical moment problem one is given a sequence {Sk}∞0
and seeks a measure dΣ such that (1) holds only for nonnegative k.

Investigations of the scalar strong moment problem and orthogonal Laurent polyno-
mials originated in papers of W. B. Jones, W. J. Thron, H. Waadeland, O. Nj̊astad
(see [12, 9, 11]). It is worth noting that a necessary and sufficient condition for solv-
ability of the strong moment problem was originally obtained by Yu. M. Berezanskĭı
(see [2] and Remark 3.1.1 below). A description for the solutions of the scalar strong
moment problem was obtained in [19] and [21] for the Hamburger problem and in [13]
for the Stieltjes problem. Note that the description of the solutions in [19] was given
under an additional assumption of regularity, which is not used in the present paper (see
Remark 4.10.1). A detailed bibliography can be found in the survey [10].

The classical matrix moment problem was investigated by M. G. Krĕın (see [14, 15]).
In [15], M. G. Krĕın has described all the solutions of the classical matrix moment
problem for the completely indeterminate case.

To solve the moment problem means to answer the following questions:
(1) Under which conditions is the moment problem solvable?
(2) If the moment problem is solvable, how to determine whether it has a unique

solution?
(3) How to describe all the solutions of the moment problem?

In this paper we assume that a given bisequence {Sk}+∞−∞ is positive and normalized
(see Definition 3.1). Under these conditions the moment problem (1) always has a so-
lution. We determine a necessary and sufficient condition for the solution to be unique
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(see Theorem 4.2). When the moment problem is completely indeterminate, we describe
the set of all the solutions of (1) (see Theorem 4.10).

Let us briefly outline the contents of the paper. In Section 2 we recall basic concepts
of M. G. Krĕın’s theory of representations for Hermitian operators and some facts of the
theory of boundary triplets.

In Section 3 we consider the space of Laurent polynomials of the form
m∑

k=−m

ξkz
k

(
{ξk}m−m ⊂ CN , m = 0, 1, 2, . . .

)
with the inner product generated by the Hankel quadratic forms

m∑
i,j=−m

ξ∗jSi+jξi
(
{ξk}m−m ⊂ CN , m = 0, 1, 2, . . .

)
.

We introduce the multiplication operator A and determine a one-to-one correspondence
between the set of minimal self-adjoint extensions of A and the set of all the solutions
of (1) (see Theorem 3.2). We also recall some earlier results from [20] on orthogonal
matrix Laurent polynomials of the first and second kind.

In Section 4 we find a necessary and sufficient condition for a solution of (1) to be
unique (see Theorem 4.2). For the completely indeterminate case (see Definition 4.1), we
construct a boundary triplet (see Theorem 4.7) for A∗ and the corresponding resolvent
matrix (see Theorem 4.8). Finally, we describe the set of all the solutions of (1) in the
form of a Nevanlinna type formula (see Theorem 4.10).

2. Representations of Hermitian operators

Let us recall basic concepts and statements of M. G. Krĕın’s theory of representations
for Hermitian operators (see [14, 7]) and some facts of the theory of boundary triplets
(see [8, 4, 6, 5]).

In this section, we consider a simple closed Hermitian operator A with deficiency
indices (N,N) in a Hilbert space H. We assume that the domain of A is dense in H. We
will use the usual notation:

Mλ = ran(A− λ), Nλ = H	Mλ.

Let L be a subspace in H of dimension N . If there exists at least two points λ+ ∈ C+

and λ− ∈ C− such that the decomposition

(2) H = L u Mλ

holds for λ = λ±, then L is called the module of a representation of the operator A.
A point λ ∈ C is called an L-regular point of A if λ is a point of regular type for A

and the decomposition (2) holds. Denote by ρ(A;L) the set of all L-regular points of A
and put

ρs(A;L) =
{
λ ∈ C : λ, λ ∈ ρ(A;L)

}
.

Let us define two holomorphic operator-valued functions

P(λ),Q(λ) : H→ L (λ ∈ ρ(A;L))

on the set ρ(A;L). Let P(λ) be the skew projection onto the subspace L parallel to Mλ.
In other words, P(λ) obeys

P(λ)f ∈ L, (I − P(λ))f ∈Mλ (f ∈ H).

Define Q(λ) by the equality

Q(λ) = PL(A− λ)−1(I − P(λ)).

(By PH we denote the orthogonal projection onto a subspace H.)
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The function P establishes an isomorphism between the Hilbert space H and the space
of holomorphic functions

HL = {fL(λ) = P(λ)f : f ∈ H, λ ∈ ρ(A;L)} .
By this isomorphism the operator A is transformed to the multiplication operator

P(λ)Af = λfL(λ) (f ∈ domA).

The following assertion is useful for checking whether a given point is L-regular.

Theorem 2.1 ([14, 7]). If for a point λ ∈ C we can find a neighborhood U 3 λ and a
linear set L ⊂ H such that L is dense in H and fL is holomorphic in U for each f ∈ L,
then λ is an L-regular point of the operator A.

It is easy to check the following properties of the functions P(λ) and Q(λ):

(3)

P(λ)Af = λP(λ)f, Q(λ)Af = λQ(λ)f + PLf (f ∈ domA),

A∗P(λ)∗φ = λP(λ)∗φ, A∗Q(λ)∗φ = λQ(λ)∗φ+ φ (φ ∈ L),

P(λ)φ = φ, Q(λ)φ = 0 (φ ∈ L),

PLP(λ)∗ = IL, PLQ(λ)∗ = 0L,

P(λ)∗PL = P(λ)∗, Q(λ)∗PL = Q(λ)∗.

It follows from (3) that

(4) Nλ = ker(A∗ − λ) = P(λ)∗L (λ ∈ ρs(A;L)).

Proposition 2.2 ([5, 6]). The following decomposition holds.

domA∗ = domAu P(λ)∗L uQ(λ)∗L (λ ∈ ρs(A;L)).

Definition 2.1. Let Ã be a self-adjoint extension of the operator A, possibly in a larger
Hilbert space H̃ ⊃ H. The extension Ã is called L-minimal if

H̃ = span
{

L, (Ã− λ)−1L : λ ∈ ρ(Ã)
}
.

Definition 2.2. Let Ã be an L-minimal self-adjoint extension of the operator A. Then
the operator-valued function

PL(Ã− λ)−1|L (λ ∈ ρ(Ã))

is called the L-resolvent of the operator A corresponding to the extension Ã.

Definition 2.3 ([8]). A triplet Π = {L,Γ0,Γ1}, where Γ = {Γ0,Γ1} is a linear operator
from domA∗ to L⊕ L, is called a boundary triplet for the operator A∗ if the mapping Γ
is surjective and obeys the abstract Green identity

(5) (A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)L − (Γ0f,Γ1g)L (f, g ∈ A∗).

Let us recall that a linear subspace S̃ ⊂ L ⊕ L is called a linear relation in L. Any
linear operator S in L can be identified with its graph

{{f, Sf} ∈ L⊕ L : f ∈ domS} .
Therefore any linear operator can be considered as a linear relation.

A linear relation S̃ in L is called Hermitian (dissipative) if (f ′, f) ∈ R (=(f ′, f) ≥ 0) for
any pair (f, f ′) ∈ S̃. A Hermitian (dissipative) relation S̃ is called self-adjoint (maximal
dissipative) if dim S̃ = N .

Any maximal dissipative linear relation S̃ in L is uniquely represented in the form

S̃ = S ⊕mul S̃,
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where S is a linear operator, which is called the operator part of S̃, and

mul S̃ =
{
{0, f} ∈ S̃

}
is called the multivalued part of S̃.

Proposition 2.3 ([5]). A boundary triplet Π = {L,Γ0,Γ1} defines a one-to-one corre-
spondence between the set of proper extensions Ã of the operator A (A ⊂ Ã ⊂ A∗) and
the set of linear relations θ ⊂ L⊕ L. This correspondence is given by

Ã = Ãθ ←→ θ = Γdom Ã =
{
{Γ0f,Γ1f} : f ∈ dom Ã

}
.

The extension Ãθ is Hermitian (self-adjoint) if and only if the relation θ has the same
property.

In particular, the operators Γ0 and Γ1 define two self-adjoint extensions Ã0 and Ã1 of
the operator A with the following domains:

(6) dom Ã0 = ker Γ0, dom Ã1 = ker Γ1.

The equality

(7) γ(λ) = (Γ0|Nλ
)−1 (λ ∈ ρ(Ã0))

defines the operator-valued function γ(λ) : L→ Nλ that is holomorphic on ρ(Ã0).

Definition 2.4 ([5]). The operator-valued function M(λ) : L → L defined by the
equality

(8) M(λ)Γ0fλ = Γ1fλ (fλ ∈ Nλ, λ ∈ ρ(Ã0))

is called the Weyl function of the operator A corresponding to the boundary triplet
Π = {L,Γ0,Γ1}.

Proposition 2.4 ([5]). The functions M(λ) and γ(λ) obey the following identities:

γ(λ)− γ(µ) = (λ− µ)(Ã0 − λ)−1γ(µ) (λ, µ ∈ ρ(Ã0)),(9)

M(λ)−M(µ) = (λ− µ)γ(µ)∗γ(λ) (λ, µ ∈ ρ(Ã0)).(10)

Definition 2.5 ([6]). It is said that a holomorphic function τ : C+ → L⊕ L belongs to
the class ÑL if τ(λ) is a maximal dissipative relation in L for any λ ∈ C+.

It is said that τ belongs to the class NL if τ(λ) is a maximal dissipative operator for
any λ ∈ C+.

One can extend a function τ ∈ ÑL to the domain C− by the formula

τ(λ) = τ(λ)∗ (λ ∈ C−).

By identities (9) and (10), it follows that M(λ) belongs to the class NL. Moreover,
identity (10) means that M(λ) is a Q-function of the operator A corresponding to the
extension Ã0 in the sense of [16, 17].

Definition 2.6 ([18]). A 2N × 2N -matrix W (λ) = (wij(λ))21 holomorphic on ρ(A;L) is
called an L-resolvent matrix of the operator A if it obeys the identity

W (λ)JW (µ)∗ = J + i(λ− µ)G(λ)G(µ)∗ (λ, µ ∈ ρ(A;L)),

where

J = i

(
0 −1
1 0

)
and G(λ) =

(
−Q(λ)
P(λ)

)
.
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An L-resolvent matrix is not unique. If W1(λ) and W2(λ) are two different L-resolvent
matrices of A, then

W1(λ) = W2(λ)U (λ ∈ ρ(A;L)),

where U is a J-unitary matrix.
There exists a natural one-to-one correspondence between the set of L-resolvent ma-

trices and the set of boundary triplets. This following theorem shows how to construct
the L-resolvent matrix corresponding to a boundary triplet.

Theorem 2.5 ([6]). Let Π = {L,Γ0,Γ1} be a boundary triplet for the operator A∗. Then
the matrix function

WΠ(λ) = (ΓG(λ)∗)∗ =
(
−Γ0Q(λ)∗ Γ0P(λ)∗

−Γ1Q(λ)∗ Γ1P(λ)∗

)∗
is an L-resolvent matrix of A. WΠ(λ) is called the ΠL-resolvent matrix of A correspond-
ing to the boundary triplet Π.

Theorem 2.6 ([14, 7, 6]). Let W (λ) = (wij(λ))21 be an L-resolvent matrix of the operator
A. Then the formula

(11) PL(Ã− λ)−1|L = (w11(λ)τ(λ) + w12(λ)) (w21(λ)τ(λ) + w22(λ))−1 (λ ∈ ρ(A;L))

establishes a one-to-one correspondence between the set of all L-minimal self-adjoint
extensions Ã of the operator A and the set of all functions τ ∈ ÑL.

Remark 2.6.1. Suppose that W (λ) is the ΠL-resolvent matrix of A corresponding to a
boundary triplet Π = {L,Γ0,Γ1}. In this case, the parameter τ(λ) in (11) corresponds
to the generalized resolvent of A uniquely defined by M. G. Krĕın’s formula (see [17, 7])

PH(Ã− λ)−1|H = (Ã0 − λ)−1 − γ(λ)(τ(λ) +M(λ))−1γ(λ)∗,

where Ã0, γ(λ), and M(λ) are defined by (6)–(8).

3. The space of Laurent polynomials

Theorem 3.1. If the moment problem (1) is solvable, then the quadratic forms

(12)
m∑

i,j=−m

ξ∗jSi+jξi
(
{ξk}m−m ⊂ CN

)
are positive definite for any m = 0, 1, 2, . . . .

Proof. Suppose dΣ is a solution of the moment problem (1), m is a nonnegative integer.
Then

m∑
i,j=−m

ξ∗jSi+jξi =
∫ +∞

−∞

( m∑
j=−m

ξjt
j

)∗
dΣ(t)

( m∑
i=−m

ξit
i

)
≥ 0

for any {ξk}m−m ⊂ CN . �

Remark 3.1.1. For the scalar case, it is known (see [11]) that the positive definiteness of
the quadratic forms (12) is also a sufficient condition for the solvability of the moment
problem (1). Yu. M. Berezanskĭı has pointed us that this condition for the solvability
of (1) is a particular case of Theorem 5.1 from his book [2, page 722].

Definition 3.1. A bisequence {Sk}+∞−∞ is called positive if the quadratic forms (12) are
strictly positive definite for each m = 0, 1, 2, . . . .

A positive bisequence {Sk}+∞−∞ is called normalized if S0 = I.
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Any positive bisequence {S̃k}∞−∞ can be converted to a normalized bisequence {Sk}+∞−∞
by the rule

Sk = S̃
− 1

2
0 S̃kS̃

− 1
2

0 (k = 0,±1,±2, . . .).

Definition 3.2. The moment problem (1) is called nondegenerate if the given bisequence
of moments {Sk}+∞−∞ is positive.

In this paper, we assume that the given bisequence of moments is positive and nor-
malized.

Consider the space of N -vector Laurent polynomials

◦
H =

{
f(z) =

m∑
k=−m

fkz
k : {fk}m−m ⊂ CN , m = 0, 1, 2, . . .

}
.

In this space, we introduce the inner product

(13) (f, g) =
m∑

i,j=−m

g∗jSi+jfi,

where

f(z) =
m∑

i=−m

fiz
i, g(z) =

m∑
j=−m

gjz
j (m = 0, 1, 2, . . .).

Denote by H the completion of
◦
H to a Hilbert space with respect to the inner product (13).

In the space H, take the N -dimensional subspace

H0 =
{
f(z) ≡ f0 : f0 ∈ CN

}
.

Since the bisequence {Sk}+∞−∞ is normalized, the subspace H0 is naturally isomorphic to
the space CN .

Consider the linear operator
◦
A defined by

dom
◦
A =

◦
H,

◦
Af(z) = zf(z) (f ∈

◦
H).

Denote by A the closure of
◦
A in the Hilbert space H.

Theorem 3.2. There exists a one-to-one correspondence between the set of all the so-
lutions dΣ of the moment problem (1) and the set of all the H0-minimal self-adjoint
extensions Ã of the operator A. This correspondence is given by

Σ(t) = PH0Et(Ã)|H0 ,

where Et(Ã) is the orthogonal spectral measure of a self-adjoint operator Ã.

Proof. Suppose that Ã is an H0-minimal self-adjoint extension of the operator A in a
Hilbert space H̃ ⊃ H. Let Et = Et(Ã) be the spectral measure of Ã. We now prove that
dΣ(t) = d(PH0Et|H0) is a solution of the moment problem (1). Since ker Ã = kerA = {0},
the equalities

zkφ = Akφ = Ãkφ (φ ∈ H0
∼= CN , k = 0,±1,±2, . . .)

hold. Therefore∫ +∞

−∞
ti+jψ∗ dΣ(t)φ =

∫ +∞

−∞
ti+j d(Etφ, ψ) = (Ãiφ, Ãjψ) = (Aiφ,Ajψ) = ψ∗Si+jφ

(φ, ψ ∈ H0
∼= CN , i, j = 0,±1,±2, . . .),

and thus dΣ(t) is a solution of the moment problem (1).
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Let us prove the converse assertion. Suppose that dΣ(t) is a solution of the moment
problem (1). Then Σ(t) is a linear bounded self-adjoint operator in H0

∼= CN and it
obeys the conditions

Σ(−∞) = 0H0 , Σ(+∞) = IH0 , Σ(t− 0) = Σ(t) (t ∈ R).

By the Naimark dilation theorem (see [1, 3]), there exists a Hilbert space H̃ ⊃ H0 and a
resolution of identity Et : H̃→ H̃ such that

Σ(t) = PH0Et|H0 , span {Etφ : φ ∈ H0} = H̃.

The resolution of identity Et defines the self-adjoint operator

Ã =
∫ +∞

−∞
t dEt

in the space H̃. Let us show that there exists an isometric embedding V : H → H̃ such
that V AV −1 ⊂ Ã. Indeed,∫ +∞

−∞
t2k d(Etφ, φ) =

∫ +∞

−∞
t2k d(Σ(t)φ, φ) = φ∗S2kφ <∞

(φ ∈ H0
∼= CN , k = 0,±1,±2, . . .),

and therefore H0 ⊂ dom Ãk for each integer k. Put

V (zkφ) = V (Akφ) = Ãkφ (φ ∈ H0
∼= CN . k = 0,±1,±2, . . .).

The mapping V is isometric since

(V (ziφ), V (zjψ))eH = (Ãiφ, Ãjψ)eH =
∫ +∞

−∞
ti+j d(Etφ, ψ) =

∫ +∞

−∞
ti+j ψ∗dΣ(t)φ

= ψ∗Si+jφ = (ziφ, zjψ) (φ, ψ ∈ H0
∼= CN , i, j = 0,±1,±2, . . .),

and the inclusion V AV −1 ⊂ Ã holds by construction. �

Corollary 3.2.1. The moment problem (1) has a unique solution if and only if the
operator A is maximal. Otherwise the moment problem (1) has infinitely many solutions.

Definition 3.3 ([20]). A sequence of N×N -matrix Laurent polynomials {Pk(z)}∞0 of
the form

P2k(z) =
k∑

j=−k

P
(j)
2k z

j , P2k+1(z) =
k∑

j=−k−1

P
(j)
2k+1z

j (P (j)
k ∈ CN×N )

is called the sequence of orthogonal Laurent polynomials of the first kind if the following
conditions hold:

(A) The coefficients P (k)
2k and P (−k−1)

2k+1 are strictly positive matrices.
(B) The Laurent polynomials {Pk(z)}∞0 are orthonormal, i. e.,

(Pi(z)ξ, Pj(z)η) = 0, (Pk(z)ξ, Pk(z)η) = η∗ξ (ξ, η ∈ CN , i, j, k = 0, 1, . . . , i 6= j).

Conditions (A) and (B) uniquely determine the sequence {Pk(z)}∞0 .

Definition 3.4 ([20]). The sequence of N×N -matrix Laurent polynomials {Qk(z)}∞0
defined by

η∗Qk(z)ξ = (Rk(·, z)ξ, η) (ξ, η ∈ CN , k = 0, 1, 2, . . .),
where

Rk(ζ, z) =
Pk(ζ)− Pk(z)

ζ − z
(k = 0, 1, 2, . . .),

is called the sequence of Laurent polynomials of the second kind.
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Extending Definitions 3.3 and 3.4, put

P−2(z) = 0, P−1(z) = 0, Q−2(z) = −I, Q−1(z) = 0.

Definition 3.5 ([11, 10]). The sequence {Pk(z)}∞0 is called regular if the coefficients
P

(−k)
2k and P (k)

2k+1 are nondegenerate matrices.

Note that in this paper we do not assume that the sequence {Pk(z)}∞0 is regular (see
Remark 4.10.1).

If we denote by {εj}N1 the standard basis in CN , then the sequence

{Pi(z)εj} = {P0(z)ε1, . . . , P0(z)εN , P1(z)ε1, . . . , P1(z)εN , . . .}
forms an orthonormal basis in the space H. Therefore any element f ∈ H can be uniquely
represented as a Fourier series

(14) f(z) =
∞∑

k=0

Pk(z)φk,

where the Fourier coefficients φk ∈ CN are determined by the equalities

ε∗jφk = (f(z), Pk(z)εj) (j = 1, . . . , N).

Conversely, a vector f of the form (14) belongs to the space H if and only if it obeys the
inequality

‖f‖2 =
∞∑

k=0

‖φk‖2CN <∞.

Theorem 3.3 ([20]). The Laurent polynomials {Pk(z)}∞0 and {Qk(z)}∞0 obey the recur-
rence relations

(15)

zP2k(z) = P2k−2(z)C∗2k−2 + P2k−1(z)B∗2k−1

+ P2k(z)A2k + P2k+1(z)B2k + P2k+2(z)C2k,

zQ2k(z) = Q2k−2(z)C∗2k−2 +Q2k−1(z)B∗2k−1

+Q2k(z)A2k +Q2k+1(z)B2k +Q2k+2(z)C2k,

zP2k+1(z) = P2k(z)B∗2k + P2k+1(z)A2k+1 + P2k+2(z)B2k+1,

zQ2k+1(z) = Q2k(z)B∗2k +Q2k+1(z)A2k+1 +Q2k+2(z)B2k+1

(k = 0, 1, 2, . . .),

with the initial conditions

(16) P−2(z) = 0, P0(z) = I, Q−2(z) = −I, Q0(z) = 0,

where the coefficients {Ak}∞0 , {Bk}∞−1 , {Ck}∞−2 are some N×N -matrices.

In the basis {Pi(z)εj}, the operator A has the following block-matrix form

(17)



A0 B∗0 C∗0
B0 A1 B∗1
C0 B1 A2 B∗2 C∗2

B2 A3 B∗3
C2 B3 A∗4

. . .


Definition 3.6. The matrix (17) is called the generalized Jacobi matrix corresponding
to the matrix moment problem (1).

Proposition 3.4 ([20]). The coefficients {Ak}∞0 , {Bk}∞−1 , {Ck}∞−2 of the recurrence
relations (15) obey the following conditions.
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(i) C−2 = I, B−1 = 0, C2k−1 = 0 (k = 0, 1, 2, . . .);
(ii) The following matrices are well defined:

C−1
2k , B̃0 = (B∗0 −A0C

−1
0 B1)−1,

C̃2k+1 = −
[ (
B2k B∗2k+1

) (
C2k A2k+2

0 C2k+2

)−1 (
B∗2k+2

B2k+3

) ]−1

(k = 0, 1, 2 . . .);

(iii) The following inequalities hold:

C2kC2k−2 · · ·C0 > 0, C̃2k+1C̃2k−1 · · · C̃1B̃0 > 0 (k = 0, 1, 2, . . .);

(iv) The matrices Ak are self-adjoint and obey the identities

A2k+1 = B2kC
−1
2k B2k+1 (k = 0, 1, 2, . . .).

Proposition 3.5 ([20]). Let {Ak}∞0 , {Bk}∞−1 , {Ck}∞−2 be arbitrary matrices satisfying
conditions (i)–(iv). Then there exists a unique positive and normalized bisequence of mo-
ments {Sk}+∞−∞ such that the corresponding Laurent polynomials {Pk(z)}∞0 and {Qk(z)}∞0
obey (15) with the given coefficients.

Corollary 3.5.1 ([20]). Suppose that a sequence of vectors {fk}∞0 ⊂ CN obeys the
following recurrence relations.

(18)

λf2k = C2k−2f2k−2 +B2k−1f2k−1 +A2kf2k +B∗2kf2k+1 + C∗2kf2k+2,

λf2k+1 = B2kf2k +A2k+1f2k+1 +B∗2k+1f2k+2

(k = 0, 1, 2, . . .),

where f−2 = f−1 = 0. Then

(19) fj = Pj(λ)∗f0 (j = 0, 1, 2, . . .).

4. Solutions of the moment problem

Theorem 4.1. The limit

R(λ) = lim
n→∞

( n∑
k=0

Pk(λ)Pk(λ)∗
)−1

converges for each λ ∈ C \ {0} and its rank satisfies the condition

rankR(λ) = m± (λ ∈ C±),

where (m+,m−) are the deficiency indices of the operator A. The deficiency subspace
Nλ of the operator A has the form

Nλ =
{
fλ,φ(z) =

∞∑
k=0

Pk(z)Pk(λ)∗φ : φ ∈ CN 	 kerR(λ)
}

(λ ∈ C \ {0}).

Remark 4.1.1. For the classical matrix moment problem this theorem has been proved
by M. G. Krĕın [15] (see also [2]).

Proof. To prove this statement, we only need to show that the deficiency space Nλ of
the operator A consists of the vectors

fλ,φ(z) =
∞∑

k=0

Pk(z)Pk(λ)∗φ (φ ∈ CN )

satisfying the condition
∞∑

k=0

φ∗Pk(λ)Pk(λ)∗φ <∞.
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Let us find the domain of the adjoint operator A∗. A vector f ∈ H belongs to domA∗

if and only if there exists a vector g ∈ H such that

(20) (f(z), APk(z)εj) = (g(z), Pk(z)εj) (k = 0, 1, 2, . . . , j = 1, . . . , N).

In this case f ∈ domA∗ and g = Af . Suppose that the vectors f(z) and g(z) have the
form

f(z) =
∞∑

k=0

Pk(z)fk, g(z) =
∞∑

k=0

Pk(z)gk.

Then the equalities (20) are equivalent to

gk = Ck−2fk−2 +Bk−1fk−1 +Akfk +B∗kfk+1 +C∗kfk+2 (k = 0, 1, . . . , f−2 = f−1 = 0).

The vector g belongs to H if and only if

(21) ‖g‖2 =
∞∑

k=0

‖Ck−2fk−2 +Bk−1fk−1 +Akfk +B∗kfk+1 + C∗kfk+2‖2CN <∞.

Thus a vector f ∈ H belongs to domA∗ if and only if its Fourier coefficients {fk}∞0 satisfy
condition (21).

We are now ready to find the deficiency subspace

Nλ = H	 ran(A− λ) = ker(A∗ − λ).

If a vector f ∈ H of the form

f(z) =
∞∑

k=0

Pk(z)fk

belongs to ker(A∗ − λ), then the coefficients fk obey (18). By Corollary 3.5.1, it follows
that the vector f has the form

(22) f(z) =
∞∑

k=0

Pk(z)Pk(λ)∗f0 (f0 ∈ CN ).

Conversely, if a vector f has the form (22) and obeys the condition

(23) ‖f‖2 =
∞∑

k=0

∥∥Pk(λ)∗f0
∥∥2

CN <∞,

then f belongs to Nλ = ker(A∗ − λ). �

Corollary 4.1.2. If A has deficiency indices (N,N), then A is a simple operator.

By Theorem 4.1 and Corollary 3.2.1, one obtains the following necessary and sufficient
condition for the uniqueness of the solutions of (1).

Theorem 4.2. The moment problem (1) has a unique solution if and only if R(λ) = 0
for some λ ∈ C \ R. Otherwise the moment problem (1) has infinitely many solutions.

Definition 4.1. The moment problem (1) is called completely indeterminate if the op-
erator A has deficiency indices (N,N).

The moment problem (1) is completely indeterminate if and only if kerR(λ) = {0}
for each λ ∈ C \R. In the sequel, we assume that the moment problem (1) is completely
indeterminate.

Proposition 4.3. If the moment problem (1) is completely indeterminate, then the
condition

H0 ∩ ran(A− λ) = {0} (λ ∈ C \ {0})
holds.
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Proof. Suppose that α is the angle between H0 and ran(A − λ). We claim that α > 0.
Indeed,

sinα = inf
‖φ‖CN =1
f∈dom A

{‖φ− (A− λ)f‖} ≥ inf
‖φ‖CN =1
g(λ)=0

{‖φ− g‖} = inf
‖φ‖CN =1
h(λ)=φ

{‖h‖}

= inf
h∈H

{
‖h‖

‖h(λ)‖CN

}
= inf
{hk}m

0 ⊂CN

m=0,1,2,...

{ (∑m
k=0 ‖hk‖2CN

) 1
2

‖
∑m

k=0 Pk(λ)hk‖CN

}
.

Using Cauchy’s inequality, we obtain

sinα ≥ inf
m=0,1,2,...

{
1(∑m

k=0 ‖Pk(λ)‖2CN

) 1
2

}
=

1(∑∞
k=0 ‖Pk(λ)‖2CN

) 1
2
> 0.

�

Let us take the subspace L = H0 as the module of a representation. By Proposition 4.3,
the decomposition

H = Mλ u H0 (λ ∈ C \ {0})
holds. Denote by P(λ) the skew projection onto H0 parallel Mλ in the space H. Put

Q(λ) = PH0(A− λ)−1(I − P(λ)).

Then any vector

f(z) =
∞∑

k=0

Pk(z)fk ∈ H

obeys

P(λ)f = f(λ) =
∞∑

k=0

Pk(λ)fk, Q(λ)f =
∞∑

k=0

Qk(λ)fk.

Proposition 4.4. The set of H0-regular points of A coincides with the domain C \ {0}.

Proof. This statement follows from Theorem 2.1 for L =
◦
H. �

Proposition 4.5. The following equalities hold:

(P(λ)∗φ) (z) =
∞∑

k=0

Pk(z)Pk(λ)∗φ,

(Q(λ)∗φ) (z) =
∞∑

k=0

Pk(z)Qk(λ)∗φ

(φ ∈ H0).

Proof. Let us prove the first equality, the second equality can be proved similarly. Expand
the vector P(λ)∗φ as

P(λ)∗φ =
∞∑

k=0

Pk(z)fk.

Then the coefficients fk are determined from the equalities

ε∗jfk = (P(λ)∗φ, Pk(z)εj) = (φ,P(λ)Pk(z)εj) = (φ, Pk(λ)εj)CN
= ε∗jPk(λ)∗φ

(k = 0, 1, 2, . . . , j = 1, . . . , N).

�
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Theorem 4.6. The adjoint operator A∗ has the form

(24)

domA∗ = domAu P(λ)∗H0 uQ(λ)∗H0,

A∗f = Af0 + λP(λ)∗φ+ λQ(λ)∗ψ + ψ

(λ ∈ C \ {0})

where

f = f0 + P(λ)∗φ+Q(λ)∗ψ (f0 ∈ domA, φ, ψ ∈ H0).

The deficiency subspace Nλ has the form

Nλ =
{
fλ,φ(z) =

∞∑
k=0

Pk(z)Pk(λ)∗φ : φ ∈ H0

}
.

Proof. Using Proposition 2.2, we obtain the form of A∗. Using Theorem 4.1, we get the
form of the defect subspace Nλ. �

Theorem 4.7. Suppose a ∈ R \ {0}. The triplet Π = {H0,Γ0,Γ1} given by

Γ0f = P(a)(A∗ − a)f = −ψ, Γ1f = PH0f −Q(a)(A∗ − a)f = φ,

and

f = f0 + P(a)∗φ+Q(λ)∗ψ ∈ domA∗ (f0 ∈ domA, φ, ψ ∈ H0)

is a boundary triplet for the operator A∗. The corresponding Weyl function M(λ) has
the form

(25) M(λ) =
(
I − (λ− a)

∞∑
k=0

Qk(a)Pk(λ)∗
)(

(λ− a)
∞∑

k=0

Pk(a)Pk(λ)∗
)−1

.

Proof. Let us check that the equalities

−P(a)(A∗ − a)f = −ψ, PH0f −Q(a)(A∗ − a)f = φ

hold for a vector

f = f0 + P(a)∗φ+Q(a)∗ψ ∈ domA∗ (f0 ∈ domA, φ, ψ ∈ H0).

Indeed,

−P(a)(A∗ − a)f = −P(a)((A− a)f0 + ψ) = −ψ,
PH0f −Q(a)(A∗ − a)f = PH0f0 + φ−Q(a)((A− a)f0 + ψ) = φ.

It is clear that Γ = {Γ0,Γ1} is surjective and obeys the Green identity (5). Therefore Π
is a boundary triplet for A∗.

Now let us find the Weyl function M(λ). Taking fλ,φ(z) = P(λ)∗φ ∈ Nλ, we get

Γ0fλ,φ(z) = P(a)(A∗ − a)P(λ)∗φ = (λ− a)P(a)P(λ)∗φ = (λ− a)
∞∑

k=0

Pk(a)Pk(λ)∗φ,

Γ1fλ,φ(z) = (PH0 −Q(a)(A∗ − a))P(λ)∗φ = I − (λ− a)Q(a)P(λ)∗φ

= I − (λ− a)
∞∑

k=0

Qk(a)Pk(λ)∗φ.

Thus the Weyl function M(λ) has the form (25). �



STRONG MATRIX MOMENT PROBLEM OF HAMBURGER 195

Theorem 4.8. Let Π = {L,Γ0,Γ1} be the boundary triplet for A∗ defined in Theo-
rem 4.7. Then the matrix function

(26)
W (λ) =

(
w11(λ) w12(λ)
w21(λ) w22(λ)

)
=

(
I + (λ− a)

∑∞
j=0Qj(λ)Pj(a)∗ (λ− a)

∑∞
j=0Qj(λ)Qj(a)∗

−(λ− a)
∑∞

j=0 Pj(λ)Pj(a)∗ I − (λ− a)
∑∞

j=0 Pj(λ)Qj(a)∗

)
is the corresponding ΠL-resolvent matrix.

Proof. Using Theorem 2.5, Proposition 4.5, and Theorem 4.7, we get

w11(λ)∗ = −Γ0Q(λ)∗ = P(a)(A∗ − a)Q(λ)∗ = I + (λ− a)P(a)P(λ)∗

= I + (λ− a)
∞∑

k=0

Pk(a)Qk(λ)∗,

w12(λ)∗ = −Γ1Q(λ)∗ = −(PH0 −Q(a)(A∗ − a))Q(λ)∗ = (λ− a)Q(a)Q(λ)∗

= (λ− a)
∞∑

k=0

Qk(a)Qk(λ)∗,

w21(λ)∗ = Γ0P(λ)∗ = −P(a)(A∗ − a)P(λ)∗ = −(λ− a)P(a)P(λ)∗

= −(λ− a)
∞∑

k=0

Pk(a)Pk(λ)∗,

w22(λ)∗ = Γ1P(λ)∗ = (PH0 −Q(a)(A∗ − a))P(λ)∗ = I − (λ− a)Q(a)P(λ)∗

= I − (λ− a)
∞∑

k=0

Qk(a)Pk(λ)∗.

�

Remark 4.8.1. The proofs of Theorems 4.7 and 4.8 are close to those in [6] in the case
of the classical Hamburger moment problem.

Theorem 4.9 ([20]). The matrix function (26) is holomorphic in C \ {0} and has the
minimal exponential type at its points of singularity λ = 0,∞, i. e.,

lim
λ→∞

log ‖W (λ)‖C2N

|λ|
= 0,

lim
λ→0
|λ| log ‖W (λ)‖C2N = 0.

Using Theorems 2.6, 3.2, and 4.8, we obtain our main result.

Theorem 4.10. There exists a one-to-one correspondence between the set of all solutions
dΣ of the moment problem (1) and the set of all functions τ ∈ ÑH0 . The correspondence
is given by the following Nevanlinna type formula∫ +∞

−∞

dΣ(t)
t− λ

= (w11(λ)τ(λ) + w12(λ)) (w21(λ)τ(λ) + w22(λ))−1
,

where the functions (wij(λ))21 are defined by (26).

Remark 4.10.1. For the scalar case, Theorem 4.10 was proved by O. Nj̊astad (see [19]).
However the result of O. Nj̊astad is restricted to bisequences {Sk}+∞−∞ that give rise to
regular sequences {Pk(z)}∞0 . Since we do not use the regularity condition, we strengthen
the result of O. Nj̊astad even for the scalar case.
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14. M. G. Krĕın, The fundamental propositions of the theory of representations of Hermitian op-
erators with deficiency index (m, m), Ukrain. Mat. Žurnal 1 (1949), no. 2, 3–66.
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16. M. G. Krĕın and G. K. Langer, The defect subspaces and generalized resolvents of a Hermitian
operator in the space Πκ, Funktsional. Anal. i Prilozhen. 5 (1971), no. 2, 59–71.
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