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ON EXISTENCE OF ∗-REPRESENTATIONS OF CERTAIN
ALGEBRAS RELATED TO EXTENDED DYNKIN GRAPHS

KOSTYANTYN YUSENKO

Abstract. For ∗-algebras associated with extended Dynkin graphs, we investigate a
set of parameters for which there exist representations. We give structure properties
of such sets and a complete description for the set related to the graph D̃4.

0. Introduction

In [1, 2] (also see the bibliography therein) the following problems were studied. Let
Mi = {0 = α

(i)
0 < α

(i)
1 < · · · < α

(i)
mi}, i = 1, . . . , n, be given finite subsets of R+ and

γ ∈ R+. The problem is to determine whether there exist n-tuples of Hermitian operators
Ai = A∗i , i = 1, . . . , n, such that σ(Ai) ⊂Mi and

A1 +A2 + · · ·+An = γI,

and to describe all irreducible (up to a unitary equivalence) n-tuples of such operators.
This problem could be reformulated in terms of ∗-algebras and their ∗-representations.

Consider the following ∗-algebra:

AM1,M2,...,Mn;γ = C〈a1, . . . , an|ai = a∗i , (ai − α
(i)
0 ) . . . (ai − α(i)

mi
) = 0,

a1 + a2 + · · ·+ an = γe〉.

It is quite easy to show that such an algebra is isomorphic to the algebra generated
by the projections

PM1,M2,...,Mn;γ = C〈p(1)
1 , . . . , p(1)

m1
, . . . , p

(n)
1 , . . . , p(n)

mn
|p(k)

i = p
(k)2
i = p

(k)∗
i ,

n∑
i=1

mi∑
k=1

α
(i)
k p

(i)
k = γe, p

(i)
j p

(i)
k = 0〉.

To each algebra PM1,M2,...,Mn;γ , one can associate a connected non-oriented graph Γ
that has n branches connected in a common vertex (the root), such that i-th branch has
mi vertices, i = 1, . . . , n. Starting with α

(i)
j , we construct a function χ (we will call it a

character of the algebra) on the set of vertices except for the root in the following way:
χ

(i)
j (i-th branch, j-th vertex) equals to α(i)

j , the root of the tree corresponds to γ. The

character χ could be written as the vector χ = (α(1)
1 , . . . , α

(1)
m1 ; . . . ; α

(n)
1 , . . . , α

(n)
mn). The

algebra PM1,M2,...,Mn;γ is uniquely given by the graph Γ, the character χ, and γ, hence,
we will denote it in the sequel by PΓ,χ,γ .

The additive spectral problem is equivalent to the following:
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(1) a) to describe the set ΣΓ = {(χ; γ)| there exists a representation of the algebra
PΓ,χ,γ},
b) for each character χ, to describe the set ΣΓ,χ = {γ ∈ R+| there exists a
representation of the algebra PΓ,χ,γ};

(2) for every pair (χ; γ) ∈ ΣΓ to describe all irreducible ∗-representation of PΓ,χ,γ .
Depending on the properties of the graph Γ, the structure of representations of PΓ,χ,γ

is quite different. The result of the recent paper [4] shows that if Γ is a Dynkin graph of
the type An, Dn, E6, E7, or E8,

s s q q q s sAn

s
s s q q q s s
�

�
�

�

H
H

H
HDn

s s s s ss
E6 s s s s s ss

E7

s s s s s s ss
E8

then PΓ,χ,γ is finite dimensional, if Γ is an extended Dynkin graph of the type D̃4, Ẽ6,
Ẽ7, Ẽ8,

s s s
s

s

D̃4

s s s s sss
Ẽ6

s s s s s s ss
Ẽ7 s s s s s s s ss

Ẽ8

then the algebra PΓ,χ,γ is infinite dimensional and of polynomial growth, and finally if
Γ neither a Dynkin graph nor an extended Dynkin graph, then PΓ,χ,γ contains a free
algebra with two generators (in this case, problem (2) could be too complicated).

In this paper, we study the sets ΣΓ,χ in the case where Γ is an extended Dynkin
graph, give a complete description of the set ΣD̃4,χ, find conditions for the sets ΣΓ,χ to
be infinite and conditions for existence of ∗-representations of PΓ,χ,γ in a special case
where γ = ωΓ (see Section 2 for a definition of ωΓ).

1. A description of the set ΣD̃4,χ

As was shown in [11], the set ΣD̃4,χ can be reduced to the structure of set ΣD4,χ. A
complete description of the set ΣD4,χ was given in [7],

ΣD4,(α1,α2,α3) = {0, (α1 + α2 + α3)/2} ∪
{ ∑

i∈J

αi, J ⊂ {1, 2, 3}
}
,

where we assume that α3 < α1 + α2, otherwise the set ΣD4,χ does not contain the point
(α1 + α2 + α3)/2.
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Let αi, i = 1, . . . , 4, denote the i-th component of the character χ and α = α1 + α2 +
α3 + α4. The set ΣD̃4,χ satisfies the following properties (see [11]):

(1) ΣD̃4,χ ⊂ [0, α];
(2) ΣD̃4,χ 3

∑
i∈J αi, J ⊂ {0, 1, 2, 3, 4};

(3) τ ∈ ΣD̃4,χ ⇐⇒ α− τ ∈ ΣD̃4,χ.

The third property means that ΣD̃4,χ is symmetric with respect to α
2 , and therefore we

will study the set ΣD̃4,χ ∩ [0, α
2 ).

Notice that in the case where at least one of the components of the character χi > α
2 ,

the corresponding projection in the representation equals 0 or I, hence the structure of
set ΣD̃4,χ is the same as the structure of ΣD4,χ. Therefore, it is interesting to study the
case where all components of the character χ are less than α

2 . In this case, the set ΣD̃4,χ

is quite different from ΣD4,χ, furthermore, it is infinite. The following propositions give
a complete description of the set ΣD̃4,χ (the exact technique and proofs can be found in
[11]).

Lemma 1. The set ΣD̃4,χ contains an infinite series Σ∞ with the limit point α
2 and the

finite series Σ0. These two series are described by the following:
(1) if α2 + α3 > α1 + α4, then

Σ∞ =
{α

2
− α1

2n

∣∣ n ∈ N
}
,

Σ0 =
{
α

2
− α− 2α4

2(2n− 1)

∣∣ n < α1

α2 + α3 − α1 − α4
, n ∈ N

}
;

(2) if α2 + α3 < α1 + α4, then

Σ∞ =
{
α

2
− α− 2α4

2(2n− 1)

∣∣ n ∈ N
}
,

Σ0 =
{
α

2
− α1

2n

∣∣ n < α1

α1 + α4 − α2 − α3
, n ∈ N

}
;

(3) if α2 + α3 = α1 + α4, then

Σ∞ =
{α

2
− α1

n

∣∣ n ∈ N
}
, Σ0 = ∅.

Theorem 1.

ΣD̃4,χ ∩ [0;α/2) = Σ∞ ∪ Σ0 ∪ Σ1 ∪ Σi
2 ∪ Σ3 ∪ Σ4 ∪ Σj

5, i = 2, 3, 4, j = 1, 2, 3,

where

Σ1 =
{
α

2
− α

2(4n− 1)

∣∣ n < α4

4α4 − α
, n <

α− α1

α− 4α1
, n ∈ N

}
,

Σi
2 =

{
α

2
− αi

2n

∣∣ n < αi

2αi + 2α4 − α
, n <

αi

αi − α1
, n <

αi

4αi − α
, n ∈ N

}
, i = 2, 3, 4,

Σ3 =
{
α

2
− α− 2α1

2(2n+ 1)

∣∣ n < α− α1

α− 4α1
, n <

α2 + α3

2(α4 − α1)
, n(4αi − α) < αi, n ∈ N

}
,

Σ4 =
{
α

2
− α

2(4n+ 1)

∣∣ n < α− α4

4α4 − α
, n <

α1

α− 4α1
, n ∈ N

}
,

Σi
5 =

{
α

2
− α− 2αi

2(2n+ 1)
|n < α1

α− 2αi − 2α1
, n <

αi

α− 4αi
, n <

α− α4 − αi

2(α4 − αi)
, n ∈N ∪ {0}

}
,

i = 1, 2, 3.

Corollary 1. By using the structure of ΣD̃4,χ given by the latter theorem, one can show
that the set ΣD̃4,χ contains the only limit point ωD̃4

(χ).
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2. Coxeter functors and evolution of characters

A powerful tool for investigating the algebras PΓ,χ,γ are the reflection (Coxeter) func-
tors. Namely, there exist two functors [3] linear S and hyperbolic T which establish an
equivalence between the categories of ∗-representations of the algebras PΓ,χ,γ . These
actions between the categories give rise to an action on the pairs (χ; γ) as follows:

S : (χ; γ) 7−→ (χ′; γ′),

χ′ = (α(1)
m1

− α
(1)
m1−1, . . . , α

(1)
m1

; . . . ;α(n)
mn

− α
(n)
mn−1, . . . , α

(n)
mn

),

γ′ = α(1)
m1

+ · · ·+ α(n)
mn

− γ;

T : (χ; γ) 7−→ (χ′′; γ),

χ′′ = (γ − α(1)
m1
, . . . , γ − α

(1)
1 ; . . . ; γ − α(n)

mn
, . . . , γ − α

(n)
1 ).

The main idea is to take a pair (χ; γ) such that the structure of representations of
PΓ,χ,γ is known and to apply the functors S and T to construct the whole series of
algebras which have the same structure of representations as the algebra we started
with.

To make a use of this technique, we first study the evolution of the pair (χ; γ) under
the action of the Coxeter functors. In the general case, for an arbitrary graph Γ the
formulas of the evolution could be complicated, but for the case where Γ is an extended
Dynkin graph the results of [9] give an explicit formula for powers of the functor (ST )kΓ .

Let ω(χ) be a positive functional on the set of characters. We say that ω(χ) is an
invariant functional if the following conditions holds:

S : (χ;ω(χ)) 7−→ (χ′;ω(χ′)),

T : (χ;ω(χ)) 7−→ (χ′′;ω(χ′′)).

The results [9] prove that if Γ is an extended Dynkin graph, then there is only one
invariant functional,

ωD̃4
(χ) =

1
2
(α(1)

1 + α
(2)
1 + α

(3)
1 + α

(4)
1 ),

ωẼ6
(χ) =

1
3
(α(1)

1 + α
(1)
2 + α

(2)
1 + α

(2)
2 + α

(3)
1 + α

(3)
2 ),

ωẼ7
(χ) =

1
4
(α(1)

1 + α
(1)
2 + α

(1)
3 + α

(2)
1 + α

(2)
2 + α

(2)
3 + 2α(3)

1 ),

ωẼ8
(χ) =

1
6
(α(1)

1 + α
(1)
2 + α

(1)
3 + α

(1)
4 + α

(1)
5 + 2α(2)

1 + 2α(2)
2 + 3α(3)

1 ).

Recall that in the case where γ = ωΓ(χ), the algebras PΓ,χ,ωΓ(χ) are PI-algebra (see [5])
and their irreducible representations are of dimensions not greater than 2, 3, 4, and 6 for
the graphs D̃4, Ẽ6, Ẽ7, and Ẽ8, respectively.

Put pΓ = 2, 3, 4, 6 for Γ = D̃4, Ẽ6, Ẽ7, and Ẽ8, respectively. The evolution of the pair
(χ; γ) under the action of powers of (ST )pΓ(pΓ−1) functor could be written as follows.

Theorem 2. (see [9]). Let Γ be an extended Dynkin graph. Then the following formula
holds:

(1) (ST )pΓ(pΓ−1)k(χ; γ) = (χ− kpΓ(ωΓ(χ)− γ)χΓ; γ − kp2
Γ(ωΓ(χ)− γ)),

where χΓ is a special character on Γ (see [10]).

Applying the functor (ST ) to (1) we can obtain the evolution of the pair (χ; γ) under
the action of an arbitrary power k ∈ N of (ST )k (in what follows we denote by (χ(k); γ(k))
the image of the pair (χ; γ) under the action of the functor (ST )k).
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Proposition 1. The action of the functor (ST )k on the pair (χ; γ) could be written in
the following way:

(2) (ST )k(χ; γ) = (f1,k(χ)− (ωΓ(χ)− γ)f2,k(χΓ);ψ1,k − (ωΓ(χ)− γ)ψ2,k),

where the characters f1,k(χ) and f2,k(χΓ), and the numbers ψ1,k and ψ2,k satisfy the
following properties:

(i) if k1 ≡ k2 (mod pΓ(pΓ − 1)), then f1,k1(χ) = f1,k2(χ) and ψ1,k1 = ψ1,k2 ;
(ii) the components of f2,k(χΓ) and the numbers ψ2,k are defined in the following

way:

f2,k(χΓ)(j)i =

[
(χΓ)(j)i

pΓ − 1
k

]
, ψ2,k =

[
pΓ

pΓ − 1
k

]
;

(iii) f1,pΓ(pΓ−1)k = χ, f2,pΓ(pΓ−1)k = kpΓχΓ, ψ1,k = γ, and ψ2,k = kp2
Γ.

Proof. Make a direct calculation using formula (1). �

Remark 1. Property (i) means that the orbits of f1,0(χ) and ψ1,0 under the action of the
functor (ST ) is finite and its length equals pΓ(pΓ − 1). The formulas for the characters
f1,k and the numbers ψ1,k are complicated (unlike for the characters f2,k(χΓ) and the
numbers ψ2,k) and we do not give a list of their evolutions (this list contains 30 items in
the case where Γ = Ẽ8). Nevertheless, using (1) one can compute their values.

3. Structure properties of the set ΣΓ,χ

Definition 1. Let π : PΓ,χ,γ → L(H) be a finite dimensional ∗-representation on some
Hilbert space H. We call a vector d a generalized dimension of π, which is defined as
follows:

d0 = dim(H), d
(j)
i = dim(Im(π(p(j)

i ))), j = 1, . . . , n, i = 1, . . . ,mj .

One can extend the action of the functors S and T to the set of generalized dimensions
(see for example [3]).

Lemma 2. The sets ΣΓ,χ satisfy the following properties:

(i) ΣΓ,χ ⊂

[
0;

n∑
j=1

χ
(j)
mj

]
,

(ii) ΣΓ,χ 3
∑
j∈J

χ
(j)
mj , J ⊂ {1, . . . , n}.

Proof. Let us, for example, prove property (ii). It is clear that in this case, P (j)
mj = I, if

j ∈ J , and P
(j)
i = 0, if j ∈ J, i 6= mj or j /∈ J, i ∈ 1, . . . ,mj , form a representation of

PΓ,χ,γ . �

If knowing the set ΣΓ,χ ∩ [0, ωΓ(χ)], one can restore the whole set ΣΓ,χ, since the
functor S establishes a bijective correspondence between the set ΣΓ,χ\[0, ωΓ(χ)] and the
set ΣΓ,χ′ ∩ [0, ωΓ(χ′)).

According to Lemma 1, the set ΣD̃4,χ is infinite if and only if all components of the
character χ satisfy the condition χi <

α
2 (in other words, this means that χi < ωD̃4

(χ)).
Let us study a similar question for all extended Dynkin graphs.

Let χi be the i-th component of the character χ and χ′i the corresponding component
of the character χ′ obtained by applying the functor S to the pair (χ, γ).

Theorem 3. Let Γ be an extended Dynkin graph. The set ΣΓ,χ is infinite if and only if
all components of the character satisfy the two conditions χi < ωΓ(χ) and χ′i < ωΓ(χ′).
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Proof. We prove this theorem in several steps. At first we show that the conditions
χi < ωΓ(χ) and χ′i < ωΓ(χ′) are both necessary for the set ΣΓ,χ to be infinite.

Lemma 3. If at least one component of the character χ or the character χ′ satisfies the
condition χi ≥ ωΓ(χ) or χ′i ≥ ωΓ(χ′), then the set ΣΓ,χ is finite.

Proof. It is not hard to check that the projection corresponding to a component of χ
that satisfies the condition is equal to 0 or to I in a representation. Hence, the set ΣΓ,χ

has the same structure as the set ΣΓ̃,χ, where Γ̃ is a proper subgraph of Γ. Since the set
ΣΓ,χ is always finite if Γ is a Dynkin graph (see [7]), the set ΣΓ,χ is also finite. �

Remark 2. Conditions χi < ωΓ(χ) and χ′i < ωΓ(χ′) are equivalent if Γ = D̃4, but are not,
generally speaking, if Γ 6= D̃4. For example, consider the character χ = (5, 6; 7, 8; 8, 9) on
the graph Γ = Ẽ6. All components of χ satisfy χi < ωẼ6

(χ) but, for the corresponding
character χ′ = (1, 6; 1, 8; 1, 9), they do not.

To prove that the conditions χi < ωΓ(χ) and χ′i < ωΓ(χ′) are sufficient, we will
consider a special procedure (e.g., for Γ = Ẽ6) which allows to build infinite series in
ΣΓ,χ with the limit point ωΓ(χ).

Let Γ = Ẽ6 and the latter inequalities hold. Consider the sets

A
χ

(j)
1

= {(f1,k(χ))(j)1 |k = 1, . . . , pẼ6
(pẼ6

− 1) = 6},

which are the sets of orbits of the components f1,0(χ)(j)1 under the action of the functor
(ST ), and consider the set

A =
3⋃

j=1

A
χ

(j)
1
.

Put a = minA and let l and m be such that (f1,m(χ))l = a. Consider the sequence
γn = ωẼ6

(χ)− a
ϕn

, where ϕn = (f2,pẼ6
(pẼ6

−1)n+m(χẼ6
))l) =

[
6n+m

2

]
, and n ∈ N.

Lemma 4. The algebra PẼ6,χ,γn
has a representation for every natural n.

Proof. Fix n ∈ N and apply the functor (ST )6n+m−2 to the pair (χ;ωẼ6
(χ) − a

ϕn
). To

check that this action is correct, we have to show that, at each step k 6 6n+m− 2, we
will get the pair (χ(k); γ(k)), where γ(k) and all components of the χ(k) are positive.
Indeed, consider, for example, the component χ(k)(j)i at the step k 6 6n+m− 2. Using
formula (2) we get

χ(k)(j)i = (f1,k mod 6(χ))(j)i − (f2,k(χẼ6
))(j)i

a

ϕn
> a

(
1−

[
k

2

] [
6n+m

2

]−1 )
> 0.

To complete the proof, it remains to note that χ(6n+m)l = 0, hence the corresponding
component χ(6n + m − 2)l = γ(6n + m − 2). According to Lemma 2, the algebra
PẼ6,χ(6n+m−2),γ(6n+m−2) has a representation. �

Notice that the same procedure was used to build infinite series in the case where
Γ = D̃4 (see Lemma 1). This procedure could be slightly modified for the cases of
Γ = Ẽ7 and Γ = Ẽ8, hence the theorem holds. �

An interesting question is when there exists a ∗-representation of the algebras PΓ,χ,γ

in the case where γ = ωΓ(χ). If Γ = D̃4, this question was studied in [6] and the answer
is as follows: a representation exists if all components of the character χ satisfy the
condition χi < ωD̃4

(χ). A similar answer appears to be correct for all extended Dynkin
graphs.
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Corollary 2. (A representation in the case where γ = ωΓ(χ)) Let Γ be an extended
Dynkin graph, and χ be a character on Γ such that the conditions of Th. 3 are satisfied.
Then there is a representation of the algebra PΓ,χ,ωΓ(χ)

Proof. Since the conditions of Theorem 3 are satisfied, there exists a series in ΣΓ,χ with
the limit point ωΓ(χ). By Shulman’s theorem (see [8]) the sets ΣΓ,χ are closed, therefore,
the set ΣΓ,χ contains the point ωΓ(χ). �

Remark 3. Using the previous corollary one can determine if there is a ∗-representation
of PΓ,χ,ωΓ(χ) for a fixed character χ. Indeed, if the conditions of Theorem 3 are satisfied,
then there exists a representation, if not we construct a proper graph by deleting vertices
where the components of χ do not satisfy the desired conditions. Since we know an exact
answer for all proper subgraphs of extended Dynkin graphs, we can determine whether
there is a representation.

Theorem 4. Let Γ be an extended Dynkin graph. If the set ΣΓ,χ is infinite, then it
contains the only limit point.

Proof. Let us fix γ < ωΓ(χ) and apply the functor (ST )k to the pair (χ; γ). Using
formulas (2) we see that there exists k < ∞ such that one of three following situations
can occur (and all components of the character χ(k̃) and γ(k̃), k̃ < k are positive):

(a) γ(k) = 0. In this case there exists a ∗-representation of the algebra PΓ,χ(k),γ(k)

with the generalized dimension d(k) defined by

d(k)0 = 0, d(k)(j)i = 0.

(b) χ(k)(j)1 = γ(k), for j ∈ J ⊂ {1, . . . , n}. In this case, there exists a ∗-representation
of the algebra PΓ,χ(k),γ(k) with the generalized dimension d(k) defined by

d(k)0 = 1, d(k)(j)1 = 1, if j = m,

d(k)(j)i = 0, if j ∈ J and j 6= m,

d(k)(j)i = 0, if i = 1, j /∈ J or i 6= 1,

where m = minJ .
(c) χ(k)(j)i > γ(k) for j ∈ J ′ ⊂ {1, . . . , n} and i ∈ J ′′ ⊂ {1, . . . ,mj}. In this case,

we construct a new graph Γ̃ by deleting vertices from G that correspond to the
sets J ′ and J ′′ (the branch from J ′ and vertex form J ′′). Since we know the
exact structure of the set ΣΓ̃,χ̃ (see [7]), where χ̃ is the restriction of χ(k) to Γ̃,
we can determine whether γ(k) lies in ΣΓ̃,χ̃, and if the latter is true, to build a
corresponding vector of the generalized dimension d(k).

Applying the above procedure rule to each pair (χ; γ) ∈ ΣΓ, γ < ωΓ(χ) we get a pair
(k; d(k)), which means that we decompose the set

ΣΓ,χ ∩ [0, ωΓ(χ)] =
⋃
k,d

Σk,d,

where the index d ranges over all possible generalized dimensions and k = 0, . . . , pΓ(pΓ−
1) − 1 (indeed according to (2) the functor (ST ) acts cyclically, hence, in order to de-
scribe the sets ΣΓ,χ, we can take into consideration all possible vectors of the generalized
dimensions along one cycle).

Lemma 5. The index d ranges over a finite number of possible generalized dimensions.

Proof. Each di corresponds to the case (a), (b) or (c). It is clear that in the cases (a), (b),
the number of different generalized dimension is finite. In the case where Γ̃ is a proper
subgraph of the extended Dynkin graph (see [7]), the number of different generalized
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dimensions is also finite, hence this proves the case where di corresponds to (c) and the
lemma holds. �

Lemma 6. The sets Σk,d, k ∈ {0, . . . , pΓ(pΓ − 1)− 1} are either finite or have the only
limit point ωΓ(χ).

Proof. Direct calculation using (2). �

Now the theorem is an obvious corollary of Lemma 2 and Lemma 3. �

Remark 4. The previous theorem gives an exact algorithm for describing the set ΣΓ,χ,
but it turns out to be combinatorially hard to get explicit formulas for the extended
Dynkin graph Γ 6= D̃4 (the case Γ = D̃4 is simpler, and a complete description was done
in [11] and is given in Section 1).

Acknowledgments. The author is grateful to his supervisor V. L. Ostrovskyi for con-
stant attention to this work.
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