ON EXISTENCE OF *-REPRESENTATIONS OF CERTAIN algebras related to extended Dynkin graphs

KOSTYANTYN YUSENKO

Abstract

For *-algebras associated with extended Dynkin graphs, we investigate a set of parameters for which there exist representations. We give structure properties of such sets and a complete description for the set related to the graph \tilde{D}_{4}.

0. Introduction

In $[1,2]$ (also see the bibliography therein) the following problems were studied. Let $M_{i}=\left\{0=\alpha_{0}^{(i)}<\alpha_{1}^{(i)}<\cdots<\alpha_{m_{i}}^{(i)}\right\}, i=1, \ldots, n$, be given finite subsets of \mathbb{R}_{+}and $\gamma \in \mathbb{R}_{+}$. The problem is to determine whether there exist n-tuples of Hermitian operators $A_{i}=A_{i}^{*}, i=1, \ldots, n$, such that $\sigma\left(A_{i}\right) \subset M_{i}$ and

$$
A_{1}+A_{2}+\cdots+A_{n}=\gamma I
$$

and to describe all irreducible (up to a unitary equivalence) n-tuples of such operators. This problem could be reformulated in terms of $*$-algebras and their $*$-representations.

Consider the following $*$-algebra:

$$
\begin{array}{r}
\mathcal{A}_{M_{1}, M_{2}, \ldots, M_{n} ; \gamma}=\mathbb{C}\left\langle a_{1}, \ldots, a_{n}\right| a_{i}=a_{i}^{*},\left(a_{i}-\alpha_{0}^{(i)}\right) \ldots\left(a_{i}-\alpha_{m_{i}}^{(i)}\right)=0, \\
\left.a_{1}+a_{2}+\cdots+a_{n}=\gamma e\right\rangle .
\end{array}
$$

It is quite easy to show that such an algebra is isomorphic to the algebra generated by the projections

$$
\begin{array}{r}
\mathcal{P}_{M_{1}, M_{2}, \ldots, M_{n} ; \gamma}=\mathbb{C}\left\langle p_{1}^{(1)}, \ldots, p_{m_{1}}^{(1)}, \ldots, p_{1}^{(n)}, \ldots, p_{m_{n}}^{(n)}\right| p_{i}^{(k)}=p_{i}^{(k) 2}=p_{i}^{(k) *} \\
\left.\sum_{i=1}^{n} \sum_{k=1}^{m_{i}} \alpha_{k}^{(i)} p_{k}^{(i)}=\gamma e, p_{j}^{(i)} p_{k}^{(i)}=0\right\rangle
\end{array}
$$

To each algebra $\mathcal{P}_{M_{1}, M_{2}, \ldots, M_{n} ; \gamma}$, one can associate a connected non-oriented graph Γ that has n branches connected in a common vertex (the root), such that i-th branch has m_{i} vertices, $i=1, \ldots, n$. Starting with $\alpha_{j}^{(i)}$, we construct a function χ (we will call it a character of the algebra) on the set of vertices except for the root in the following way: $\chi_{j}^{(i)}$ (i-th branch, j-th vertex) equals to $\alpha_{j}^{(i)}$, the root of the tree corresponds to γ. The character χ could be written as the vector $\chi=\left(\alpha_{1}^{(1)}, \ldots, \alpha_{m_{1}}^{(1)} ; \ldots ; \alpha_{1}^{(n)}, \ldots, \alpha_{m_{n}}^{(n)}\right)$. The algebra $\mathcal{P}_{M_{1}, M_{2}, \ldots, M_{n} ; \gamma}$ is uniquely given by the graph Γ, the character χ, and γ, hence, we will denote it in the sequel by $\mathcal{P}_{\Gamma, \chi, \gamma}$.

The additive spectral problem is equivalent to the following:

[^0](1) a) to describe the set $\Sigma_{\Gamma}=\{(\chi ; \gamma) \mid$ there exists a representation of the algebra $\left.\mathcal{P}_{\Gamma, \chi, \gamma}\right\}$,
b) for each character χ, to describe the set $\Sigma_{\Gamma, \chi}=\left\{\gamma \in \mathbb{R}_{+} \mid\right.$there exists a representation of the algebra $\left.\mathcal{P}_{\Gamma, \chi, \gamma}\right\}$;
(2) for every pair $(\chi ; \gamma) \in \Sigma_{\Gamma}$ to describe all irreducible $*$-representation of $\mathcal{P}_{\Gamma, \chi, \gamma}$.

Depending on the properties of the graph Γ, the structure of representations of $\mathcal{P}_{\Gamma, \chi, \gamma}$ is quite different. The result of the recent paper [4] shows that if Γ is a Dynkin graph of the type $A_{n}, D_{n}, E_{6}, E_{7}$, or E_{8},

then $\mathcal{P}_{\Gamma, \chi, \gamma}$ is finite dimensional, if Γ is an extended Dynkin graph of the type $\tilde{D}_{4}, \tilde{E}_{6}$, $\tilde{E}_{7}, \tilde{E}_{8}$,

then the algebra $\mathcal{P}_{\Gamma, \chi, \gamma}$ is infinite dimensional and of polynomial growth, and finally if Γ neither a Dynkin graph nor an extended Dynkin graph, then $\mathcal{P}_{\Gamma, \chi, \gamma}$ contains a free algebra with two generators (in this case, problem (2) could be too complicated).

In this paper, we study the sets $\Sigma_{\Gamma, \chi}$ in the case where Γ is an extended Dynkin graph, give a complete description of the set $\Sigma_{\tilde{D}_{4}, \chi}$, find conditions for the sets $\Sigma_{\Gamma, \chi}$ to be infinite and conditions for existence of $*$-representations of $\mathcal{P}_{\Gamma, \chi, \gamma}$ in a special case where $\gamma=\omega_{\Gamma}$ (see Section 2 for a definition of $\left.\omega_{\Gamma}\right)$.

1. A Description of the set $\Sigma_{\tilde{D}_{4}, \chi}$

As was shown in [11], the set $\Sigma_{\tilde{D}_{4}, \chi}$ can be reduced to the structure of set $\Sigma_{D_{4}, \chi} . \mathrm{A}$ complete description of the set $\Sigma_{D_{4}, \chi}$ was given in [7],

$$
\Sigma_{D_{4},\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)}=\left\{0,\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) / 2\right\} \cup\left\{\sum_{i \in J} \alpha_{i}, J \subset\{1,2,3\}\right\}
$$

where we assume that $\alpha_{3}<\alpha_{1}+\alpha_{2}$, otherwise the set $\Sigma_{D_{4}, \chi}$ does not contain the point $\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) / 2$.

Let $\alpha_{i}, i=1, \ldots, 4$, denote the i-th component of the character χ and $\alpha=\alpha_{1}+\alpha_{2}+$ $\alpha_{3}+\alpha_{4}$. The set $\Sigma_{\tilde{D}_{4}, \chi}$ satisfies the following properties (see [11]):
(1) $\Sigma_{\tilde{D}_{4}, \chi} \subset[0, \alpha]$;
(2) $\Sigma_{\tilde{D}_{4}, \chi} \ni \sum_{i \in J} \alpha_{i}, J \subset\{0,1,2,3,4\}$;
(3) $\tau \in \Sigma_{\tilde{D}_{4}, \chi} \Longleftrightarrow \alpha-\tau \in \Sigma_{\tilde{D}_{4}, \chi}$.

The third property means that $\Sigma_{\tilde{D}_{4}, \chi}$ is symmetric with respect to $\frac{\alpha}{2}$, and therefore we will study the set $\Sigma_{\tilde{D}_{4}, \chi} \cap\left[0, \frac{\alpha}{2}\right)$.

Notice that in the case where at least one of the components of the character $\chi_{i} \geqslant \frac{\alpha}{2}$, the corresponding projection in the representation equals 0 or I, hence the structure of set $\Sigma_{\tilde{D}_{4}, \chi}$ is the same as the structure of $\Sigma_{D_{4}, \chi}$. Therefore, it is interesting to study the case where all components of the character χ are less than $\frac{\alpha}{2}$. In this case, the set $\Sigma_{\tilde{D}_{4}, \chi}$ is quite different from $\Sigma_{D_{4}, \chi}$, furthermore, it is infinite. The following propositions give a complete description of the set $\Sigma_{\tilde{D}_{4}, \chi}$ (the exact technique and proofs can be found in [11]).
Lemma 1. The set $\Sigma_{\tilde{D}_{4}, \chi}$ contains an infinite series Σ_{∞} with the limit point $\frac{\alpha}{2}$ and the finite series Σ_{0}. These two series are described by the following:
(1) if $\alpha_{2}+\alpha_{3}>\alpha_{1}+\alpha_{4}$, then

$$
\begin{aligned}
\Sigma_{\infty} & =\left\{\left.\frac{\alpha}{2}-\frac{\alpha_{1}}{2 n} \right\rvert\, n \in \mathbb{N}\right\} \\
\Sigma_{0} & =\left\{\frac{\alpha}{2}-\frac{\alpha-2 \alpha_{4}}{2(2 n-1)} \left\lvert\, n<\frac{\alpha_{1}}{\alpha_{2}+\alpha_{3}-\alpha_{1}-\alpha_{4}}\right., n \in \mathbb{N}\right\}
\end{aligned}
$$

(2) if $\alpha_{2}+\alpha_{3}<\alpha_{1}+\alpha_{4}$, then

$$
\begin{aligned}
\Sigma_{\infty} & =\left\{\left.\frac{\alpha}{2}-\frac{\alpha-2 \alpha_{4}}{2(2 n-1)} \right\rvert\, n \in \mathbb{N}\right\} \\
\Sigma_{0} & =\left\{\frac{\alpha}{2}-\frac{\alpha_{1}}{2 n} \left\lvert\, n<\frac{\alpha_{1}}{\alpha_{1}+\alpha_{4}-\alpha_{2}-\alpha_{3}}\right., n \in \mathbb{N}\right\}
\end{aligned}
$$

(3) if $\alpha_{2}+\alpha_{3}=\alpha_{1}+\alpha_{4}$, then

$$
\Sigma_{\infty}=\left\{\left.\frac{\alpha}{2}-\frac{\alpha_{1}}{n} \right\rvert\, n \in \mathbb{N}\right\}, \quad \Sigma_{0}=\varnothing
$$

Theorem 1.

$$
\Sigma_{\tilde{D}_{4}, \chi} \cap[0 ; \alpha / 2)=\Sigma_{\infty} \cup \Sigma_{0} \cup \Sigma_{1} \cup \Sigma_{2}^{i} \cup \Sigma_{3} \cup \Sigma_{4} \cup \Sigma_{5}^{j}, \quad i=2,3,4, \quad j=1,2,3
$$

where

$$
\begin{aligned}
& \Sigma_{1}=\left\{\left.\frac{\alpha}{2}-\frac{\alpha}{2(4 n-1)} \right\rvert\, n<\frac{\alpha_{4}}{4 \alpha_{4}-\alpha}, n<\frac{\alpha-\alpha_{1}}{\alpha-4 \alpha_{1}}, n \in \mathbb{N}\right\} \\
& \Sigma_{2}^{i}=\left\{\frac{\alpha}{2}-\frac{\alpha_{i}}{2 n} \left\lvert\, n<\frac{\alpha_{i}}{2 \alpha_{i}+2 \alpha_{4}-\alpha}\right., n<\frac{\alpha_{i}}{\alpha_{i}-\alpha_{1}}, n<\frac{\alpha_{i}}{4 \alpha_{i}-\alpha}, n \in \mathbb{N}\right\}, i=2,3,4, \\
& \Sigma_{3}=\left\{\left.\frac{\alpha}{2}-\frac{\alpha-2 \alpha_{1}}{2(2 n+1)} \right\rvert\, n<\frac{\alpha-\alpha_{1}}{\alpha-4 \alpha_{1}}, n<\frac{\alpha_{2}+\alpha_{3}}{2\left(\alpha_{4}-\alpha_{1}\right)}, n\left(4 \alpha_{i}-\alpha\right)<\alpha_{i}, n \in \mathbb{N}\right\}, \\
& \Sigma_{4}=\left\{\frac{\alpha}{2}-\frac{\alpha}{2(4 n+1)} \left\lvert\, n<\frac{\alpha-\alpha_{4}}{4 \alpha_{4}-\alpha}\right., n<\frac{\alpha_{1}}{\alpha-4 \alpha_{1}}, n \in \mathbb{N}\right\}, \\
& \Sigma_{5}^{i}=\left\{\left.\frac{\alpha}{2}-\frac{\alpha-2 \alpha_{i}}{2(2 n+1)} \right\rvert\, n<\frac{\alpha_{1}}{\alpha-2 \alpha_{i}-2 \alpha_{1}}, n<\frac{\alpha_{i}}{\alpha-4 \alpha_{i}}, n<\frac{\alpha-\alpha_{4}-\alpha_{i}}{2\left(\alpha_{4}-\alpha_{i}\right)}, n \in \mathbb{N} \cup\{0\}\right\} \\
& i=1,2,3
\end{aligned}
$$

Corollary 1. By using the structure of $\Sigma_{\tilde{D}_{4}, \chi}$ given by the latter theorem, one can show that the set $\Sigma_{\tilde{D}_{4}, \chi}$ contains the only limit point $\omega_{\tilde{D}_{4}}(\chi)$.

2. Coxeter functors and evolution of Characters

A powerful tool for investigating the algebras $\mathcal{P}_{\Gamma, \chi, \gamma}$ are the reflection (Coxeter) functors. Namely, there exist two functors [3] linear S and hyperbolic T which establish an equivalence between the categories of $*$-representations of the algebras $\mathcal{P}_{\Gamma, \chi, \gamma}$. These actions between the categories give rise to an action on the pairs $(\chi ; \gamma)$ as follows:

$$
\begin{gathered}
S:(\chi ; \gamma) \longmapsto\left(\chi^{\prime} ; \gamma^{\prime}\right) \\
\chi^{\prime}=\left(\alpha_{m_{1}}^{(1)}-\alpha_{m_{1}-1}^{(1)}, \ldots, \alpha_{m_{1}}^{(1)} ; \ldots ; \alpha_{m_{n}}^{(n)}-\alpha_{m_{n}-1}^{(n)}, \ldots, \alpha_{m_{n}}^{(n)}\right), \\
\gamma^{\prime}=\alpha_{m_{1}}^{(1)}+\cdots+\alpha_{m_{n}}^{(n)}-\gamma ; \\
T:(\chi ; \gamma) \longmapsto\left(\chi^{\prime \prime} ; \gamma\right), \\
\chi^{\prime \prime}=\left(\gamma-\alpha_{m_{1}}^{(1)}, \ldots, \gamma-\alpha_{1}^{(1)} ; \ldots ; \gamma-\alpha_{m_{n}}^{(n)}, \ldots, \gamma-\alpha_{1}^{(n)}\right)
\end{gathered}
$$

The main idea is to take a pair $(\chi ; \gamma)$ such that the structure of representations of $\mathcal{P}_{\Gamma, \chi, \gamma}$ is known and to apply the functors S and T to construct the whole series of algebras which have the same structure of representations as the algebra we started with.

To make a use of this technique, we first study the evolution of the pair ($\chi ; \gamma$) under the action of the Coxeter functors. In the general case, for an arbitrary graph Γ the formulas of the evolution could be complicated, but for the case where Γ is an extended Dynkin graph the results of [9] give an explicit formula for powers of the functor $(S T)^{k_{\Gamma}}$.

Let $\omega(\chi)$ be a positive functional on the set of characters. We say that $\omega(\chi)$ is an invariant functional if the following conditions holds:

$$
\begin{aligned}
& S:(\chi ; \omega(\chi)) \longmapsto\left(\chi^{\prime} ; \omega\left(\chi^{\prime}\right)\right), \\
& T:(\chi ; \omega(\chi)) \longmapsto\left(\chi^{\prime \prime} ; \omega\left(\chi^{\prime \prime}\right)\right)
\end{aligned}
$$

The results [9] prove that if Γ is an extended Dynkin graph, then there is only one invariant functional,

$$
\begin{gathered}
\omega_{\tilde{D}_{4}}(\chi)=\frac{1}{2}\left(\alpha_{1}^{(1)}+\alpha_{1}^{(2)}+\alpha_{1}^{(3)}+\alpha_{1}^{(4)}\right), \\
\omega_{\tilde{E}_{6}}(\chi)=\frac{1}{3}\left(\alpha_{1}^{(1)}+\alpha_{2}^{(1)}+\alpha_{1}^{(2)}+\alpha_{2}^{(2)}+\alpha_{1}^{(3)}+\alpha_{2}^{(3)}\right), \\
\omega_{\tilde{E}_{7}}(\chi)=\frac{1}{4}\left(\alpha_{1}^{(1)}+\alpha_{2}^{(1)}+\alpha_{3}^{(1)}+\alpha_{1}^{(2)}+\alpha_{2}^{(2)}+\alpha_{3}^{(2)}+2 \alpha_{1}^{(3)}\right), \\
\omega_{\tilde{E}_{8}}(\chi)=\frac{1}{6}\left(\alpha_{1}^{(1)}+\alpha_{2}^{(1)}+\alpha_{3}^{(1)}+\alpha_{4}^{(1)}+\alpha_{5}^{(1)}+2 \alpha_{1}^{(2)}+2 \alpha_{2}^{(2)}+3 \alpha_{1}^{(3)}\right) .
\end{gathered}
$$

Recall that in the case where $\gamma=\omega_{\Gamma}(\chi)$, the algebras $\mathcal{P}_{\Gamma, \chi, \omega_{\Gamma}(\chi)}$ are $P I$-algebra (see [5]) and their irreducible representations are of dimensions not greater than $2,3,4$, and 6 for the graphs $\tilde{D}_{4}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8}, respectively.

Put $p_{\Gamma}=2,3,4,6$ for $\Gamma=\tilde{D}_{4}, \tilde{E}_{6}, \tilde{E}_{7}$, and \tilde{E}_{8}, respectively. The evolution of the pair $(\chi ; \gamma)$ under the action of powers of $(S T)^{p_{\Gamma}\left(p_{\Gamma}-1\right)}$ functor could be written as follows.
Theorem 2. (see [9]). Let Γ be an extended Dynkin graph. Then the following formula holds:

$$
\begin{equation*}
(S T)^{p_{\Gamma}\left(p_{\Gamma}-1\right) k}(\chi ; \gamma)=\left(\chi-k p_{\Gamma}\left(\omega_{\Gamma}(\chi)-\gamma\right) \chi_{\Gamma} ; \gamma-k p_{\Gamma}^{2}\left(\omega_{\Gamma}(\chi)-\gamma\right)\right) \tag{1}
\end{equation*}
$$

where χ_{Γ} is a special character on Γ (see [10]).
Applying the functor $(S T)$ to (1) we can obtain the evolution of the pair $(\chi ; \gamma)$ under the action of an arbitrary power $k \in \mathbb{N}$ of $(S T)^{k}$ (in what follows we denote by $(\chi(k) ; \gamma(k))$ the image of the pair $(\chi ; \gamma)$ under the action of the functor $\left.(S T)^{k}\right)$.

Proposition 1. The action of the functor $(S T)^{k}$ on the pair $(\chi ; \gamma)$ could be written in the following way:

$$
\begin{equation*}
(S T)^{k}(\chi ; \gamma)=\left(f_{1, k}(\chi)-\left(\omega_{\Gamma}(\chi)-\gamma\right) f_{2, k}\left(\chi_{\Gamma}\right) ; \psi_{1, k}-\left(\omega_{\Gamma}(\chi)-\gamma\right) \psi_{2, k}\right) \tag{2}
\end{equation*}
$$

where the characters $f_{1, k}(\chi)$ and $f_{2, k}\left(\chi_{\Gamma}\right)$, and the numbers $\psi_{1, k}$ and $\psi_{2, k}$ satisfy the following properties:
(i) if $k_{1} \equiv k_{2}\left(\bmod p_{\Gamma}\left(p_{\Gamma}-1\right)\right)$, then $f_{1, k_{1}}(\chi)=f_{1, k_{2}}(\chi)$ and $\psi_{1, k_{1}}=\psi_{1, k_{2}}$;
(ii) the components of $f_{2, k}\left(\chi_{\Gamma}\right)$ and the numbers $\psi_{2, k}$ are defined in the following way:

$$
f_{2, k}\left(\chi_{\Gamma}\right)_{i}^{(j)}=\left[\frac{\left(\chi_{\Gamma}\right)_{i}^{(j)}}{p_{\Gamma}-1} k\right], \quad \psi_{2, k}=\left[\frac{p_{\Gamma}}{p_{\Gamma}-1} k\right]
$$

(iii) $f_{1, p_{\Gamma}\left(p_{\Gamma}-1\right) k}=\chi, f_{2, p_{\Gamma}\left(p_{\Gamma}-1\right) k}=k p_{\Gamma} \chi_{\Gamma}, \psi_{1, k}=\gamma$, and $\psi_{2, k}=k p_{\Gamma}^{2}$.

Proof. Make a direct calculation using formula (1).
Remark 1. Property (i) means that the orbits of $f_{1,0}(\chi)$ and $\psi_{1,0}$ under the action of the functor $(S T)$ is finite and its length equals $p_{\Gamma}\left(p_{\Gamma}-1\right)$. The formulas for the characters $f_{1, k}$ and the numbers $\psi_{1, k}$ are complicated (unlike for the characters $f_{2, k}\left(\chi_{\Gamma}\right)$ and the numbers $\psi_{2, k}$) and we do not give a list of their evolutions (this list contains 30 items in the case where $\Gamma=\tilde{E}_{8}$). Nevertheless, using (1) one can compute their values.

3. Structure properties of the set $\Sigma_{\Gamma, \chi}$

Definition 1. Let $\pi: \mathcal{P}_{\Gamma, \chi, \gamma} \rightarrow L(\mathcal{H})$ be a finite dimensional $*$-representation on some Hilbert space \mathcal{H}. We call a vector d a generalized dimension of π, which is defined as follows:

$$
d_{0}=\operatorname{dim}(\mathcal{H}), \quad d_{i}^{(j)}=\operatorname{dim}\left(\operatorname{Im}\left(\pi\left(p_{i}^{(j)}\right)\right)\right), \quad j=1, \ldots, n, \quad i=1, \ldots, m_{j} .
$$

One can extend the action of the functors S and T to the set of generalized dimensions (see for example [3]).

Lemma 2. The sets $\Sigma_{\Gamma, \chi}$ satisfy the following properties:
(i) $\Sigma_{\Gamma, \chi} \subset\left[0 ; \sum_{j=1}^{n} \chi_{m_{j}}^{(j)}\right]$,
(ii) $\Sigma_{\Gamma, \chi} \ni \sum_{j \in J} \chi_{m_{j}}^{(j)}, \quad J \subset\{1, \ldots, n\}$.

Proof. Let us, for example, prove property (ii). It is clear that in this case, $P_{m_{j}}^{(j)}=I$, if $j \in J$, and $P_{i}^{(j)}=0$, if $j \in J, i \neq m_{j}$ or $j \notin J, i \in 1, \ldots, m_{j}$, form a representation of $\mathcal{P}_{\Gamma, \chi, \gamma}$.

If knowing the set $\Sigma_{\Gamma, \chi} \cap\left[0, \omega_{\Gamma}(\chi)\right]$, one can restore the whole set $\Sigma_{\Gamma, \chi}$, since the functor S establishes a bijective correspondence between the set $\Sigma_{\Gamma, \chi} \backslash\left[0, \omega_{\Gamma}(\chi)\right]$ and the set $\Sigma_{\Gamma, \chi^{\prime}} \cap\left[0, \omega_{\Gamma}\left(\chi^{\prime}\right)\right)$.

According to Lemma 1, the set $\Sigma_{\tilde{D}_{4}, \chi}$ is infinite if and only if all components of the character χ satisfy the condition $\chi_{i}<\frac{\alpha}{2}$ (in other words, this means that $\chi_{i}<\omega_{\tilde{D}_{4}}(\chi)$). Let us study a similar question for all extended Dynkin graphs.

Let χ_{i} be the i-th component of the character χ and χ_{i}^{\prime} the corresponding component of the character χ^{\prime} obtained by applying the functor S to the pair (χ, γ).

Theorem 3. Let Γ be an extended Dynkin graph. The set $\Sigma_{\Gamma, \chi}$ is infinite if and only if all components of the character satisfy the two conditions $\chi_{i}<\omega_{\Gamma}(\chi)$ and $\chi_{i}^{\prime}<\omega_{\Gamma}\left(\chi^{\prime}\right)$.

Proof. We prove this theorem in several steps. At first we show that the conditions $\chi_{i}<\omega_{\Gamma}(\chi)$ and $\chi_{i}^{\prime}<\omega_{\Gamma}\left(\chi^{\prime}\right)$ are both necessary for the set $\Sigma_{\Gamma, \chi}$ to be infinite.

Lemma 3. If at least one component of the character χ or the character χ^{\prime} satisfies the condition $\chi_{i} \geq \omega_{\Gamma}(\chi)$ or $\chi_{i}^{\prime} \geq \omega_{\Gamma}\left(\chi^{\prime}\right)$, then the set $\Sigma_{\Gamma, \chi}$ is finite.

Proof. It is not hard to check that the projection corresponding to a component of χ that satisfies the condition is equal to 0 or to I in a representation. Hence, the set $\Sigma_{\Gamma, \chi}$ has the same structure as the set $\Sigma_{\tilde{\Gamma}, \chi}$, where $\tilde{\Gamma}$ is a proper subgraph of Γ. Since the set $\Sigma_{\Gamma, \chi}$ is always finite if Γ is a Dynkin graph (see [7]), the set $\Sigma_{\Gamma, \chi}$ is also finite.

Remark 2. Conditions $\chi_{i}<\omega_{\Gamma}(\chi)$ and $\chi_{i}^{\prime}<\omega_{\Gamma}\left(\chi^{\prime}\right)$ are equivalent if $\Gamma=\tilde{D}_{4}$, but are not, generally speaking, if $\Gamma \neq \tilde{D}_{4}$. For example, consider the character $\chi=(5,6 ; 7,8 ; 8,9)$ on the graph $\Gamma=\tilde{E}_{6}$. All components of χ satisfy $\chi_{i}<\omega_{\tilde{E}_{6}}(\chi)$ but, for the corresponding character $\chi^{\prime}=(1,6 ; 1,8 ; 1,9)$, they do not.

To prove that the conditions $\chi_{i}<\omega_{\Gamma}(\chi)$ and $\chi_{i}^{\prime}<\omega_{\Gamma}\left(\chi^{\prime}\right)$ are sufficient, we will consider a special procedure (e.g., for $\Gamma=\tilde{E}_{6}$) which allows to build infinite series in $\Sigma_{\Gamma, \chi}$ with the limit point $\omega_{\Gamma}(\chi)$.

Let $\Gamma=\tilde{E}_{6}$ and the latter inequalities hold. Consider the sets

$$
A_{\chi_{1}^{(j)}}=\left\{\left(f_{1, k}(\chi)\right)_{1}^{(j)} \mid k=1, \ldots, p_{\tilde{E}_{6}}\left(p_{\tilde{E}_{6}}-1\right)=6\right\}
$$

which are the sets of orbits of the components $f_{1,0}(\chi)_{1}^{(j)}$ under the action of the functor $(S T)$, and consider the set

$$
A=\bigcup_{j=1}^{3} A_{\chi_{1}^{(j)}}
$$

Put $a=\min A$ and let l and m be such that $\left(f_{1, m}(\chi)\right)_{l}=a$. Consider the sequence $\gamma_{n}=\omega_{\tilde{E}_{6}}(\chi)-\frac{a}{\varphi_{n}}$, where $\left.\varphi_{n}=\left(f_{2, p_{\tilde{E}_{6}}\left(p_{\tilde{E}_{6}}-1\right) n+m}\left(\chi_{\tilde{E}_{6}}\right)\right)_{l}\right)=\left[\frac{6 n+m}{2}\right]$, and $n \in \mathbb{N}$.
Lemma 4. The algebra $\mathcal{P}_{\tilde{E}_{6}, \chi, \gamma_{n}}$ has a representation for every natural n.
Proof. Fix $n \in \mathbb{N}$ and apply the functor $(S T)^{6 n+m-2}$ to the pair $\left(\chi ; \omega_{\tilde{E}_{6}}(\chi)-\frac{a}{\varphi_{n}}\right)$. To check that this action is correct, we have to show that, at each step $k \leqslant 6 n+m-2$, we will get the pair $(\chi(k) ; \gamma(k))$, where $\gamma(k)$ and all components of the $\chi(k)$ are positive. Indeed, consider, for example, the component $\chi(k)_{i}^{(j)}$ at the step $k \leqslant 6 n+m-2$. Using formula (2) we get

$$
\chi(k)_{i}^{(j)}=\left(f_{1, k \bmod 6}(\chi)\right)_{i}^{(j)}-\left(f_{2, k}\left(\chi_{\tilde{E}_{6}}\right)\right)_{i}^{(j)} \frac{a}{\varphi_{n}} \geqslant a\left(1-\left[\frac{k}{2}\right]\left[\frac{6 n+m}{2}\right]^{-1}\right) \geqslant 0
$$

To complete the proof, it remains to note that $\chi(6 n+m)_{l}=0$, hence the corresponding component $\chi(6 n+m-2)_{l}=\gamma(6 n+m-2)$. According to Lemma 2, the algebra $\mathcal{P}_{\tilde{E}_{6}, \chi(6 n+m-2), \gamma(6 n+m-2)}$ has a representation.

Notice that the same procedure was used to build infinite series in the case where $\Gamma=\tilde{D}_{4}$ (see Lemma 1). This procedure could be slightly modified for the cases of $\Gamma=\tilde{E}_{7}$ and $\Gamma=\tilde{E}_{8}$, hence the theorem holds.

An interesting question is when there exists a $*$-representation of the algebras $\mathcal{P}_{\Gamma, \chi, \gamma}$ in the case where $\gamma=\omega_{\Gamma}(\chi)$. If $\Gamma=\tilde{D}_{4}$, this question was studied in [6] and the answer is as follows: a representation exists if all components of the character χ satisfy the condition $\chi_{i}<\omega_{\tilde{D}_{4}}(\chi)$. A similar answer appears to be correct for all extended Dynkin graphs.

Corollary 2. (A representation in the case where $\gamma=\omega_{\Gamma}(\chi)$) Let Γ be an extended Dynkin graph, and χ be a character on Γ such that the conditions of Th. 3 are satisfied. Then there is a representation of the algebra $\mathcal{P}_{\Gamma, \chi, \omega_{\Gamma}(\chi)}$
Proof. Since the conditions of Theorem 3 are satisfied, there exists a series in $\Sigma_{\Gamma, \chi}$ with the limit point $\omega_{\Gamma}(\chi)$. By Shulman's theorem (see [8]) the sets $\Sigma_{\Gamma, \chi}$ are closed, therefore, the set $\Sigma_{\Gamma, \chi}$ contains the point $\omega_{\Gamma}(\chi)$.
Remark 3. Using the previous corollary one can determine if there is a $*$-representation of $\mathcal{P}_{\Gamma, \chi, \omega_{\Gamma}(\chi)}$ for a fixed character χ. Indeed, if the conditions of Theorem 3 are satisfied, then there exists a representation, if not we construct a proper graph by deleting vertices where the components of χ do not satisfy the desired conditions. Since we know an exact answer for all proper subgraphs of extended Dynkin graphs, we can determine whether there is a representation.

Theorem 4. Let Γ be an extended Dynkin graph. If the set $\Sigma_{\Gamma, \chi}$ is infinite, then it contains the only limit point.
Proof. Let us fix $\gamma<\omega_{\Gamma}(\chi)$ and apply the functor $(S T)^{k}$ to the pair $(\chi ; \gamma)$. Using formulas (2) we see that there exists $k<\infty$ such that one of three following situations can occur (and all components of the character $\chi(\tilde{k})$ and $\gamma(\tilde{k}), \tilde{k}<k$ are positive):
(a) $\gamma(k)=0$. In this case there exists a $*$-representation of the algebra $\mathcal{P}_{\Gamma, \chi(k), \gamma(k)}$ with the generalized dimension $d(k)$ defined by

$$
d(k)_{0}=0, \quad d(k)_{i}^{(j)}=0
$$

(b) $\chi(k)_{1}^{(j)}=\gamma(k)$, for $j \in J \subset\{1, \ldots, n\}$. In this case, there exists a $*$-representation of the algebra $\mathcal{P}_{\Gamma, \chi(k), \gamma(k)}$ with the generalized dimension $d(k)$ defined by

$$
\begin{aligned}
& d(k)_{0}=1, \quad d(k)_{1}^{(j)}=1, \quad \text { if } j=m, \\
& d(k)_{i}^{(j)}=0, \quad \text { if } j \in J \text { and } j \neq m, \\
& d(k)_{i}^{(j)}=0, \quad \text { if } i=1, j \notin J \quad \text { or } \quad i \neq 1,
\end{aligned}
$$

where $m=\min J$.
(c) $\chi(k)_{i}^{(j)}>\gamma(k)$ for $j \in J^{\prime} \subset\{1, \ldots, n\}$ and $i \in J^{\prime \prime} \subset\left\{1, \ldots, m_{j}\right\}$. In this case, we construct a new graph $\tilde{\Gamma}$ by deleting vertices from G that correspond to the sets J^{\prime} and $J^{\prime \prime}$ (the branch from J^{\prime} and vertex form $J^{\prime \prime}$). Since we know the exact structure of the set $\Sigma_{\tilde{\Gamma}, \tilde{\chi}}($ see $[7])$, where $\tilde{\chi}$ is the restriction of $\chi(k)$ to $\tilde{\Gamma}$, we can determine whether $\gamma(k)$ lies in $\Sigma_{\tilde{\Gamma}, \tilde{\chi}}$, and if the latter is true, to build a corresponding vector of the generalized dimension $d(k)$.
Applying the above procedure rule to each pair $(\chi ; \gamma) \in \Sigma_{\Gamma}, \gamma<\omega_{\Gamma}(\chi)$ we get a pair $(k ; d(k))$, which means that we decompose the set

$$
\Sigma_{\Gamma, \chi} \cap\left[0, \omega_{\Gamma}(\chi)\right]=\bigcup_{k, d} \Sigma_{k, d}
$$

where the index d ranges over all possible generalized dimensions and $k=0, \ldots, p_{\Gamma}\left(p_{\Gamma}-\right.$ 1) - 1 (indeed according to (2) the functor $(S T)$ acts cyclically, hence, in order to describe the sets $\Sigma_{\Gamma, \chi}$, we can take into consideration all possible vectors of the generalized dimensions along one cycle).

Lemma 5. The index d ranges over a finite number of possible generalized dimensions.
Proof. Each d_{i} corresponds to the case (a), (b) or (c). It is clear that in the cases (a), (b), the number of different generalized dimension is finite. In the case where $\tilde{\Gamma}$ is a proper subgraph of the extended Dynkin graph (see [7]), the number of different generalized
dimensions is also finite, hence this proves the case where d_{i} corresponds to (c) and the lemma holds.

Lemma 6. The sets $\Sigma_{k, d}, k \in\left\{0, \ldots, p_{\Gamma}\left(p_{\Gamma}-1\right)-1\right\}$ are either finite or have the only limit point $\omega_{\Gamma}(\chi)$.

Proof. Direct calculation using (2).
Now the theorem is an obvious corollary of Lemma 2 and Lemma 3.
Remark 4. The previous theorem gives an exact algorithm for describing the set $\Sigma_{\Gamma, \chi}$, but it turns out to be combinatorially hard to get explicit formulas for the extended Dynkin graph $\Gamma \neq \tilde{D}_{4}$ (the case $\Gamma=\tilde{D}_{4}$ is simpler, and a complete description was done in [11] and is given in Section 1).

Acknowledgments. The author is grateful to his supervisor V. L. Ostrovskyi for constant attention to this work.

References

1. William Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. 37 (2000), no. 3, 209-249.
2. Yu. S. Samoilenko, M. V. Zavodovsky, Theory of operators and involutive representation, Ukr. Math. Bull. 1 (2004), no. 4, 537-552.
3. S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, On sums of projections, Funct. Anal. Appl. 36 (2002), no. 3, 182-195.
4. M. A. Vlasenko, A. S. Mellit, and Yu. S. Samoilenko, On algebras generated with linearly dependent generators that have given spectra, Funct. Anal. Appl. 39 (2005), no. 3, 14-27.
5. Anton Mellit, Certain Examples of Deformed Preprojective Algebras and Geometry of Their *-Representations, arXiv:math.RT/0502055.
6. A. A. Kyrychenko, On linear combinations of orthoprojections, Uch. Zapiski TNU 54 (2002), no. 2, 31-39.
7. Stanislav Krugljak, Stanislav Popovych, Yurii Samoilenko, The spectral problem and *representations of algebras associated with Dynkin graphs, J. Algebra Appl. 4 (2005), no. 6, 761-776.
8. V. S. Shulman, On representations of limit relations, Methods Funct. Anal. Topology 7 (2001), no. 4, 85-86.
9. V. L. Ostrovskyi, On *-representations of a certain class of algebras related to a graph, Methods Funct. Anal. Topology 11 (2005), no. 3, 250-256.
10. V. L. Ostrovskyi, Special characters on star graphs and representations of *-algebras, arXiv:math.RA/0509240.
11. K. A. Yusenko, On quadruples of projections connected with linear equation, Ukr. Math. J. (to appear)

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

E-mail address: kay@imath.kiev.ua

[^0]: 2000 Mathematics Subject Classification. Primary 47A62, 17B10, 16G20.
 Key words and phrases. Operator algebras, additive spectral problem, extended Dynkin graphs, *-representations, Coxeter functors.

 This work was partially supported by the State Foundation for Fundamental Research of Ukraine, grant no. 01.07/071.

