ON EXISTENCE OF *-REPRESENTATIONS OF CERTAIN ALGEBRAS RELATED TO EXTENDED DYNKIN GRAPHS

KOSTYANTYN YUSENKO

ABSTRACT. For *-algebras associated with extended Dynkin graphs, we investigate a set of parameters for which there exist representations. We give structure properties of such sets and a complete description for the set related to the graph \tilde{D}_4 .

0. INTRODUCTION

In [1, 2] (also see the bibliography therein) the following problems were studied. Let $M_i = \{0 = \alpha_0^{(i)} < \alpha_1^{(i)} < \cdots < \alpha_{m_i}^{(i)}\}, i = 1, \dots, n$, be given finite subsets of \mathbb{R}_+ and $\gamma \in \mathbb{R}_+$. The problem is to determine whether there exist *n*-tuples of Hermitian operators $A_i = A_i^*, i = 1, \dots, n$, such that $\sigma(A_i) \subset M_i$ and

$$A_1 + A_2 + \dots + A_n = \gamma I,$$

and to describe all irreducible (up to a unitary equivalence) n-tuples of such operators. This problem could be reformulated in terms of *-algebras and their *-representations.

Consider the following *-algebra:

$$\mathcal{A}_{M_1,M_2,\dots,M_n;\gamma} = \mathbb{C}\langle a_1,\dots,a_n | a_i = a_i^*, (a_i - \alpha_0^{(i)})\dots(a_i - \alpha_{m_i}^{(i)}) = 0, a_1 + a_2 + \dots + a_n = \gamma e \rangle.$$

It is quite easy to show that such an algebra is isomorphic to the algebra generated by the projections

$$\mathcal{P}_{M_1,M_2,\dots,M_n;\gamma} = \mathbb{C}\langle p_1^{(1)},\dots,p_{m_1}^{(1)},\dots,p_1^{(n)},\dots,p_{m_n}^{(n)}|p_i^{(k)} = p_i^{(k)2} = p_i^{(k)*},$$
$$\sum_{i=1}^n \sum_{k=1}^{m_i} \alpha_k^{(i)} p_k^{(i)} = \gamma e, p_j^{(i)} p_k^{(i)} = 0 \rangle.$$

To each algebra $\mathcal{P}_{M_1,M_2,\ldots,M_n;\gamma}$, one can associate a connected non-oriented graph Γ that has n branches connected in a common vertex (the root), such that *i*-th branch has m_i vertices, $i = 1, \ldots, n$. Starting with $\alpha_j^{(i)}$, we construct a function χ (we will call it a character of the algebra) on the set of vertices except for the root in the following way: $\chi_j^{(i)}$ (i-th branch, j-th vertex) equals to $\alpha_j^{(i)}$, the root of the tree corresponds to γ . The character χ could be written as the vector $\chi = (\alpha_1^{(1)}, \ldots, \alpha_{m_1}^{(1)}; \ldots; \alpha_1^{(n)}, \ldots, \alpha_{m_n}^{(n)})$. The algebra $\mathcal{P}_{M_1,M_2,\ldots,M_n;\gamma}$ is uniquely given by the graph Γ , the character χ , and γ , hence, we will denote it in the sequel by $\mathcal{P}_{\Gamma,\chi,\gamma}$.

The additive spectral problem is equivalent to the following:

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A62, 17B10, 16G20.

Key words and phrases. Operator algebras, additive spectral problem, extended Dynkin graphs, *-representations, Coxeter functors.

This work was partially supported by the State Foundation for Fundamental Research of Ukraine, grant no. 01.07/071.

- (1) a) to describe the set $\Sigma_{\Gamma} = \{(\chi; \gamma) | \text{ there exists a representation of the algebra } \mathcal{P}_{\Gamma,\chi,\gamma} \},$
 - b) for each character χ , to describe the set $\Sigma_{\Gamma,\chi} = \{\gamma \in \mathbb{R}_+ | \text{ there exists a representation of the algebra } \mathcal{P}_{\Gamma,\chi,\gamma}\};$
- (2) for every pair $(\chi; \gamma) \in \Sigma_{\Gamma}$ to describe all irreducible *-representation of $\mathcal{P}_{\Gamma,\chi,\gamma}$.

Depending on the properties of the graph Γ , the structure of representations of $\mathcal{P}_{\Gamma,\chi,\gamma}$ is quite different. The result of the recent paper [4] shows that if Γ is a Dynkin graph of the type A_n , D_n , E_6 , E_7 , or E_8 ,

then $\mathcal{P}_{\Gamma,\chi,\gamma}$ is finite dimensional, if Γ is an extended Dynkin graph of the type \tilde{D}_4 , \tilde{E}_6 , \tilde{E}_7 , \tilde{E}_8 ,

then the algebra $\mathcal{P}_{\Gamma,\chi,\gamma}$ is infinite dimensional and of polynomial growth, and finally if Γ neither a Dynkin graph nor an extended Dynkin graph, then $\mathcal{P}_{\Gamma,\chi,\gamma}$ contains a free algebra with two generators (in this case, problem (2) could be too complicated).

In this paper, we study the sets $\Sigma_{\Gamma,\chi}$ in the case where Γ is an extended Dynkin graph, give a complete description of the set $\Sigma_{\tilde{D}_4,\chi}$, find conditions for the sets $\Sigma_{\Gamma,\chi}$ to be infinite and conditions for existence of *-representations of $\mathcal{P}_{\Gamma,\chi,\gamma}$ in a special case where $\gamma = \omega_{\Gamma}$ (see Section 2 for a definition of ω_{Γ}).

1. A description of the set $\Sigma_{\tilde{D}_4,\chi}$

As was shown in [11], the set $\Sigma_{\tilde{D}_4,\chi}$ can be reduced to the structure of set $\Sigma_{D_4,\chi}$. A complete description of the set $\Sigma_{D_4,\chi}$ was given in [7],

$$\Sigma_{D_4,(\alpha_1,\alpha_2,\alpha_3)} = \{0, (\alpha_1 + \alpha_2 + \alpha_3)/2\} \cup \bigg\{ \sum_{i \in J} \alpha_i, J \subset \{1,2,3\} \bigg\},\$$

where we assume that $\alpha_3 < \alpha_1 + \alpha_2$, otherwise the set $\Sigma_{D_4,\chi}$ does not contain the point $(\alpha_1 + \alpha_2 + \alpha_3)/2$.

198

Let α_i , i = 1, ..., 4, denote the *i*-th component of the character χ and $\alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$. The set $\Sigma_{\tilde{D}_4,\chi}$ satisfies the following properties (see [11]):

(1)
$$\Sigma_{\tilde{D}_4,\chi} \subset [0,\alpha];$$

(2)
$$\Sigma_{\tilde{D}_4,\chi} \ni \sum_{i \in J} \alpha_i, J \subset \{0, 1, 2, 3, 4\};$$

(3)
$$\tau \in \Sigma_{\tilde{D}_4, \chi} \iff \alpha - \tau \in \Sigma_{\tilde{D}_4, \chi}.$$

The third property means that $\Sigma_{\tilde{D}_4,\chi}$ is symmetric with respect to $\frac{\alpha}{2}$, and therefore we will study the set $\Sigma_{\tilde{D}_4,\chi} \cap [0, \frac{\alpha}{2}]$.

Notice that in the case where at least one of the components of the character $\chi_i \geq \frac{\alpha}{2}$, the corresponding projection in the representation equals 0 or I, hence the structure of set $\Sigma_{\tilde{D}_4,\chi}$ is the same as the structure of $\Sigma_{D_4,\chi}$. Therefore, it is interesting to study the case where all components of the character χ are less than $\frac{\alpha}{2}$. In this case, the set $\Sigma_{\tilde{D}_4,\chi}$ is quite different from $\Sigma_{D_4,\chi}$, furthermore, it is infinite. The following propositions give a complete description of the set $\Sigma_{\tilde{D}_4,\chi}$ (the exact technique and proofs can be found in [11]).

Lemma 1. The set $\Sigma_{\tilde{D}_4,\chi}$ contains an infinite series Σ_{∞} with the limit point $\frac{\alpha}{2}$ and the finite series Σ_0 . These two series are described by the following:

(1) if $\alpha_2 + \alpha_3 > \alpha_1 + \alpha_4$, then

$$\Sigma_{\infty} = \left\{ \frac{\alpha}{2} - \frac{\alpha_1}{2n} \mid n \in \mathbb{N} \right\},$$

$$\Sigma_0 = \left\{ \frac{\alpha}{2} - \frac{\alpha - 2\alpha_4}{2(2n-1)} \mid n < \frac{\alpha_1}{\alpha_2 + \alpha_3 - \alpha_1 - \alpha_4}, \ n \in \mathbb{N} \right\};$$

(2) if $\alpha_2 + \alpha_3 < \alpha_1 + \alpha_4$, then

$$\Sigma_{\infty} = \left\{ \frac{\alpha}{2} - \frac{\alpha - 2\alpha_4}{2(2n-1)} \mid n \in \mathbb{N} \right\},$$

$$\Sigma_0 = \left\{ \frac{\alpha}{2} - \frac{\alpha_1}{2n} \mid n < \frac{\alpha_1}{\alpha_1 + \alpha_4 - \alpha_2 - \alpha_3}, \ n \in \mathbb{N} \right\};$$

(3) if $\alpha_2 + \alpha_3 = \alpha_1 + \alpha_4$, then

$$\Sigma_{\infty} = \left\{ \frac{\alpha}{2} - \frac{\alpha_1}{n} \mid n \in \mathbb{N} \right\}, \quad \Sigma_0 = \emptyset.$$

Theorem 1.

 $\Sigma_{\tilde{D}_4,\chi} \cap [0;\alpha/2) = \Sigma_{\infty} \cup \Sigma_0 \cup \Sigma_1 \cup \Sigma_2^i \cup \Sigma_3 \cup \Sigma_4 \cup \Sigma_5^j, \quad i = 2, 3, 4, \quad j = 1, 2, 3,$ where

$$\begin{split} \Sigma_1 &= \left\{ \frac{\alpha}{2} - \frac{\alpha}{2(4n-1)} \mid n < \frac{\alpha_4}{4\alpha_4 - \alpha}, \ n < \frac{\alpha - \alpha_1}{\alpha - 4\alpha_1}, \ n \in \mathbb{N} \right\}, \\ \Sigma_2^i &= \left\{ \frac{\alpha}{2} - \frac{\alpha_i}{2n} \mid n < \frac{\alpha_i}{2\alpha_i + 2\alpha_4 - \alpha}, \ n < \frac{\alpha_i}{\alpha_i - \alpha_1}, \ n < \frac{\alpha_i}{4\alpha_i - \alpha}, \ n \in \mathbb{N} \right\}, \ i = 2, 3, 4, \\ \Sigma_3 &= \left\{ \frac{\alpha}{2} - \frac{\alpha - 2\alpha_1}{2(2n+1)} \mid n < \frac{\alpha - \alpha_1}{\alpha - 4\alpha_1}, \ n < \frac{\alpha_2 + \alpha_3}{2(\alpha_4 - \alpha_1)}, \ n(4\alpha_i - \alpha) < \alpha_i, \ n \in \mathbb{N} \right\}, \\ \Sigma_4 &= \left\{ \frac{\alpha}{2} - \frac{\alpha}{2(4n+1)} \mid n < \frac{\alpha - \alpha_4}{4\alpha_4 - \alpha}, \ n < \frac{\alpha_1}{\alpha - 4\alpha_1}, \ n \in \mathbb{N} \right\}, \\ \Sigma_5^i &= \left\{ \frac{\alpha}{2} - \frac{\alpha - 2\alpha_i}{2(2n+1)} \mid n < \frac{\alpha_1}{\alpha - 2\alpha_i - 2\alpha_1}, \ n < \frac{\alpha_i}{\alpha - 4\alpha_i}, \ n < \frac{\alpha - \alpha_4 - \alpha_i}{2(\alpha_4 - \alpha_i)}, \ n \in \mathbb{N} \cup \{0\} \right\}, \\ i = 1, 2, 3. \end{split}$$

Corollary 1. By using the structure of $\Sigma_{\tilde{D}_4,\chi}$ given by the latter theorem, one can show that the set $\Sigma_{\tilde{D}_4,\chi}$ contains the only limit point $\omega_{\tilde{D}_4}(\chi)$.

2. Coxeter functors and evolution of characters

A powerful tool for investigating the algebras $\mathcal{P}_{\Gamma,\chi,\gamma}$ are the reflection (Coxeter) functors. Namely, there exist two functors [3] linear S and hyperbolic T which establish an equivalence between the categories of *-representations of the algebras $\mathcal{P}_{\Gamma,\chi,\gamma}$. These actions between the categories give rise to an action on the pairs $(\chi;\gamma)$ as follows:

$$S: (\chi; \gamma) \longmapsto (\chi'; \gamma'),$$

$$\chi' = (\alpha_{m_1}^{(1)} - \alpha_{m_1-1}^{(1)}, \dots, \alpha_{m_1}^{(1)}; \dots; \alpha_{m_n}^{(n)} - \alpha_{m_n-1}^{(n)}, \dots, \alpha_{m_n}^{(n)}),$$

$$\gamma' = \alpha_{m_1}^{(1)} + \dots + \alpha_{m_n}^{(n)} - \gamma;$$

$$T: (\chi; \gamma) \longmapsto (\chi''; \gamma),$$

$$\chi'' = (\gamma - \alpha_{m_1}^{(1)}, \dots, \gamma - \alpha_1^{(1)}; \dots; \gamma - \alpha_{m_n}^{(n)}, \dots, \gamma - \alpha_1^{(n)}).$$

The main idea is to take a pair $(\chi; \gamma)$ such that the structure of representations of $\mathcal{P}_{\Gamma,\chi,\gamma}$ is known and to apply the functors S and T to construct the whole series of algebras which have the same structure of representations as the algebra we started with.

To make a use of this technique, we first study the evolution of the pair $(\chi; \gamma)$ under the action of the Coxeter functors. In the general case, for an arbitrary graph Γ the formulas of the evolution could be complicated, but for the case where Γ is an extended Dynkin graph the results of [9] give an explicit formula for powers of the functor $(ST)^{k_{\Gamma}}$.

Let $\omega(\chi)$ be a positive functional on the set of characters. We say that $\omega(\chi)$ is an invariant functional if the following conditions holds:

$$S: (\chi; \omega(\chi)) \longmapsto (\chi'; \omega(\chi')),$$

$$T: (\chi; \omega(\chi)) \longmapsto (\chi''; \omega(\chi'')).$$

The results [9] prove that if Γ is an extended Dynkin graph, then there is only one invariant functional,

$$\begin{split} \omega_{\tilde{D}_4}(\chi) &= \frac{1}{2}(\alpha_1^{(1)} + \alpha_1^{(2)} + \alpha_1^{(3)} + \alpha_1^{(4)}),\\ \omega_{\tilde{E}_6}(\chi) &= \frac{1}{3}(\alpha_1^{(1)} + \alpha_2^{(1)} + \alpha_1^{(2)} + \alpha_2^{(2)} + \alpha_1^{(3)} + \alpha_2^{(3)}),\\ \omega_{\tilde{E}_7}(\chi) &= \frac{1}{4}(\alpha_1^{(1)} + \alpha_2^{(1)} + \alpha_3^{(1)} + \alpha_1^{(2)} + \alpha_2^{(2)} + \alpha_3^{(2)} + 2\alpha_1^{(3)}),\\ \omega_{\tilde{E}_8}(\chi) &= \frac{1}{6}(\alpha_1^{(1)} + \alpha_2^{(1)} + \alpha_3^{(1)} + \alpha_4^{(1)} + \alpha_5^{(1)} + 2\alpha_1^{(2)} + 2\alpha_2^{(2)} + 3\alpha_1^{(3)}). \end{split}$$

Recall that in the case where $\gamma = \omega_{\Gamma}(\chi)$, the algebras $\mathcal{P}_{\Gamma,\chi,\omega_{\Gamma}(\chi)}$ are *PI*-algebra (see [5]) and their irreducible representations are of dimensions not greater than 2, 3, 4, and 6 for the graphs \tilde{D}_4 , \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 , respectively.

Put $p_{\Gamma} = 2, 3, 4, 6$ for $\Gamma = \tilde{D}_4$, \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 , respectively. The evolution of the pair $(\chi; \gamma)$ under the action of powers of $(ST)^{p_{\Gamma}(p_{\Gamma}-1)}$ functor could be written as follows.

Theorem 2. (see [9]). Let Γ be an extended Dynkin graph. Then the following formula holds:

(1)
$$(ST)^{p_{\Gamma}(p_{\Gamma}-1)k}(\chi;\gamma) = (\chi - kp_{\Gamma}(\omega_{\Gamma}(\chi) - \gamma)\chi_{\Gamma};\gamma - kp_{\Gamma}^{2}(\omega_{\Gamma}(\chi) - \gamma)),$$

where χ_{Γ} is a special character on Γ (see [10]).

Applying the functor (ST) to (1) we can obtain the evolution of the pair $(\chi; \gamma)$ under the action of an arbitrary power $k \in \mathbb{N}$ of $(ST)^k$ (in what follows we denote by $(\chi(k); \gamma(k))$ the image of the pair $(\chi; \gamma)$ under the action of the functor $(ST)^k$). **Proposition 1.** The action of the functor $(ST)^k$ on the pair $(\chi; \gamma)$ could be written in the following way:

(2)
$$(ST)^{k}(\chi;\gamma) = (f_{1,k}(\chi) - (\omega_{\Gamma}(\chi) - \gamma)f_{2,k}(\chi_{\Gamma});\psi_{1,k} - (\omega_{\Gamma}(\chi) - \gamma)\psi_{2,k})$$

where the characters $f_{1,k}(\chi)$ and $f_{2,k}(\chi_{\Gamma})$, and the numbers $\psi_{1,k}$ and $\psi_{2,k}$ satisfy the following properties:

- (i) if $k_1 \equiv k_2 \pmod{p_{\Gamma}(p_{\Gamma}-1)}$, then $f_{1,k_1}(\chi) = f_{1,k_2}(\chi)$ and $\psi_{1,k_1} = \psi_{1,k_2}$;
- (ii) the components of $f_{2,k}(\chi_{\Gamma})$ and the numbers $\psi_{2,k}$ are defined in the following way:

$$f_{2,k}(\chi_{\Gamma})_i^{(j)} = \left[\frac{(\chi_{\Gamma})_i^{(j)}}{p_{\Gamma} - 1}k\right], \quad \psi_{2,k} = \left[\frac{p_{\Gamma}}{p_{\Gamma} - 1}k\right];$$

(iii)
$$f_{1,p_{\Gamma}(p_{\Gamma}-1)k} = \chi$$
, $f_{2,p_{\Gamma}(p_{\Gamma}-1)k} = kp_{\Gamma}\chi_{\Gamma}$, $\psi_{1,k} = \gamma$, and $\psi_{2,k} = kp_{\Gamma}^2$

Proof. Make a direct calculation using formula (1).

Remark 1. Property (i) means that the orbits of $f_{1,0}(\chi)$ and $\psi_{1,0}$ under the action of the functor (ST) is finite and its length equals $p_{\Gamma}(p_{\Gamma}-1)$. The formulas for the characters $f_{1,k}$ and the numbers $\psi_{1,k}$ are complicated (unlike for the characters $f_{2,k}(\chi_{\Gamma})$ and the numbers $\psi_{2,k}$) and we do not give a list of their evolutions (this list contains 30 items in the case where $\Gamma = \tilde{E}_8$). Nevertheless, using (1) one can compute their values.

3. Structure properties of the set $\Sigma_{\Gamma,\chi}$

Definition 1. Let $\pi : \mathcal{P}_{\Gamma,\chi,\gamma} \to L(\mathcal{H})$ be a finite dimensional *-representation on some Hilbert space \mathcal{H} . We call a vector d a generalized dimension of π , which is defined as follows:

$$d_0 = \dim(\mathcal{H}), \quad d_i^{(j)} = \dim(\operatorname{Im}(\pi(p_i^{(j)}))), \quad j = 1, \dots, n, \quad i = 1, \dots, m_j.$$

One can extend the action of the functors S and T to the set of generalized dimensions (see for example [3]).

Lemma 2. The sets $\Sigma_{\Gamma,\chi}$ satisfy the following properties:

(i)
$$\Sigma_{\Gamma,\chi} \subset \left[0; \sum_{j=1}^{n} \chi_{m_j}^{(j)}\right],$$

(ii) $\Sigma_{\Gamma,\chi} \ni \sum_{j \in J} \chi_{m_j}^{(j)}, \quad J \subset \{1, \dots, n\}$

Proof. Let us, for example, prove property (*ii*). It is clear that in this case, $P_{m_j}^{(j)} = I$, if $j \in J$, and $P_i^{(j)} = 0$, if $j \in J$, $i \neq m_j$ or $j \notin J$, $i \in 1, \ldots, m_j$, form a representation of $\mathcal{P}_{\Gamma,\chi,\gamma}$.

If knowing the set $\Sigma_{\Gamma,\chi} \cap [0, \omega_{\Gamma}(\chi)]$, one can restore the whole set $\Sigma_{\Gamma,\chi}$, since the functor S establishes a bijective correspondence between the set $\Sigma_{\Gamma,\chi} \setminus [0, \omega_{\Gamma}(\chi)]$ and the set $\Sigma_{\Gamma,\chi'} \cap [0, \omega_{\Gamma}(\chi'))$.

According to Lemma 1, the set $\Sigma_{\tilde{D}_4,\chi}$ is infinite if and only if all components of the character χ satisfy the condition $\chi_i < \frac{\alpha}{2}$ (in other words, this means that $\chi_i < \omega_{\tilde{D}_4}(\chi)$). Let us study a similar question for all extended Dynkin graphs.

Let χ_i be the *i*-th component of the character χ and χ'_i the corresponding component of the character χ' obtained by applying the functor S to the pair (χ, γ) .

Theorem 3. Let Γ be an extended Dynkin graph. The set $\Sigma_{\Gamma,\chi}$ is infinite if and only if all components of the character satisfy the two conditions $\chi_i < \omega_{\Gamma}(\chi)$ and $\chi'_i < \omega_{\Gamma}(\chi')$.

201

Proof. We prove this theorem in several steps. At first we show that the conditions $\chi_i < \omega_{\Gamma}(\chi)$ and $\chi'_i < \omega_{\Gamma}(\chi')$ are both necessary for the set $\Sigma_{\Gamma,\chi}$ to be infinite.

Lemma 3. If at least one component of the character χ or the character χ' satisfies the condition $\chi_i \geq \omega_{\Gamma}(\chi)$ or $\chi'_i \geq \omega_{\Gamma}(\chi')$, then the set $\Sigma_{\Gamma,\chi}$ is finite.

Proof. It is not hard to check that the projection corresponding to a component of χ that satisfies the condition is equal to 0 or to I in a representation. Hence, the set $\Sigma_{\Gamma,\chi}$ has the same structure as the set $\Sigma_{\tilde{\Gamma},\chi}$, where $\tilde{\Gamma}$ is a proper subgraph of Γ . Since the set $\Sigma_{\Gamma,\chi}$ is always finite if Γ is a Dynkin graph (see [7]), the set $\Sigma_{\Gamma,\chi}$ is also finite.

Remark 2. Conditions $\chi_i < \omega_{\Gamma}(\chi)$ and $\chi'_i < \omega_{\Gamma}(\chi')$ are equivalent if $\Gamma = \tilde{D}_4$, but are not, generally speaking, if $\Gamma \neq \tilde{D}_4$. For example, consider the character $\chi = (5, 6; 7, 8; 8, 9)$ on the graph $\Gamma = \tilde{E}_6$. All components of χ satisfy $\chi_i < \omega_{\tilde{E}_6}(\chi)$ but, for the corresponding character $\chi' = (1, 6; 1, 8; 1, 9)$, they do not.

To prove that the conditions $\chi_i < \omega_{\Gamma}(\chi)$ and $\chi'_i < \omega_{\Gamma}(\chi')$ are sufficient, we will consider a special procedure (e.g., for $\Gamma = \tilde{E}_6$) which allows to build infinite series in $\Sigma_{\Gamma,\chi}$ with the limit point $\omega_{\Gamma}(\chi)$.

Let $\Gamma = \tilde{E}_6$ and the latter inequalities hold. Consider the sets

$$A_{\chi_1^{(j)}} = \{ (f_{1,k}(\chi))_1^{(j)} | k = 1, \dots, p_{\tilde{E}_6}(p_{\tilde{E}_6} - 1) = 6 \}.$$

which are the sets of orbits of the components $f_{1,0}(\chi)_1^{(j)}$ under the action of the functor (ST), and consider the set

$$A = \bigcup_{j=1}^3 A_{\chi_1^{(j)}}.$$

Put $a = \min A$ and let l and m be such that $(f_{1,m}(\chi))_l = a$. Consider the sequence $\gamma_n = \omega_{\tilde{E}_6}(\chi) - \frac{a}{\varphi_n}$, where $\varphi_n = (f_{2,p_{\tilde{E}_6}(p_{\tilde{E}_6}-1)n+m}(\chi_{\tilde{E}_6}))_l) = \left[\frac{6n+m}{2}\right]$, and $n \in \mathbb{N}$.

Lemma 4. The algebra $\mathcal{P}_{\tilde{E}_{6,\chi,\gamma_n}}$ has a representation for every natural n.

Proof. Fix $n \in \mathbb{N}$ and apply the functor $(ST)^{6n+m-2}$ to the pair $(\chi; \omega_{\tilde{E}_6}(\chi) - \frac{a}{\varphi_n})$. To check that this action is correct, we have to show that, at each step $k \leq 6n + m - 2$, we will get the pair $(\chi(k); \gamma(k))$, where $\gamma(k)$ and all components of the $\chi(k)$ are positive. Indeed, consider, for example, the component $\chi(k)_i^{(j)}$ at the step $k \leq 6n + m - 2$. Using formula (2) we get

$$\chi(k)_i^{(j)} = (f_{1,k \mod 6}(\chi))_i^{(j)} - (f_{2,k}(\chi_{\tilde{E}_6}))_i^{(j)} \frac{a}{\varphi_n} \ge a \left(1 - \left[\frac{k}{2}\right] \left[\frac{6n+m}{2}\right]^{-1}\right) \ge 0.$$

To complete the proof, it remains to note that $\chi(6n+m)_l = 0$, hence the corresponding component $\chi(6n+m-2)_l = \gamma(6n+m-2)$. According to Lemma 2, the algebra $\mathcal{P}_{\tilde{E}_6,\chi(6n+m-2),\gamma(6n+m-2)}$ has a representation.

Notice that the same procedure was used to build infinite series in the case where $\Gamma = \tilde{D}_4$ (see Lemma 1). This procedure could be slightly modified for the cases of $\Gamma = \tilde{E}_7$ and $\Gamma = \tilde{E}_8$, hence the theorem holds.

An interesting question is when there exists a *-representation of the algebras $\mathcal{P}_{\Gamma,\chi,\gamma}$ in the case where $\gamma = \omega_{\Gamma}(\chi)$. If $\Gamma = \tilde{D}_4$, this question was studied in [6] and the answer is as follows: a representation exists if all components of the character χ satisfy the condition $\chi_i < \omega_{\tilde{D}_4}(\chi)$. A similar answer appears to be correct for all extended Dynkin graphs. **Corollary 2.** (A representation in the case where $\gamma = \omega_{\Gamma}(\chi)$) Let Γ be an extended Dynkin graph, and χ be a character on Γ such that the conditions of Th. 3 are satisfied. Then there is a representation of the algebra $\mathcal{P}_{\Gamma,\chi,\omega_{\Gamma}(\chi)}$

Proof. Since the conditions of Theorem 3 are satisfied, there exists a series in $\Sigma_{\Gamma,\chi}$ with the limit point $\omega_{\Gamma}(\chi)$. By Shulman's theorem (see [8]) the sets $\Sigma_{\Gamma,\chi}$ are closed, therefore, the set $\Sigma_{\Gamma,\chi}$ contains the point $\omega_{\Gamma}(\chi)$.

Remark 3. Using the previous corollary one can determine if there is a *-representation of $\mathcal{P}_{\Gamma,\chi,\omega_{\Gamma}(\chi)}$ for a fixed character χ . Indeed, if the conditions of Theorem 3 are satisfied, then there exists a representation, if not we construct a proper graph by deleting vertices where the components of χ do not satisfy the desired conditions. Since we know an exact answer for all proper subgraphs of extended Dynkin graphs, we can determine whether there is a representation.

Theorem 4. Let Γ be an extended Dynkin graph. If the set $\Sigma_{\Gamma,\chi}$ is infinite, then it contains the only limit point.

Proof. Let us fix $\gamma < \omega_{\Gamma}(\chi)$ and apply the functor $(ST)^k$ to the pair $(\chi; \gamma)$. Using formulas (2) we see that there exists $k < \infty$ such that one of three following situations can occur (and all components of the character $\chi(\tilde{k})$ and $\gamma(\tilde{k})$, $\tilde{k} < k$ are positive):

(a) $\gamma(k) = 0$. In this case there exists a *-representation of the algebra $\mathcal{P}_{\Gamma,\chi(k),\gamma(k)}$ with the generalized dimension d(k) defined by

$$d(k)_0 = 0, \ d(k)_i^{(j)} = 0.$$

(b) $\chi(k)_1^{(j)} = \gamma(k)$, for $j \in J \subset \{1, \ldots, n\}$. In this case, there exists a *-representation of the algebra $\mathcal{P}_{\Gamma,\chi(k),\gamma(k)}$ with the generalized dimension d(k) defined by

$$\begin{split} d(k)_0 &= 1, \ d(k)_1^{(j)} = 1, & \text{if } j = m, \\ d(k)_i^{(j)} &= 0, & \text{if } j \in J \text{ and } j \neq m, \\ d(k)_i^{(j)} &= 0, & \text{if } i = 1, \ j \notin J \text{ or } i \neq 1 \end{split}$$

where $m = \min J$.

(c) $\chi(k)_i^{(j)} > \gamma(k)$ for $j \in J' \subset \{1, ..., n\}$ and $i \in J'' \subset \{1, ..., m_j\}$. In this case, we construct a new graph $\tilde{\Gamma}$ by deleting vertices from G that correspond to the sets J' and J'' (the branch from J' and vertex form J''). Since we know the exact structure of the set $\Sigma_{\tilde{\Gamma}, \tilde{\chi}}$ (see [7]), where $\tilde{\chi}$ is the restriction of $\chi(k)$ to $\tilde{\Gamma}$, we can determine whether $\gamma(k)$ lies in $\Sigma_{\tilde{\Gamma}, \tilde{\chi}}$, and if the latter is true, to build a corresponding vector of the generalized dimension d(k).

Applying the above procedure rule to each pair $(\chi; \gamma) \in \Sigma_{\Gamma}$, $\gamma < \omega_{\Gamma}(\chi)$ we get a pair (k; d(k)), which means that we decompose the set

$$\Sigma_{\Gamma,\chi} \cap [0, \omega_{\Gamma}(\chi)] = \bigcup_{k,d} \Sigma_{k,d},$$

where the index d ranges over all possible generalized dimensions and $k = 0, \ldots, p_{\Gamma}(p_{\Gamma} - 1) - 1$ (indeed according to (2) the functor (ST) acts cyclically, hence, in order to describe the sets $\Sigma_{\Gamma,\chi}$, we can take into consideration all possible vectors of the generalized dimensions along one cycle).

Lemma 5. The index d ranges over a finite number of possible generalized dimensions.

Proof. Each d_i corresponds to the case (a), (b) or (c). It is clear that in the cases (a), (b), the number of different generalized dimension is finite. In the case where $\tilde{\Gamma}$ is a proper subgraph of the extended Dynkin graph (see [7]), the number of different generalized

KOSTYANTYN YUSENKO

dimensions is also finite, hence this proves the case where d_i corresponds to (c) and the lemma holds.

Lemma 6. The sets $\Sigma_{k,d}$, $k \in \{0, \ldots, p_{\Gamma}(p_{\Gamma}-1)-1\}$ are either finite or have the only limit point $\omega_{\Gamma}(\chi)$.

Proof. Direct calculation using (2).

Now the theorem is an obvious corollary of Lemma 2 and Lemma 3.

Remark 4. The previous theorem gives an exact algorithm for describing the set $\Sigma_{\Gamma,\chi}$, but it turns out to be combinatorially hard to get explicit formulas for the extended Dynkin graph $\Gamma \neq \tilde{D}_4$ (the case $\Gamma = \tilde{D}_4$ is simpler, and a complete description was done in [11] and is given in Section 1).

Acknowledgments. The author is grateful to his supervisor V. L. Ostrovskyi for constant attention to this work.

References

- William Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. 37 (2000), no. 3, 209–249.
- Yu. S. Samoilenko, M. V. Zavodovsky, Theory of operators and involutive representation, Ukr. Math. Bull. 1 (2004), no. 4, 537–552.
- S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, On sums of projections, Funct. Anal. Appl. 36 (2002), no. 3, 182–195.
- M. A. Vlasenko, A. S. Mellit, and Yu. S. Samoilenko, On algebras generated with linearly dependent generators that have given spectra, Funct. Anal. Appl. 39 (2005), no. 3, 14–27.
- Anton Mellit, Certain Examples of Deformed Preprojective Algebras and Geometry of Their *-Representations, arXiv:math.RT/0502055.
- A. A. Kyrychenko, On linear combinations of orthoprojections, Uch. Zapiski TNU 54 (2002), no. 2, 31–39.
- Stanislav Krugljak, Stanislav Popovych, Yurii Samoilenko, The spectral problem and *representations of algebras associated with Dynkin graphs, J. Algebra Appl. 4 (2005), no. 6, 761–776.
- V. S. Shulman, On representations of limit relations, Methods Funct. Anal. Topology 7 (2001), no. 4, 85–86.
- V. L. Ostrovskyi, On *-representations of a certain class of algebras related to a graph, Methods Funct. Anal. Topology 11 (2005), no. 3, 250–256.
- V. L. Ostrovskyi, Special characters on star graphs and representations of *-algebras, arXiv:math.RA/0509240.
- 11. K. A. Yusenko, On quadruples of projections connected with linear equation, Ukr. Math. J. (to appear)

INSTITUTE OF MATHEMATICS, NATIONAL ACADEMY OF SCIENCES OF UKRAINE, 3 TERESHCHENKIVS'KA, KYIV, 01601, UKRAINE

E-mail address: kay@imath.kiev.ua

Received 16/01/2006

204