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BORG-TYPE THEOREMS FOR GENERALIZED JACOBI MATRICES
AND TRACE FORMULAS

M. S. DEREVYAGIN

Abstract. The paper deals with two types of inverse spectral problems for the
class of generalized Jacobi matrices introduced in [9]. Following the scheme proposed
in [5], we deduce analogs of the Hochstadt–Lieberman theorem and the Borg theorem.
Properties of a Weyl function of the generalized Jacobi matrix are systematically used
to prove the uniqueness theorems. Trace formulas for the generalized Jacobi matrix
are also derived.

1. Introduction

In this paper we consider two types of inverse spectral problems for a class of gen-
eralized Jacobi matrices associated with finite sequences of polynomials and numbers.
Recall from [9] that a sequence of monic real polynomials pj of degree kj (j = 0, . . . , N),
a sequence of positive numbers {bj}N−1

j=0 , and a set of numbers εj = ±1 (j = 0, . . . , N)
define the following tridiagonal block matrix

(1.1) H =


A0 B̃0 0

B0
. . . . . .
. . . . . . B̃N−1

0 BN−1 AN

 ,

where Aj is the companion matrix for the polynomial pj (see [17]), the rectangular
matrices Bj and B̃j are defined by the numbers kj , kj+1, εj , εj+1, bj (see (2.1) below).
The matrix H is called a generalized Jacobi matrix associated with the sequences of
polynomials {εjpj}N

j=0 and numbers {bj}N−1
j=0 . If each polynomial pj has degree kj = 1

and εj = 1 (j = 0, . . . , N) then the matrix H is a classical Jacobi matrix, that is, a
tridiagonal real symmetric matrix. In general case, the generalized Jacobi matrix H
defines a simple symmetric operator in a space with an indefinite inner product. As is
known (see for instance [17]), a matrix defines a simple operator whenever its minimal
polynomial coincides with the characteristic polynomial. So, denote by σ(H) the set of
all eigenvalues of the matrix H with the convention that each eigenvalue is repeated as
often as its algebraic multiplicity. The spectral theory of generalized Jacobi matrices
associated with sequences of polynomials and positive numbers was studied in [9] (see
also [20]).

The first type of inverse spectral problems in question originates from the following
theorem of H. Hochstadt and B. Lieberman [16]: if the potential q(x) of a Sturm–Liouville
problem is given over the interval (1/2, 1) then knowing the spectrum alone is sufficient for
determining q(x) on the interval (0, 1/2). A discrete version of the Hochstadt–Lieberman
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theorem has been obtained by H. Hochstadt [15]. Namely, it is proved that the classical
Jacobi matrix

J =


a0 b0 0

b0
. . . . . .
. . . . . . bN−1

0 bN−1 aN

 (aj ∈ R, bj > 0)

is uniquely determined by its entries a0, . . . , a[(N−1)/2], b0, . . . , b[(N−2)/2] (where [x] de-
notes the greatest integer less than or equal to x) and its spectrum σ(J). Moreover,
B. Simon and F. Gesztesy [5] have extended the result in the following way: if c0 =
a0, c1 = b0, . . . , c2N−1 = bN−1, c2N = aN then any j ∈ {1, . . . , N + 1} eigenvalues and
cj , . . . , c2N uniquely determine c0, . . . , cj−1, that is, the matrix J . In the present paper a
similar result for generalized Jacobi matrices is proved. To formulate this in brief, let us
consider a single sequence of entries C0 = A0, C1 = B̃0, . . . , C2N−1 = B̃N−1, C2N = AN

of the generalized Jacobi matrix H. Roughly speaking, we will show that the subset of
the spectrum σ(H) and Cj , . . . , C2N uniquely determine C0, . . . , Cj−1. It is natural to
refer to such problems as inverse problems with mixed given data.

The second type of inverse spectral problems to be studied in the paper goes back to
Borg’s famous theorem [3] (see also [21]) that the spectra of two boundary value problems
of a regular Schrödinger operator on (0, 1) uniquely determine the potential. Analogs of
this result for a finite classical Jacobi matrix were considered in [1], [13], [14] (see also [4],
where a mechanical interpretation of such analogs is given). A straightforward analog
says that the eigenvalues λ0, . . . , λN of the matrix J and the eigenvalues λ0(τ), . . . , λN (τ)
of its rank one perturbation J(τ) ( 6= J , τ ∈ R), having the form

J(τ) = J + τ (·, e) e, e = (δ0i)N
i=0,

uniquely determine J and τ . A version of the Borg theorem for generalized Jacobi ma-
trices to be proved in the paper is following: the spectrum σ(H) of the generalized Jacobi
matrix H and the spectrum σ(H(τ)) of its rank one perturbation uniquely determine H
and τ .

In the present paper we prove the uniqueness results by using the scheme proposed
in [5]. The scheme is based on properties of the Weyl function of H (see [11], [12], [23]).
More precisely, we essentially use a continued fraction expansion of the Weyl function.
With this machinery available, we obtain trace formulas for generalized Jacobi matrices.
In addition, we stress that our results can be viewed as uniqueness theorems for the
underlying second order difference equation with nonlinear dependence on the spectral
parameter,

(1.2) b̃j−1yj−1 + bjyj+1 = pj(λ)yj (j = 0, . . . , N).

It should be remarked that three-term recurrence relations similar to (1.2) occur in
indefinite moment problems [9] and the Pade approximation theory [22] and the theory
of formal orthogonal polynomials [28].

A standard approach via orthogonal polynomials to inverse spectral problems for clas-
sical Jacobi matrices is given in [2]. An adaptation of this approach to generalized Jacobi
matrices was presented by Krĕın and Langer (see [20]). The relation between classical Ja-
cobi matrices and boundary problems for difference equation and inverse problems were
considered in Atkinson’s book [1]. We remark in conclusion that using transformation
operators technique M. M. Malamud has recently obtained analogs of the Borg theorem
and the Hochstadt–Liemerman theorem for matrix Sturm–Liouville operators [25] as well
as for systems of ordinary differential equations on a finite interval [24].

The main results of the present paper were announced in [8].
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2. Generalized Jacobi matrices and underlying difference equations

We begin with a precise definition of a generalized Jacobi matrix associated with
sequences of polynomials and positive numbers. Let p(λ) = pkλ

k + · · · + p1λ + p0 be
a monic real scalar polynomial of degree k. Let us associate to the polynomial p its
symmetrization operator Ep and the companion matrix Lp given by

Ep =

p1 . . . pk

... ·
pk 0

 , Lp =


0 . . . 0 −p0

1 0 −p1

. . .
...

0 1 −pk−1

 .

Definition 2.1. ([9]). Let pj be real monic polynomials of degree kj,

pj(λ) = λkj + p
(j)
kj−1λ

kj−1 + · · ·+ p
(j)
1 λ+ p

(j)
0 ,

and let εj = ±1 (j = 0, . . . , N), bj > 0, b̃j := εjεj+1bj (j = 0, . . . , N − 1). The
tridiagonal block matrix H of the form (1.1), where Aj = Lpj and kj+1 × kj matrices
Bj and kj × kj+1 matrices B̃j are given by

(2.1) Bj =

0 . . . bj
. . . . . . . . . .
0 . . . 0

 , B̃j =

0 . . . b̃j
. . . . . . . . . .
0 . . . 0

 (j = 0, . . . , N − 1)

will be called a generalized Jacobi matrix associated with the sequences of polynomials
{εjpj}N

j=0 and numbers {bj}N−1
j=0 .

Let n+ 1 =
N∑

j=0

kj be the total number of rows in H. Define an (n+1)×(n+1) matrix

G by the equality

G = diag(G0, . . . , GN ), Gj = εjE
−1
pj

(j = 0, . . . N).

We denote by `2[0,n](G) the space of (n+ 1) vectors with the inner product

〈x, y〉 = (Gx, y)`2[0,n]
(x, y ∈ `2[0,n]).

Let us set n0 = 0, nj =
∑j−1

i=0 ki (j = 1, . . . , N + 1). It will be convenient to define a
standard basis in `2[0,n](G) by the equalities

ej,k = {δl,nj+k}n

l=0
(j = 0, . . . , N ; k = 0, . . . , kj − 1), e := e0,0.

Proposition 2.2. ([9]). A generalized Jacobi matrix H defines a simple symmetric
operator in `2[0,n](G), that is,

〈Hx, y〉 = 〈x,Hy〉 , x, y ∈ `2[0,n](G).

Setting b̃−1 = bN = 1, define polynomials of the first kind (cf. [20]), Pj(λ), as solutions
uj = Pj(λ) of the second order difference equation

(2.2) b̃j−1uj−1 − pj(λ)uj + bjuj+1 = 0 (j = 0, . . . , N)

with the initial conditions

(2.3) u−1 = 0, u0 = 1.

It follows from (2.2) and (2.3) that Pj is a polynomial of degree nj with the leading co-
efficient (b0 . . . bj−1)−1. Moreover, denoting by H[j,m] the submatrix of H corresponding
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to the basis vectors {ei,k}i=j,...,m
k=0,...,ki−1 (0 ≤ j ≤ m ≤ N), we get the following connec-

tion between the polynomials of the first kind and the shortened Jacobi matrices H[0,j],
j ∈ {0, . . . , N}.

Proposition 2.3. ([9]). The polynomials Pj can be found by the formulas

(2.4) Pj+1(λ) = (b0 . . . bj)−1 det(λ−H[0,j]) (j = 0, . . . , N).

Let us extend the system of polynomials {Pj(λ)}N
j=0 in the following way:

(2.5) Pj,k(λ) = λkPj(λ) (j = 0, . . . , N ; k = 0, . . . , kj − 1).

The system (2.5) gives us the possibility to rewrite the Cauchy problem (2.2), (2.3) in
the matrix form

(2.6) P(λ)(λ−H) = (0, . . . , 0, bNPN+1(λ)),

where P(λ) = (P0,0(λ), . . . , P0,k0−1(λ), . . . , PN,0(λ), . . . , PN,nN−1(λ)). Another impor-
tant system of polynomials {ψj}N+1

j=−1 is defined as a solution of the difference equa-
tion (2.2) by choosing the initialization

(2.7) uN+1 = 0, uN = 1.

The polynomials ψj are just like the polynomials Pj but run from the other end and, so,
the following statement holds.

Proposition 2.4. The polynomials ψj can be found by the formulas

(2.8) ψj(λ) = (̃bN−1 . . . b̃j)−1 det(λ−H[j+1,N ]) (j = −1, . . . , N − 1).

Proof. The formulas (2.8) immediately follow from the relations (2.2), (2.7) by applying
the Laplace theorem to det(λ−H[j+1,N ]). �

Proposition 2.5. ([9]). The polynomials ψj (Pj) and ψj+1 (Pj+1) have no common
zeros.

Proof. Suppose that the polynomials ψj and ψj+1 have a common zero λ0, i.e., ψj(λ0) =
ψj+1(λ0) = 0. Then, due to (2.2), we have that ψi(λ0) = 0 (i = j, . . . , N + 1). This
is contrary to (2.7). The contradiction proves the desired assertion. The proof for the
polynomials Pj and Pj+1 is in line with the foregoing. �

Further, extending the system {ψj}N
j=0 by the equalities

ψj,k(λ) = λkψj(λ) (j = 0, . . . , N ; k = 0, . . . , kj − 1),

one gets the following form of the Cauchy problem (2.2), (2.7):

(2.9) Ψ(λ)(λ−H) = (0, . . . , 0︸ ︷︷ ︸
k0−1

, ψ−1(λ), 0, . . . , 0) =: Φ(λ),

where Ψ(λ) = (ψ0,0(λ), . . . , ψ0,k0−1(λ), . . . , ψN,0(λ), . . . , ψN,nN−1(λ)).
To conclude this section, we remark that by virtue of (2.6) (or (2.9)) the spectrum

of H coincides with the spectrum of the second order difference equation (2.2) with the
boundary conditions

(2.10) u−1 = uN+1 = 0.

So, the spectral problemHu = λu is a linearized form of the boundary problem (2.2), (2.10)
with nonlinear dependence on the spectral parameter.
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3. Boundary triplets and abstract Weyl functions

Let H = `2[0,n](G) be the Pontryagin space introduced in the previous section. Let
S be a nondensely defined symmetric operator in the space H such that its graph is
represented as follows:

(3.1) grS = {{f,Hf} : f 〈⊥〉 e, f ∈ H},
where H is a generalized Jacobi matrix associated with sequences of polynomials and
numbers. In the sequel, we will need some elementary facts from the theory of linear
relations. If S1 and S2 are linear relations in H, that is, linear subspaces of H2, then a
linear combination α1S1 + α2S2 is defined in the following manner:

α1S1 + α2S2 = {{f, α1f
′ + α2g

′} : {f, f ′} ∈ S1, {f, g′} ∈ S2}.
The inverse linear relation of S is the linear relation S−1 = {{f ′, f} : {f, f ′} ∈ S}. The
linear relation I = {{f, f} : f ∈ H} is called the identity relation. The resolvent set ρ(S)
(or the set of regular points) of the linear relation S consists of all points λ ∈ C such that
the linear relation (S − λI)−1 is a bounded linear operator. Denote by S+ the adjoint
linear relation in H defined as follows:

S+ = {{f, f ′} ∈ H2 : 〈f, g′〉H = 〈f ′, g〉H {g, g′} ∈ S}.
By the above definition, it is easy to see that

S+ = {{f,Hf + ce} : f ∈ H, c ∈ C}.
It is convenient to identify an operator with its graph. So, we have the inclusion S ⊂ S+.
The defect subspace Nλ of the operator S is given by

Nλ = ker(S+ − λI) = {f ∈ H : {f, λf} ∈ S+}, N̂λ = {{fλ, λfλ} : fλ ∈ Nλ}.
The numbers n+ := dim Ni and n− := dim N−i are called defect numbers (see [12]). It
can easily be checked that n+ = n−.

Let us recall from [11] definitions of a boundary triplet and a Weyl function of a non-
densely defined symmetric operator S in a Pontryagin space with equal defect numbers
n+ = n− <∞ (see [23] for the definite case).

Definition 3.1. ([11]). A triplet Π = {H,Γ0,Γ1} of a Hilbert space H and two linear
mappings Γi (i = 0, 1) from S+ to H is called a boundary triplet for S+ if the mapping
Γ : f̂ 7→ {Γ0f̂ ,Γ1f̂} from S+ into H⊕H is surjective and the following Green’s identity
holds for every f̂ = {f, f ′}, ĝ = {g, g′} ∈ S+:

〈f ′, g〉H − 〈f, g
′〉H =

(
Γ1f̂ ,Γ0ĝ

)
H
−

(
Γ0f̂ ,Γ1ĝ

)
H
.

Proposition 3.2. ([11]). Let Π = {H,Γ0,Γ1} be a boundary triplet for S+. Then
1) The linear relation S0 = ker Γ0 is a selfadjoint extension of the operator S, i.e.,

S+
0 = S0 and S0 ⊃ S;
2) For any linear bounded selfadjoint operator B from H to H, the linear relation

S̃ = ker(Γ1 +BΓ0) is a selfadjoint extension of the operator S, i.e., S̃+ = S̃ and S̃ ⊃ S.

Definition 3.3. ([11]). The operator-valued function m defined on ρ(S0) by the equality

(3.2) m(λ)Γ0f̂λ = Γ1f̂λ (f̂λ ∈ N̂λ)

is said to be an abstract Weyl function for the operator S corresponding to the boundary
triplet Π = {H,Γ0,Γ1}.
Remark 3.4. The concept of a boundary triplet for a symmetric operator in a Hilbert
space was introduced by V. M. Bruk and A. N. Kochubei (see [6]). The abstract
Weyl function and its intimate relationship to the extension theory were presented by
V. A. Derkach and M. M. Malamud in [11], [12], [23].
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Proposition 3.5. Let S be a symmetric operator in H = `2[0,n](G) defined by (3.1). Then
the triplet Π = {C,Γ0,Γ1} of the space C and the mappings

(3.3) Γ0f̂ = −c, Γ1f̂ = 〈f, e〉 f̂ = {f,Hf + ce} ∈ S+

is a boundary triplet for the linear relation S+. Moreover, the corresponding abstract
Weyl function admits the following representations:

(3.4) m(λ) =
〈
(H − λ)−1e, e

〉
= −ε0

ψ0(λ)
ψ−1(λ)

.

Proof. The surjectivity of the mapping Γ : f̂ 7→ {Γ0f̂ ,Γ1f̂} from S+ into C⊕C is obvious.
Since

〈Hf + ce, g〉 − 〈f,Hg + de〉 = −〈f, e〉 d+ c〈g, e〉,

the corresponding abstract Green’s identity holds. Thus, Π is a boundary triplet for
S+. It is easy to check that fλ = (H − λ)−1e ∈ Nλ and {(H − λ)−1e, λ(H − λ)−1e} =
{(H − λ)−1e,H(H − λ)−1e− e} ∈ N̂λ. Then, according to (3.2) and (3.3), one gets the
first equality in (3.4). In view of (2.9), we have

(3.5) H>Ψ>(λ) = λΨ>(λ)− Φ>(λ).

Since H is a symmetric operator in `2[0,n](G), H = G−1H>G and, so, (3.5) can be
rewritten as follows:

HG−1Ψ>(λ) = λG−1Ψ>(λ)−G−1Φ>(λ),

where G−1Φ>(λ) = ε0 (ψ−1,0(λ)0 . . . 0)>. Therefore, one has G−1Ψ(λ) ∈ Nλ and
{G−1Ψ(λ), λG−1Ψ(λ)} = {G−1Ψ(λ),HG−1Ψ(λ) + ε0ψ−1e} ∈ N̂λ. Combining (3.2)
with (3.3), we claim that

m(λ)(−ε0ψ−1(λ)) =
〈
G−1Ψ(λ), e

〉
= ψ0(λ).

The latter relation implies the second equality in (3.4). �

From now on, following [9] (see also [5]), the Weyl function of S possessing the
form (3.4) will be called the m-function of the generalized Jacobi matrix H.

Before closing this section, we consider the linear relation H(τ) = ker(Γ1 + 1
τ Γ0) to

be used later; here Γ0 and Γ1 are defined by (3.3). From Proposition 3.2 we infer that
H(τ) is a selfadjoint extension of S. Moreover, one obviously gets

(3.6) ker(Γ1 +
1
τ

Γ0) = H + τ 〈·, e〉 e = H(τ).

It is clear that H(τ) is a generalized Jacobi matrix associated with sequences of poly-
nomials and numbers. Moreover, H(τ) is a rank one perturbation of H and, so, its
spectrum can be characterized by the m-function of H. The following assertion giving a
criterion for a point λ to be an eigenvalue of H(τ) in terms of the m-function of H is an
essential ingredient in recovering the generalized Jacobi matrices from two spectra.

Proposition 3.6. A complex number λj(τ) is an eigenvalue of H(τ) of multiplicity rj
iff λj(τ) is a root of the equation τm(λ) + 1 = 0 of multiplicity rj.

Let us sketch the proof. IfH is replaced withH(τ) in the formulas (2.2), (2.7) and (2.8)
then, using the second equality in (3.4), one proves the assertion. For a detailed proof of
a much more general statement we refer the reader to [10, p. 11].
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4. Recovery of a generalized Jacobi matrix from its Weyl function

The aim of this section is twofold. Firstly, we are concerned with a procedure to
reconstruct the generalized Jacobi matrix from its Weyl functions. Secondly, a bond
between the Weyl functions of the submatrices of H is established.

It is appropriate to begin with a definition of an important class of the Weyl functions.
First, however, let us denote by G[j,m] the submatrix of G corresponding to the basis
vectors {ei,k}i=j,...,m

k=0,...,ki−1 (0 ≤ j ≤ m ≤ N).

Definition 4.1. ([9]). Define the function m+(λ, j) by the equality

(4.1) m+(λ, j) =
〈
(H[j,N ] − λ)−1ej,0, ej,0

〉
`2[nj,n](G[j,N])

(j = 0, . . . , N).

Remark 4.2. The vectors ej,k in (4.1) are considered as elements of the space

`2[nj ,n] = span {ei,k|i = j, . . . , N ; k = 0, 1, . . . , ki − 1}.

In view of Proposition 3.5, m(λ) = m+(λ, 0) and m+(λ,N) = − εN

pN (λ) . Clearly,
m+(λ, j) is the m-function of the generalized Jacobi matrix H[j,N ]. So, by virtue of the
formula (3.4) and Proposition 2.4, one has

(4.2) m+(λ, j) = −εj
ψj(λ)

b̃j−1ψj−1(λ)
= −εj

det(λ−H[j+1,N ])
det(λ−H[j,N ])

(j = 0, . . . , N).

Combining (4.2) with (2.2), (2.7), we get the Riccati equation

(4.3) εj
1

m+(λ, j)
+ εjb

2
jm+(λ, j + 1) = −pj(λ) (j = 0, . . . , N − 1).

Proposition 4.3. ([9]). The function m+(λ, j) uniquely determines H[j,N ].

Proof. Due to (4.3), m+(λ, j) admits the following representation as a finite continued
fraction:

(4.4) m+(λ, j) = − εj

pj(λ)−
εjεj+1b

2
j

pj+1(λ) − · · · −
εN−1εNb

2
N−1

pN (λ)
.

Hence, sequences of the polynomials {pi}N
i=j and the numbers {εi}N

i=j , {bi}
N−1
i=j to recover

H[j,N ] are determined. �

Remark 4.4. A continued fraction of the form (4.4) is called a P-fraction. The P-fractions
were presented by A. Magnus in [22]. According to [22] (see also [7]), every real proper
rational function ϕ(6≡ 0) admits P-fraction expansion (4.4). Therefore, such a function
ϕ turns out to be an m-function of a unique generalized Jacobi matrix associated with
the sequences of polynomials and numbers up to a constant factor (see [9]).

Definition 4.5. Define the function m−(λ, j) by the equality

(4.5) m−(λ, j) =
〈
(H[0,j−1] − λ)−1ej−1,0, ej−1,0

〉
`2[0,nj−1](G[0,j−1])

(j = 1, . . . , N + 1).

Remark 4.6. The vectors ej,k in (4.5) are considered as elements of the space

`2[0,nj−1]
= span {ei,k|i = 0, . . . , j − 1; k = 0, 1, . . . , ki − 1}.

Remark 4.7. Let Sj−1 be a nondensely defined symmetric operator in `2[0,nj−1](G[0,j−1])
having the graph

grSj−1 = {{f,H[0,j−1]f} : f 〈⊥〉 , f ∈ `2[0,nj−1](G[0,j−1])}.

Then, by the same reasoning as in Section 2, the function m−(λ, j) is the Weyl function
for Sj−1 corresponding to the boundary triplet Π = {C,Γ0,Γ1}, where

Γ0f̂ = −c, Γ1f̂ = 〈f, ej−1,0〉 f̂ = {f,H[0,j−1]f + cej−1,0} ∈ S+
j−1.
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Precisely the same argument as we have just used for m+(λ, j) yields

(4.6)
m−(λ, j) = −εj−1

Pj−1(λ)
bj−1Pj(λ)

= −εj−1

det(λ−H[0,j−2])
det(λ−H[0,j−1])

(j = 1, . . . , N + 1),

εj
1

m−(λ, j + 1)
+ εjb

2
j−1m−(λ, j) = −pj(λ) (j = 1, . . . , N).

Similarly, m−(λ, j) has the following P-fraction expansion:

(4.7) m−(λ, j) = − εj−1

pj−1(λ)−
εj−1εjb

2
j

pj−2(λ) − · · · −
ε1ε0b

2
0

p0(λ)
.

In analogy with Proposition 4.3, (4.7) leads to the following uniqueness result.

Proposition 4.8. The function m−(λ, j) uniquely determines H[0,j−1].

The following inverse theorem is a slight generalization of the assertion stated in
Remark 4.4.

Theorem 4.9. Let φ(6≡ 0) be a real-valued rational function. Then there exist a symmet-
ric operator S having the form (3.1) and a boundary triplet Π such that the corresponding
Weyl function is proportional to φ.

Proof. Observe that if φ is a real proper rational function the statement is implied by
Remark 4.4 and Proposition 3.5. Now, let φ = g/h be a real improper rational function
(i.e. deg g ≥ deg h). Then one of the rational functions

(4.8) φ1(λ) = −h(λ)
g(λ)

, φ2(λ) =
g(λ)
h(λ)

− c (c = lim
x→+∞

f(x))

is always proper. We already know that the theorem is true for that function. So, one can
construct a symmetric operator S and a boundary triplet Π such that the corresponding
Weyl function is proportional to the proper rational function in (4.8). It remains to note
that if Π = {H,Γ0,Γ1} is a boundary triplet for S+ then the triplets

Π1 = {H,−Γ1,Γ0}, Π2 = {H,Γ0,Γ1 − cΓ0}, c ∈ R \ {0},

are also boundary triplets for S+. �

The following theorem reveals the an implicit relation between m+(λ, j) and m−(λ, j).

Theorem 4.10. Let λk be an eigenvalue of H and let rk be its multiplicity. Then for
any j ∈ {1, . . . , N} the following equalities hold:

(Pj(λ)ψj−1(λ)− Pj−1(λ)ψj(λ))(i)
∣∣∣
λ=λk

= 0 (i = 0, . . . , rk − 1).

Proof. The determinant det(λ−H), by applying the Laplace theorem to its first nj rows,
is reduced to

(4.9) det(λ−H[0,j−1]) det(λ−H[j,N ])− bj−1b̃j−1 det(λ−H[0,j−2]) det(λ−H[j+1,N ]).

Due to (2.4), (2.8) and (4.9), det(λ−H) has the representation

(4.10) det(λ−H) = b0 . . . bj−1b̃j−1 . . . b̃N−1 (Pj(λ)ψj−1(λ)− Pj−1(λ)ψj(λ)) .

Now, the theorem follows from (4.10) and the fact that λk is a root of det(λ − H)
possessing multiplicity rk. �
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5. Uniqueness results for problems with mixed given data

Here we extend the scheme proposed in [5] to prove analogs of the Hochstadt–Lieberman
theorem in the case of the matrices under discussion.

To prepare for the proof, let us examine some elementary properties of rational func-
tions. Recall that a rational function f is a ratio of two relatively prime polynomials
g and h. By a monic rational function we mean a rational function f = g/h, where
the polynomials g and h are monic. Let f1 = g1/h1 and f2 = g2/h2 be two ratio-
nal functions. We will say that f1 and f2 agree on some set Λd = {λ0, . . . , λd−1} =
{λ̃1, . . . , λ̃1︸ ︷︷ ︸

r1

, . . . , λ̃k, . . . λ̃k︸ ︷︷ ︸
rk

} ∈ Cd (here λ̃1, . . . , λ̃k are all the different numbers of Λd and

r1, . . . , rk are the multiplicities of λ̃1, . . . , λ̃k in Λd, respectively) if the following equalities
hold: (

g1(λ)h2(λ)− g2(λ)h1(λ)
)(j)∣∣∣

λ=eλi

= 0 (j = 0, . . . , ri − 1, i = 1, . . . , k).

The subsequent lemmas give sufficient conditions for two rational functions to be
equal.

Lemma 5.1. Assume that f1 =
g1
h1

and f2 =
g2
h2

, where deg g1 = deg g2 and deg h1 =

deg h2. Let d = deg g1 + deg h1.
1) If f1 and f2 agree on Λd+1 then f1 ≡ f2;
2) If f1 and f2 are both monic and they agree on Λd then f1 ≡ f2.

Proof. To prove the first statement, consider the polynomial R(λ) = g1(λ)h2(λ) −
g2(λ)h1(λ). By the assumption, the degree of R is not greater than d. Since f1 and
f2 agree on Λd+1, R(λ) is divisible by R̃(λ) = (λ − λ̃1)r1 . . . (λ − λ̃k)rk . So, we have
degR ≤ d < d + 1 = deg R̃. The latter implies R(λ) ≡ 0. This proves the desired
assertion. The second statement can be proved in the same way as the first one. �

Lemma 5.2. Let f =
g

h
be a rational function. Then, under the assumption of Lemma 5.1,

one has
1) If f1 and f2 agree with f on Λd+1 then f1 ≡ f2;
2) If f1 and f2 are both monic and they agree with f on Λd then f1 ≡ f2.

Proof. Let us consider the polynomials R1(λ) = g(λ)h1(λ) − g1(λ)h(λ) and R2(λ) =
g(λ)h2(λ)− g2(λ)h(λ). Since f1 and f2 agree with f on Λd+1 (or Λd), we see that

(5.1) R
(j)
1 (λ)

∣∣∣
λ=eλi

= 0, R
(j)
2 (λ)

∣∣∣
λ=eλi

= 0 (j = 0, . . . , ri − 1, i = 1, . . . , k).

Fix i ∈ {1, . . . , k}. First, assume that h(λ̃i) 6= 0. Using (5.1) with j = 0, one concludes
that h1(λ̃i) 6= 0 and h2(λ̃i) 6= 0. So, the identities (5.1) yield

(5.2)
(
f1 − f2

)(j)∣∣∣
λ=eλi

= 0.

The equality (5.2) can be rewritten as follows:

(5.3)
(
g1(λ)h2(λ)− g2(λ)h1(λ)

)(j)∣∣∣
λ=eλi

= 0.

On the other hand, if h(λ̃i) = 0 then g(λ̃i) 6= 0. Arguing for the functions f−1, f−1
1 , f−1

2

as above, we again derive (5.3). Finally, Lemma 5.1 completes the proof. �

Now, we are ready to prove the following theorem on unique recovery of a generalized
Jacobi matrix from given mixed data.
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Theorem 5.3. Let H be a generalized Jacobi matrix and let the order n + 1 of H and
the natural number tl := 2

(
n+ 1−

∑N
i=l ki

)
− kl−1 (l ∈ N) be given.

1) If tl ≤ n + 1 then B̃l−1, Al, . . . , B̃N−1, AN and any tl numbers belonging to σ(H)
uniquely determine A0, B̃0, . . . , B̃l−2, Al−1;

2) If tl ≤ n then Al, B̃l, . . . , B̃N−1, AN and any tl + 1 numbers belonging to σ(H)
uniquely determine A0, B̃0, . . . , Al−1, B̃l−1.

Proof. According to (4.6) and Proposition 2.5, the sum of the degrees of the denominator
and the numerator of m−(λ, l) is equal to tl.

1) Let Λtl
be a given subset of σ(H). To be definite, assume that εN = 1. Know-

ing the matrices B̃l−1, Al, . . . , AN enables us to calculate εl and m+(λ, l). Taking
into account (4.2), (4.6) and Theorem 4.10, we may conclude that the monic rational
function −εl−1m−(λ, l) agrees with −(εlbl−1b̃l−1m+(λ, l))−1 on Λtl

. So, by part 2) of
Lemma 5.2, εl−1m−(λ, l) is uniquely determined. Finally, it follows from Proposition 4.8
that m−(λ, l) uniquely determines H[0,l−1], that is, the matrices A0, B̃0, . . . , B̃l−2, Al−1.

2) On account of (4.2), (4.6) and Theorem 4.10, the functions εl−1bl−1b̃l−1m−(λ, l)
and (εlm+(λ, l))−1 agree on the given subset Λtl+1 of σ(H). Therefore, a uniqueness
of εl−1bl−1b̃l−1m−(λ, l) is implied by part 1) of Lemma 5.2. Due to the formula (4.6),
εl−1bl−1b̃l−1m−(λ, l) admits the following asymptotic expansion:

εl−1bl−1b̃l−1m−(λ, l) = −bl−1b̃l−1

λkj−1
+ o

(
1

λkj−1+1

)
, λ = iy, y → +∞.

Now, we use the above asymptotic expansion to determine B̃l−1. In view of Propo-
sition 4.8, εl−1m−(λ, l) uniquely determines the generalized Jacobi matrix H[0,l−1] or,
equivalently, the matrices A0, B̃0, . . . , B̃l−2, Al−1. �

Example 5.4. Let us consider the generalized Jacobi matrix

H =


A0 B̃0 0 0
B0 A1 B̃1 0
0 B1 A2 B̃2

0 0 B2 A3


having the order n + 1. Given are the entries B̃1, A2, B̃2, A3 of H and the spectrum
σ(H) = {λ0, . . . , λn} of H. Then l = 2, k0 = n + 1 − k1 − k2 − k3, and t2 = 2k0 + k1.
Assume that t2 > n + 1, i.e. k0 > k2 + k3. Since the assumptions of Theorem 5.3 are
not satisfied, we want to study the uniqueness of the generalized Jacobi matrix with the
given data. To reconstruct the matrices A0, B̃0, A1, one needs to represent det(λ−H)
in the following form (see (4.6), (4.10) and Proposition 4.8):

(5.4) det(λ−H) = φ1(λ)ψ1(λ)− φ2(λ)ψ2(λ).

Here φ1 and φ2 are real relatively prime polynomials of degree k0+k1 and k0, respectively;
ψ1 and ψ2 are given by (2.8) (degψ1 = k2 + k3, degψ2 = k1 + k2 + k3). Additionally
assuming k0 ≥ k1+k2+k3, we see that for any polynomial φ such that deg φ ≤ max{k0−
k2 − k3, k0 − k1 − k2 − k3} the characteristic polynomial of H is decomposed as follows:

det(λ−H) = (φ1(λ) + φ(λ)ψ2(λ))ψ1(λ)− (φ2(λ) + φ(λ)ψ1(λ))ψ2(λ),

where φ1(λ) + φ(λ)ψ2(λ) and φ2(λ) + φ(λ)ψ1(λ) are real polynomials of degree k0 + k1

and k0, respectively. It suffices to choose φ in the following way:

(5.5) φ1(λj) + φ(λj)ψ2(λj) 6= 0 (j = 0, . . . , n)
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for the polynomials φ1(λ) + φ(λ)ψ2(λ) and φ2(λ) + φ(λ)ψ1(λ) to be relatively prime. In
view of Proposition 2.5, ψ2(λj) 6= 0 (j = 0, . . . , n). Therefore, the polynomial φ ≡ c
satisfies (5.5) for sufficiently large c ∈ R. This shows that the decomposition (5.4) is not
unique. However, every representation (5.4) gives rise to the generalized Jacobi matrix
with the prescribed data: σ(H) and B̃1, A2, B̃2, A3.

6. Trace formulas

Our goal in this section is to derive trace formulas for generalized Jacobi matrices.
The trace formula for a selfadjoint operator in a Hilbert space was first studied in details
by M. G. Krĕın (see [19]). P. Jonas [18] has obtained the trace formula for some class of
nonselfadjoint operators. Notice that the trace formulas considered in the present paper
are particular cases of the Jonas trace formula. However, the proof below is unrelated
to that in [18]. Namely, in our considerations we essentially use the structure of the
matrices in question and, moreover, an explicit form of the trace formulas is given.

Theorem 6.1. Let H be a generalized Jacobi matrix. Then the following formulas hold:

(6.1) trAl
0 = trH l − trH l

[1,N ] (1 ≤ l < k0 + k1)

(6.2) trAk0+k1
0 + (k0 + k1)b0b̃0 = trHk0+k1 − trHk0+k1

[1,N ] .

Proof. Let us consider the function Q given by

(6.3) Q(λ) := ln(−ε0λk0m(λ)),

where ln denotes the principal branch of logarithm, i.e., ln eiφ = ln r + iφ (0 < φ < 2π).
In view of the monodromy theorem, Q is well defined in the exterior of the circle with a
sufficiently large radius and the center at the origin. To obtain (6.1) and (6.2), we find
the asymptotic expansion of Q near λ = ∞ in two ways. Firstly, rewrite the Riccati
equation (4.3) as follows:

(6.4) m(λ) = −ε0
1

p0(λ) + ε0b20m+(λ, 1)
,

where m+(λ, 1) is the m-function of H[1,N ]. Substituting (6.4) into (6.3), one has

(6.5) Q(λ) = ln
(

λk0

p0(λ) + ε0b20m+(λ, 1)

)
= − ln

p0(λ)
λk0

− ln
(

1 + ε0b
2
0

m+(λ, 1)
p0(λ)

)
.

Since p0 is a monic polynomial and m+(λ, 1) is defined by (3.4), we see that

(6.6)
m+(λ, 1)
p0(λ)

= − ε1
λk0+k1

+ o

(
1

λk0+k1

)
(|λ| → +∞).

Let µ1, . . . , µk0 be all the roots of p0 (or, equivalently, the eigenvalues of A0). Then (6.5)
can be rewritten as

(6.7) Q(λ) = −
k0∑

j=1

ln
(
1− µj

λ

)
− ln

(
1 + ε0b

2
0

m+(λ, 1)
p0(λ)

)
.

Now, the Maclaurin formula for y(x) = ln(1 + x) and (6.6), (6.7) yield

(6.8) Q(λ) ∼
∑k0

j=1 µj

λ
+ · · ·+

∑k0
j=1 µ

k0+k1−1
j

(k0 + k1 − 1)λk0+k1−1
+

∑k0
j=1 µ

k0+k1
j + (k0 + k1)ε0ε1b20
(k0 + k1)λk0+k1

as |λ| → +∞. On the other hand, by using (3.4) and (2.8), the m-function is represented
in the form

(6.9) m(λ) = −ε0
∏n

i=k0
(λ− νi)∏n

i=0(λ− λi)
,
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where {νi}n
i=k0

and {λj}n
j=0 are the eigenvalues of H[1,N ] and H, respectively. Combin-

ing (6.9) with (6.3), one arrives at

Q(λ) =
n∑

i=k0

ln
(
1− νi

λ

)
−

n∑
j=0

ln
(

1− λj

λ

)
.

As above, the well-known asymptotic expansion of ln(1 + x) near x = 0 leads to

(6.10) Q(λ) ∼
∑n

j=0 λj −
∑n

i=k0
νi

λ
+ · · ·+

∑n
j=0 λ

k0+k1
j −

∑n
i=k0

νk0+k1
i

(k0 + k1)λk0+k1

as |λ| → +∞. Since for any α, β, γ ∈ N the following equalities hold:

k0∑
j=1

µα
j = trAα

0 ,

n∑
j=0

λβ
j = trHβ ,

n∑
j=k0

νγ
j = trHγ

[1,N ],

comparing (6.10) with (6.8) yields (6.1) and (6.2). �

The trace formulas enable us to derive explicit formulas for the entries of A0, B̃0, B0.
Suppose that the spectra σ(H) and σ(H[1,N ]) are known. To reconstruct A0, it is suffi-
cient to know the coefficients of its characteristic polynomial p0(λ) = λk0 +p

(0)
k0−1λ

k0−1 +

· · ·+p(0)
1 λ+p(0)

0 . Let µ1, . . . , µk0 be all the roots of p0. According to (6.1), one calculates
the following sums

µl
1 + · · ·+ µl

k0
= trAl

0 (1 ≤ l ≤ k0).

Further, Newton’s identities (see [26, the formula (1.2.14)]) imply

trAl
0 + p

(0)
k0−1 trAl−1

0 + · · ·+ p
(0)
k0−l+1 trA0 + lp

(0)
k0−l = 0 (1 ≤ l ≤ k0).

Expressing p(0)
k from the latter system, one arrives at the following recurrence relations:

(6.11) p
(0)
k0−1 = − trA0, . . . , p

(0)
0 = − 1

k0
(trAk0

0 + p
(0)
k0−1 trAk0−1

0 + · · ·+ p
(0)
1 trA0).

So, A0 has just been reconstructed. Finally, b0b̃0 can be obtained from (6.2). Since
b0 > 0 and |b0| = |̃b0|, b0 = |b0b̃0|1/2. Therefore, B0 and B̃0 have been determined.

Generally speaking, the spectra of H and H[1,N ] uniquely determine H. Besides, any
two disjoint sets {λi}n

i=0 and {νi}n
i=k0

of complex numbers turn out to be the spectra
of a unique generalized Jacobi matrix H associated with sequences of polynomials and
numbers and its submatrix H[1,N ], respectively, iff these sets are both symmetric with
respect to R (see [9]). Also, S. M. Malamud has recently obtained necessary and sufficient
conditions for the sequences {λi}n

i=0 and {νi}n
i=1 to be the spectra of a normal (n+ 1)×

(n+ 1)-matrix and its submatrix of order n, respectively (see [26], [27]).

7. Reconstruction of a generalized Jacobi matrix from two spectra

The generalized Jacobi matrix H(τ) defined by (3.6) is a rank one perturbation of H.
In view of Proposition 3.6, the spectrum σ(H(τ)) can be found by H and τ . Here we
consider the inverse problem of recovering H and τ from two spectra σ(H) and σ(H(τ)).
Mimicking the scheme considered in [5], it is appropriate to begin with the following
uniqueness result.

Theorem 7.1. The spectrum σ(H) = {λ0, . . . , λn}, any n − k0 + 1 numbers belonging
to σ(H(τ)) = {λ0(τ), . . . , λn(τ)}, and τ ∈ R \ {0} uniquely determine H.
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Proof. According to (3.4), the m-function m of H is represented as follows:

m(λ) = −ε0
g(λ)
h(λ)

,

where g and h are monic polynomials of degree n−k0 +1 and n+1, respectively. Notice
that h(λ) =

∏n
j=0(λ− λj) is known. Without loss of generality, it can be assumed that

ε0 = 1. Let λ̃1(τ), . . . , λ̃k(τ) be a set of all the different numbers belonging to a given
subset of σ(H(τ)) and let r1, . . . , rk be its multiplicities, respectively. So, r1 + · · ·+ rk =
n − k0 + 1. Proposition 3.6 gives the possibility to calculate the following collection of
jets of g at the points λ̃j(τ)

(7.1) g(λ̃1(τ)), . . . , g(r1−1)(λ̃1(τ)), . . . , g(λ̃k(τ)), . . . , g(rk−1)(λ̃k(τ)).

As is known, the jets (7.1) uniquely determine a monic polynomial g of degree n−k0 +1
by means of the Hermite-Lagrange interpolation formula. Hence, the given data uniquely
determine m. It remains to apply Proposition 3.6. �

Now, we are in a position to formulate the straightforward analog of the Borg result.

Theorem 7.2. The spectra σ(H) and σ(H(τ))(6= σ(H)) uniquely determine H and
τ ∈ R \ {0}.

Proof. In view of definition (3.6), the matrix H(τ) differs from H in the only one entry.
Namely, A0(τ) is given by

A0(τ) =


0 . . . 0 −p(0)

0 + τ

1 0 −p(0)
1

. . .
...

0 1 −p(0)
k0−1

 .

So, the formula (6.11) implies

(7.2) trA0 = trA0(τ), . . . , trAk0−1
0 = trAk0−1

0 (τ), trAk0
0 = trAk0

0 (τ) + k0τ.

Taking into account (6.1) for the matrices H and H(τ), (7.2) yields

(7.3) trH − trH(τ) = 0, . . . , trHk0−1 − trHk0−1(τ) = 0, trHk0 − trHk0(τ) = k0τ.

The identities (7.3) allow us to determine k0 as a number of the first nonvanishing relation.
So, τ is obtained from (7.3). Now, the previous theorem completes the proof. �
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