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FINITE RANK SELF-ADJOINT PERTURBATIONS

S. KUZHEL AND L. NIZHNIK

Abstract. Finite rank perturbations of a semi-bounded self-adjoint operator A are
studied. Different types of finite rank perturbations (regular, singular, mixed sin-
gular) are described from a unique point of view and by the same formula with the
help of quasi-boundary value spaces. As an application, a Schrödinger operator with
nonlocal point interactions is considered.

1. Introduction

Let A be a semibounded self-adjoint operator acting on a separable Hilbert space
H with an inner product (·, ·), and let D(A), R(A), and kerA denote the domain, the
range, and the null-space of A, respectively. Without loss of generality, we will assume
that A ≥ I.

We recall that a self-adjoint operator Ã 6= A acting on H is called a finite rank
perturbation of A if the difference (Ã − zI)−1 − (A − zI)−1 is a finite rank operator on
H for at least one point z ∈ C \ R [11].

If Ã is a finite rank perturbation of A, then the corresponding symmetric operator

(1.1) Asym = A �D= Ã �D, D = {u ∈ D(A) ∩ D(Ã) | Au = Ãu}

arises naturally (here the symbol A �X means the restriction of A onto the set X). This
operator has finite and equal deficiency numbers.

It is important that the operator Asym can uniquely be recovered from its defect
subspace N = H	R(Asym) and the initial operator A. One has namely,

(1.2) Asym = A �D(Asym), D(Asym) = {u ∈ D(A) | (Au, η) = 0, ∀η ∈ N}.

Moreover, the choice of an arbitrary finite dimensional subspace N of H as a defect
subspace allows one to determine by (1.2) a closed symmetric operator Asym with finite
and equal defect numbers. To stress on this relation, we will use notation AN instead of
Asym.

Let us denote by P(AN ) the set of all self-adjoint extensions of AN . By the Krein’s
resolvent formula, any Ã ∈ P(AN ) is a finite rank perturbation of A.

A finite rank perturbation Ã of A is called regular if D(A) = D(Ã). Otherwise (i.e,
D(A) 6= D(Ã)), the operator Ã is called a singular perturbation.

It is convenient to split the class of singular perturbations into two subclasses. Pre-
cisely, we will say that a singular perturbation Ã is purely singular if the symmetric
operator Asym = AN defined by (1.1) is densely defined (i.e., N ∩ D(A) = {0}) and
mixed singular if AN is nondensely defined (i.e., N ∩ D(A) 6= {0}).

Thus, the class of finite rank perturbations of A can be subdivided into mutually
disjoint subclasses of regular, mixed singular, and purely singular perturbations.
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The aim of the present paper consists in a development of a unique approach to
the study of finite rank perturbations of a self-adjoint operator A that enables one to
describe self-adjoint operator realizations of regular, mixed singular, and pure singular
perturbations of A from a simple point of view and by the same formula.

It is well known that the method of boundary value spaces (BVS) provides a convenient
approach to the description of purely singular perturbations [10], [14].

The description of mixed singular perturbations of A is more complicated because the
corresponding symmetric operator AN is nondensely defined and, hence, the adjoint of
AN does not exist. To overcome this problem, a certain generalization of the concept of
BVS is required. The key point here is the replacement of the adjoint operator A∗N with
a suitable object. In [9], [15], the operator AN and its ‘adjoint’ are understood as linear
relations and a description of all self-adjoint relations that are extensions of the graph of
AN was obtained. In [14], a pair of maximal dissipative extensions of AN and its adjoint
(maximal accumulative extension) was used instead of A∗N . This allows one to describe
self-adjoint extensions directly as operators without using linear relations technique.

The approaches mentioned above are general and they can be applied to an arbitrary
nondensely defined symmetric operator with arbitrary defect numbers. However, in a
particular case where AN is determined as a restriction of the initial self-adjoint operator
A, it is natural to use A for the description of extensions of AN (see [6], [7], [12]). In
[2], developing the ideas proposed recently in [3], [16], the operator A was used for the
determination of a quasi-adjoint operator of AN .

The concept of quasi-adjoint operators allows one to modify the definition of BVS
in such a form (quasi-BVS) that would permit to describe regular and mixed singular
perturbations of A in just the same way as purely singular perturbations.

In conclusion we remark that the characteristic feature of quasi-BVS extension theory
consists in the description of essentially self-adjoint extensions of AN (i.e., those exten-
sions that turn out to be self-adjoint after closure). This property is convenient for the
description of self-adjoint differential expressions with complicated boundary conditions.

2. The case of purely singular perturbations

In what follows, without loss of generality, we assume that A is a self-adjoint operator
acting on H and such that A ≥ I.

Let N be an arbitrary finite dimensional subspace of H and N ∩D(A) = {0}. In this
case, the symmetric operator

(2.1) AN = A �D(AN ), D(AN ) = {u ∈ D(A) | (Au, η) = 0, ∀η ∈ N}

is densely defined in H and the set P(AN ) of self-adjoint extensions of AN consists of
purely singular perturbations of A.

The set P(AN ) admits a convenient description in terms of boundary value spaces
(see [10], [14] and references therein).

Definition 1. A triple (N,Γ0,Γ1), where N is an auxiliary Hilbert space and Γ0, Γ1

are linear mappings of D(A∗sym) into N, is called a boundary value space (BVS) of AN

if the abstract Green identity

(2.2) (A∗Nf, g)− (f,A∗Ng) = (Γ1f,Γ0g)N − (Γ0f,Γ1g)N, f, g ∈ D(A∗N )

is satisfied and the map (Γ0,Γ1) : D(A∗N ) → N⊕N is surjective.

Here A∗N is the adjoint of AN . Its domain has the form D(A∗N ) = D(A)+̇N and

(2.3) A∗Nf = A∗N (u+ η) = Au, ∀f = u+ η ∈ D(A∗N ) (u ∈ D(A), η ∈ N).
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A boundary value space for AN always exists and the dimension of N coincides with
dimN . Furthermore [10]

(2.4) D(AN ) = ker Γ0 ∩ ker Γ1.

Another important property of a BVS (N,Γ0,Γ1) consists in the fact that the formulas

(2.5) Ai := A∗N �D(Ai), D(Ai) = ker Γi (i = 0, 1)

determine self-adjoint extensions A1 and A2 of AN such that

(2.6) D(A1) ∩ D(A2) = D(AN ), D(A1) +D(A2) = D(A∗N )

(the transversality property). In the case where dimN < ∞, equalities of (2.6) are
equivalent.

The next theorem describes elements of P(AN ) with the help of BVS.

Theorem 2.1. ([10]). Let (N,Γ0,Γ1) be a BVS of AN . Then any Ã ∈ P(AN ) coincides
with the restriction of A∗N onto

(2.7) D(Ã) = {f ∈ D(A∗N ) | (I − U)Γ0f = i(I + U)Γ1f},

where U is a unitary operator in N. Moreover, the correspondence Ã↔ U is a bijection
between the sets of all self-adjoint extensions of AN and all unitary operators in N.

In cases where self-adjoint extensions are described by sufficiently complicated bound-
ary conditions (see, e.g., [5], [13],), the representation (2.7) is not always convenient
because it contains the same unitary factor U on the both sides. A more natural way is
to present D(Ã) in (2.7) as follows:

(2.8) D(Ã) = {f ∈ D(A∗sym) | BΓ0f = CΓ1f},
where B and C are bounded operators (matrices) in the finite dimensional space N.

Of course, for arbitrary B and C, formula (2.8) determines an extension Ã of AN

not necessarily self-adjoint. In order to preserve the self-adjointness of Ã it is necessary
to impose certain commutation conditions on B and C (see, e.g., [1], [17], [13]). It
is important that these conditions are always satisfied if B is an arbitrary self-adjoint
operator on N and C = I. In other words, the formula

(2.9) Ã := A∗N �D( eA), D(Ã) = {f ∈ D(A∗N ) | BΓ0f = Γ1f}

determines a self-adjoint extension Ã of AN for any choice of a self-adjoint operator B
on N. However, the set L(AN ) of self-adjoint extensions of AN described by (2.9) is only
a part of P(AN ). Precisely,

(2.10) Ã ∈ L(AN ) ⇐⇒ Ã ∈ P(AN ) and D(Ã) ∩ ker Γ0 = D(AN ).

To overcome this inconvenience, we use another approach that enables to remove
the factor C in (2.8) but, simultaneously, to preserve the description of all self-adjoint
extensions of AN . The main idea here consists in the use of a family BVS (N,ΓR

0 ,Γ1)
instead of a fixed BVS (N,Γ0,Γ1), where R is an additional self-adjoint operator para-
meter.

Let (N,Γ0,Γ1) be a fixed BVS of AN . Then, for any self-adjoint operator R acting
on N, the triple (N,ΓR

0 ,Γ1), where

(2.11) ΓR
0 = Γ0 −RΓ1

is also a BVS of AN . Similarly to (2.9) and (2.10), the expression

(2.12) AB,R := A∗N �D(AB,R), D(AB,R) = {f ∈ D(A∗N ) | BΓR
0 f = Γ1f},

where B is an arbitrary self-adjoint operator on N, determines a subset LR(AN ) of the
set P(AN ) of all self-adjoint extensions of AN and AB,R ∈ LR(AN ) ⇐⇒ D(AB,R) ∩
ker ΓR

0 = D(AN ).
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Theorem 2.2. Let R be an arbitrary invertible self-adjoint operator acting on N. Then

P(AN ) =
n⋃

i=0

LRi(AN ) (n = dim N = dimN)

where R0 = a0R, R1 = a1R, . . . , Rn = anR and ai > 0 (i = 0, . . . , n) are different
numbers.

Proof. Let Ã be an arbitrary self-adjoint extension of AN . Then D(Ã) = D(Ã) ∩
ker Γ1+̇M, where the lineal M satisfies the condition 0 ≤ dimM≤ n (n = dimN).

Denote N′ = Γ1D(Ã) = Γ1M. It is clear that dimM = dim N′. Thus, 0 ≤ dim N′ ≤
n.

Let us assume that there exists Ã ∈ P(AN ) such that Ã 6∈
⋃n

i=0 LRi
(AN ). Then, by

(2.10),
MRi

= D(Ã) ∩ ker ΓRi
0 ⊃ D(AN )

for any i = 0, 1, . . . , n. By (2.11), Γ1MRi (i = 0, . . . , n) are nontrivial subspaces of N′.
Our aim now is to show their linear independence. To do this, we consider the subspace
M = {< Γ0f,Γ1f > |∀f ∈ M} of the space N+̇N. Since the equality Γ1f = 0 (f ∈ M)
implies f = 0 and, hence, Γ0f = 0, the subspace M can be represented as follows:
M = {< R̃h, h > |∀h ∈ N′}, where R̃ : N′ → N.

Let hi ∈ Γ1MRi (i = 0, 1 . . . n) and let

(2.13) h0 + h1 + . . .+ hn = 0.

By the definition of MRi and (2.11), R̃hi = Rihi = aiRhi. But then, applying k times
the operator R̃ to the both parts of (2.13), we get Rk

∑n
i=0 a

k
i hi = 0. Since R is invertible,

ak
0h0 + ak

1h1 + . . .+ ak
nhn = 0

for any positive integer k. The latter equality and (2.13) are possible only in the case
where h0 = . . . = hn = 0. So, we arrive at the conclusion that the n + 1 nontrivial
subspaces Γ1MRi of the space N′ with the dimension dim N′ ≤ n are linearly indepen-
dent. The obtained contradiction implies that P(AN ) =

⋃n
i=0 LRi(AN ). Theorem 2.2 is

proved. �

By Theorem 2.2, formula (2.12), where operators B and R play a role of parameters,
provides a description of all self-adjoint extensions of AN . However the correspondence
between parameters B,R and self-adjoint extensions of AN is not one-to-one. For exam-
ple, the operator A1 defined by (2.5) belongs to LR(AN ) for any R.

3. The case of mixed singular perturbations

3.1. The concept of quasi-BVS. In the case of mixed singular perturbations, the
operator AN defined by (2.1) is nondensely defined (i.e., D(A) ∩N 6= {0}). Hence, the
adjoint A∗N does not exist as a uniquely defined operator and we need some generalization
of the concept of the BVS to describe all self-adjoint extensions of AN .

Let us suppose that there exists an integer m > 1 such that N ∩D(Am) = {0}. Then,
the direct sum

(3.1) Lm := D(Am)+̇N

is well defined and we can define on Lm a quasi-adjoint operator A(∗)
N by the formula

(3.2) A
(∗)
N f = A

(∗)
N (u+ η) = Au, ∀f = u+ η ∈ Lm (u ∈ D(Am), η ∈ N).

Formula (3.2) is an analog of formula (2.3) for the adjoint operator A∗N and we can
use A(∗)

N as an analog of the adjoint one.
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In general, A(∗)
N is not closable and it turns out to be closable only if AN is densely

defined.
The concept of quasi-adjoint operators allows to modify Definition 1 and to extend it

to the case of nondensely defined symmetric operators.

Definition 2. ([2]). A triple (N,Γ0,Γ1), where Γi are linear mappings of Lm in an
auxiliary Hilbert space N, is called a quasi-BVS of AN if the abstract Green identity

(3.3) (A(∗)
N f, g)− (f,A(∗)

N g) = (Γ1f,Γ0g)N − (Γ0f,Γ1g)N, ∀f, g ∈ Lm

is satisfied and the map (Γ0,Γ1) : Lm → N⊕N is surjective.

Proposition 3.1. If AN is densely defined, then an arbitrary BVS (N,Γ0,Γ1) of AN is
a quasi-BVS.

Proof. It suffices to establish the preservation of the surjective property for the restricted
mapping (Γ0,Γ1) �Lm . Obviously, (Γ0,Γ1) maps Lm onto N⊕N if and only if

(3.4) Lm +D(AN ) = D(A∗N ).

Let us verify (3.4). Since D(Am−1) is dense in H and dimN < ∞, the relation
PND(Am−1) = N (PN is the orthoprojector onto N in H) holds for any m ∈ N.
This equality enables one to directly verify (with the use of (2.1)) that A−1D(Am−1) +
D(AN ) ⊃ A−1N . But then, the representation D(A) = D(AN )+̇A−1N and (2.3) imply

Lm +D(AN ) = A−1D(Am−1) +D(AN ) +N = D(A)+̇N = D(A∗N ).

Proposition 3.1 is proved. �

Using (3.4), it is easy to verify that any quasi-BVS (N,Γ0,Γ1) of a densely defined
operator AN can be extended (by setting Γif = 0 for all f ∈ D(AN )) to a BVS of AN .

Thus, in the case where AN is densely defined, the concepts of BVS and quasi-BVS
determine the same class of objects.

Proposition 3.2. If AN is nondensely defined, then the triple (N,ΓR
0 ,Γ1), where

(3.5) ΓR
0 (u+ η) = PNAu+Rη, Γ1(u+ η) = −η (u ∈ D(Am), η ∈ N),

is a quasi-BVS of AN for any choice of a self-adjoint operator R acting on N .

Proof. The Green identity (3.3) for ΓR
0 and Γ1 is a direct consequence of (3.2) and (3.5).

To establish that (ΓR
0 ,Γ1) maps Lm onto N ⊕ N, we observe that, for any elements

Fi ∈ N , the relation PND(Am−1) = PNAD(Am) = N (proved above) guarantees the
existence f = u+ η ∈ Lm such that PNAu = F0 +RF1 and η = −F1. Comparing these
relations with (3.5), we get ΓR

0 f = F0 and Γ1f = F1. Thus, (ΓR
0 ,Γ1) maps Lm onto

N⊕N and, hence, (N,ΓR
0 ,Γ1) is a quasi-BVS of AN . Proposition 3.2 is proved. �

The next statement shows that the property (2.4) of BVS is extended directly to the
case of quasi-BVS.

Lemma 3.1. Let (N,Γ0,Γ1) be a quasi-BVS of a symmetric operator AN . Then the
symmetric operator

(3.6) A′N = A
(∗)
N �D(A′

N ), D(A′N ) = ker Γ0 ∩ ker Γ1

does not depend on the choice of quasi-BVS and its closure coincides with AN .

Proof. It is easy to see from (3.2) and (3.3) that ker Γ0 ∩ ker Γ1 ⊂ D(AN ) ∩ D(Am).
Conversely, for a given u ∈ D(AN )∩D(Am), according to Definition 2, we can choose an
element g ∈ Lm such that Γ0g = Γ1u, Γ1g = Γ0u. In this case,

0 = (Au, g)− (u,A(∗)
N g) = ‖Γ1u‖2 + ‖Γ0u‖2.

Therefore, Γ0u = Γ1u = 0. Thus

D(A′N ) = ker Γ0 ∩ ker Γ1 = D(AN ) ∩ D(Am).



248 S. KUZHEL AND L. NIZHNIK

Hence, D(A′N ) does not depend on the choice of quasi-BVS (N,Γ0,Γ1).
To prove that the closure of A′N coincides with AN , it is sufficient to establish that

the set R(A′N ) is dense in R(AN ). Using the evident representations

R(AN ) = H	N, R(A′N ) = (H	N) ∩ D(Am−1),

we reduce the proof of this assertion to the well-known fact (see, e.g., [14, Section 3,
Proposition 2.6]) that (H 	 N) ∩ D(Am−1) is a dense set in H 	 N . Lemma 3.1 is
proved. �

Let (N,Γ0,Γ1) be a quasi-BVS of AN . We will say that a self-adjoint operator B in
N is admissible with respect to (N,Γ0,Γ1) if the equation

(3.7) BΓ0f = Γ1f, ∀f ∈ D(AN ) ∩ Lm

has only the trivial solution Γ0f = Γ1f = 0.
If AN is densely defined, then D(AN )∩Lm = D(AN )∩D(Am) = D(A′N ) and, by virtue

of (3.6), any self-adjoint operator B in N is admissible. Otherwise (AN is nondensely
defined),

(3.8) D(AN ) ∩ Lm = D(A′N )+̇F ,

where dimF = dim(N ∩ D(A)). Vectors f ∈ F have the form f = u + η, where η is
an arbitrary element of N ∩ D(A) and u ∈ D(Am) is determined by η with the help
of relation PNA(u + η) = 0 (this determination is unique modulo D(A′N )). Comparing
(3.8) and Lemma 3.1, we arrive at the conclusion that the condition of admissibility takes
away the lineal F from the set of solutions of (3.7).

Theorem 3.1. Let (N,Γ0,Γ1) be a quasi-BVS of AN and let B be an admissible operator
with respect to (N,Γ0,Γ1). Then, the closure of the symmetric operator

(3.9) Ã′ = A
(∗)
N �D( eA′), D(Ã′) = {f ∈ Lm | BΓ0f = Γ1f}

is a self-adjoint extension of AN .
A self-adjoint extension Ã of AN can be represented as the closure of a certain essen-

tially self-adjoint operator Ã′ defined by (3.9) if and only if D(Ã) ∩ ker Γ0 = D(A′N ).

Proof. Since B is a self-adjoint operator, formula (3.3) yields that Ã′ is a symmet-
ric extension of A′N . Furthermore, there exists a linear subspace M of Lm such that
dimM = dim N = dimN and

(3.10) D(Ã′) = D(A′N )+̇M.

It follows from the property of admissibility of B and (3.10) thatM∩D(AN ) = 0. The
latter relation and Lemma 3.1 mean that Ã′ is closable and its closure Ã is a symmetric
operator defined by the formula

(3.11) Ãf = Ã(u+m) = ANu+A
(∗)
N m, ∀u ∈ D(AN ), ∀m ∈M

on the set D(Ã) = D(AN )+̇M.
Since dimM = dimN , the defect numbers of Ã in the upper (lower) half plane are

equal to 0 and, hence, Ã is a self-adjoint extension of AN . Thus, the closure of Ã′ defined
by (3.9) is a self-adjoint extension of AN .

Conversely, let Ã be a self-adjoint extension of AN . Our aim now is to show that the
domain D(Ã) of Ã can be decomposed as

(3.12) D(Ã) = D(AN )+̇M,

where M⊂ Lm and dimM = dimN .
Let Ã be invertible. Then, using the well-known representation

(3.13) D(Ã) = {f = u+ CPNAu | ∀u ∈ D(A)} (C = Ã−1 −A−1 : N → N)
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and the fact that PND(Am−1) = N , we easy get the decomposition (3.12) by choosing
M as the linear span < m1 . . .mn > of elements mj = uj +CPNAuj (j = 1 . . . n), where
uj ∈ D(Am) are determined in such a way that the elements PNAuj (j = 1 . . . n) form
a basis of N . Moreover, as follows from (3.13) and (3.2) Ãmj = Ã(uj + CPNAuj) =
Auj = A

(∗)
N mj (j = 1 . . . n) that justify (3.11).

The determination of M presented above needs some trivial modification if Ã−1 does
not exist. We indicate the principal steps only.

At first, there exists a > 0 such that Ã + aI is invertible. Repeating the arguments
presented above, we get D(Ã) = D(AN )+̇Ma, where

Ma ⊂ Lm(a) := D(Am)+̇Na (Na = H	R(AN + aI))

and Ma =< g1 . . . gn >, where gj = vj + CaPNa
(A + aI)vj and vj ∈ D(Am) are deter-

mined in such a way that the elements PNAvj (j = 1 . . . n) form a basis of Na.
Repeating the proof of Proposition 3.1 for the cases where the operators A and A+aI

are considered, we arrive at the conclusion that

Lm +D(AN ) = D(A)+N and Lm(a) +D(AN ) = D(A)+Na.

However, elements of Na and N are related as follows:

ηa ∈ Na ⇐⇒ ηa = A(A+ aI)−1η = η − a(A+ aI)−1η, η ∈ N.

This means that
Lm +D(AN ) = Lm(a) +D(AN ).

The latter equality enables to decompose the basis vectors gj of Ma as gj = fj + zj

(fj ∈ Lm, zj ∈ D(AN )). Set M =< f1 . . . fn >. Since the linear span Ma of gj has a
trivial intersection with D(AN ), we getM∩D(AN ) = {0}. But then D(Ã) = D(AN )+̇M,
which proves equality (3.12).

It follows from (3.2), (3.11), and (3.12) that the symmetric operator Ã′ = Ã �D( eA)∩Lm

coincides with the restriction of A(∗)
N onto the domain D(Ã′) defined by (3.10) and Ã′ is

an essentially self-adjoint restriction of Ã.
Further, it is easy to see that the domain (3.10) admits the representation (3.9) with

a certain operator B acting on N if and only D(Ã) ∩ ker Γ0 = D(A′N ). In this case, the
admissibility of B follows from the relation M∩D(AN ) = 0. The self-adjointness of B is
a direct consequence of (3.3) and the property of Ã′ = A

(∗)
N �D( eA)∩Lm

to be a symmetric
operator. Theorem 3.1 is proved. �

Remarks. 1. If B is not admissible, then the domain D(Ã′) defined by (3.9) has a
nontrivial intersection with F and Ã′ is not closable.

2. Since (3.9) does not determine all self-adjoint extensions of AN , a situation where
any operator B is admissible in (3.9) is possible. Namely, the following simple statement
is true.

Proposition 3.3. If (N,Γ0,Γ1) is a quasi-BVS of AN such that ker Γ0 ⊃ D(AN )∩Lm,
then the closure of Ã′ determined by (3.9) is a self-adjoint extension of AN for any
self-adjoint operator B acting on N.

Proof. If ker Γ0 ⊃ D(AN ) ∩ Lm, then the equation BΓ0f = Γ1f (f ∈ D(AN ) ∩ Lm)
has only the trivial solution Γ0f = Γ1f = 0 and, hence, any self-adjoint operator B is
admissible with respect to (N,Γ0,Γ1). Proposition 3.3 is proved. �

Example. A Schrödinger operator with nonlocal point interactions. Let us consider
a Schrödinger operator that is determined with the help of an additive mixed singular



250 S. KUZHEL AND L. NIZHNIK

perturbation

(3.14) − d2

dx2
+ b11 < ·, δ > δ + b12(·, q)δ + b21 < ·, δ > q + b22(·, q)q,

where < ·, δ > is the Dirac δ-function, a function q ∈ L2(R), and coefficients bij ∈ C
form an Hermitian matrix B = (bij). In our case, A = −d2/dx2 + I, D(A) = W 2

2 (R)
and the defect subspace N ⊂ L2(R) is the linear span of the functions η1(x) = A−1δ =
1
2e
−|x|, η2(x) = A−1q(x).
For the sake of simplicity, we assume that the function q(x) coincides with the funda-

mental solution m2k(x) (k ≥ 1) of the equation (−d2/dx2 + I)km2k(x) = δ. In this case,
η1 = m2, η2 = m2k+2.

Let us fix m = k + 1, then, according to (3.1),

Lm = W 2k+2
2 (R)+̇N ⊂W 2k+2

2 (R\{0}).
Assume that f(x) ∈ Lm. By the description of Lm, the derivative f ′(x) of f(x) has

right(left)-side limits at the point 0. This is also true for the function f [2k+1](x) :=
d
dx (− d2

dx2 + I)kf(x) (x 6= 0).
Denote by f ′s = f ′(+0) − f ′(−0), f

[2k+1]
s = f [2k+1](+0) − f [2k+1](−0) the jumps of

the functions f ′(x) and f [2k+1](x) at the point x = 0.
It is easy to see that an arbitrary function f ∈ Lm admits the representation

f(x) = u(x)− f ′sm2(x)− f [2k+1]
s m2k+2,

where u(x) ∈W 2k+2
2 (R).

By a direct verification, we get that the triple (C2,Γ0,Γ1), where

Γ0f(x) =
(

f(0)
(f,m2)

)
, Γ1f(x) =

(
f ′s

f
[2k+1]
s

)
, ∀f(x) ∈ Lm

is a quasi-BVS of AN .
In our case, all conditions of Proposition 3.3 are satisfied and, hence, the restriction

of A(∗)
N (A(∗)

N f(x) = −f ′′(x) + f(x), x 6= 0) onto the collection of functions f ∈ Lm that
are specified by the boundary conditions

f ′s = b11f(0) + b12(f,m2), f [2k+1]
s = b21f(0) + b22(f,m2)

is an essentially self-adjoint operator on L2(R). The closure of such an operator has the
form Aq + I, where Aq is a self-adjoint realization of the heuristic expression (3.14).

The operator Aq can be interpreted as a Schrödinger operator with nonlocal point
interaction [4]. Its domain D(Aq) consists of all functions f ∈ W 2

2 (R\{0}) that satisfy
the boundary conditions fs = 0, f ′s = b11f(0) + b12(f, q) and the action of Aqf is
determined as follows [4]:

Aqf = −f ′′(x) + b21q(x)f(0) + b22(f, q)q(x), x 6= 0.

3.2. Description of mixed singular perturbations. In the case where AN is non-
densely defined, the set P(AN ) consists of mixed singular perturbations of A. It is
convenient to describe P(AN ) in terms of quasi-BVS.

Let (N,Γ0,Γ1) be a fixed quasi-BVS of AN . Repeating the proof of Proposition 3.2,
we arrive at the conclusion that the triple (N,ΓR

0 ,Γ1), where

(3.15) ΓR
0 = Γ0 −RΓ1

is also a quasi-BVS of AN for any self-adjoint operator R acting on N. (In fact, a family
of quasi-BVS of such a type was presented in Proposition 3.2.)

We remark that the family of quasi-BVS (N,ΓR
0 ,Γ1) determined by (3.15) is sufficiently

representative. Namely, the next simple statement can be justified similarly to the case
of BVS (for details, see the proof of Proposition 1 in [8]).



FINITE RANK SELF-ADJOINT PERTURBATIONS 251

Proposition 3.4. If (N, Γ̃0,Γ1) is a quasi-BVS of AN with the same auxiliary space
N and the boundary operator Γ1 as in the family (N,ΓR

0 ,Γ1), then Γ̃0 = ΓR
0 for such a

choice of R.

Denote by LR(A′N ) the set of all essentially self-adjoint extensions A′B,R of A′N that
are defined by the expression

(3.16) AB,R := A
(∗)
N �D(A′

B,R), D(A′B,R) = {f ∈ D(A(∗)
N ) | BΓR

0 f = Γ1f}

(here B runs over the collection of operators admissible with respect to (N,ΓR
0 ,Γ1)).

Using Theorem 3.1 and repeating the reasoning used in the proof of Theorem 2.2, we
arrive at the conclusion that all assertions of Theorem 2.2 remain true for the case of
quasi-BVS.

Theorem 3.2. (cf. Theorem 2.2). Let R be an arbitrary invertible self-adjoint operator
acting on N. Then

P(AN ) =
n⋃

i=0

LRi
(A′N ) (n = dim N = dimN)

where R0 = a0R, R1 = a1R, . . . , Rn = anR and ai > 0 (i = 0, . . . , n) are different
numbers.

Thus, elements of P(AN ) can be described with the help of any family of quasi-
BVS (N,ΓR

0 ,Γ1) determined by (3.15). Such an approach is maximally adapted for a
description of finite rank additive perturbations of A [2]. The next section illustrates this
point.

In conclusion, we specify and supplement the obtained results for the family of quasi-
BVS (N,ΓR

0 ,Γ1) determined by (3.5).

Theorem 3.3. 1. A self-adjoint operator B acting on N is admissible with respect to
(N,ΓR

0 ,Γ1) if and only if the equation

(3.17) BPNAη = (I +BR)η, ∀η ∈ N ∩ D(A)

has the unique solution η = 0.
2. If the operator-parameter R is chosen in such a way that PNAη = Rη for all

η ∈ N ∩D(A), then any self-adjoint operator B is admissible with respect to (N,ΓR
0 ,Γ1).

3. Let B be an admissible operator with respect to (N,ΓR
0 ,Γ1). Then the closure AB,R

of

(3.18) A′B,R := A
(∗)
N �D(A′

B,R), D(A′B,R) = {f ∈ D(A(∗)
N ) | BΓR

0 f = Γ1f},

is invertible (i.e., 0 ∈ ρ(AB,R)) if and only if ker(BR+ I) = {0}.
4. If R = 0, then the formula (3.18), where B is an arbitrary self-adjoint operator such

that ker(BPNA − I) �N∩D(A)= {0}, provides a description of all invertible self-adjoint
extensions of AN .

Proof. Assertion 1 follows directly from (3.5) and the description of elements of F ⊂
D(AN ) ∩ Lm. To establish assertion 2, it suffices to observe that ΓR

0 f = PNAu+ Rη =
−PNAη +Rη for all elements f = u+ η ∈ F . Thus,

ker ΓR
0 ⊃ F ⇐⇒ PNAη = Rη for all η ∈ N ∩ D(A).

Employing now Proposition 3.3, we complete the proof of assertion 2.
It follows from (3.2), (3.5), and (3.18) that

kerA′B,R = {0} ⇐⇒ ker(BR+ I) = {0}.
Let f ∈ kerAB,R. Then there exists a sequence fn = un + ηn ∈ D(A′B,R) such that

fn → f and A′B,Rfn = A
(∗)
N (un + ηn) = Aun → 0 = Af . Since 0 ∈ ρ(A), we get un → 0.
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Hence, {ηn} forms a fundamental sequence and ηn tends to a certain element η ∈ N .
On the other hand, the description of D(A′B,R) given in (3.18) and (3.5) imposes the
following relations on un and ηn: B(PNAun +Rηn) = −ηn. Passing on to the limit, we
get (BR + I)η = 0, which is possible only in the case η = 0. But then fn → 0, f = 0
and, hence, kerAB,R = {0}. Thus the condition ker(BR + I) = {0} is equivalent to the
invertibility of AB,R. Assertion 3 is proved.

Since the restriction ker(BR + I) = {0} vanishes for R = 0, the formula (3.18)
determines an invertible operator for any choice of the admissible operator B. In this
case, the condition of admissibility of B is simplified and takes the form ker(BPNA −
I) �N∩D(A)= {0}.

To complete the proof of assertion 4, it suffices to show that any invertible self-adjoint
extension Ã of AN can be represented by (3.18). This fact immediately follows from the
well-known representation ([10])

(3.19) D(Ã) = {f = u+ CPNAu | ∀u ∈ D(A)}

(C = Ã−1 − A−1 : N → N). Indeed, in this case, D(Ã′) = D(Ã) ∩ Lm is determined
by (3.19), where elements u run over the set D(Am). Moreover, Γ0

0f = PNAu, Γ1f =
−CPNAu and, hence, B = −C = A−1 − Ã−1. Theorem 3.3 is proved. �

4. The case of finite rank regular additive perturbations

Here, we are going to show that the concept of quasi-BVS enables to describe finite
rank regular perturbations of A in just the same way as finite rank singular perturbations.
To do this, we consider the following n-rank perturbation of A:

(4.1) Ã = A+ V, V =
n∑

i,j=1

bij(·, ψj)ψi,

where all ψj belong to H and the coefficients bij ∈ C form an Hermitian matrix B = (bij).
Since V is a bounded self-adjoint operator on H, the operator Ã is self-adjoint on the

domain D(A). Thus, Ã is a finite rank regular additive perturbation of A.
On the other hand, we can consider Ã and A as two different self-adjoint extensions

of the symmetric nondensely defined operator (cf. (2.1))

(4.2) AN = A �D(AN ), D(AN ) = {u ∈ D(A) | (u, ψj) = (Au,A−1ψj) = 0}
(j = 1 . . . n). Here N is the linear span of ηj = A−1ψj (i.e., N =< η1, η2 . . . ηn >) and
N ⊂ D(A).

Assume that N∩C∞(A) = {0} where C∞(A) =
⋂∞

k=1D(Ak). In this case, there exists
an integer m such that D(Am)∩N = {0} and we can apply the quasi-BVS approach for
a description of self-adjoint extensions of AN .

To do this, without loss of generality, we will assume that the collection ej = A−1ψj

(j = 1 . . . n) forms an orthonormal basis inN . In this case, using the natural isomorphism

between elements η ∈ N and columns

 η1
...
ηn

 ∈ Cn (ηj = (η, ej)), we can rewrite the

family of quasi-BVS determined by (3.5) as follows: (Cn,ΓR
0 ,Γ1), where

ΓR
0 (u+ η) =

 (Au, e1)
...

(Au, en)

 +R

 η1
...
ηn

 , Γ1(u+ η) = −

 η1
...
ηn

 .

Here, f = u+ η ∈ Lm = D(Am)+̇N (u ∈ D(Am), η ∈ N) and R = (rij)n
1 is an arbitrary

Hermitian matrix.
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The family of quasi-BVS (Cn,ΓR
0 ,Γ1) enables to describe all self-adjoint extensions of

AN (see Theorem 3.2). Moreover, by assertion 2 of Theorem 3.3, the choice of entries
rij of R as rij = (Aej , ei) = (ψj , A

−1ψi) guarantees that the formula A′B,R(u+ η) = Au,

D(A′B,R) =
{
u+ η | B


 (Au, e1)

...
(Au, en)

 +R

 η1
...
ηn


 = −

 η1
...
ηn

 }
,

determines essentially self-adjoint extensions of AN for an arbitrary Hermitian matrix
B = (bij). It is easy to verify (by a direct calculation) that A′B,R is a restriction of the
self-adjoint operator Ã determined by (4.1) (i.e., A′B,R = Ã �D(A′

B,R)).
Acknowledgments. The authors thank DFG for the financial support of the project

436 UKR 113/79.

References

1. N. I. Akhiezer and I. M. Glatzman, Theory of Linear Operators in Hilbert Spaces, Ungar Pub.
Co., New York, 1963.

2. S. Albeverio, S. Kuzhel, and L. Nizhnik, Singularly perturbed self-adjoint operators in scales of
Hilbert spaces (submitted to IEOT) .

3. S. Albeverio and L. P. Nizhnik, A Schrödinger operator with point interactions on Sobolev
spaces, Letters Math. Phys. 70 (2004), 185–199.

4. S. Albeverio and L. P. Nizhnik, Schrödinger operators with nonlocal point interactions (in
preparation) .
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