∇ -FREDHOLM OPERATORS IN BANACH–KANTOROVICH SPACES

K. K. KUDAYBERGENOV

ABSTRACT. The paper is devoted to studying ∇ -Fredholm operators in Banach–Kantorovich spaces over a ring of measurable functions. We show that a bounded linear operator acting in Banach–Kantorovich space is ∇ -Fredholm if and only if it can be represented as a sum of an invertible operator and a cyclically compact operator.

1. INTRODUCTION

It is well-known that one of the important notions in the theory of operator equations in Banach spaces is that of a Fredholm operator. In 1943 by M. S. Nikolsky it was proved that a bounded linear operator acting in Banach space is Fredholm if and only if it can be represented as a sum of an invertible operator and a compact operator (see [1]). In this paper we considered the ∇ -Fredholm operators acting in a Banach–Kantorovich space over a ring of measurable functions. It is known [2] that every Banach-Kantorovich space over a ring measurable functions can be represented as a measurable bundle of Banach spaces. Cyclically compact sets and operators in lattice-normed spaces were introduced by Kusraev in [3] and [4], respectively. In [5] (see also [6]) a general form of cyclically compact operators in Kaplansky–Hilbert module, as well as a variant of Fredholm alternative for cyclically compact operators, are also given. In [7] it was proved that every cyclically compact operator acting in Banach–Kantorovich space over a ring measurable functions can be represented as a measurable bundle of compact operators acting in Banach spaces. For different aspects of cyclical compactness, see [8-11]. In [12]there was given a structure of modules over the ring of measurable functions, which is represented as a measurable bundle of finite dimensional spaces. Using this representation we show that every ∇ -Fredholm operator acting in Banach–Kantorovich space can be represented as a measurable bundle of Fredholm operators acting in Banach spaces and prove a vector version of Nikolsky theorem for a bounded linear operators acting in Banach–Kantorovich spaces.

2. Preliminaries

Let (Ω, Σ, μ) be a measurable space with a finite measure and $L^0 = L^0(\Omega)$ be the algebra of equivalence classes of all complex measurable functions on (Ω, Σ, μ) .

A complex linear space E is said to be normed by L^0 if there is a map $\|\cdot\| : E \longrightarrow L^0$ such that for any $x, y \in E, \lambda \in \mathbb{C}$, the following conditions are fulfilled: $\|x\| \ge 0$; $\|x\| = 0 \iff x = 0$; $\|\lambda x\| = |\lambda| \|x\|$; $\|x + y\| \le \|x\| + \|y\|$.

The pair $(E, \|\cdot\|)$ is called a lattice-normed space over L^0 . A lattice-normed space E is called *d*-decomposable if for any $x \in E$ with $\|x\| = \lambda_1 + \lambda_2$, $\lambda_1, \lambda_2 \in L^0$, $\lambda_1\lambda_2 = 0$ there exist $x_1, x_2 \in E$ such that $x = x_1 + x_2$ and $\|x_i\| = \lambda_i$, i = 1, 2. A net (x_α) in E is

²⁰⁰⁰ Mathematics Subject Classification. 47A13.

Key words and phrases. Banach–Kantorovich space, cyclically compact operator, ∇ -Fredholm operator, measurable bundle.

(bo)-converging to $x \in E$, if $||x_{\alpha} - x|| \xrightarrow{(o)} 0$ in L^0 (note that the order convergence in L^0 coincides with convergence almost everywhere).

A lattice-normed space E which is *d*-decomposable and complete with respect to (*bo*)-convergence is called a *Banach–Kantorovich space* (BKS).

It is known that every BKS E over L^0 is a module over L^0 and $||\lambda x|| = |\lambda|||x||$ for all $\lambda \in L^0$, $x \in E$ (see [2], [4]).

We shall consider a map $X : \omega \in \Omega \to (X(\omega), \|\cdot\|_{X(\omega)})$, where $(X(\omega), \|\cdot\|_{X(\omega)})$ is a Banach space for all $\omega \in \Omega$. A function u is called a section of X if it is defined on Ω almost everywhere and takes a value $u(\omega) \in X(\omega)$ for $\omega \in \text{dom}(u)$, where dom(u) is the domain of u.

Let L be some set of sections.

Definition 2.1. [2] (see also [6]). A pair (X, L) is called a measurable Banach bundle (MBB) over Ω , if

- a) $\lambda_1 c_1 + \lambda_2 c_2 \in L$ for all $\lambda_1, \lambda_2 \in \mathbb{C}, c_1, c_2 \in L$, where
- $\lambda_1 c_1 + \lambda_2 c_2 : \omega \in \operatorname{dom}(c_1) \cap \operatorname{dom}(c_2) \to \lambda_1 c_1(\omega) + \lambda_2 c_2(\omega);$
- b) the function $||c|| : \omega \in \text{dom}(c) \to ||c(\omega)||_{X(\omega)}$ is measurable for all $c \in L$;
- c) for all $\omega \in \Omega$ the set $\{c(\omega) : c \in L, \omega \in \text{dom}(c)\}$ is dense in $X(\omega)$.

A section s is called simple if there exists $c_i \in L, A_i \in \Sigma, i = \overline{1, n}$, such that $s(\omega) = \sum_{i=1}^n \chi_{A_i}(\omega)c_i(\omega)$. A section u is called measurable if there exists a sequence $(s_n)_{n \in \mathbb{N}}$ of simple sections such that $||s_n(\omega) - u(\omega)||_{X(\omega)} \to 0$ for almost all $\omega \in \Omega$.

We denote by $\mathcal{M}(\Omega, X)$ the set of all measurable sections and $L^0(\Omega, X)$ denotes the factorization of this set with respect to equality almost everywhere. By \hat{u} we denote the class from $L^0(\Omega, X)$, containing section $u \in \mathcal{M}(\Omega, X)$. A function $\omega \to ||u(\omega)||_{X(\omega)}$ is measurable for all $u \in \mathcal{M}(\Omega, X)$. By $||\hat{u}||$ we denote the element in L^0 , containing the function $||u(\omega)||_{X(\omega)}$.

It is known [2] that $(L^0(\Omega, X), \|\cdot\|)$ is BKS over L^0 .

We denote by $\mathcal{L}^{\infty}(\Omega)$ the set of all bounded complex measurable functions on Ω and $L^{\infty}(\Omega) = \{f \in L^0 : \exists \lambda \in \mathbb{R}, \lambda > 0, |f| \leq \lambda \mathbf{1}\}$, where $\mathbf{1}$ is unit in L^0 . Let

$$\mathcal{L}^{\infty}(\Omega, X) = \{ u \in \mathcal{M}(\Omega, X) : \| u(\omega) \|_{X(\omega)} \in \mathcal{L}^{\infty}(\Omega) \}$$

and $L^{\infty}(\Omega, X) = \{ \hat{u} \in L^0(\Omega, X) : ||\hat{u}|| \in L^{\infty}(\Omega) \}.$

The sets $\mathcal{M}(\Omega, X)$ and $\mathcal{L}^{\infty}(\Omega, X)$ are often identified with $L^{0}(\Omega, X)$ and $L^{\infty}(\Omega, X)$, by identifying a measurable section u and the corresponding equivalence class \hat{u} .

We consider a lifting $p: L^{\infty}(\Omega) \to \mathcal{L}^{\infty}(\Omega)$ (see [2]).

Definition 2.2. [2] (see also [6]). The map $\rho_X : L^{\infty}(\Omega, X) \to \mathcal{L}^{\infty}(\Omega, X)$ is called a vector valued lifting on $L^{\infty}(\Omega, X)$ (associated with p), if:

a) $\rho_X(\hat{u}) \in \hat{u}, \operatorname{dom}(\rho_X(\hat{u})) = \Omega$ for all $\hat{u} \in L^{\infty}(\Omega, X)$;

- b) $\|\rho_X(\hat{u})(\omega)\|_{X(\omega)} = p(\|\hat{u}\|)(\omega)$ for all $\hat{u} \in L^{\infty}(\Omega, X)$;
- c) $\rho_X(\hat{u} + \hat{v}) = \rho_X(\hat{u}) + \rho_X(\hat{v})$ for all $\hat{u}, \hat{v} \in L^{\infty}(\Omega, X)$;
- d) $\rho_X(e\hat{u}) = p(e)\rho_X(\hat{u})$ for all $\hat{u} \in L^{\infty}(\Omega, X)$ and $e \in L^{\infty}(\Omega)$;
- e) the set $\{\rho_X(\hat{u})(\omega) : \hat{u} \in L^{\infty}(\Omega, X)\}$ is dense in $X(\omega)$ for all $\omega \in \Omega$.

It is known [2, Theorem 4.4.1] that for any BKS E over L^0 there is a MBB (X, L) such that E is isometrically isomorphic to $L^0(\Omega, X)$ and on $L^{\infty}(\Omega, X)$ there exists a vector valued lifting such that $\{\rho_X(\hat{u})(\omega) : \hat{u} \in L^{\infty}(\Omega, X)\} = X(\omega)$ for all $\omega \in \Omega$.

Let ∇ be the Boolean algebra of idempotents in L^0 . If $(u_\alpha)_{\alpha \in A} \subset L^0(\Omega, X)$ and $(\pi_\alpha)_{\alpha \in A}$ is a partition of the unit in ∇ , then the series $\sum_{\alpha} \pi_\alpha u_\alpha$ (bo)-converges in $L^0(\Omega, X)$ and its sum is called the mixing of $(u_\alpha)_{\alpha \in A}$ with respect to $(\pi_\alpha)_{\alpha \in A}$. We denote this sum by $\min(\pi_\alpha u_\alpha)$. A subset $K \subset L^0(\Omega, X)$ is called cyclic, if $\min(\pi_\alpha u_\alpha) \in K$ for each $(u_\alpha)_{\alpha \in A} \subset K$ and any partition of the unit $(\pi_\alpha)_{\alpha \in A}$ in ∇ . For every directed set A

denote by $\nabla(A)$ the set of all partitions of the unit in ∇ , which are indexed by elements of the set A. More precisely,

$$\nabla(A) = \{\nu : A \to \nabla : (\forall \alpha, \beta \in A) (\alpha \neq \beta \to \nu(\alpha) \land \nu(\beta) = 0) \land \bigvee_{\alpha \in A} \nu(\alpha) = 1\}.$$

For $\nu_1, \nu_2 \in \nabla(A)$ we put $\nu_1 \leq \nu_2 \leftrightarrow \forall \alpha, \beta \in A$, $(\nu_1(\alpha) \wedge \nu_2(\beta) \neq 0 \rightarrow \alpha \leq \beta)$. Then $\nabla(A)$ is a directed set. Let $(u_{\alpha})_{\alpha \in A}$ be a net in $L^0(\Omega, X)$. For every $\nu \in \nabla(A)$ we put $u_{\nu} = \min(\nu(\alpha)u_{\alpha})$ and obtain a new net $(u_{\nu})_{\nu \in \nabla(A)}$. Every subnet of the net $(u_{\nu})_{\nu \in \nabla(A)}$ is called cyclic subnet of the original net $(u_{\alpha})_{\alpha \in A}$.

Definition 2.3. [4] (see also [5], [6]). A subset $K \subset L^0(\Omega, X)$ is called *cyclically compact*, if K is cyclic and every net in K has a cyclic subnet that (*bo*)-converges to some point of K. A subset in $L^0(\Omega, X)$ is called *relatively cyclically compact* if it is contained in a cyclically compact set.

Let X and Y be MBBs over Ω with vector valued liftings ρ_X and ρ_Y on $L^{\infty}(\Omega, X)$ and $L^{\infty}(\Omega, Y)$, respectively. A linear operator $T : L^0(\Omega, X) \to L^0(\Omega, Y)$ is called L^0 -bounded, if there exists an element $c \in L^0$ such that $||T(x)|| \leq c||x||$ for any $x \in L^0(\Omega, X)$. Every L^0 -bounded linear operator $T : L^0(\Omega, X) \to L^0(\Omega, Y)$ is L^0 -linear, i. e., $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $\alpha, \beta \in L^0, x, y \in L^0(\Omega, X)$ (see [4]).

A linear operator T is called cyclically compact, if for every bounded set B in $L^0(\Omega, X)$ the set T(B) is relatively cyclically compact in $L^0(\Omega, Y)$. For a L^0 -bounded linear operator T we put $||T|| = \sup\{||T(x)|| : ||x|| \le 1\}$.

It is known [7] (see also [6, p. 530]), that for any L^0 -bounded (cyclically compact) linear operator $T: L^0(\Omega, X) \to L^0(\Omega, Y)$ there is a family of bounded (compact) linear operators $\{T_\omega : X(\omega) \longrightarrow Y(\omega)\}$ such that for any $x \in L^0(\Omega, X)$ the following equality holds: $T(x)(\omega) = T_\omega(x(\omega))$ for almost all $\omega \in \Omega$. If $||T|| \in L^\infty(\Omega)$, then $\rho_Y(T(x))(\omega) =$ $T_\omega(\rho_X(x)(\omega))$ for all $x \in L^\infty(\Omega, X)$, $\omega \in \Omega$.

Conversely, if $\{T_{\omega} : X(\omega) \longrightarrow Y(\omega)\}$ is a family of bounded (compact) linear operators such that $T_{\omega}(x(\omega)) \in \mathcal{M}(\Omega, Y)$ for any $x \in \mathcal{M}(\Omega, X)$, then the operator $T : L^0(\Omega, X) \longrightarrow L^0(\Omega, Y)$ defined by $T(\hat{u}) = T_{\omega}(u(\omega))$ is L^0 -bounded (cyclically compact).

Let $L^0(\Omega, X)^*$ be the dual space of $L^0(\Omega, X)$, i. e., the set of all L^0 -bounded linear functionals from $L^0(\Omega, X)$ into L^0 . For every $f \in L^0(\Omega, X)^*$ with $||f|| \in L^{\infty}(\Omega)$ we put $f_{\omega}(\rho_X(x)(\omega)) = p(f(x))(\omega), x \in L^{\infty}(\Omega, X), \omega \in \Omega$. Then $f_{\omega} \in X(\omega)'$ for every $\omega \in \Omega$, where $X(\omega)'$ is the dual space of $X(\omega)$. Let $X'(\omega) = \{f_{\omega} : f \in L^0(\Omega, X)^*, ||f|| \in L^{\infty}(\Omega)\}, X': \omega \to X'(\omega), L' = \{\omega \to f_{\omega} : f \in L^0(\Omega, X)^*, ||f|| \in L^{\infty}(\Omega)\}.$

It is known [2, Theorem 4.4.7] that (X', L') is a MBB with vector valued lifting; $X'(\omega)$ is a closed subspace in $X(\omega)'$ for all $\omega \in \Omega$; $L^0(\Omega, X')$ is isometrically isomorphic to $L^0(\Omega, X)^*$.

A module E over L^0 is said to be finite dimensional (or finitely generated), if there are x_1, x_2, \ldots, x_n in E such that for any $x \in E$ there exist $\lambda_i \in L^0$ $(i = \overline{1, n})$ with $x = \lambda_1 x_1 + \cdots + \lambda_n x_n$. The elements x_1, x_2, \ldots, x_n are called generators of E. We denote by d(E) the minimal number of generators of E.

A module E over L^0 is called σ -finite-dimensional, if there exists a partition $(\pi_{\alpha})_{\alpha \in A}$ of the unit in ∇ such that $\pi_{\alpha}E$ is finitely generated for any α . A finite-dimensional module E over L^0 is called homogeneous of type n, if for every nonzero $e \in \nabla$ we have n = d(eE).

A family $\{x_1, x_2, \ldots, x_n\}$ in E is called ∇ -linearly independent, if for all $\pi \in \nabla$ and $\lambda_1, \ldots, \lambda_n \in L^0$, from $\pi \sum_{k=1}^n \lambda_k x_k = 0$ it follows that $\pi \lambda_1 = \cdots = \pi \lambda_n = 0$.

A module E is homogeneous of type n if and only if there exist generators $\{x_1, \ldots, x_n\}$ in E, consisting of ∇ -linearly independent elements (see [12], Proposition 6). Such generators form a ∇ -basis of E.

An L^0 -bounded linear operator $T : L^0(\Omega, X) \to L^0(\Omega, Y)$ is called finite dimensional or finitely generated (σ -finite dimensional, homogeneous of type n) if $R(T) = \{T(x) : x \in L^0(\Omega, X)\}$ is a finite dimensional (respectively σ -finite dimensional, homogeneous of type n) submodule in $L^0(\Omega, Y)$.

Any σ -finite dimensional operator $T : L^0(\Omega, X) \to L^0(\Omega, Y)$ can be represented as $T = \sum_{\alpha \in A} \pi_\alpha T_\alpha$, where $(\pi_\alpha)_{\alpha \in A}$ is a partition of the unit in $\nabla, T_\alpha : L^0(\Omega, X) \to L^0(\Omega, Y)$

are homogeneous operators of finite type for all α . If T is finite dimensional, then $(\pi_{\alpha})_{\alpha \in A}$ is a finite partition of the unit in ∇ .

Any cyclically compact operator $T: X \to Y$ is L^0 -bounded. Since the unit ball in a σ -finite dimensional module over L^0 is a cyclically compact set ([12], Corollary 2), any σ -finite dimensional operator is cyclically compact.

Now we give a definition of ∇ -Fredholm operators, which was introduced by Kusraev [4] (see also [5], [6]). Let $T: L^0(\Omega, X) \to L^0(\Omega, Y)$ be a L^0 -bounded linear operator.

We consider the homogeneous equations

$$T(x) = 0, \quad T^*(g) = 0$$

and, respectively, the main equation

$$T(x) = y$$

and the conjugate equation

$$T^*(g) = f.$$

An operator T is called ∇ -Fredholm, if there exists a partition of unity $(\pi_n)_{n \in \mathbb{N} \cup \{0\}}$ in ∇ such that the following conditions are fulfilled:

1) The homogeneous equation $\pi_0 T(x) = 0$ has the only zero solution. The homogeneous conjugate equation $\pi_0 T^*(g) = 0$ has the only zero solution. The equation $\pi_0 T(x) = \pi_0 y$ is solvable and has a unique solution for a given arbitrary $y \in L^0(\Omega, Y)$. The conjugate equation $\pi_0 T^*(g) = f$ is solvable and has a unique solution for a given arbitrary $f \in L^0(\Omega, X)^*$.

2) For every $n \in \mathbb{N}$ the homogeneous equation $\pi_n T(x) = 0$ has $n - \nabla$ -linearly independent solutions $x_{1,n}, \ldots, x_{n,n}$ and the homogeneous conjugate equation $\pi_n T^*(g) = 0$ has $n - \nabla$ -linearly independent solutions $g_{1,n}, \ldots, g_{n,n}$.

3) The equation T(x) = y is solvable if and only if $\pi_n g_{i,n}(y) = 0$ $(n \in \mathbb{N}, i \leq n)$. The conjugate equation $T^*(g) = f$ is solvable if and only if $\pi_n f_{i,n}(x) = 0$ $(n \in \mathbb{N}, i \leq n)$.

4) The general solution x of the equation T(x) = y has the form

$$x = \sum_{n=1}^{\infty} \pi_n (x_n + \sum_{i=1}^{n} c_{i,n} x_{i,n}),$$

where x_n is a particular solution of the equation $\pi_n T(x) = \pi_n y$ and $\{c_{i,n}\}_{n \in \mathbb{N}, i \leq n}$ are arbitrary elements in L^0 .

The general solution g of the conjugate equation $T^*(g) = f$ has the form

$$g = \sum_{n=1}^{\infty} \pi_n (g_n + \sum_{i=1}^n c_{i,n} g_{i,n}),$$

where g_n is a particular solution of the equation $\pi_n T^*(g) = \pi_n f$, and $\{c_{i,n}\}_{n \in \mathbb{N}, i \leq n}$ are arbitrary elements in L^0 .

3. Measurable bundles of Fredholm operators

Proposition 3.1. Let $T : L^0(\Omega, X) \to L^0(\Omega, Y)$ be a L^0 -bounded linear operator. If $T_\omega : X(\omega) \to Y(\omega)$ are Fredholm operators and dim ker $T_\omega = n$ for almost all $\omega \in \Omega$, then 1) R(T) is (bo)-closed in $L^0(\Omega, Y)$ and $R(T^*)$ is (bo)-closed in $L^0(\Omega, X)^*$;

- 2) $R(T) = {}^{\perp} \ker T^*, \text{ where } {}^{\perp} \ker T^* = \{y \in L^0(\Omega, Y) : f(y) = 0, \forall f \in \ker T^*\};$
- $\begin{array}{l} 2) R(T^{*}) = (\ker T)^{\perp}, \text{ where } (\ker T)^{\perp} = \{f \in L^{0}(\Omega, X)^{*} : f(x) = 0, \forall x \in \ker T\}; \\ \end{array}$
- $\int I(I) (\text{Ker} I), \quad \text{where } (\text{Ker} I) \int E I(I, A) \cdot J(X) = 0, \forall X \in \text{Ker}$
- 4) ker T and ker T^* are homogeneous of type n.

Proof. Replacing T with $\frac{T}{1+||T||}$, we may assume that $||T|| \in L^{\infty}(\Omega)$. Since T_{ω} is a Fredholm operator for almost all $\omega \in \Omega$, we see that $R(T_{\omega})$ is closed in $Y(\omega)$ for almost all $\omega \in \Omega$. Therefore [13, Theorem 2] implies 1), 2), and 3).

4) Put $N(\omega) = \{\rho_X(x)(\omega) : x \in \ker T \bigcap L^{\infty}(\Omega, X)\}$. Let $x \in \ker T \bigcap L^{\infty}(\Omega, X)$. We have $T_{\omega}(\rho_X(x)(\omega)) = \rho_Y(T(x))(\omega) = \rho_Y(0)(\omega) = 0$. Thus $N(\omega) \subset \ker T_{\omega}$. Therefore dim $N(\omega) \leq n$. By [12, Theorem 1] ker T is a finitely generated submodule in $L^0(\Omega, X)$ and $d(\ker T) \leq n$. Then by [12, Proposition 3] there exist a (bo)-closed submodule M in $L^0(\Omega, X)$ such that $L^0(\Omega, X) = \ker T \oplus M$.

Consider an operator $S: M \to R(T)$ defined by $S(x) = T(x), x \in M$. Then ker $S = \{0\}$ and R(S) = R(T). Since R(T) is (bo)-closed in $L^0(\Omega, Y)$, we see that R(T) is a BKS over L^0 . By [14, Theorem 2] the operator $S^{-1}: R(T) \to M$ is L^0 -bounded. Without loss of generality we may assume that $||S^{-1}|| \in L^{\infty}(\Omega)$.

Now show that ker $T_{\omega} = N(\omega)$ for all $\omega \in \Omega$. We take $x_{\omega} \in \ker T_{\omega}$ and $x \in L^{\infty}(\Omega, X)$ such that $\rho_X(x)(\omega) = x_{\omega}$. Then $x = x_1 + x_2$, where $x_1 \in \ker T$, $x_2 \in M$. Since $\rho_X(x)(\omega) = \rho_X(x_1)(\omega) + \rho_X(x_2)(\omega)$ we get

(1)
$$T_{\omega}(\rho_X(x)(\omega)) = T_{\omega}(\rho_X(x_1)(\omega)) + T_{\omega}(\rho_X(x_2)(\omega)).$$

Because $x_1 \in \ker T$, we have $T_{\omega}(\rho_X(x_1))(\omega) = \rho_Y(T(x_1))(\omega) = 0$. From $\rho_X(x)(\omega) \in \ker T_{\omega}$ it follows that $T_{\omega}(\rho_X(x))(\omega) = 0$. Therefore by (1) we get $T_{\omega}(\rho_X(x_2))(\omega) = 0$. Since $x_2 \in M$ we have

$$||x_2|| = ||S^{-1}(S(x_2))|| \le ||S^{-1}|| ||S(x_2)|| = ||S^{-1}|| ||T(x_2)||.$$

Thus

$$\|\rho_X(x_2)(\omega)\|_{X(\omega)} \le p(\|S^{-1}\|)(\omega)\|T_{\omega}(\rho_X(x_2)(\omega)\|_{Y(\omega)} = 0.$$

Therefore $\rho_X(x_2)(\omega) = 0$. Hence $x_\omega = \rho_X(x)(\omega) = \rho_X(x_1)(\omega)$. Since $x_1 \in \ker T$ we get $x_\omega \in N(\omega)$. Therefore ker $T_\omega = N(\omega)$. Since ker $T_\omega = n$ for almost all $\omega \in \Omega$ by [12, Theorem 1] it follows that ker T is homogeneous of type n.

Now we shall show that ker T^* is homogeneous of type n. By a similar argument as in the case of the operator T we have that ker T^* is a finitely generated module and $d(\ker T^*) \leq n$.

Let $S = T|_{L^{\infty}(\Omega,X)}, f \in L^{\infty}(\Omega,Y)^{*}$ and $x \in L^{\infty}(\Omega,X)$. Then $S^{*}(f)(x) = f(S(x)) = f(T(x)) = T^{*}(f)(x)$. Thus $T^{*}|_{L^{\infty}(\Omega,Y)^{*}} = S^{*}$ and $d(\ker T^{*}) \ge d(\ker S^{*})$.

We show that $d(\ker S^*) \geq n$. Without loss of generality we may assume that $\ker S^*$ is homogeneous of type m. Let $\{\psi_1, \ldots, \psi_m\}$ be a ∇ -basis in ker S^* . By [12, Proposition 2] there exist $\{z_1, \ldots, z_m\} \subset L^0(\Omega, X)$ such that $z_i(\psi_j) = \delta_{i,j}1$, where $\delta_{i,j}$ the Kronecker symbol. Without loss of generality we can assume that $||z_k|| \in L^{\infty}(\Omega)$ for all $k = \overline{1, m}$.

For
$$y \in L^{\infty}(\Omega, Y)$$
 denote $\overline{y} = y - \sum_{i=1}^{m} \psi_i(y) z_i$. Then $\psi_k(\overline{y}) = \psi_k(y) - \sum_{i=1}^{m} \psi_i(y) \psi_k(z_i) = \psi_k(y) - \psi_k(y) -$

 $\psi_k(y) - \psi_k(y) = 0, \ k = \overline{1, m}$. Thus \overline{y} belongs to $^{\perp} \ker S^*$. Therefore by [13, Theorem 2] the point \overline{y} belongs $R(S) = ^{\perp} \ker S^*$. Thus there exists $\overline{x} \in L^{\infty}(\Omega, X)$ such that $S(\overline{x}) = \overline{y}$. Applying the lifting ρ_Y to $\overline{y} = y - \sum_{i=1}^m \psi_i(y) z_i$ we have that any $y(\omega) \in Y(\omega)$ can be represented in the form $y(\omega) = \overline{y}(\omega) + \sum_{i=1}^m \alpha_i(\omega) z_i(\omega)$, where $\overline{y}(\omega) \in R(T_{\omega}), \alpha_i(\omega) \in \mathbb{C}, z_i(\omega) = \rho_Y(z_i)(\omega), \ i = \overline{1, m}$. Since T_{ω} is a Fredholm operator and dim $\ker T_{\omega} = n$

 $\mathbb{C}, z_i(\omega) = \rho_Y(z_i)(\omega), i = 1, m.$ Since T_ω is a Fredholm operator and dim ker $T_\omega = n$ there exists a subspace $M(\omega) \subset Y(\omega)$ such that dim $M(\omega) = n$ and $Y(\omega) = R(T_\omega) \oplus$ $M(\omega)$. Therefore, $\{z_1(\omega), \ldots, z_m(\omega)\}$ is contains n linearly independent elements. Thus $m \ge n$. Therefore m = n and ker T^* is homogeneous of type n. The following result shows that a measurable bundle of Fredholm operators generates a ∇ -Fredholm operator.

Theorem 3.2. Let $T : L^0(\Omega, X) \to L^0(\Omega, Y)$ be a L^0 -bounded linear operator. If T_{ω} is a Fredholm operator for almost all $\omega \in \Omega$, then T is a ∇ -Fredholm operator.

Proof. Let T_{ω} be a Fredholm operator for almost all $\omega \in \Omega$. Then dim ker $T_{\omega} < \infty$ for almost all $\omega \in \Omega$. By [12, Theorem 1] there exists a partition of the unit $(\pi_n)_{n \in \mathbb{N}}$ in ∇ such that

$$d(\ker \pi_n T) = d(\ker \pi_n T^*) = \begin{cases} 0, & \text{if } \pi_n = 0\\ n, & \text{if } \pi_n \neq 0 \end{cases}$$

for all $n \in \mathbb{N} \cup \{0\}$.

Case 1. $\pi_0 = \mathbf{1}$. Then ker $T = \{0\}$ and ker $T^* = \{0\}$. By Proposition 3.1 we have $R(T) = {}^{\perp}\{0\} = L^0(\Omega, Y)$ and $R(T^*) = \{0\}^{\perp} = L^0(\Omega, X)^*$. Hence, ker $T = \{0\}$, ker $T^* = \{0\}$, $R(T) = L^0(\Omega, Y)$ and $R(T^*) = L^0(\Omega, X)^*$. This means that T is a ∇ -Fredholm operator.

Case 2. $\pi_0 \neq \mathbf{1}$. In this case there exists $n \geq 1$ such that $\pi_n \neq 0$. Without loss of generality we may assume that $\pi_n = \mathbf{1}$ for some $n \in \mathbb{N}$. Then by Proposition 3.1, ker T and ker T^* are homogeneous of type n.

Let x_1, \ldots, x_n and g_1, \ldots, g_n be ∇ -bases in ker T and ker T^* , respectively. By Proposition 3.1 we have that the equation T(x) = y (respectively $T^*(g) = f$) is solvable if and only if $g_k(y) = 0$ (respectively $f(x_k) = 0$) for all $k = \overline{1, n}$.

Now fix some solution x^* of the main equation. Let x be an arbitrary solution of the main equation. Then $x - x^* \in \ker T$. Since $d(\ker T) = n$ there are $c_1, c_2, \ldots, c_n \in L^0$ such that $x = x^* + c_1x_1 + c_2x_2 + \cdots + c_nx_n$. The general form of the solution of the conjugate equation is established by similar arguments.

4. NIKOLSKY THEOREM FOR A LINEAR OPERATORS IN BANACH–KANTOROVICH SPACES

Let T be a ∇ -Fredholm operator and ker T be homogeneous of type n. Let $\{e_1, \ldots, e_n\}$ and $\{\psi_1, \ldots, \psi_n\}$ be ∇ -bases in ker T and ker T^{*}, respectively. We take $\{f_1, \ldots, f_n\}$ from $L^0(\Omega, X)^*$ and $\{z_1, \ldots, z_n\}$ from $L^0(\Omega, X)$ such that $f_i(e_j) = \delta_{i,j} \mathbf{1}$ and $\psi_i(z_j) = \delta_{i,j} \mathbf{1}$ (see [12, Proposition 2]).

We consider a finitely generated operator $K: L^0(\Omega, X) \to L^0(\Omega, Y)$ defined by

(2)
$$K(x) = \sum_{i=1}^{n} f_i(x) z_i, \quad x \in L^0(\Omega, X).$$

Proposition 4.1. Let $T : L^0(\Omega, X) \to L^0(\Omega, Y)$ be a ∇ -Fredholm operator and ker T be homogeneous of type n. Then the operator B = T + K is invertible and B^{-1} is L^0 -bounded, where K defined by (2).

Proof. We show that ker $B = \{0\}$ and $R(B) = L^0(\Omega, Y)$. 1) ker $B = \{0\}$. Take $x \in \ker B$. This means that

(3)
$$T(x) = -\sum_{i=1}^{n} f_i(x) z_i.$$

Since $\psi_i(z_j) = \delta_{i,j} \mathbf{1}$ we get $\psi_k(T(x)) = -\sum_{i=1}^n f_i(x)\psi_k(z_i) = -f_k(x)$. On the other hand, $\psi_k(T(x)) = T^*(\psi_k)(x) = 0(x) = 0$. Thus $f_k(x) = 0, k = \overline{1, n}$. Hence (3) has the form T(x) = 0, thus $x = \sum_{m=1}^n \xi_m e_m$, where $\xi_m \in L^0$, $m = \overline{1, n}$. From $f_k(x) = 0, k = \overline{1, n}$ we obtain $0 = f_k(x) = f_k(\sum_{m=1}^n \xi_m e_m) = \sum_{m=1}^n \xi_m f_k(e_m) = \xi_m$. Therefore $\xi_m = 0$ for all m. Thus x = 0. Hence ker $B = \{0\}$.

2) $R(B) = L^0(\Omega, Y)$. Let $y \in L^0(\Omega, Y)$. Put

(4)
$$\overline{y} = y - \sum_{i=1}^{n} \psi_i(y) z_i$$

Since $\psi_k(\overline{y}) = \psi_k(y) - \sum_{i=1}^n \psi_i(y)\psi_k(z_i) = \psi_k(y) - \psi_k(y) = 0, k = \overline{1, n}$, and T is ∇ -Fredholm we have $\overline{y} \in R(T)$. Take $\overline{x} \in L^0(\Omega, X)$ such that $T(\overline{x}) = \overline{y}$. Put $x = \overline{x} + \sum_{i=1}^n [\psi_i(y) - f_i(\overline{x})]e_i$. By (4) and using the identities $T(x) = T(\overline{x}), K(\overline{x}) = \sum_{i=1}^n f_i(\overline{x})z_i, K(e_i) = z_i$ we get $B(x) = T(x) + K(x) = T(\overline{x}) + \sum_{i=1}^n f_i(\overline{x})z_i + \sum_{i=1}^n [\psi_i(y) - f_i(\overline{x})]z_i = \overline{y} + \sum_{i=1}^n \psi_i(y)z_i = y_i$.

Therefore ker $B = \{0\}$, $R(B) = L^0(\Omega, Y)$ and by [14, Theorem 2] we have that B^{-1} is an L^0 -bounded operator.

The following result is a vector version of the Nikolsky theorem for linear operators on Banach–Kantorovich spaces.

Theorem 4.2. For an L^0 -bounded linear operator $T : L^0(\Omega, X) \to L^0(\Omega, Y)$, the following conditions are equivalent:

1) T_{ω} is a Fredholm operator for almost all $\omega \in \Omega$;

2) T is a ∇ -Fredholm operator;

3) there are operators A, K from $L^0(\Omega, X)$ to $L^0(\Omega, Y)$ such that A is invertible, K is σ -finite-dimensional and T = A + K;

4) there are operators A, K from $L^0(\Omega, X)$ to $L^0(\Omega, Y)$ such that A is invertible, K is cyclically compact and T = A + K.

Proof. Implication $1 \ge 2$ follows from Theorem 3.2.

2) \Rightarrow 3). Let T be a ∇ -Fredholm operator and $(\pi_n)_{n \in \mathbb{N} \cup \{0\}}$ a partition of the unit in ∇ such that $d(\pi_n \ker T) = n, n \in \mathbb{N} \cup \{0\}$.

Case 1. $\pi_0 = 1$. In this case ker $T = \{0\}$. Since T is ∇ -Fredholm we get $R(T) = L^0(\Omega, Y)$. By [14, Theorem 2], the operator T^{-1} is L^0 -bounded. Therefore in this case we put A = T, K = 0.

Case 2. $\pi_0 \neq 1$. For ∇ -Fredholm operators $\pi_n T$, $n \in \mathbb{N}$, by Proposition 4.1 there are finitely generated operators $K_n : \pi_n L^0(\Omega, X) \to \pi_n L^0(\Omega, Y)$ such that $A_n = \pi_n T + K_n$ is an invertible operator from $\pi_n L^0(\Omega, X)$ on $\pi_n L^0(\Omega, Y)$. Since K_n is L^0 -bounded for all $n \in \mathbb{N}$ and $L^0(\Omega, Y)$ is a BKS over L^0 , there exists $K(x) = \sum_{n=1}^{\infty} \pi_n K_n(\pi_n x)$ for all

 $x \in L^0(\Omega, X)$. Then K is a σ -finite-dimensional operator, A = T + K is invertible and T = A + (-K).

3) \Rightarrow 4) is trivial, because every σ -finite-dimensional operator is cyclically compact. 4) \Rightarrow 1). We need following.

Proposition 4.3. If an L^0 -bounded linear operator $T : L^0(\Omega, X) \to L^0(\Omega, Y)$ is an invertible, then T_{ω} is invertible for almost all $\omega \in \Omega$.

Proof. Let T be invertible and $U: L^0(\Omega, Y) \to L^0(\Omega, X)$ be the inverse of T. We take a partition $(\pi_n)_{n \in \mathbb{N}}$ of unit in ∇ such that $\pi_n ||U|| \in L^\infty(\Omega)$ and $\pi_n ||T|| \in L^\infty(\Omega)$ for any $n \in \mathbb{N}$. Then $\pi_n U(y) \in L^\infty(\Omega, X)$ and $\pi_n T(x) \in L^\infty(\Omega, Y)$ for all $x \in L^\infty(\Omega, X)$, $y \in L^\infty(\Omega, Y)$. Denote $\Omega_n = \{\omega \in \Omega : p(\pi_n)(\omega) = 1\}$ and $\Omega_0 = \bigcup_{n=1}^\infty \Omega_n$. For $\omega \in \Omega_n$ we put $U_\omega(\rho_Y(y)(\omega)) = \rho_X(U(\pi_n y))(\omega)$ for all $y \in L^\infty(\Omega, Y)$. For $y \in L^\infty(\Omega, Y)$ we have

$$\begin{aligned} \|U_{\omega}(\rho_{Y}(y)(\omega))\|_{X(\omega)} &= \|\rho_{X}(U(\pi_{n}y))(\omega)\|_{X(\omega)} = p(\|U(\pi_{n}y)\|)(\omega) \\ &\leq p(\pi_{n}\|U\|\|y\|)(\omega) = p(\pi_{n}\|U\|)(\omega)\|\rho_{Y}(y)(\omega)\|_{Y(\omega)}. \end{aligned}$$

Hence, U_{ω} is a bounded operator for any $\omega \in \Omega_0$. Since

 $U_{\omega}(T_{\omega}(\rho_X(x)(\omega))) = \rho_X(x)(\omega) \quad \text{and} \quad T_{\omega}(U_{\omega}(\rho_Y(y)(\omega))) = \rho_Y(y)(\omega)$

240

for any $x \in L^{\infty}(\Omega, X)$, $y \in L^{\infty}(\Omega, Y)$, we have that U_{ω} is an inverse of T_{ω} .

Suppose that T = A + K, where A is invertible, K is a cyclically compact operator. Then A_{ω} is invertible (Proposition 4.3) and K_{ω} is a compact operator [7, Theorem 4] for almost all $\omega \in \Omega$. By Nikolsky's classical theorem, $T_{\omega} = A_{\omega} + K_{\omega}$ is a Fredholm operator for almost all $\omega \in \Omega$.

Corollary 4.4. Let X, Y and Z be MBBs over Ω with vector valued liftings. If U: $L^0(\Omega, X) \to L^0(\Omega, Y)$ and $V: L^0(\Omega, Y) \to L^o(\Omega, Z)$ are ∇ -Fredholm operators then UV is a ∇ -Fredholm operator.

Theorem 4.5. Let $U: L^0(\Omega, X) \to L^0(\Omega, X)$ be a L^0 -bounded linear operator such that U^m is cyclically compact for some $m \in \mathbb{N}$. Then I - U is a ∇ -Fredholm operator.

Proof. Without loss of generality we may assume that ||U|| = 1. Let $\{U_{\omega} : \omega \in \Omega\}$ be a measurable bundle of operator U. For any $x \in L^{\infty}(\Omega, X)$ it follows that

 $\rho_X(U^m(x))(\omega) = \rho_X(U(U^{m-1}(x))(\omega) = \dots = U^m_\omega(\rho_X(x)(\omega)).$

Therefore, the family $\{U_{\omega}^m : \omega \in \Omega\}$ is a measurable bundle of cyclically compact operators U^m . Since U^m is cyclically compact by [7, Theorem 4] it follows that U^m_{ω} is a compact operator for almost all $\omega \in \Omega$. Therefore $I_{\omega} - U_{\omega}$ is a Fredholm operator for almost all $\omega \in \Omega$. By Theorem 4.2 we have that I - U is a ∇ -Fredholm operator.

Remark. In [4] (see also [5], [6]) Kusraev proves that I - U is a ∇ -Fredholm operator if U is a cyclically compact operator.

Example. Let $L^{2,0}(\Omega^2)$ be the set of complex-valued measurable functions f on Ω^2 such that

$$\int\limits_{\Omega} |f(s,\omega)|^2 \, d\mu(s) \in L^0$$

exists.

For $f \in L^{2,0}(\Omega^2)$ denote $||f||(\omega) = \sqrt{\int_{\Omega} |f(s,\omega)|^2 d\mu(s)}$. Then $(L^{2,0}(\Omega^2), \|\cdot\|)$ is a

BKS over L^0 . Let $k(t, s, \omega)$ be a complex-valued measurable function on Ω^3 such that $\int_{\Omega} \int_{\Omega} |k(t,s,\omega)|^2 d\mu(s) d\mu(t) \text{ exists.}$

Consider an operator $T: L^{2,0}(\Omega^2) \to L^{2,0}(\Omega^2)$ defined by

$$T(f)(t,\omega) = \int_{\Omega} k(t,s,\omega) f(s,\omega) \, d\mu(s), \quad f \in L^{2,0}(\Omega^2).$$

For any $\omega \in \Omega$ we put $k_{\omega}(t,s) = k(t,s,\omega)$. Then for almost all $\omega \in \Omega$ the function $k_{\omega}(t,s)$ belongs to $L^2(\Omega^2)$. For almost all $\omega \in \Omega$ the operator $T_\omega : L^2(\Omega) \to L^2(\Omega)$ is defined by

$$T_{\omega}(f_{\omega})(t) = \int_{\Omega} k_{\omega}(t,s) f_{\omega}(s) d\mu(s), \quad f_{\omega} \in L^{2}(\Omega).$$

It is well-known that T_{ω} is a compact operator for almost all $\omega \in \Omega$. For $f \in L^{2,0}(\Omega^2)$ we have

$$T(f)(t,\omega) = \int_{\Omega} k(t,\omega,s)f(s,\omega) \, d\mu(s) = \int_{\Omega} k_{\omega}(t,s)f_{\omega}(s) \, ds = T_{\omega}(f_{\omega})(t)$$

for almost all $(t,\omega) \in \Omega^2$, where $f_{\omega}(s) = f(s,\omega)$. This means that $\{T_{\omega} : \omega \in \Omega\}$ is a measurable bundle of compact operators. Therefore, by [7, Theorem 3] the operator Tis cyclically compact. By Theorem 4.5 we have that I - T is a ∇ -Fredholm operator.

K. K. KUDAYBERGENOV

References

- 1. L. V. Kantorovich, G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977. (Russian)
- A. E. Gutman, Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles, Siberian Adv. Math. 3 (1993), no. 3, 1–55.
- A. G. Kusraev, Boolean valued analysis of duality between universally complete modules, Dokl. Akad. Nauk SSSR 267 (1982), no. 5, 1049–1052.
- 4. A. G. Kusraev, Vector Duality and Its Applications, Nauka, Novosibirsk, 1985. (Russian)
- A. G. Kusraev, Cyclically compact operators in Banach spaces, Vladikavkaz. Math. J. 2 (2000), no. 1, 10–23.
- 6. A. G. Kusraev, Dominated Operators, Nauka, Moscow, 2003. (Russian)
- I. G. Ganiev, K. K. Kudaybergenov, Measurable bundles of compact operators, Methods Funct. Anal. Topology 7 (2001), no. 4, 1–5.
- A. G. Kusraev and S. S. Kutateladze, Nonstandard methods for Kantorovich space, Siberian Adv. Math. 2 (1992), no. 2, 114–152.
- S. S. Kutateladze, Cyclic monads and their applications, Siberian Math. J. 27 (1986), no. 1, 100–110.
- S. S. Kutateladze, Monads of ultrafilters and extensional filters, Siberian Math. J. 30 (1989), no. 1, 129–133.
- A. E. Gutman, E. Yu. Emel'yanov, A. G. Kusraev, and S. S. Kutateladze, Nonstandard Analysis and Vector Lattices, Sobolev Institute Press, Novosibirsk, 1999.
- I. G. Ganiev and K. K. Kudaybergenov, A finite dimensional module over a ring of measurable functions, Uzb. Math. J. (2004), no. 4, 3–9.
- K. K. Kudaybergenov, Measurable bundle of operators with closed ranges, Uzb. Math. J. (2005), no. 3, 54–62.
- I. G. Ganiev and K. K. Kudaybergenov, Banach theorem about of inverse operators in the Banach-Kantorovich spaces, Vladikavkaz. Math. J. 6 (2004), no. 3, 21–25.

Institute of Mathematics, Uzbek Academy of Sciences, 29 F. Khodjaev, Tashkent, 700125, Uzbekistan

E-mail address: karim2006@mail.ru

Received 07/04/2005