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∇-FREDHOLM OPERATORS IN BANACH–KANTOROVICH SPACES

K. K. KUDAYBERGENOV

Abstract. The paper is devoted to studying ∇-Fredholm operators in Banach–
Kantorovich spaces over a ring of measurable functions. We show that a bounded
linear operator acting in Banach–Kantorovich space is ∇-Fredholm if and only if
it can be represented as a sum of an invertible operator and a cyclically compact
operator.

1. Introduction

It is well-known that one of the important notions in the theory of operator equations
in Banach spaces is that of a Fredholm operator. In 1943 by M. S. Nikolsky it was proved
that a bounded linear operator acting in Banach space is Fredholm if and only if it can be
represented as a sum of an invertible operator and a compact operator (see [1]). In this
paper we considered the ∇-Fredholm operators acting in a Banach–Kantorovich space
over a ring of measurable functions. It is known [2] that every Banach–Kantorovich
space over a ring measurable functions can be represented as a measurable bundle of
Banach spaces. Cyclically compact sets and operators in lattice-normed spaces were
introduced by Kusraev in [3] and [4], respectively. In [5] (see also [6]) a general form
of cyclically compact operators in Kaplansky–Hilbert module, as well as a variant of
Fredholm alternative for cyclically compact operators, are also given. In [7] it was proved
that every cyclically compact operator acting in Banach–Kantorovich space over a ring
measurable functions can be represented as a measurable bundle of compact operators
acting in Banach spaces. For different aspects of cyclical compactness, see [8–11]. In [12]
there was given a structure of modules over the ring of measurable functions, which is
represented as a measurable bundle of finite dimensional spaces. Using this representation
we show that every ∇-Fredholm operator acting in Banach–Kantorovich space can be
represented as a measurable bundle of Fredholm operators acting in Banach spaces and
prove a vector version of Nikolsky theorem for a bounded linear operators acting in
Banach–Kantorovich spaces.

2. Preliminaries

Let (Ω,Σ, µ) be a measurable space with a finite measure and L0 = L0(Ω) be the
algebra of equivalence classes of all complex measurable functions on (Ω,Σ, µ).

A complex linear space E is said to be normed by L0 if there is a map ‖ · ‖ : E −→ L0

such that for any x, y ∈ E, λ ∈ C, the following conditions are fulfilled: ‖x‖ ≥ 0; ‖x‖ =
0 ⇐⇒ x = 0; ‖λx‖ = |λ|‖x‖; ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The pair (E, ‖ · ‖) is called a lattice-normed space over L0. A lattice-normed space E
is called d-decomposable if for any x ∈ E with ‖x‖ = λ1 + λ2, λ1, λ2 ∈ L0, λ1λ2 = 0
there exist x1, x2 ∈ E such that x = x1 + x2 and ‖xi‖ = λi, i = 1, 2. A net (xα) in E is
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(bo)-converging to x ∈ E, if ‖xα−x‖
(o)−→ 0 in L0 (note that the order convergence in L0

coincides with convergence almost everywhere).
A lattice-normed space E which is d-decomposable and complete with respect to (bo)-

convergence is called a Banach–Kantorovich space (BKS).
It is known that every BKS E over L0 is a module over L0 and ‖λx‖ = |λ|‖x‖ for all

λ ∈ L0, x ∈ E (see [2], [4]).
We shall consider a map X : ω ∈ Ω → (X(ω), ‖ · ‖X(ω)), where (X(ω), ‖ · ‖X(ω)) is a

Banach space for all ω ∈ Ω. A function u is called a section of X if it is defined on Ω
almost everywhere and takes a value u(ω) ∈ X(ω) for ω ∈ dom(u), where dom(u) is the
domain of u.

Let L be some set of sections.

Definition 2.1. [2] (see also [6]). A pair (X,L) is called a measurable Banach bundle
(MBB) over Ω, if

a) λ1c1 + λ2c2 ∈ L for all λ1, λ2 ∈ C, c1, c2 ∈ L, where
λ1c1 + λ2c2 : ω ∈ dom(c1) ∩ dom(c2) → λ1c1(ω) + λ2c2(ω);

b) the function ‖c‖ : ω ∈ dom(c) → ‖c(ω)‖X(ω) is measurable for all c ∈ L;
c) for all ω ∈ Ω the set {c(ω) : c ∈ L, ω ∈ dom(c)} is dense in X(ω).

A section s is called simple if there exists ci ∈ L,Ai ∈ Σ, i = 1, n, such that s(ω) =
n∑

i=1

χAi
(ω)ci(ω). A section u is called measurable if there exists a sequence (sn)n∈N of

simple sections such that ‖sn(ω)− u(ω)‖X(ω) → 0 for almost all ω ∈ Ω.
We denote by M(Ω, X) the set of all measurable sections and L0(Ω, X) denotes the

factorization of this set with respect to equality almost everywhere. By û we denote the
class from L0(Ω, X), containing section u ∈ M(Ω, X). A function ω → ‖u(ω)‖X(ω) is
measurable for all u ∈ M(Ω, X). By ‖û‖ we denote the element in L0, containing the
function ‖u(ω)‖X(ω).

It is known [2] that (L0(Ω, X), ‖ · ‖) is BKS over L0.
We denote by L∞(Ω) the set of all bounded complex measurable functions on Ω and

L∞(Ω) = {f ∈ L0 : ∃λ ∈ R, λ > 0, |f | ≤ λ1}, where 1 is unit in L0. Let

L∞(Ω, X) = {u ∈M(Ω, X) : ‖u(ω)‖X(ω) ∈ L∞(Ω)}

and L∞(Ω, X) = {û ∈ L0(Ω, X) : ‖û‖ ∈ L∞(Ω)}.
The sets M(Ω, X) and L∞(Ω, X) are often identified with L0(Ω, X) and L∞(Ω, X),

by identifying a measurable section u and the corresponding equivalence class û.
We consider a lifting p : L∞(Ω) → L∞(Ω) (see [2]).

Definition 2.2. [2] (see also [6]). The map ρX : L∞(Ω, X) → L∞(Ω, X) is called a
vector valued lifting on L∞(Ω, X) (associated with p), if:

a) ρX(û) ∈ û, dom(ρX(û)) = Ω for all û ∈ L∞(Ω, X);
b) ‖ρX(û)(ω)‖X(ω) = p(‖û‖)(ω) for all û ∈ L∞(Ω, X);
c) ρX(û+ v̂) = ρX(û) + ρX(v̂) for all û, v̂ ∈ L∞(Ω, X);
d) ρX(eû) = p(e)ρX(û) for all û ∈ L∞(Ω, X) and e ∈ L∞(Ω);
e) the set {ρX(û)(ω) : û ∈ L∞(Ω, X)} is dense in X(ω) for all ω ∈ Ω.

It is known [2, Theorem 4.4.1] that for any BKS E over L0 there is a MBB (X,L) such
that E is isometrically isomorphic to L0(Ω, X) and on L∞(Ω, X) there exists a vector
valued lifting such that {ρX(û)(ω) : û ∈ L∞(Ω, X)} = X(ω) for all ω ∈ Ω.

Let ∇ be the Boolean algebra of idempotents in L0. If (uα)α∈A ⊂ L0(Ω, X) and
(πα)α∈A is a partition of the unit in ∇, then the series

∑
α
παuα (bo)-converges in

L0(Ω, X) and its sum is called the mixing of (uα)α∈A with respect to (πα)α∈A. We denote
this sum by mix(παuα). A subset K ⊂ L0(Ω, X) is called cyclic, if mix(παuα) ∈ K for
each (uα)α∈A ⊂ K and any partition of the unit (πα)α∈A in ∇. For every directed set A
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denote by ∇(A) the set of all partitions of the unit in ∇, which are indexed by elements
of the set A. More precisely,

∇(A) = {ν : A→ ∇ : (∀α, β ∈ A)(α 6= β → ν(α) ∧ ν(β) = 0) ∧
∨

α∈A

ν(α) = 1}.

For ν1, ν2 ∈ ∇(A) we put ν1 ≤ ν2 ↔ ∀α, β ∈ A, (ν1(α) ∧ ν2(β) 6= 0 → α ≤ β). Then
∇(A) is a directed set. Let (uα)α∈A be a net in L0(Ω, X). For every ν ∈ ∇(A) we put
uν = mix(ν(α)uα) and obtain a new net (uν)ν∈∇(A). Every subnet of the net (uν)ν∈∇(A)

is called cyclic subnet of the original net (uα)α∈A.

Definition 2.3. [4] (see also [5], [6]). A subsetK ⊂ L0(Ω, X) is called cyclically compact,
if K is cyclic and every net in K has a cyclic subnet that (bo)-converges to some point
of K. A subset in L0(Ω, X) is called relatively cyclically compact if it is contained in a
cyclically compact set.

Let X and Y be MBBs over Ω with vector valued liftings ρX and ρY on L∞(Ω, X) and
L∞(Ω, Y ), respectively. A linear operator T : L0(Ω, X) → L0(Ω, Y ) is called L0-bounded,
if there exists an element c ∈ L0 such that ‖T (x)‖ ≤ c‖x‖ for any x ∈ L0(Ω, X). Every
L0-bounded linear operator T : L0(Ω, X) → L0(Ω, Y ) is L0-linear, i. e., T (αx + βy) =
αT (x) + βT (y) for all α, β ∈ L0, x, y ∈ L0(Ω, X) (see [4]).

A linear operator T is called cyclically compact, if for every bounded set B in L0(Ω, X)
the set T (B) is relatively cyclically compact in L0(Ω, Y ). For a L0-bounded linear oper-
ator T we put ‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}.

It is known [7] (see also [6, p. 530]), that for any L0-bounded (cyclically compact)
linear operator T : L0(Ω, X) → L0(Ω, Y ) there is a family of bounded (compact) linear
operators {Tω : X(ω) −→ Y (ω)} such that for any x ∈ L0(Ω, X) the following equality
holds: T (x)(ω) = Tω(x(ω)) for almost all ω ∈ Ω. If ‖T‖ ∈ L∞(Ω), then ρY (T (x))(ω) =
Tω(ρX(x)(ω)) for all x ∈ L∞(Ω, X), ω ∈ Ω.

Conversely, if {Tω : X(ω) −→ Y (ω)} is a family of bounded (compact) linear operators
such that Tω(x(ω)) ∈M(Ω, Y ) for any x ∈M(Ω, X), then the operator T : L0(Ω, X) −→
L0(Ω, Y ) defined by T (û) = ̂Tω(u(ω)) is L0-bounded (cyclically compact).

Let L0(Ω, X)∗ be the dual space of L0(Ω, X), i. e., the set of all L0-bounded linear
functionals from L0(Ω, X) into L0. For every f ∈ L0(Ω, X)∗ with ‖f‖ ∈ L∞(Ω) we put
fω(ρX(x)(ω)) = p(f(x))(ω), x ∈ L∞(Ω, X), ω ∈ Ω. Then fω ∈ X(ω)

′
for every ω ∈ Ω,

where X(ω)
′
is the dual space of X(ω). Let X

′
(ω) = {fω : f ∈ L0(Ω, X)∗, ‖f‖ ∈ L∞(Ω)},

X
′
: ω → X

′
(ω), L

′
= {ω → fω : f ∈ L0(Ω, X)∗, ‖f‖ ∈ L∞(Ω)}.

It is known [2, Theorem 4.4.7] that (X
′
, L

′
) is a MBB with vector valued lifting;

X
′
(ω) is a closed subspace in X(ω)

′
for all ω ∈ Ω; L0(Ω, X

′
) is isometrically isomorphic

to L0(Ω, X)∗.
A module E over L0 is said to be finite dimensional (or finitely generated), if there

are x1, x2, . . . , xn in E such that for any x ∈ E there exist λi ∈ L0 (i = 1, n) with
x = λ1x1 + · · ·+λnxn. The elements x1, x2, . . . , xn are called generators of E. We denote
by d(E) the minimal number of generators of E.

A module E over L0 is called σ-finite-dimensional, if there exists a partition (πα)α∈A

of the unit in ∇ such that παE is finitely generated for any α. A finite-dimensional
module E over L0 is called homogeneous of type n, if for every nonzero e ∈ ∇ we have
n = d(eE).

A family {x1, x2, . . . , xn} in E is called ∇-linearly independent, if for all π ∈ ∇ and

λ1, . . . , λn ∈ L0, from π
n∑

k=1

λkxk = 0 it follows that πλ1 = · · · = πλn = 0.

A module E is homogeneous of type n if and only if there exist generators {x1, . . . , xn}
in E, consisting of ∇-linearly independent elements (see [12], Proposition 6). Such gen-
erators form a ∇-basis of E.
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An L0-bounded linear operator T : L0(Ω, X) → L0(Ω, Y ) is called finite dimensional
or finitely generated (σ-finite dimensional, homogeneous of type n) if R(T ) = {T (x) :
x ∈ L0(Ω, X)} is a finite dimensional (respectively σ-finite dimensional, homogeneous of
type n) submodule in L0(Ω, Y ).

Any σ-finite dimensional operator T : L0(Ω, X) → L0(Ω, Y ) can be represented as
T =

∑
α∈A

παTα, where (πα)α∈A is a partition of the unit in ∇, Tα : L0(Ω, X) → L0(Ω, Y )

are homogeneous operators of finite type for all α. If T is finite dimensional, then (πα)α∈A

is a finite partition of the unit in ∇.
Any cyclically compact operator T : X → Y is L0-bounded. Since the unit ball in a

σ-finite dimensional module over L0 is a cyclically compact set ([12], Corollary 2), any
σ-finite dimensional operator is cyclically compact.

Now we give a definition of ∇-Fredholm operators, which was introduced by Kusraev
[4] (see also [5], [6]). Let T : L0(Ω, X) → L0(Ω, Y ) be a L0-bounded linear operator.

We consider the homogeneous equations

T (x) = 0, T ∗(g) = 0

and, respectively, the main equation

T (x) = y

and the conjugate equation
T ∗(g) = f.

An operator T is called ∇-Fredholm, if there exists a partition of unity (πn)n∈N∪{0}
in ∇ such that the following conditions are fulfilled:

1) The homogeneous equation π0T (x) = 0 has the only zero solution. The homo-
geneous conjugate equation π0T

∗(g) = 0 has the only zero solution. The equation
π0T (x) = π0y is solvable and has a unique solution for a given arbitrary y ∈ L0(Ω, Y ).
The conjugate equation π0T

∗(g) = f is solvable and has a unique solution for a given
arbitrary f ∈ L0(Ω, X)∗.

2) For every n ∈ N the homogeneous equation πnT (x) = 0 has n ∇-linearly inde-
pendent solutions x1,n, . . . , xn,n and the homogeneous conjugate equation πnT

∗(g) = 0
has n ∇-linearly independent solutions g1,n, . . . , gn,n.

3) The equation T (x) = y is solvable if and only if πngi,n(y) = 0 (n ∈ N, i ≤ n). The
conjugate equation T ∗(g) = f is solvable if and only if πnfi,n(x) = 0 (n ∈ N, i ≤ n).

4) The general solution x of the equation T (x) = y has the form

x =
∞∑

n=1
πn(xn +

n∑
i=1

ci,nxi,n),

where xn is a particular solution of the equation πnT (x) = πny and {ci,n}n∈N,i≤n are
arbitrary elements in L0.

The general solution g of the conjugate equation T ∗(g) = f has the form

g =
∞∑

n=1
πn(gn +

n∑
i=1

ci,ngi,n),

where gn is a particular solution of the equation πnT
∗(g) = πnf, and {ci,n}n∈N,i≤n are

arbitrary elements in L0.

3. Measurable bundles of Fredholm operators

Proposition 3.1. Let T : L0(Ω, X) → L0(Ω, Y ) be a L0-bounded linear operator. If
Tω : X(ω) → Y (ω) are Fredholm operators and dim kerTω = n for almost all ω ∈ Ω, then

1) R(T ) is (bo)-closed in L0(Ω, Y ) and R(T ∗) is (bo)-closed in L0(Ω, X)∗;
2) R(T ) = ⊥ kerT ∗, where ⊥ kerT ∗ = {y ∈ L0(Ω, Y ) : f(y) = 0,∀ f ∈ kerT ∗};
3) R(T ∗) = (kerT )⊥, where (kerT )⊥ = {f ∈ L0(Ω, X)∗ : f(x) = 0,∀x ∈ kerT};
4) kerT and kerT ∗ are homogeneous of type n.
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Proof. Replacing T with T
1 + ‖T‖ , we may assume that ‖T‖ ∈ L∞(Ω). Since Tω is a

Fredholm operator for almost all ω ∈ Ω, we see that R(Tω) is closed in Y (ω) for almost
all ω ∈ Ω. Therefore [13, Theorem 2] implies 1), 2), and 3).

4) Put N(ω) = {ρX(x)(ω) : x ∈ kerT
⋂
L∞(Ω, X)}. Let x ∈ kerT

⋂
L∞(Ω, X). We

have Tω(ρX(x)(ω)) = ρY (T (x))(ω) = ρY (0)(ω) = 0. Thus N(ω) ⊂ kerTω. Therefore
dimN(ω) ≤ n. By [12, Theorem 1] kerT is a finitely generated submodule in L0(Ω, X)
and d(kerT ) ≤ n. Then by [12, Proposition 3] there exist a (bo)-closed submodule M in
L0(Ω, X) such that L0(Ω, X) = kerT ⊕M .

Consider an operator S : M → R(T ) defined by S(x) = T (x), x ∈ M. Then kerS =
{0} and R(S) = R(T ). Since R(T ) is (bo)-closed in L0(Ω, Y ), we see that R(T ) is a BKS
over L0. By [14, Theorem 2] the operator S−1 : R(T ) →M is L0-bounded. Without loss
of generality we may assume that ‖S−1‖ ∈ L∞(Ω).

Now show that kerTω = N(ω) for all ω ∈ Ω. We take xω ∈ kerTω and x ∈ L∞(Ω, X)
such that ρX(x)(ω) = xω. Then x = x1+x2, where x1 ∈ kerT, x2 ∈M. Since ρX(x)(ω) =
ρX(x1)(ω) + ρX(x2)(ω) we get

(1) Tω(ρX(x)(ω)) = Tω(ρX(x1)(ω)) + Tω(ρX(x2)(ω)).

Because x1 ∈ kerT , we have Tω(ρX(x1))(ω) = ρY (T (x1))(ω) = 0. From ρX(x)(ω) ∈
kerTω it follows that Tω(ρX(x))(ω) = 0. Therefore by (1) we get Tω(ρX(x2))(ω) = 0.
Since x2 ∈M we have

‖x2‖ = ‖S−1(S(x2))‖ ≤ ‖S−1‖‖S(x2)‖ = ‖S−1‖‖T (x2)‖.
Thus

‖ρX(x2)(ω)‖X(ω) ≤ p(‖S−1‖)(ω)‖Tω(ρX(x2)(ω)‖Y (ω) = 0.
Therefore ρX(x2)(ω) = 0. Hence xω = ρX(x)(ω) = ρX(x1)(ω). Since x1 ∈ kerT we get
xω ∈ N(ω). Therefore kerTω = N(ω). Since kerTω = n for almost all ω ∈ Ω by [12,
Theorem 1] it follows that kerT is homogeneous of type n.

Now we shall show that kerT ∗ is homogeneous of type n. By a similar argument as
in the case of the operator T we have that kerT ∗ is a finitely generated module and
d(kerT ∗) ≤ n.

Let S = T |L∞(Ω,X), f ∈ L∞(Ω, Y )∗ and x ∈ L∞(Ω, X). Then S∗(f)(x) = f(S(x)) =
f(T (x)) = T ∗(f)(x). Thus T ∗|L∞(Ω,Y )∗ = S∗ and d(kerT ∗) ≥ d(kerS∗).

We show that d(kerS∗) ≥ n. Without loss of generality we may assume that kerS∗ is
homogeneous of type m. Let {ψ1, . . . , ψm} be a ∇-basis in kerS∗. By [12, Proposition 2]
there exist {z1, . . . , zm} ⊂ L0(Ω, X) such that zi(ψj) = δi,j1, where δi,j the Kronecker
symbol. Without loss of generality we can assume that ‖zk‖ ∈ L∞(Ω) for all k = 1,m.

For y ∈ L∞(Ω, Y ) denote y = y−
m∑

i=1

ψi(y)zi. Then ψk(y) = ψk(y)−
m∑

i=1

ψi(y)ψk(zi) =

ψk(y)−ψk(y) = 0, k = 1,m. Thus y belongs to ⊥ kerS∗. Therefore by [13, Theorem 2] the
point y belongs R(S) = ⊥ kerS∗. Thus there exists x ∈ L∞(Ω, X) such that S(x) = y.

Applying the lifting ρY to y = y −
m∑

i=1

ψi(y)zi we have that any y(ω) ∈ Y (ω) can be

represented in the form y(ω) = y(ω) +
m∑

i=1

αi(ω)zi(ω), where y(ω) ∈ R(Tω), αi(ω) ∈

C, zi(ω) = ρY (zi)(ω), i = 1,m. Since Tω is a Fredholm operator and dim kerTω = n
there exists a subspace M(ω) ⊂ Y (ω) such that dimM(ω) = n and Y (ω) = R(Tω) ⊕
M(ω). Therefore, {z1(ω), . . . , zm(ω)} is contains n linearly independent elements. Thus
m ≥ n. Therefore m = n and kerT ∗ is homogeneous of type n. �
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The following result shows that a measurable bundle of Fredholm operators generates
a ∇-Fredholm operator.

Theorem 3.2. Let T : L0(Ω, X) → L0(Ω, Y ) be a L0-bounded linear operator. If Tω is
a Fredholm operator for almost all ω ∈ Ω, then T is a ∇-Fredholm operator.

Proof. Let Tω be a Fredholm operator for almost all ω ∈ Ω. Then dim kerTω < ∞ for
almost all ω ∈ Ω. By [12, Theorem 1] there exists a partition of the unit (πn)n∈N in ∇
such that

d(kerπnT ) = d(kerπnT
∗) =

{
0, if πn = 0,
n, if πn 6= 0,

for all n ∈ N ∪ {0}.
Case 1. π0 = 1. Then kerT = {0} and kerT ∗ = {0}. By Proposition 3.1 we have

R(T ) = ⊥{0} = L0(Ω, Y ) and R(T ∗) = {0}⊥ = L0(Ω, X)∗. Hence, kerT = {0}, kerT ∗ =
{0}, R(T ) = L0(Ω, Y ) and R(T ∗) = L0(Ω, X)∗. This means that T is a ∇-Fredholm
operator.

Case 2. π0 6= 1. In this case there exists n ≥ 1 such that πn 6= 0. Without loss of
generality we may assume that πn = 1 for some n ∈ N. Then by Proposition 3.1, kerT
and kerT ∗ are homogeneous of type n.

Let x1, . . . , xn and g1, . . . , gn be ∇-bases in kerT and kerT ∗, respectively. By Propo-
sition 3.1 we have that the equation T (x) = y (respectively T ∗(g) = f) is solvable if and
only if gk(y) = 0 (respectively f(xk) = 0) for all k = 1, n.

Now fix some solution x∗ of the main equation. Let x be an arbitrary solution of the
main equation. Then x − x∗ ∈ kerT. Since d(kerT ) = n there are c1, c2, . . . , cn ∈ L0

such that x = x∗ + c1x1 + c2x2 + · · · + cnxn. The general form of the solution of the
conjugate equation is established by similar arguments. �

4. Nikolsky theorem for a linear operators in Banach–Kantorovich
spaces

Let T be a ∇-Fredholm operator and kerT be homogeneous of type n. Let {e1, . . . , en}
and {ψ1, . . . , ψn} be ∇-bases in kerT and kerT ∗, respectively. We take {f1, . . . , fn} from
L0(Ω, X)∗ and {z1, . . . , zn} from L0(Ω, X) such that fi(ej) = δi,j1 and ψi(zj) = δi,j1
(see [12, Proposition 2]).

We consider a finitely generated operator K : L0(Ω, X) → L0(Ω, Y ) defined by

(2) K(x) =
n∑

i=1

fi(x)zi, x ∈ L0(Ω, X).

Proposition 4.1. Let T : L0(Ω, X) → L0(Ω, Y ) be a ∇-Fredholm operator and kerT
be homogeneous of type n. Then the operator B = T + K is invertible and B−1 is
L0-bounded, where K defined by (2).

Proof. We show that kerB = {0} and R(B) = L0(Ω, Y ).
1) kerB = {0}. Take x ∈ kerB. This means that

(3) T (x) = −
n∑

i=1

fi(x)zi.

Since ψi(zj) = δi,j1 we get ψk(T (x)) = −
n∑

i=1

fi(x)ψk(zi) = −fk(x). On the other

hand, ψk(T (x)) = T ∗(ψk)(x) = 0(x) = 0. Thus fk(x) = 0, k = 1, n. Hence (3) has the

form T (x) = 0, thus x =
n∑

m=1
ξmem, where ξm ∈ L0, m = 1, n. From fk(x) = 0, k = 1, n

we obtain 0 = fk(x) = fk(
n∑

m=1
ξmem) =

n∑
m=1

ξmfk(em) = ξm. Therefore ξm = 0 for all

m. Thus x = 0. Hence kerB = {0}.
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2) R(B) = L0(Ω, Y ). Let y ∈ L0(Ω, Y ).
Put

(4) y = y −
n∑

i=1

ψi(y)zi.

Since ψk(y) = ψk(y) −
n∑

i=1

ψi(y)ψk(zi) = ψk(y) − ψk(y) = 0, k = 1, n, and T is

∇-Fredholm we have y ∈ R(T ). Take x ∈ L0(Ω, X) such that T (x) = y. Put x = x +
n∑

i=1

[ψi(y)−fi(x)]ei. By (4) and using the identities T (x) = T (x),K(x) =
n∑

i=1

fi(x)zi,K(ei) =

zi we get B(x) = T (x)+K(x) = T (x)+
n∑

i=1

fi(x)zi+
n∑

i=1

[ψi(y)−fi(x)]zi = y+
n∑

i=1

ψi(y)zi =
y.

Therefore kerB = {0}, R(B) = L0(Ω, Y ) and by [14, Theorem 2] we have that B−1

is an L0-bounded operator. �

The following result is a vector version of the Nikolsky theorem for linear operators
on Banach–Kantorovich spaces.

Theorem 4.2. For an L0-bounded linear operator T : L0(Ω, X) → L0(Ω, Y ), the follow-
ing conditions are equivalent:

1) Tω is a Fredholm operator for almost all ω ∈ Ω;
2) T is a ∇-Fredholm operator;
3) there are operators A,K from L0(Ω, X) to L0(Ω, Y ) such that A is invertible, K is

σ-finite-dimensional and T = A+K;
4) there are operators A,K from L0(Ω, X) to L0(Ω, Y ) such that A is invertible, K is

cyclically compact and T = A+K.

Proof. Implication 1) ⇒ 2) follows from Theorem 3.2.
2) ⇒ 3). Let T be a ∇-Fredholm operator and (πn)n∈N∪{0} a partition of the unit in

∇ such that d(πn kerT ) = n, n ∈ N ∪ {0}.
Case 1. π0 = 1. In this case kerT = {0}. Since T is ∇-Fredholm we get R(T ) =

L0(Ω, Y ). By [14, Theorem 2], the operator T−1 is L0-bounded. Therefore in this case
we put A = T,K = 0.

Case 2. π0 6= 1. For ∇-Fredholm operators πnT, n ∈ N, by Proposition 4.1 there are
finitely generated operators Kn : πnL

0(Ω, X) → πnL
0(Ω, Y ) such that An = πnT +Kn

is an invertible operator from πnL
0(Ω, X) on πnL

0(Ω, Y ). Since Kn is L0-bounded for

all n ∈ N and L0(Ω, Y ) is a BKS over L0, there exists K(x) =
∞∑

n=1
πnKn(πnx) for all

x ∈ L0(Ω, X). Then K is a σ-finite-dimensional operator, A = T + K is invertible and
T = A+ (−K).

3) ⇒ 4) is trivial, because every σ-finite-dimensional operator is cyclically compact.
4) ⇒ 1). We need following.

Proposition 4.3. If an L0-bounded linear operator T : L0(Ω, X) → L0(Ω, Y ) is an
invertible, then Tω is invertible for almost all ω ∈ Ω.

Proof. Let T be invertible and U : L0(Ω, Y ) → L0(Ω, X) be the inverse of T . We take
a partition (πn)n∈N of unit in ∇ such that πn‖U‖ ∈ L∞(Ω) and πn‖T‖ ∈ L∞(Ω) for
any n ∈ N. Then πnU(y) ∈ L∞(Ω, X) and πnT (x) ∈ L∞(Ω, Y ) for all x ∈ L∞(Ω, X),
y ∈ L∞(Ω, Y ). Denote Ωn = {ω ∈ Ω : p(πn)(ω) = 1} and Ω0 =

⋃∞
n=1 Ωn. For ω ∈ Ωn we

put Uω(ρY (y)(ω)) = ρX(U(πny))(ω) for all y ∈ L∞(Ω, Y ). For y ∈ L∞(Ω, Y ) we have

‖Uω(ρY (y)(ω))‖X(ω) = ‖ρX(U(πny))(ω)‖X(ω) = p(‖U(πny)‖)(ω)

≤ p(πn‖U‖‖y‖)(ω) = p(πn‖U‖)(ω)‖ρY (y)(ω)‖Y (ω).

Hence, Uω is a bounded operator for any ω ∈ Ω0.
Since

Uω(Tω(ρX(x)(ω))) = ρX(x)(ω) and Tω(Uω(ρY (y)(ω))) = ρY (y)(ω)
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for any x ∈ L∞(Ω, X), y ∈ L∞(Ω, Y ), we have that Uω is an inverse of Tω. �

Suppose that T = A +K, where A is invertible, K is a cyclically compact operator.
Then Aω is invertible (Proposition 4.3) and Kω is a compact operator [7, Theorem 4] for
almost all ω ∈ Ω. By Nikolsky’s classical theorem, Tω = Aω +Kω is a Fredholm operator
for almost all ω ∈ Ω. �

Corollary 4.4. Let X, Y and Z be MBBs over Ω with vector valued liftings. If U :
L0(Ω, X) → L0(Ω, Y ) and V : L0(Ω, Y ) → Lo(Ω, Z) are ∇-Fredholm operators then UV
is a ∇-Fredholm operator.

Theorem 4.5. Let U : L0(Ω, X) → L0(Ω, X) be a L0-bounded linear operator such that
Um is cyclically compact for some m ∈ N. Then I − U is a ∇-Fredholm operator.

Proof. Without loss of generality we may assume that ‖U‖ = 1. Let {Uω : ω ∈ Ω} be a
measurable bundle of operator U. For any x ∈ L∞(Ω, X) it follows that

ρX(Um(x))(ω) = ρX(U(Um−1(x))(ω) = · · · = Um
ω (ρX(x)(ω)).

Therefore, the family {Um
ω : ω ∈ Ω} is a measurable bundle of cyclically compact op-

erators Um. Since Um is cyclically compact by [7, Theorem 4] it follows that Um
ω is a

compact operator for almost all ω ∈ Ω. Therefore Iω − Uω is a Fredholm operator for
almost all ω ∈ Ω. By Theorem 4.2 we have that I − U is a ∇-Fredholm operator. �

Remark . In [4] (see also [5], [6]) Kusraev proves that I − U is a ∇-Fredholm operator if
U is a cyclically compact operator.

Example . Let L2,0(Ω2) be the set of complex-valued measurable functions f on Ω2 such
that ∫

Ω

|f(s, ω)|2 dµ(s) ∈ L0

exists.
For f ∈ L2,0(Ω2) denote ‖f‖(ω) =

√∫
Ω

|f(s, ω)|2 dµ(s). Then (L2,0(Ω2), ‖ · ‖) is a

BKS over L0. Let k(t, s, ω) be a complex-valued measurable function on Ω3 such that∫
Ω

∫
Ω

|k(t, s, ω)|2 dµ(s) dµ(t) exists.

Consider an operator T : L2,0(Ω2) → L2,0(Ω2) defined by

T (f)(t, ω) =
∫
Ω

k(t, s, ω)f(s, ω) dµ(s), f ∈ L2,0(Ω2).

For any ω ∈ Ω we put kω(t, s) = k(t, s, ω). Then for almost all ω ∈ Ω the function kω(t, s)
belongs to L2(Ω2). For almost all ω ∈ Ω the operator Tω : L2(Ω) → L2(Ω) is defined by

Tω(fω)(t) =
∫
Ω

kω(t, s)fω(s) dµ(s), fω ∈ L2(Ω).

It is well-known that Tω is a compact operator for almost all ω ∈ Ω. For f ∈ L2,0(Ω2)
we have

T (f)(t, ω) =
∫
Ω

k(t, ω, s)f(s, ω) dµ(s) =
∫
Ω

kω(t, s)fω(s) ds = Tω(fω)(t)

for almost all (t, ω) ∈ Ω2, where fω(s) = f(s, ω). This means that {Tω : ω ∈ Ω} is a
measurable bundle of compact operators. Therefore, by [7, Theorem 3] the operator T
is cyclically compact. By Theorem 4.5 we have that I − T is a ∇-Fredholm operator.
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