--FREDHOLM OPERATORS IN BANACH-KANTOROVICH SPACES

K. K. KUDAYBERGENOV

Abstract

The paper is devoted to studying ∇-Fredholm operators in BanachKantorovich spaces over a ring of measurable functions. We show that a bounded linear operator acting in Banach-Kantorovich space is ∇-Fredholm if and only if it can be represented as a sum of an invertible operator and a cyclically compact operator.

1. Introduction

It is well-known that one of the important notions in the theory of operator equations in Banach spaces is that of a Fredholm operator. In 1943 by M. S. Nikolsky it was proved that a bounded linear operator acting in Banach space is Fredholm if and only if it can be represented as a sum of an invertible operator and a compact operator (see [1]). In this paper we considered the ∇-Fredholm operators acting in a Banach-Kantorovich space over a ring of measurable functions. It is known [2] that every Banach-Kantorovich space over a ring measurable functions can be represented as a measurable bundle of Banach spaces. Cyclically compact sets and operators in lattice-normed spaces were introduced by Kusraev in [3] and [4], respectively. In [5] (see also [6]) a general form of cyclically compact operators in Kaplansky-Hilbert module, as well as a variant of Fredholm alternative for cyclically compact operators, are also given. In [7] it was proved that every cyclically compact operator acting in Banach-Kantorovich space over a ring measurable functions can be represented as a measurable bundle of compact operators acting in Banach spaces. For different aspects of cyclical compactness, see [8-11]. In [12] there was given a structure of modules over the ring of measurable functions, which is represented as a measurable bundle of finite dimensional spaces. Using this representation we show that every ∇-Fredholm operator acting in Banach-Kantorovich space can be represented as a measurable bundle of Fredholm operators acting in Banach spaces and prove a vector version of Nikolsky theorem for a bounded linear operators acting in Banach-Kantorovich spaces.

2. PRELIMINARIES

Let (Ω, Σ, μ) be a measurable space with a finite measure and $L^{0}=L^{0}(\Omega)$ be the algebra of equivalence classes of all complex measurable functions on (Ω, Σ, μ).

A complex linear space E is said to be normed by L^{0} if there is a map $\|\cdot\|: E \longrightarrow L^{0}$ such that for any $x, y \in E, \lambda \in \mathbb{C}$, the following conditions are fulfilled: $\|x\| \geq 0 ;\|x\|=$ $0 \Longleftrightarrow x=0 ;\|\lambda x\|=|\lambda|\|x\| ;\|x+y\| \leq\|x\|+\|y\|$.

The pair $(E,\|\cdot\|)$ is called a lattice-normed space over L^{0}. A lattice-normed space E is called d-decomposable if for any $x \in E$ with $\|x\|=\lambda_{1}+\lambda_{2}, \lambda_{1}, \lambda_{2} \in L^{0}, \lambda_{1} \lambda_{2}=0$ there exist $x_{1}, x_{2} \in E$ such that $x=x_{1}+x_{2}$ and $\left\|x_{i}\right\|=\lambda_{i}, i=1,2$. A net $\left(x_{\alpha}\right)$ in E is

[^0](bo)-converging to $x \in E$, if $\left\|x_{\alpha}-x\right\| \xrightarrow{(o)} 0$ in L^{0} (note that the order convergence in L^{0} coincides with convergence almost everywhere).

A lattice-normed space E which is d-decomposable and complete with respect to (bo)convergence is called a Banach-Kantorovich space (BKS).

It is known that every BKS E over L^{0} is a module over L^{0} and $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in L^{0}, x \in E$ (see [2], [4]).

We shall consider a map $X: \omega \in \Omega \rightarrow\left(X(\omega),\|\cdot\|_{X(\omega)}\right)$, where $\left(X(\omega),\|\cdot\|_{X(\omega)}\right)$ is a Banach space for all $\omega \in \Omega$. A function u is called a section of X if it is defined on Ω almost everywhere and takes a value $u(\omega) \in X(\omega)$ for $\omega \in \operatorname{dom}(u)$, where $\operatorname{dom}(u)$ is the domain of u.

Let L be some set of sections.
Definition 2.1. [2] (see also [6]). A pair (X, L) is called a measurable Banach bundle (MBB) over Ω, if
a) $\lambda_{1} c_{1}+\lambda_{2} c_{2} \in L$ for all $\lambda_{1}, \lambda_{2} \in \mathbb{C}, c_{1}, c_{2} \in L$, where $\lambda_{1} c_{1}+\lambda_{2} c_{2}: \omega \in \operatorname{dom}\left(c_{1}\right) \cap \operatorname{dom}\left(c_{2}\right) \rightarrow \lambda_{1} c_{1}(\omega)+\lambda_{2} c_{2}(\omega) ;$
b) the function $\|c\|: \omega \in \operatorname{dom}(c) \rightarrow\|c(\omega)\|_{X(\omega)}$ is measurable for all $c \in L$;
c) for all $\omega \in \Omega$ the set $\{c(\omega): c \in L, \omega \in \operatorname{dom}(c)\}$ is dense in $X(\omega)$.

A section s is called simple if there exists $c_{i} \in L, A_{i} \in \Sigma, i=\overline{1, n}$, such that $s(\omega)=$ $\sum_{i=1}^{n} \chi_{A_{i}}(\omega) c_{i}(\omega)$. A section u is called measurable if there exists a sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ of simple sections such that $\left\|s_{n}(\omega)-u(\omega)\right\|_{X(\omega)} \rightarrow 0$ for almost all $\omega \in \Omega$.

We denote by $\mathcal{M}(\Omega, X)$ the set of all measurable sections and $L^{0}(\Omega, X)$ denotes the factorization of this set with respect to equality almost everywhere. By \hat{u} we denote the class from $L^{0}(\Omega, X)$, containing section $u \in \mathcal{M}(\Omega, X)$. A function $\omega \rightarrow\|u(\omega)\|_{X(\omega)}$ is measurable for all $u \in \mathcal{M}(\Omega, X)$. By $\|\hat{u}\|$ we denote the element in L^{0}, containing the function $\|u(\omega)\|_{X(\omega)}$.

It is known [2] that $\left(L^{0}(\Omega, X),\|\cdot\|\right)$ is BKS over L^{0}.
We denote by $\mathcal{L}^{\infty}(\Omega)$ the set of all bounded complex measurable functions on Ω and $L^{\infty}(\Omega)=\left\{f \in L^{0}: \exists \lambda \in \mathbb{R}, \lambda>0,|f| \leq \lambda \mathbf{1}\right\}$, where $\mathbf{1}$ is unit in L^{0}. Let

$$
\mathcal{L}^{\infty}(\Omega, X)=\left\{u \in \mathcal{M}(\Omega, X):\|u(\omega)\|_{X(\omega)} \in \mathcal{L}^{\infty}(\Omega)\right\}
$$

and $L^{\infty}(\Omega, X)=\left\{\hat{u} \in L^{0}(\Omega, X):\|\hat{u}\| \in L^{\infty}(\Omega)\right\}$.
The sets $\mathcal{M}(\Omega, X)$ and $\mathcal{L}^{\infty}(\Omega, X)$ are often identified with $L^{0}(\Omega, X)$ and $L^{\infty}(\Omega, X)$, by identifying a measurable section u and the corresponding equivalence class \hat{u}.

We consider a lifting $p: L^{\infty}(\Omega) \rightarrow \mathcal{L}^{\infty}(\Omega)$ (see [2]).
Definition 2.2. [2] (see also [6]). The map $\rho_{X}: L^{\infty}(\Omega, X) \rightarrow \mathcal{L}^{\infty}(\Omega, X)$ is called a vector valued lifting on $L^{\infty}(\Omega, X)$ (associated with p), if:
a) $\rho_{X}(\hat{u}) \in \hat{u}, \operatorname{dom}\left(\rho_{X}(\hat{u})\right)=\Omega$ for all $\hat{u} \in L^{\infty}(\Omega, X)$;
b) $\left\|\rho_{X}(\hat{u})(\omega)\right\|_{X(\omega)}=p(\|\hat{u}\|)(\omega)$ for all $\hat{u} \in L^{\infty}(\Omega, X)$;
c) $\rho_{X}(\hat{u}+\hat{v})=\rho_{X}(\hat{u})+\rho_{X}(\hat{v})$ for all $\hat{u}, \hat{v} \in L^{\infty}(\Omega, X)$;
d) $\rho_{X}(e \hat{u})=p(e) \rho_{X}(\hat{u})$ for all $\hat{u} \in L^{\infty}(\Omega, X)$ and $e \in L^{\infty}(\Omega)$;
e) the set $\left\{\rho_{X}(\hat{u})(\omega): \hat{u} \in L^{\infty}(\Omega, X)\right\}$ is dense in $X(\omega)$ for all $\omega \in \Omega$.

It is known [2, Theorem 4.4.1] that for any BKS E over L^{0} there is a $\operatorname{MBB}(X, L)$ such that E is isometrically isomorphic to $L^{0}(\Omega, X)$ and on $L^{\infty}(\Omega, X)$ there exists a vector valued lifting such that $\left\{\rho_{X}(\hat{u})(\omega): \hat{u} \in L^{\infty}(\Omega, X)\right\}=X(\omega)$ for all $\omega \in \Omega$.

Let ∇ be the Boolean algebra of idempotents in L^{0}. If $\left(u_{\alpha}\right)_{\alpha \in A} \subset L^{0}(\Omega, X)$ and $\left(\pi_{\alpha}\right)_{\alpha \in A}$ is a partition of the unit in ∇, then the series $\sum_{\alpha} \pi_{\alpha} u_{\alpha}(b o)$-converges in $L^{0}(\Omega, X)$ and its sum is called the mixing of $\left(u_{\alpha}\right)_{\alpha \in A}$ with respect to $\left(\pi_{\alpha}\right)_{\alpha \in A}$. We denote this sum by $\operatorname{mix}\left(\pi_{\alpha} u_{\alpha}\right)$. A subset $K \subset L^{0}(\Omega, X)$ is called cyclic, if $\operatorname{mix}\left(\pi_{\alpha} u_{\alpha}\right) \in K$ for each $\left(u_{\alpha}\right)_{\alpha \in A} \subset K$ and any partition of the unit $\left(\pi_{\alpha}\right)_{\alpha \in A}$ in ∇. For every directed set A
denote by $\nabla(A)$ the set of all partitions of the unit in ∇, which are indexed by elements of the set A. More precisely,

$$
\nabla(A)=\left\{\nu: A \rightarrow \nabla:(\forall \alpha, \beta \in A)(\alpha \neq \beta \rightarrow \nu(\alpha) \wedge \nu(\beta)=0) \wedge \bigvee_{\alpha \in A} \nu(\alpha)=1\right\}
$$

For $\nu_{1}, \nu_{2} \in \nabla(A)$ we put $\nu_{1} \leq \nu_{2} \leftrightarrow \forall \alpha, \beta \in A,\left(\nu_{1}(\alpha) \wedge \nu_{2}(\beta) \neq 0 \rightarrow \alpha \leq \beta\right)$. Then $\nabla(A)$ is a directed set. Let $\left(u_{\alpha}\right)_{\alpha \in A}$ be a net in $L^{0}(\Omega, X)$. For every $\nu \in \nabla(A)$ we put $u_{\nu}=\operatorname{mix}\left(\nu(\alpha) u_{\alpha}\right)$ and obtain a new net $\left(u_{\nu}\right)_{\nu \in \nabla(A)}$. Every subnet of the net $\left(u_{\nu}\right)_{\nu \in \nabla(A)}$ is called cyclic subnet of the original net $\left(u_{\alpha}\right)_{\alpha \in A}$.
Definition 2.3. [4] (see also [5], [6]). A subset $K \subset L^{0}(\Omega, X)$ is called cyclically compact, if K is cyclic and every net in K has a cyclic subnet that (bo)-converges to some point of K. A subset in $L^{0}(\Omega, X)$ is called relatively cyclically compact if it is contained in a cyclically compact set.

Let X and Y be MBBs over Ω with vector valued liftings ρ_{X} and ρ_{Y} on $L^{\infty}(\Omega, X)$ and $L^{\infty}(\Omega, Y)$, respectively. A linear operator $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ is called L^{0}-bounded, if there exists an element $c \in L^{0}$ such that $\|T(x)\| \leq c\|x\|$ for any $x \in L^{0}(\Omega, X)$. Every L^{0}-bounded linear operator $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ is L^{0}-linear, i. e., $T(\alpha x+\beta y)=$ $\alpha T(x)+\beta T(y)$ for all $\alpha, \beta \in L^{0}, x, y \in L^{0}(\Omega, X)$ (see [4]).

A linear operator T is called cyclically compact, if for every bounded set B in $L^{0}(\Omega, X)$ the set $T(B)$ is relatively cyclically compact in $L^{0}(\Omega, Y)$. For a L^{0}-bounded linear operator T we put $\|T\|=\sup \{\|T(x)\|:\|x\| \leq \mathbf{1}\}$.

It is known [7] (see also [6, p. 530]), that for any L^{0}-bounded (cyclically compact) linear operator $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ there is a family of bounded (compact) linear operators $\left\{T_{\omega}: X(\omega) \longrightarrow Y(\omega)\right\}$ such that for any $x \in L^{0}(\Omega, X)$ the following equality holds: $T(x)(\omega)=T_{\omega}(x(\omega))$ for almost all $\omega \in \Omega$. If $\|T\| \in L^{\infty}(\Omega)$, then $\rho_{Y}(T(x))(\omega)=$ $T_{\omega}\left(\rho_{X}(x)(\omega)\right)$ for all $x \in L^{\infty}(\Omega, X), \omega \in \Omega$.

Conversely, if $\left\{T_{\omega}: X(\omega) \longrightarrow Y(\omega)\right\}$ is a family of bounded (compact) linear operators such that $T_{\omega}(x(\omega)) \in \mathcal{M}(\Omega, Y)$ for any $x \in \mathcal{M}(\Omega, X)$, then the operator $T: L^{0}(\Omega, X) \longrightarrow$ $L^{0}(\Omega, Y)$ defined by $\left.T(\hat{u})=T_{\omega} \widehat{(u(\omega)}\right)$ is L^{0}-bounded (cyclically compact).

Let $L^{0}(\Omega, X)^{*}$ be the dual space of $L^{0}(\Omega, X)$, i. e., the set of all L^{0}-bounded linear functionals from $L^{0}(\Omega, X)$ into L^{0}. For every $f \in L^{0}(\Omega, X)^{*}$ with $\|f\|, L^{\infty}(\Omega)$ we put $f_{\omega}\left(\rho_{X}(x)(\omega)\right)=p(f(x))(\omega), x \in L^{\infty}(\Omega, X), \omega \in \Omega$. Then $f_{\omega} \in X(\omega)^{\prime}$ for every $\omega \in \Omega$, where $X(\omega)^{\prime}$ is the dual space of $X(\omega)$. Let $X^{\prime}(\omega)=\left\{f_{\omega}: f \in L^{0}(\Omega, X)^{*},\|f\| \in L^{\infty}(\Omega)\right\}$, $X^{\prime}: \omega \rightarrow X^{\prime}(\omega), L^{\prime}=\left\{\omega \rightarrow f_{\omega}: f \in L^{0}(\Omega, X)^{*},\|f\| \in L^{\infty}(\Omega)\right\}$.

It is known [2, Theorem 4.4.7] that $\left(X^{\prime}, L^{\prime}\right)$ is a MBB with vector valued lifting; $X^{\prime}(\omega)$ is a closed subspace in $X(\omega)^{\prime}$ for all $\omega \in \Omega ; L^{0}\left(\Omega, X^{\prime}\right)$ is isometrically isomorphic to $L^{0}(\Omega, X)^{*}$.

A module E over L^{0} is said to be finite dimensional (or finitely generated), if there are $x_{1}, x_{2}, \ldots, x_{n}$ in E such that for any $x \in E$ there exist $\lambda_{i} \in L^{0}(i=\overline{1, n})$ with $x=\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}$. The elements $x_{1}, x_{2}, \ldots, x_{n}$ are called generators of E. We denote by $d(E)$ the minimal number of generators of E.

A module E over L^{0} is called σ-finite-dimensional, if there exists a partition $\left(\pi_{\alpha}\right)_{\alpha \in A}$ of the unit in ∇ such that $\pi_{\alpha} E$ is finitely generated for any α. A finite-dimensional module E over L^{0} is called homogeneous of type n, if for every nonzero $e \in \nabla$ we have $n=d(e E)$.

A family $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in E is called ∇-linearly independent, if for all $\pi \in \nabla$ and $\lambda_{1}, \ldots, \lambda_{n} \in L^{0}$, from $\pi \sum_{k=1}^{n} \lambda_{k} x_{k}=0$ it follows that $\pi \lambda_{1}=\cdots=\pi \lambda_{n}=0$.

A module E is homogeneous of type n if and only if there exist generators $\left\{x_{1}, \ldots, x_{n}\right\}$ in E, consisting of ∇-linearly independent elements (see [12], Proposition 6). Such generators form a ∇-basis of E.

An L^{0}-bounded linear operator $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ is called finite dimensional or finitely generated (σ-finite dimensional, homogeneous of type n) if $R(T)=\{T(x)$: $\left.x \in L^{0}(\Omega, X)\right\}$ is a finite dimensional (respectively σ-finite dimensional, homogeneous of type n) submodule in $L^{0}(\Omega, Y)$.

Any σ-finite dimensional operator $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ can be represented as $T=\sum_{\alpha \in A} \pi_{\alpha} T_{\alpha}$, where $\left(\pi_{\alpha}\right)_{\alpha \in A}$ is a partition of the unit in $\nabla, T_{\alpha}: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ are homogeneous operators of finite type for all α. If T is finite dimensional, then $\left(\pi_{\alpha}\right)_{\alpha \in A}$ is a finite partition of the unit in ∇.

Any cyclically compact operator $T: X \rightarrow Y$ is L^{0}-bounded. Since the unit ball in a σ-finite dimensional module over L^{0} is a cyclically compact set ([12], Corollary 2), any σ-finite dimensional operator is cyclically compact.

Now we give a definition of ∇-Fredholm operators, which was introduced by Kusraev [4] (see also [5], [6]). Let $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ be a L^{0}-bounded linear operator.

We consider the homogeneous equations

$$
T(x)=0, \quad T^{*}(g)=0
$$

and, respectively, the main equation

$$
T(x)=y
$$

and the conjugate equation

$$
T^{*}(g)=f
$$

An operator T is called ∇-Fredholm, if there exists a partition of unity $\left(\pi_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ in ∇ such that the following conditions are fulfilled:

1) The homogeneous equation $\pi_{0} T(x)=0$ has the only zero solution. The homogeneous conjugate equation $\pi_{0} T^{*}(g)=0$ has the only zero solution. The equation $\pi_{0} T(x)=\pi_{0} y$ is solvable and has a unique solution for a given arbitrary $y \in L^{0}(\Omega, Y)$. The conjugate equation $\pi_{0} T^{*}(g)=f$ is solvable and has a unique solution for a given arbitrary $f \in L^{0}(\Omega, X)^{*}$.
2) For every $n \in \mathbb{N}$ the homogeneous equation $\pi_{n} T(x)=0$ has $n \quad \nabla$-linearly independent solutions $x_{1, n}, \ldots, x_{n, n}$ and the homogeneous conjugate equation $\pi_{n} T^{*}(g)=0$ has $n \quad \nabla$-linearly independent solutions $g_{1, n}, \ldots, g_{n, n}$.
3) The equation $T(x)=y$ is solvable if and only if $\pi_{n} g_{i, n}(y)=0(n \in \mathbb{N}, i \leq n)$. The conjugate equation $T^{*}(g)=f$ is solvable if and only if $\pi_{n} f_{i, n}(x)=0(n \in \mathbb{N}, i \leq n)$.
4) The general solution x of the equation $T(x)=y$ has the form

$$
x=\sum_{n=1}^{\infty} \pi_{n}\left(x_{n}+\sum_{i=1}^{n} c_{i, n} x_{i, n}\right)
$$

where x_{n} is a particular solution of the equation $\pi_{n} T(x)=\pi_{n} y$ and $\left\{c_{i, n}\right\}_{n \in \mathbb{N}, i \leq n}$ are arbitrary elements in L^{0}.

The general solution g of the conjugate equation $T^{*}(g)=f$ has the form

$$
g=\sum_{n=1}^{\infty} \pi_{n}\left(g_{n}+\sum_{i=1}^{n} c_{i, n} g_{i, n}\right)
$$

where g_{n} is a particular solution of the equation $\pi_{n} T^{*}(g)=\pi_{n} f$, and $\left\{c_{i, n}\right\}_{n \in \mathbb{N}, i \leq n}$ are arbitrary elements in L^{0}.

3. Measurable bundles of Fredholm operators

Proposition 3.1. Let $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ be a L^{0}-bounded linear operator. If $T_{\omega}: X(\omega) \rightarrow Y(\omega)$ are Fredholm operators and $\operatorname{dim} \operatorname{ker} T_{\omega}=n$ for almost all $\omega \in \Omega$, then

1) $R(T)$ is (bo)-closed in $L^{0}(\Omega, Y)$ and $R\left(T^{*}\right)$ is (bo)-closed in $L^{0}(\Omega, X)^{*}$;
2) $R(T)={ }^{\perp} \operatorname{ker} T^{*}$, where ${ }^{\perp} \operatorname{ker} T^{*}=\left\{y \in L^{0}(\Omega, Y): f(y)=0, \forall f \in \operatorname{ker} T^{*}\right\}$;
3) $R\left(T^{*}\right)=(\operatorname{ker} T)^{\perp}$, where $(\operatorname{ker} T)^{\perp}=\left\{f \in L^{0}(\Omega, X)^{*}: f(x)=0, \forall x \in \operatorname{ker} T\right\}$;
4) $\operatorname{ker} T$ and $\operatorname{ker} T^{*}$ are homogeneous of type n.

Proof. Replacing T with $\frac{T}{1+\|T\|}$, we may assume that $\|T\| \in L^{\infty}(\Omega)$. Since T_{ω} is a Fredholm operator for almost all $\omega \in \Omega$, we see that $R\left(T_{\omega}\right)$ is closed in $Y(\omega)$ for almost all $\omega \in \Omega$. Therefore [13, Theorem 2] implies 1), 2), and 3).
4) Put $N(\omega)=\left\{\rho_{X}(x)(\omega): x \in \operatorname{ker} T \bigcap L^{\infty}(\Omega, X)\right\}$. Let $x \in \operatorname{ker} T \bigcap L^{\infty}(\Omega, X)$. We have $T_{\omega}\left(\rho_{X}(x)(\omega)\right)=\rho_{Y}(T(x))(\omega)=\rho_{Y}(0)(\omega)=0$. Thus $N(\omega) \subset \operatorname{ker} T_{\omega}$. Therefore $\operatorname{dim} N(\omega) \leq n$. By [12, Theorem 1] $\operatorname{ker} T$ is a finitely generated submodule in $L^{0}(\Omega, X)$ and $d(\operatorname{ker} T) \leq n$. Then by [12, Proposition 3] there exist a (bo)-closed submodule M in $L^{0}(\Omega, X)$ such that $L^{0}(\Omega, X)=\operatorname{ker} T \oplus M$.

Consider an operator $S: M \rightarrow R(T)$ defined by $S(x)=T(x), x \in M$. Then ker $S=$ $\{0\}$ and $R(S)=R(T)$. Since $R(T)$ is (bo)-closed in $L^{0}(\Omega, Y)$, we see that $R(T)$ is a BKS over L^{0}. By [14, Theorem 2] the operator $S^{-1}: R(T) \rightarrow M$ is L^{0}-bounded. Without loss of generality we may assume that $\left\|S^{-1}\right\| \in L^{\infty}(\Omega)$.

Now show that ker $T_{\omega}=N(\omega)$ for all $\omega \in \Omega$. We take $x_{\omega} \in \operatorname{ker} T_{\omega}$ and $x \in L^{\infty}(\Omega, X)$ such that $\rho_{X}(x)(\omega)=x_{\omega}$. Then $x=x_{1}+x_{2}$, where $x_{1} \in \operatorname{ker} T, x_{2} \in M$. Since $\rho_{X}(x)(\omega)=$ $\rho_{X}\left(x_{1}\right)(\omega)+\rho_{X}\left(x_{2}\right)(\omega)$ we get

$$
\begin{equation*}
T_{\omega}\left(\rho_{X}(x)(\omega)\right)=T_{\omega}\left(\rho_{X}\left(x_{1}\right)(\omega)\right)+T_{\omega}\left(\rho_{X}\left(x_{2}\right)(\omega)\right) \tag{1}
\end{equation*}
$$

Because $x_{1} \in \operatorname{ker} T$, we have $T_{\omega}\left(\rho_{X}\left(x_{1}\right)\right)(\omega)=\rho_{Y}\left(T\left(x_{1}\right)\right)(\omega)=0$. From $\rho_{X}(x)(\omega) \in$ $\operatorname{ker} T_{\omega}$ it follows that $T_{\omega}\left(\rho_{X}(x)\right)(\omega)=0$. Therefore by (1) we get $T_{\omega}\left(\rho_{X}\left(x_{2}\right)\right)(\omega)=0$. Since $x_{2} \in M$ we have

$$
\left\|x_{2}\right\|=\left\|S^{-1}\left(S\left(x_{2}\right)\right)\right\| \leq\left\|S^{-1}\right\|\left\|S\left(x_{2}\right)\right\|=\left\|S^{-1}\right\|\left\|T\left(x_{2}\right)\right\| .
$$

Thus

$$
\left\|\rho_{X}\left(x_{2}\right)(\omega)\right\|_{X(\omega)} \leq p\left(\left\|S^{-1}\right\|\right)(\omega) \| T_{\omega}\left(\rho_{X}\left(x_{2}\right)(\omega) \|_{Y(\omega)}=0\right.
$$

Therefore $\rho_{X}\left(x_{2}\right)(\omega)=0$. Hence $x_{\omega}=\rho_{X}(x)(\omega)=\rho_{X}\left(x_{1}\right)(\omega)$. Since $x_{1} \in \operatorname{ker} T$ we get $x_{\omega} \in N(\omega)$. Therefore $\operatorname{ker} T_{\omega}=N(\omega)$. Since $\operatorname{ker} T_{\omega}=n$ for almost all $\omega \in \Omega$ by [12, Theorem 1] it follows that $\operatorname{ker} T$ is homogeneous of type n.

Now we shall show that $\operatorname{ker} T^{*}$ is homogeneous of type n. By a similar argument as in the case of the operator T we have that $\operatorname{ker} T^{*}$ is a finitely generated module and $d\left(\operatorname{ker} T^{*}\right) \leq n$.

Let $S=\left.T\right|_{L^{\infty}(\Omega, X)}, f \in L^{\infty}(\Omega, Y)^{*}$ and $x \in L^{\infty}(\Omega, X)$. Then $S^{*}(f)(x)=f(S(x))=$ $f(T(x))=T^{*}(f)(x)$. Thus $\left.T^{*}\right|_{L^{\infty}(\Omega, Y)^{*}}=S^{*}$ and $d\left(\operatorname{ker} T^{*}\right) \geq d\left(\operatorname{ker} S^{*}\right)$.

We show that $d\left(\operatorname{ker} S^{*}\right) \geq n$. Without loss of generality we may assume that ker S^{*} is homogeneous of type m. Let $\left\{\psi_{1}, \ldots, \psi_{m}\right\}$ be a ∇-basis in ker S^{*}. By [12, Proposition 2] there exist $\left\{z_{1}, \ldots, z_{m}\right\} \subset L^{0}(\Omega, X)$ such that $z_{i}\left(\psi_{j}\right)=\delta_{i, j} 1$, where $\delta_{i, j}$ the Kronecker symbol. Without loss of generality we can assume that $\left\|z_{k}\right\| \in L^{\infty}(\Omega)$ for all $k=\overline{1, m}$.

For $y \in L^{\infty}(\Omega, Y)$ denote $\bar{y}=y-\sum_{i=1}^{m} \psi_{i}(y) z_{i}$. Then $\psi_{k}(\bar{y})=\psi_{k}(y)-\sum_{i=1}^{m} \psi_{i}(y) \psi_{k}\left(z_{i}\right)=$ $\psi_{k}(y)-\psi_{k}(y)=0, k=\overline{1, m}$. Thus \bar{y} belongs to ${ }^{\perp} \operatorname{ker} S^{*}$. Therefore by [13, Theorem 2$]$ the point \bar{y} belongs $R(S)={ }^{\perp} \operatorname{ker} S^{*}$. Thus there exists $\bar{x} \in L^{\infty}(\Omega, X)$ such that $S(\bar{x})=\bar{y}$. Applying the lifting ρ_{Y} to $\bar{y}=y-\sum_{i=1}^{m} \psi_{i}(y) z_{i}$ we have that any $y(\omega) \in Y(\omega)$ can be represented in the form $y(\omega)=\bar{y}(\omega)+\sum_{i=1}^{m} \alpha_{i}(\omega) z_{i}(\omega)$, where $\bar{y}(\omega) \in R\left(T_{\omega}\right), \alpha_{i}(\omega) \in$ $\mathbb{C}, z_{i}(\omega)=\rho_{Y}\left(z_{i}\right)(\omega), i=\overline{1, m}$. Since T_{ω} is a Fredholm operator and $\operatorname{dim} \operatorname{ker} T_{\omega}=n$ there exists a subspace $M(\omega) \subset Y(\omega)$ such that $\operatorname{dim} M(\omega)=n$ and $Y(\omega)=R\left(T_{\omega}\right) \oplus$ $M(\omega)$. Therefore, $\left\{z_{1}(\omega), \ldots, z_{m}(\omega)\right\}$ is contains n linearly independent elements. Thus $m \geq n$. Therefore $m=n$ and $\operatorname{ker} T^{*}$ is homogeneous of type n.

The following result shows that a measurable bundle of Fredholm operators generates a ∇-Fredholm operator.
Theorem 3.2. Let $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ be a L^{0}-bounded linear operator. If T_{ω} is a Fredholm operator for almost all $\omega \in \Omega$, then T is a ∇-Fredholm operator.

Proof. Let T_{ω} be a Fredholm operator for almost all $\omega \in \Omega$. Then $\operatorname{dim} \operatorname{ker} T_{\omega}<\infty$ for almost all $\omega \in \Omega$. By [12, Theorem 1] there exists a partition of the unit $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ in ∇ such that

$$
d\left(\operatorname{ker} \pi_{n} T\right)=d\left(\operatorname{ker} \pi_{n} T^{*}\right)=\left\{\begin{array}{lll}
0, & \text { if } & \pi_{n}=0 \\
n, & \text { if } & \pi_{n} \neq 0
\end{array}\right.
$$

for all $n \in \mathbb{N} \cup\{0\}$.
Case 1. $\pi_{0}=1$. Then $\operatorname{ker} T=\{0\}$ and $\operatorname{ker} T^{*}=\{0\}$. By Proposition 3.1 we have $R(T)={ }^{\perp}\{0\}=L^{0}(\Omega, Y)$ and $R\left(T^{*}\right)=\{0\}^{\perp}=L^{0}(\Omega, X)^{*}$. Hence, $\operatorname{ker} T=\{0\}$, $\operatorname{ker} T^{*}=$ $\{0\}, R(T)=L^{0}(\Omega, Y)$ and $R\left(T^{*}\right)=L^{0}(\Omega, X)^{*}$. This means that T is a ∇-Fredholm operator.

Case 2. $\pi_{0} \neq 1$. In this case there exists $n \geq 1$ such that $\pi_{n} \neq 0$. Without loss of generality we may assume that $\pi_{n}=\mathbf{1}$ for some $n \in \mathbb{N}$. Then by Proposition 3.1, $\operatorname{ker} T$ and $\operatorname{ker} T^{*}$ are homogeneous of type n.

Let x_{1}, \ldots, x_{n} and g_{1}, \ldots, g_{n} be ∇-bases in $\operatorname{ker} T$ and $\operatorname{ker} T^{*}$, respectively. By Proposition 3.1 we have that the equation $T(x)=y$ (respectively $T^{*}(g)=f$) is solvable if and only if $g_{k}(y)=0$ (respectively $f\left(x_{k}\right)=0$) for all $k=\overline{1, n}$.

Now fix some solution x^{*} of the main equation. Let x be an arbitrary solution of the main equation. Then $x-x^{*} \in \operatorname{ker} T$. Since $d(\operatorname{ker} T)=n$ there are $c_{1}, c_{2}, \ldots, c_{n} \in L^{0}$ such that $x=x^{*}+c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$. The general form of the solution of the conjugate equation is established by similar arguments.

4. Nikolsky theorem for a linear operators in Banach-Kantorovich SPACES

Let T be a ∇-Fredholm operator and $\operatorname{ker} T$ be homogeneous of type n. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ be ∇-bases in ker T and $\operatorname{ker} T^{*}$, respectively. We take $\left\{f_{1}, \ldots, f_{n}\right\}$ from $L^{0}(\Omega, X)^{*}$ and $\left\{z_{1}, \ldots, z_{n}\right\}$ from $L^{0}(\Omega, X)$ such that $f_{i}\left(e_{j}\right)=\delta_{i, j} \mathbf{1}$ and $\psi_{i}\left(z_{j}\right)=\delta_{i, j} \mathbf{1}$ (see [12, Proposition 2]).

We consider a finitely generated operator $K: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ defined by

$$
\begin{equation*}
K(x)=\sum_{i=1}^{n} f_{i}(x) z_{i}, \quad x \in L^{0}(\Omega, X) \tag{2}
\end{equation*}
$$

Proposition 4.1. Let $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ be a ∇-Fredholm operator and $\operatorname{ker} T$ be homogeneous of type n. Then the operator $B=T+K$ is invertible and B^{-1} is L^{0}-bounded, where K defined by (2).
Proof. We show that ker $B=\{0\}$ and $R(B)=L^{0}(\Omega, Y)$.

1) ker $B=\{0\}$. Take $x \in \operatorname{ker} B$. This means that

$$
\begin{equation*}
T(x)=-\sum_{i=1}^{n} f_{i}(x) z_{i} \tag{3}
\end{equation*}
$$

Since $\psi_{i}\left(z_{j}\right)=\delta_{i, j} \mathbf{1}$ we get $\psi_{k}(T(x))=-\sum_{i=1}^{n} f_{i}(x) \psi_{k}\left(z_{i}\right)=-f_{k}(x)$. On the other hand, $\psi_{k}(T(x))=T^{*}\left(\psi_{k}\right)(x)=0(x)=0$. Thus $f_{k}(x)=0, k=\overline{1, n}$. Hence (3) has the form $T(x)=0$, thus $x=\sum_{m=1}^{n} \xi_{m} e_{m}$, where $\xi_{m} \in L^{0}, m=\overline{1, n}$. From $f_{k}(x)=0, k=\overline{1, n}$ we obtain $0=f_{k}(x)=f_{k}\left(\sum_{m=1}^{n} \xi_{m} e_{m}\right)=\sum_{m=1}^{n} \xi_{m} f_{k}\left(e_{m}\right)=\xi_{m}$. Therefore $\xi_{m}=0$ for all m. Thus $x=0$. Hence ker $B=\{0\}$.
2) $R(B)=L^{0}(\Omega, Y)$. Let $y \in L^{0}(\Omega, Y)$.

Put

$$
\begin{equation*}
\bar{y}=y-\sum_{i=1}^{n} \psi_{i}(y) z_{i} . \tag{4}
\end{equation*}
$$

Since $\psi_{k}(\bar{y})=\psi_{k}(y)-\sum_{i=1}^{n} \psi_{i}(y) \psi_{k}\left(z_{i}\right)=\psi_{k}(y)-\psi_{k}(y)=0, k=\overline{1, n}$, and T is ∇-Fredholm we have $\bar{y} \in R(T)$. Take $\bar{x} \in L^{0}(\Omega, X)$ such that $T(\bar{x})=\bar{y}$. Put $x=\bar{x}+$ $\sum_{i=1}^{n}\left[\psi_{i}(y)-f_{i}(\bar{x})\right] e_{i}$. By (4) and using the identities $T(x)=T(\bar{x}), K(\bar{x})=\sum_{i=1}^{n} f_{i}(\bar{x}) z_{i}, K\left(e_{i}\right)=$ z_{i} we get $B(x)=T(x)+K(x)=T(\bar{x})+\sum_{i=1}^{n} f_{i}(\bar{x}) z_{i}+\sum_{i=1}^{n}\left[\psi_{i}(y)-f_{i}(\bar{x})\right] z_{i}=\bar{y}+\sum_{i=1}^{n} \psi_{i}(y) z_{i}=$ y.

Therefore ker $B=\{0\}, R(B)=L^{0}(\Omega, Y)$ and by [14, Theorem 2] we have that B^{-1} is an L^{0}-bounded operator.

The following result is a vector version of the Nikolsky theorem for linear operators on Banach-Kantorovich spaces.
Theorem 4.2. For an L^{0}-bounded linear operator $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$, the following conditions are equivalent:

1) T_{ω} is a Fredholm operator for almost all $\omega \in \Omega$;
2) T is $a \nabla$-Fredholm operator;
3) there are operators A, K from $L^{0}(\Omega, X)$ to $L^{0}(\Omega, Y)$ such that A is invertible, K is σ-finite-dimensional and $T=A+K$;
4) there are operators A, K from $L^{0}(\Omega, X)$ to $L^{0}(\Omega, Y)$ such that A is invertible, K is cyclically compact and $T=A+K$.

Proof. Implication 1) \Rightarrow 2) follows from Theorem 3.2.
$2) \Rightarrow 3$). Let T be a ∇-Fredholm operator and $\left(\pi_{n}\right)_{n \in \mathbb{N} \cup\{0\}}$ a partition of the unit in ∇ such that $d\left(\pi_{n} \operatorname{ker} T\right)=n, n \in \mathbb{N} \cup\{0\}$.

Case 1. $\pi_{0}=1$. In this case $\operatorname{ker} T=\{0\}$. Since T is ∇-Fredholm we get $R(T)=$ $L^{0}(\Omega, Y)$. By [14, Theorem 2], the operator T^{-1} is L^{0}-bounded. Therefore in this case we put $A=T, K=0$.

Case 2. $\pi_{0} \neq 1$. For ∇-Fredholm operators $\pi_{n} T, n \in \mathbb{N}$, by Proposition 4.1 there are finitely generated operators $K_{n}: \pi_{n} L^{0}(\Omega, X) \rightarrow \pi_{n} L^{0}(\Omega, Y)$ such that $A_{n}=\pi_{n} T+K_{n}$ is an invertible operator from $\pi_{n} L^{0}(\Omega, X)$ on $\pi_{n} L^{0}(\Omega, Y)$. Since K_{n} is L^{0}-bounded for all $n \in \mathbb{N}$ and $L^{0}(\Omega, Y)$ is a BKS over L^{0}, there exists $K(x)=\sum_{n=1}^{\infty} \pi_{n} K_{n}\left(\pi_{n} x\right)$ for all $x \in L^{0}(\Omega, X)$. Then K is a σ-finite-dimensional operator, $A=T+K$ is invertible and $T=A+(-K)$.
$3) \Rightarrow 4)$ is trivial, because every σ-finite-dimensional operator is cyclically compact.
$4) \Rightarrow 1$). We need following.
Proposition 4.3. If an L^{0}-bounded linear operator $T: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ is an invertible, then T_{ω} is invertible for almost all $\omega \in \Omega$.

Proof. Let T be invertible and $U: L^{0}(\Omega, Y) \rightarrow L^{0}(\Omega, X)$ be the inverse of T. We take a partition $\left(\pi_{n}\right)_{n \in \mathbb{N}}$ of unit in ∇ such that $\pi_{n}\|U\| \in L^{\infty}(\Omega)$ and $\pi_{n}\|T\| \in L^{\infty}(\Omega)$ for any $n \in \mathbb{N}$. Then $\pi_{n} U(y) \in L^{\infty}(\Omega, X)$ and $\pi_{n} T(x) \in L^{\infty}(\Omega, Y)$ for all $x \in L^{\infty}(\Omega, X)$, $y \in L^{\infty}(\Omega, Y)$. Denote $\Omega_{n}=\left\{\omega \in \Omega: p\left(\pi_{n}\right)(\omega)=1\right\}$ and $\Omega_{0}=\bigcup_{n=1}^{\infty} \Omega_{n}$. For $\omega \in \Omega_{n}$ we put $U_{\omega}\left(\rho_{Y}(y)(\omega)\right)=\rho_{X}\left(U\left(\pi_{n} y\right)\right)(\omega)$ for all $y \in L^{\infty}(\Omega, Y)$. For $y \in L^{\infty}(\Omega, Y)$ we have

$$
\begin{aligned}
\left\|U_{\omega}\left(\rho_{Y}(y)(\omega)\right)\right\|_{X(\omega)} & =\left\|\rho_{X}\left(U\left(\pi_{n} y\right)\right)(\omega)\right\|_{X(\omega)}=p\left(\left\|U\left(\pi_{n} y\right)\right\|\right)(\omega) \\
& \leq p\left(\pi_{n}\|U\|\|y\|\right)(\omega)=p\left(\pi_{n}\|U\|\right)(\omega)\left\|\rho_{Y}(y)(\omega)\right\|_{Y(\omega)}
\end{aligned}
$$

Hence, U_{ω} is a bounded operator for any $\omega \in \Omega_{0}$.
Since

$$
U_{\omega}\left(T_{\omega}\left(\rho_{X}(x)(\omega)\right)\right)=\rho_{X}(x)(\omega) \quad \text { and } \quad T_{\omega}\left(U_{\omega}\left(\rho_{Y}(y)(\omega)\right)\right)=\rho_{Y}(y)(\omega)
$$

for any $x \in L^{\infty}(\Omega, X), y \in L^{\infty}(\Omega, Y)$, we have that U_{ω} is an inverse of T_{ω}.
Suppose that $T=A+K$, where A is invertible, K is a cyclically compact operator. Then A_{ω} is invertible (Proposition 4.3) and K_{ω} is a compact operator [7, Theorem 4] for almost all $\omega \in \Omega$. By Nikolsky's classical theorem, $T_{\omega}=A_{\omega}+K_{\omega}$ is a Fredholm operator for almost all $\omega \in \Omega$.

Corollary 4.4. Let X, Y and Z be MBBs over Ω with vector valued liftings. If U : $L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, Y)$ and $V: L^{0}(\Omega, Y) \rightarrow L^{o}(\Omega, Z)$ are ∇-Fredholm operators then $U V$ is a ∇-Fredholm operator.
Theorem 4.5. Let $U: L^{0}(\Omega, X) \rightarrow L^{0}(\Omega, X)$ be a L^{0}-bounded linear operator such that U^{m} is cyclically compact for some $m \in \mathbb{N}$. Then $I-U$ is a ∇-Fredholm operator.

Proof. Without loss of generality we may assume that $\|U\|=1$. Let $\left\{U_{\omega}: \omega \in \Omega\right\}$ be a measurable bundle of operator U. For any $x \in L^{\infty}(\Omega, X)$ it follows that

$$
\rho_{X}\left(U^{m}(x)\right)(\omega)=\rho_{X}\left(U\left(U^{m-1}(x)\right)(\omega)=\cdots=U_{\omega}^{m}\left(\rho_{X}(x)(\omega)\right)\right.
$$

Therefore, the family $\left\{U_{\omega}^{m}: \omega \in \Omega\right\}$ is a measurable bundle of cyclically compact operators U^{m}. Since U^{m} is cyclically compact by [7, Theorem 4] it follows that U_{ω}^{m} is a compact operator for almost all $\omega \in \Omega$. Therefore $I_{\omega}-U_{\omega}$ is a Fredholm operator for almost all $\omega \in \Omega$. By Theorem 4.2 we have that $I-U$ is a ∇-Fredholm operator.

Remark. In [4] (see also [5], [6]) Kusraev proves that $I-U$ is a ∇-Fredholm operator if U is a cyclically compact operator.
Example. Let $L^{2,0}\left(\Omega^{2}\right)$ be the set of complex-valued measurable functions f on Ω^{2} such that

$$
\int_{\Omega}|f(s, \omega)|^{2} d \mu(s) \in L^{0}
$$

exists.
For $f \in L^{2,0}\left(\Omega^{2}\right)$ denote $\|f\|(\omega)=\sqrt{\int_{\Omega}|f(s, \omega)|^{2} d \mu(s)}$. Then $\left(L^{2,0}\left(\Omega^{2}\right),\|\cdot\|\right)$ is a
BKS over L^{0}. Let $k(t, s, \omega)$ be a complex-valued measurable function on Ω^{3} such that $\int_{\Omega} \int_{\Omega}|k(t, s, \omega)|^{2} d \mu(s) d \mu(t)$ exists.

Consider an operator $T: L^{2,0}\left(\Omega^{2}\right) \rightarrow L^{2,0}\left(\Omega^{2}\right)$ defined by

$$
T(f)(t, \omega)=\int_{\Omega} k(t, s, \omega) f(s, \omega) d \mu(s), \quad f \in L^{2,0}\left(\Omega^{2}\right)
$$

For any $\omega \in \Omega$ we put $k_{\omega}(t, s)=k(t, s, \omega)$. Then for almost all $\omega \in \Omega$ the function $k_{\omega}(t, s)$ belongs to $L^{2}\left(\Omega^{2}\right)$. For almost all $\omega \in \Omega$ the operator $T_{\omega}: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is defined by

$$
T_{\omega}\left(f_{\omega}\right)(t)=\int_{\Omega} k_{\omega}(t, s) f_{\omega}(s) d \mu(s), \quad f_{\omega} \in L^{2}(\Omega)
$$

It is well-known that T_{ω} is a compact operator for almost all $\omega \in \Omega$. For $f \in L^{2,0}\left(\Omega^{2}\right)$ we have

$$
T(f)(t, \omega)=\int_{\Omega} k(t, \omega, s) f(s, \omega) d \mu(s)=\int_{\Omega} k_{\omega}(t, s) f_{\omega}(s) d s=T_{\omega}\left(f_{\omega}\right)(t)
$$

for almost all $(t, \omega) \in \Omega^{2}$, where $f_{\omega}(s)=f(s, \omega)$. This means that $\left\{T_{\omega}: \omega \in \Omega\right\}$ is a measurable bundle of compact operators. Therefore, by [7, Theorem 3] the operator T is cyclically compact. By Theorem 4.5 we have that $I-T$ is a ∇-Fredholm operator.

References

1. L. V. Kantorovich, G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977. (Russian)
2. A. E. Gutman, Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles, Siberian Adv. Math. 3 (1993), no. 3, 1-55.
3. A. G. Kusraev, Boolean valued analysis of duality between universally complete modules, Dokl. Akad. Nauk SSSR 267 (1982), no. 5, 1049-1052.
4. A. G. Kusraev, Vector Duality and Its Applications, Nauka, Novosibirsk, 1985. (Russian)
5. A. G. Kusraev, Cyclically compact operators in Banach spaces, Vladikavkaz. Math. J. 2 (2000), no. 1, 10-23.
6. A. G. Kusraev, Dominated Operators, Nauka, Moscow, 2003. (Russian)
7. I. G. Ganiev, K. K. Kudaybergenov, Measurable bundles of compact operators, Methods Funct. Anal. Topology 7 (2001), no. 4, 1-5.
8. A. G. Kusraev and S. S. Kutateladze, Nonstandard methods for Kantorovich space, Siberian Adv. Math. 2 (1992), no. 2, 114-152.
9. S. S. Kutateladze, Cyclic monads and their applications, Siberian Math. J. 27 (1986), no. 1, 100-110.
10. S. S. Kutateladze, Monads of ultrafilters and extensional filters, Siberian Math. J. 30 (1989), no. 1, 129-133.
11. A. E. Gutman, E. Yu. Emel'yanov, A. G. Kusraev, and S. S. Kutateladze, Nonstandard Analysis and Vector Lattices, Sobolev Institute Press, Novosibirsk, 1999.
12. I. G. Ganiev and K. K. Kudaybergenov, A finite dimensional module over a ring of measurable functions, Uzb. Math. J. (2004), no. 4, 3-9.
13. K. K. Kudaybergenov, Measurable bundle of operators with closed ranges, Uzb. Math. J. (2005), no. $3,54-62$.
14. I. G. Ganiev and K. K. Kudaybergenov, Banach theorem about of inverse operators in the Banach-Kantorovich spaces, Vladikavkaz. Math. J. 6 (2004), no. 3, 21-25.

Institute of Mathematics, Uzbek Academy of Sciences, 29 F. Khodjaev, Tashkent, 700125, UZBEKISTAN

E-mail address: karim2006@mail.ru

[^0]: 2000 Mathematics Subject Classification. 47A13.
 Key words and phrases. Banach-Kantorovich space, cyclically compact operator, ∇-Fredholm operator, measurable bundle.

