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V-FREDHOLM OPERATORS IN BANACH-KANTOROVICH SPACES

K. K. KUDAYBERGENOV

ABSTRACT. The paper is devoted to studying V-Fredholm operators in Banach—
Kantorovich spaces over a ring of measurable functions. We show that a bounded
linear operator acting in Banach—Kantorovich space is V-Fredholm if and only if
it can be represented as a sum of an invertible operator and a cyclically compact
operator.

1. INTRODUCTION

It is well-known that one of the important notions in the theory of operator equations
in Banach spaces is that of a Fredholm operator. In 1943 by M. S. Nikolsky it was proved
that a bounded linear operator acting in Banach space is Fredholm if and only if it can be
represented as a sum of an invertible operator and a compact operator (see [1]). In this
paper we considered the V-Fredholm operators acting in a Banach-Kantorovich space
over a ring of measurable functions. It is known [2] that every Banach-Kantorovich
space over a ring measurable functions can be represented as a measurable bundle of
Banach spaces. Cyclically compact sets and operators in lattice-normed spaces were
introduced by Kusraev in [3] and [4], respectively. In [5] (see also [6]) a general form
of cyclically compact operators in Kaplansky—Hilbert module, as well as a variant of
Fredholm alternative for cyclically compact operators, are also given. In [7] it was proved
that every cyclically compact operator acting in Banach—Kantorovich space over a ring
measurable functions can be represented as a measurable bundle of compact operators
acting in Banach spaces. For different aspects of cyclical compactness, see [8—11]. In [12]
there was given a structure of modules over the ring of measurable functions, which is
represented as a measurable bundle of finite dimensional spaces. Using this representation
we show that every V-Fredholm operator acting in Banach—Kantorovich space can be
represented as a measurable bundle of Fredholm operators acting in Banach spaces and
prove a vector version of Nikolsky theorem for a bounded linear operators acting in
Banach—Kantorovich spaces.

2. PRELIMINARIES

Let (2,%, 1) be a measurable space with a finite measure and L° = L°(Q) be the
algebra of equivalence classes of all complex measurable functions on (2, X, ).

A complex linear space E is said to be normed by LY if there is a map || || : E — L°
such that for any z,y € FE, X € C, the following conditions are fulfilled: ||z|| > 0;||z| =
0=z =0; [ M| = [All]; [z +yl <[] + [lyll-

The pair (E,| - ||) is called a lattice-normed space over L°. A lattice-normed space E
is called d-decomposable if for any x € E with ||z|| = A1 + Ao, A, A2 € LY Ay = 0
there exist x1,22 € E such that z = z1 + 22 and ||z;|| = A\;, i = 1,2. A net (z,) in E is
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(bo)-converging to z € E, if ||zq — || 9 0in L0 (note that the order convergence in L°
coincides with convergence almost everywhere).

A lattice-normed space E which is d-decomposable and complete with respect to (bo)-
convergence is called a Banach—Kantorovich space (BKS).

It is known that every BKS E over L is a module over L% and || Az|| = |A|||z|| for all
A€ L% z e F (see [2], [4]).

We shall consider a map X : w € Q — (X(w), [ - | x(w)), where (X(w), || - [[x(w)) is &
Banach space for all w € Q. A function u is called a section of X if it is defined on
almost everywhere and takes a value u(w) € X (w) for w € dom(u), where dom(u) is the
domain of w.

Let L be some set of sections.

Definition 2.1. [2] (see also [6]). A pair (X, L) is called a measurable Banach bundle
(MBB) over Q, if
a) Ac1 + Aacg € L for all Ay, Ay € C, ¢1,¢2 € L, where
Are1 4 Aace t w € dom(eq) Ndom(cz) — Arer(w) + Azca(w);
b) the function ||c|| : w € dom(c) — ||¢(w)|| x(v) is measurable for all ¢ € L;
c) for all w € Q the set {¢(w) : ¢ € L,w € dom(c)} is dense in X (w).

A section s is called simple if there exists ¢; € L, A; € X,i = 1, n, such that s(w) =
n
> x4, (w)e;(w). A section u is called measurable if there exists a sequence (s, )nen Of
i=1

simple sections such that ||s, (w) — u(w)|| x(w) — 0 for almost all w € Q.

We denote by M(€, X) the set of all measurable sections and L°(£2, X) denotes the
factorization of this set with respect to equality almost everywhere. By @ we denote the
class from L°(Q, X), containing section u € M(Q,X). A function w — [lu(w)| x () is
measurable for all u € M(Q2, X). By ||@| we denote the element in L°, containing the
function [lu(w)||x (w)-

It is known [2] that (L°(2, X), | - ||) is BKS over L°.

We denote by £>(2) the set of all bounded complex measurable functions on € and
L*®(Q)={f € L°:INe R, A >0,|f|] <A1}, where 1 is unit in L°. Let

£2(9,X) = {u € MQX) : Ju@)]xw) € L)}

and L>®(Q, X) = {a € L°(Q, X) : ||a] € L*°(2)}.

The sets M(Q, X) and £>(Q, X) are often identified with L°(Q, X) and L>° (£, X),
by identifying a measurable section v and the corresponding equivalence class .

We consider a lifting p : L>®(Q) — L°(Q) (see [2]).

Definition 2.2. [2] (see also [6]). The map px : L™(2,X) — £2(Q,X) is called a
vector valued lifting on L*°(£2, X) (associated with p), if:

a) px () € 4,dom(px(4)) = Q for all & € L>(Q, X);

b) llox (2) (@)l x ) = (Al (w) for all & € L(0, X);

¢) px(t+0) = px (@) + px (v) for all 4,0 € L>(Q, X);

d) px(et) = p(e)px(a) for all & € L*=°(2, X) and e € L>(Q);

e) the set {px (@) (w) : & € L>°(Q, X)} is dense in X (w) for all w € Q.

It is known [2, Theorem 4.4.1] that for any BKS E over L° there is a MBB (X, L) such
that E is isometrically isomorphic to L°(2, X) and on L>°(Q, X) there exists a vector
valued lifting such that {px (4)(w) : & € L= (Q, X)} = X(w) for all w € Q.

Let V be the Boolean algebra of idempotents in L°. If (ug)aca C L°(92, X) and

(Ta)aca is a partition of the unit in V, then the series Y mau, (bo)-converges in
[}

LO(£, X) and its sum is called the mixing of (u4)aeca With respect to (m4)aca. We denote
this sum by mix(m,us). A subset K C L9(Q, X) is called cyclic, if mix(mqus) € K for
each (uq)aca C K and any partition of the unit (74)aca in V. For every directed set A
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denote by V(A) the set of all partitions of the unit in V, which are indexed by elements
of the set A. More precisely,

V(A) ={v:A—V:(Va,B € A)(a#B—via)Av(B)=0) A \/ v(a) =1}
acA
For vy,v9 € V(A) we put v; < vy < Va, 5 € A, (v1(a) Ave(B) # 0 — a < 3). Then
V(A) is a directed set. Let (uq)aca be a net in L2(Q, X). For every v € V(A) we put
u, = mix(v(a)u,) and obtain a new net (u,),ev(4). Every subnet of the net (u,),ev(a)
is called cyclic subnet of the original net (uq)aca-

Definition 2.3. [4] (see also [5], [6]). A subset K C L°(Q, X) is called cyclically compact,
if K is cyclic and every net in K has a cyclic subnet that (bo)-converges to some point
of K. A subset in L°(2, X) is called relatively cyclically compact if it is contained in a
cyclically compact set.

Let X and Y be MBBs over 2 with vector valued liftings px and py on L*°(€, X) and
L>(£,Y), respectively. A linear operator 7 : L(Q, X) — L°(£,Y) is called L°-bounded,
if there exists an element ¢ € L such that ||T(z)|| < c||z|| for any = € L°(Q, X). Every
L%-bounded linear operator T : L°(2, X) — L°(Q,Y) is L%linear, i. e., T(az + By) =
ol (z) + BT (y) for all a, B € L°, 2,y € LO(Q, X) (see [4]).

A linear operator T is called cyclically compact, if for every bounded set B in L°(£2, X)
the set T(B) is relatively cyclically compact in L°(Q2,Y"). For a L°-bounded linear oper-
ator T we put ||| = sup{||T(z)] : 2] < 1}.

It is known [7] (see also [6, p. 530]), that for any L°-bounded (cyclically compact)
linear operator T : L%(Q, X) — L°(£,Y) there is a family of bounded (compact) linear
operators {7}, : X(w) — Y (w)} such that for any z € L°(Q, X) the following equality
holds: T'(z)(w) = T,,(z(w)) for almost all w € Q. If ||T|| € L>(R), then py (T(x))(w) =
T.(px(x)(w)) for all x € L>®(Q, X), w € Q.

Conversely, if {T, : X(w) — Y (w)} is a family of bounded (compact) linear operators
such that T, (z(w)) € M(Q,Y) for any x € M (£, X), then the operator T : L°(Q2, X) —
L°(Q,Y) defined by T'(4) = T@)) is L%-bounded (cyclically compact).

Let L°(Q, X)* be the dual space of L%(, X), i. e., the set of all L°-bounded linear
functionals from L°(2, X) into L°. For every f € L°(Q, X)* with || f]| € L>(Q2) we put
folpx (2)(w)) = p(f(2)(w), z € L®(Q, X), w € Q. Then f, € X(w) for every w € Q,
where X (w)’ is the dual space of X (w). Let X (w) = {f., : f € L°%Q, X)*, || f|| € L®(Q)},
X iw— X (W), L ={w— f,: feL(QX)|fl € L=}

It is known [2, Theorem 4.4.7] that (X',L’) is a MBB with vector valued lifting;
X' (w) is a closed subspace in X (w) for all w € Q; LO(Q, X') is isometrically isomorphic
to LO(Q, X)*.

A module E over L is said to be finite dimensional (or finitely generated), if there
are x1,Ts,...,T, in E such that for any * € E there exist \; € L°(i = 1,n) with
T = Mx1+ -+ ATy. The elements x1, x2, ..., x, are called generators of . We denote
by d(F) the minimal number of generators of E.

A module E over LY is called o-finite-dimensional, if there exists a partition (74 )aea
of the unit in V such that m,F is finitely generated for any a. A finite-dimensional
module E over LY is called homogeneous of type n, if for every nonzero e € V we have
n =d(eE).

A family {x1,x9,...,2,} in E is called V-linearly independent, if for all 7 € V and

AlyeosAp € LY from 7 37 A\gag = 0 it follows that Ay = - = 7\, = 0.
k=1
A module F is homogeneous of type n if and only if there exist generators {z1,...,z,}

in E, consisting of V-linearly independent elements (see [12], Proposition 6). Such gen-
erators form a V-basis of F.
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An L°-bounded linear operator T : L°(2, X) — L9(£,Y) is called finite dimensional
or finitely generated (o-finite dimensional, homogeneous of type n) if R(T) = {T'(x) :
x € L°(Q, X)} is a finite dimensional (respectively o-finite dimensional, homogeneous of
type n) submodule in L°(Q,Y).

Any o-finite dimensional operator T : L%(Q, X) — L°(Q,Y) can be represented as
T =Y 7,Ta, where (T4)aca is a partition of the unit in V, T, : L%(Q, X) — L°(Q,Y)

acA
are homogeneous operators of finite type for all a. If T is finite dimensional, then (74 )aeca
is a finite partition of the unit in V.

Any cyclically compact operator T : X — Y is L%bounded. Since the unit ball in a
o-finite dimensional module over L° is a cyclically compact set ([12], Corollary 2), any
o-finite dimensional operator is cyclically compact.

Now we give a definition of V-Fredholm operators, which was introduced by Kusraev
[4] (see also [5], [6]). Let T : LO(Q, X) — LO(Q,Y) be a L-bounded linear operator.

We consider the homogeneous equations

T(x)=0, T7(9)=0
and, respectively, the main equation

T(x)=vy
and the conjugate equation
T"(9) = f.

An operator T is called V-Fredholm, if there exists a partition of unity (7,)nenuqo
in V such that the following conditions are fulfilled:

1) The homogeneous equation moT (z) = 0 has the only zero solution. The homo-
geneous conjugate equation myT*(g) = 0 has the only zero solution. The equation
70T (x) = oy is solvable and has a unique solution for a given arbitrary y € L°(Q,Y).
The conjugate equation moT™*(g) = f is solvable and has a unique solution for a given
arbitrary f € L9(Q, X)*.

2) For every n € N the homogeneous equation 7,T(x) = 0 has n  V-linearly inde-
pendent solutions 1, ...,%, » and the homogeneous conjugate equation m,7*(g) = 0
has n  V-linearly independent solutions gi », ..., gnn-

3) The equation T'(z) = y is solvable if and only if 7,9, »(y) =0 (n € N,i < n). The
conjugate equation T*(g) = f is solvable if and only if 7, f; ,(x) =0 (n € N,i < n).

4) The general solution = of the equation T'(x) = y has the form

00 n
T = Z 7TTb(xn + Z Ci,nxi,n)7
n=1 i=1

where x,, is a particular solution of the equation m,T(z) = m,y and {¢; nnen,i<n are
arbitrary elements in L°.
The general solution g of the conjugate equation T*(g) = f has the form

00 n
g= Z 7Tn(.gn + Z Ci,ngi,n)a
n=1 i=1

where g,, is a particular solution of the equation 7,T*(g) = 7, f, and {¢;n }nen,i<n are
arbitrary elements in L°.

3. MEASURABLE BUNDLES OF FREDHOLM OPERATORS

Proposition 3.1. Let T : L°(Q, X) — L°(Q,Y) be a L°-bounded linear operator. If
T, : X(w) — Y(w) are Fredholm operators and dimker T,, = n for almost all w € Q, then
R(T) is (bo)-closed in L°(Q,Y) and R(T*) is (bo)-closed in L°(Q, X)*;

R(T) =t ker T*, where L ker T* = {y € L°(Q,Y) : f(y) =0,V f € ker T*};

R(T*) = (ker T)*, where (ker T)L = {f € L°(Q, X)* : f(z) =0,Vz € ker T'};

1)
2)
3)
4) ker T' and ker T* are homogeneous of type n.
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Proof. Replacing T with we may assume that ||T']] € L>*(£2). Since T, is a

T
1+
Fredholm operator for almost all w € Q, we see that R(T,,) is closed in Y (w) for almost
all w € Q. Therefore [13, Theorem 2] implies 1), 2), and 3).

4) Put N(w) = {px(2)(w) : z € ker T L>®(, X)}. Let z € ker T L>*(2, X). We
have T, (px(z)(w)) = py (T(x))(w) = py(0)(w) = 0. Thus N(w) C kerT,,. Therefore
dim N(w) < n. By [12, Theorem 1] ker T is a finitely generated submodule in L°(£2, X)
and d(ker T') <n. Then by [12, Proposition 3] there exist a (bo)-closed submodule M in
L°(9, X) such that L°(Q, X) =ker T & M.

Consider an operator S : M — R(T) defined by S(z) = T(z), x € M. Then ker S =
{0} and R(S) = R(T). Since R(T) is (bo)-closed in L°(€,Y"), we see that R(T) is a BKS
over LY. By [14, Theorem 2] the operator S~ : R(T') — M is L°-bounded. Without loss
of generality we may assume that |S™1| € L*°(Q).

Now show that ker T, = N(w) for all w € Q. We take x,, € kerT,, and x € L*>(Q, X)
such that px (z)(w) = x,,. Then © = z1+xo, where x; € ker T, x5 € M. Since px (z)(w) =
px (1) (@) + pxc(2)(w) we gt

(1) T(px (2)(w)) = T (px (1) (W) + To(px (22) (w))-

Because z1 € ker T, we have T,,(px (21))(w) = py (T(z1))(w) = 0. From px (z)(w)
ker T, it follows that T, (px(x))(w) = 0. Therefore by (1) we get T, (px(z2))(w) =
Since x5 € M we have

w2l = 187 (S (@)l < ISTHIIS @)l = 1STHIIT (@2)]]-

€
0.

Thus

lpx (z2) (@)l x(w) < pUSTHN @) T (px (22) (@) Iy () = 0.
Therefore px(x2)(w) = 0. Hence z, = px(z)(w) = px(z1)(w). Since z1 € ker T we get
2, € N(w). Therefore ker T, = N(w). Since ker T,, = n for almost all w € Q by [12,
Theorem 1] it follows that ker T' is homogeneous of type n.

Now we shall show that ker T* is homogeneous of type n. By a similar argument as
in the case of the operator 1" we have that ker 7™ is a finitely generated module and
d(ker T*) < n.

Let S = T|p~,x), f € L™(Q2,Y)" and x € L>(Q, X). Then S*(f)(z) = f(S(x)) =
f(T'(x)) =T*(f)(x). Thus T*|p(q,y)- = S* and d(ker T*) > d(ker S*).

We show that d(ker S*) > n. Without loss of generality we may assume that ker S* is
homogeneous of type m. Let {¢1,...,%mn} be a V-basis in ker S*. By [12, Proposition 2]
there exist {21,...,2m} C L%(Q, X) such that z;(¢;) = &; ;1, where §; ; the Kronecker
symbol. Without loss of generality we can assume that ||zx| € L>®(Q) for all k = 1, m.

For y € L>°(Q,Y) denote g = y — i ¥i(y)z;. Then ¥ (7) = ¥r(y) — i Li(y)r(2z;) =

Y (y)—vr(y) = 0,k = T, m. Thus 7y belongs to - ker S*. Therefore by [13, Theorem 2] the
point 7 belongs R(S) = + ker S*. Thus there exists Z € L> (£, X) such that S(z) = 7.

Applying the lifting py to § = y — > ¥;(y)2z; we have that any y(w) € Y(w) can be
i=1

represented in the form y(w) = F(w) + > ai(w)z;(w), where F(w) € R(T,), a;(w) €
i=1

C, z(w) = py(zi)(w), i = I,m. Since T, is a Fredholm operator and dimkerT,, = n
there exists a subspace M (w) C Y (w) such that dim M(w) = n and Y(w) = R(T,,) &
M (w). Therefore, {z1(w),...,zm(w)} is contains n linearly independent elements. Thus
m > n. Therefore m = n and ker T* is homogeneous of type n. |
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The following result shows that a measurable bundle of Fredholm operators generates
a V-Fredholm operator.

Theorem 3.2. Let T : L°(Q, X) — L°(Q,Y) be a L°-bounded linear operator. If T,, is
a Fredholm operator for almost all w € Q, then T is a V-Fredholm operator.

Proof. Let T, be a Fredholm operator for almost all w € Q. Then dimker T, < oo for
almost all w € Q. By [12, Theorem 1] there exists a partition of the unit (7, )nen in V
such that

0, if mw, =0,

d(ker m,T) = d(ker m,,T*) = )
n, if m, #0,

for all n € NU {0}.

Case 1. my = 1. Then kerT = {0} and ker T* = {0}. By Proposition 3.1 we have
R(T) = {0} = L°(Q,Y) and R(T*) = {0}+ = L°(Q, X)*. Hence, ker T = {0}, ker T* =
{0}, R(T) = L°(Q,Y) and R(T*) = L°(Q, X)*. This means that T is a V-Fredholm
operator.

Case 2. my # 1. In this case there exists n > 1 such that m, # 0. Without loss of
generality we may assume that 7w, = 1 for some n € N. Then by Proposition 3.1, ker T’
and ker T* are homogeneous of type n.

Let z1,...,z, and ¢1, ..., g, be V-bases in ker T" and ker T*, respectively. By Propo-
sition 3.1 we have that the equation T'(x) = y (respectively T*(g) = f) is solvable if and
only if gi(y) = 0 (respectively f(xy) =0) for all k =1,n.

Now fix some solution * of the main equation. Let x be an arbitrary solution of the

main equation. Then z — z* € ker T. Since d(kerT) = n there are cy,c,...,¢, € L°
such that ¢ = z* + c121 + cox2 + -+ - + ¢xy,. The general form of the solution of the
conjugate equation is established by similar arguments. O

4. NIKOLSKY THEOREM FOR A LINEAR OPERATORS IN BANACH-KANTOROVICH
SPACES

Let T be a V-Fredholm operator and ker T' be homogeneous of type n. Let {ey,...,e,}
and {4¢1,...,%,} be V-bases in ker T and ker T*, respectively. We take {f1,..., f} from
LO(Q, X)* and {z1,...,2,} from L°(, X) such that fi(e;) = &; ;1 and 9;(z;) = &; ;1
(see [12, Proposition 2]).

We consider a finitely generated operator K : L°(2, X) — L°(Q,Y) defined by

(2) K(z) =Y fi(x)zi, =e€L°(Q,X).
i=1

Proposition 4.1. Let T : L°(Q,X) — L%(Q,Y) be a V-Fredholm operator and ker T
be homogeneous of type n. Then the operator B = T + K is invertible and B~ is
LO-bounded, where K defined by (2).

Proof. We show that ker B = {0} and R(B) = L°(Q,Y).
1) ker B = {0}. Take z € ker B. This means that

(3) T'(z) = - Zfz(x)zz
Since 9;(z;) = 9;,;1 we get Yp(T(z)) = — i:lfz(x)wk(zl) = —fr(x). On the other

hand, ¥ (T(z)) = T*(Yx)(x) = 0(z) = 0. Thusifk(a:) =0,k = 1,n. Hence (3) has the
form T(x) = 0, thus z = Y &nem, where &, € L°, m = T,n. From fi(z) =0,k =1,n

m=1

we obtain 0 = fi(z) = fu( Y &mem) = D, &mfr(em) = &n. Therefore &, = 0 for all
m=1 m=1
m. Thus = 0. Hence ker B = {0}.
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2) R(B) = L°(Q,Y). Let y € L°(Q,Y).
Put

(4) @Zy—zw(y)z

Since ¥i(7) = Va(y) — X Gi(W)Vr(z) = Vi) ~ viy) = 0.k = T, and T is
V-Fredholm we have j € R(}) Take 7 € L°(Q, X) such that T(Z) = 3. Put x =T +
Xn: [¥;(y)— fi(T)]e;. By (4) and using the identities T'(z) = T(T), K(T) = Y. fi(T)z:, K(e;)
i=1 ,

zi we get B(z) = T(x)+K(z) = T(T)JrZ1 fi(f)zi+2[wi( Y)—fi(@)]z =7+ 3 vi(y)zi =
y. - "

Therefore ker B = {0}, R(B) = L°(Q,Y) and by [14, Theorem 2] we have that B!
is an L%-bounded operator. O

The following result is a vector version of the Nikolsky theorem for linear operators
on Banach-Kantorovich spaces.

Theorem 4.2. For an L°-bounded linear operator T : L°(2, X) — L°(0,Y), the follow-
ing conditions are equivalent:

1) T,, is a Fredholm operator for almost all w € §2;

2) T is a V-Fredholm operator;

3) there are operators A, K from L°(Q, X) to LY(Q,Y) such that A is invertible, K is
o-finite-dimensional and T = A+ K;

4) there are operators A, K from L°(Q, X) to LY(Q,Y) such that A is invertible, K is
cyclically compact and T = A+ K.

Proof. Implication 1) = 2) follows from Theorem 3.2.

2) = 3). Let T be a V-Fredholm operator and (7,),enu{o} & partition of the unit in
V such that d(m, kerT) =n, n € NU{0}.

Case 1. myp = 1. In this case kerT = {0}. Since T is V-Fredholm we get R(T) =
L°(Q,Y). By [14, Theorem 2|, the operator T~ is L°-bounded. Therefore in this case
weput A=T,K =0.

Case 2. my # 1. For V-Fredholm operators 7, T, n € N, by Proposition 4.1 there are
finitely generated operators K, : 7, L°(Q, X) — 7, L°(Q,Y) such that A, = 7,7 + K,
is an invertible operator from 7, L%(, X) on 7, L%(£,Y). Since K, is L°-bounded for

all n € N and L°(Q,Y) is a BKS over L%, there exists K(z) = Y. m,K,(m,z) for all
n=1

x € L°(Q, X). Then K is a o-finite-dimensional operator, A = T'+ K is invertible and
T=A+(—-K).
3) = 4) is trivial, because every o-finite-dimensional operator is cyclically compact.
4) = 1). We need following.

Proposition 4.3. If an L°-bounded linear operator T : L°(Q, X) — L°(,Y) is an
invertible, then T,, is invertible for almost all w € Q.

Proof. Let T be invertible and U : LY(,Y) — L°(Q, X) be the inverse of T. We take
a partition (m,)pen of unit in V such that 7,||U|| € L>®(Q) and 7, ||T|| € L*(Q) for
any n € N. Then m,U(y) € L*>®°(Q, X) and 7,T(z) € L>*(Q,Y) for all z € L>*(Q, X),
y € L=(Q,Y). Denote Q,, = {w € Q : p(m,)(w) = 1} and Qo = U, ; Q. Forw € Q,, we
put Uy, (py (v)(w)) = px (U(mpy))(w) for all y € L=(Q,Y). For y € L*(Q,Y) we have
10 (py (1) (@) x () = llox (U(mny)) (@)l x (@) = PUIU (may)]]) (w)
< p(ma U lyID(w) = p(ma [UID @)l oy (1) (@) Iy (w)-

Hence, U, is a bounded operator for any w € Q.
Since

Uo(Tu(px (2)(w))) = px(2)(w) and T, (Us(py (y)(w)) = py (y)(w)
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for any © € L*°(Q,X), y € L*°(Q,Y), we have that U, is an inverse of T,,. O

Suppose that T'= A + K, where A is invertible, K is a cyclically compact operator.
Then A, is invertible (Proposition 4.3) and K, is a compact operator [7, Theorem 4] for
almost all w € Q. By Nikolsky’s classical theorem, T,, = A, + K|, is a Fredholm operator
for almost all w € . O

Corollary 4.4. Let X, Y and Z be MBBs over Q) with vector valued liftings. If U :
LY, X) — L°Q,Y) and V : L°(Q,Y) — L°(Q, Z) are V-Fredholm operators then UV
is a V-Fredholm operator.

Theorem 4.5. Let U : L°(Q, X) — L°(Q, X) be a L°-bounded linear operator such that
U™ is cyclically compact for some m € N. Then I — U is a V-Fredholm operator.

Proof. Without loss of generality we may assume that |U|| = 1. Let {U,, : w € Q} be a
measurable bundle of operator U. For any x € L*°(12, X)) it follows that

px (U™ (2))(w) = px (U0 (@)(w) = -+ = U (px (@) (w))-

Therefore, the family {U” : w € Q} is a measurable bundle of cyclically compact op-
erators U™. Since U™ is cyclically compact by [7, Theorem 4] it follows that U is a
compact operator for almost all w € Q. Therefore I, — U, is a Fredholm operator for
almost all w € Q. By Theorem 4.2 we have that I — U is a V-Fredholm operator. ]

Remark. In [4] (see also [5], [6]) Kusraev proves that I — U is a V-Fredholm operator if
U is a cyclically compact operator.

Example. Let L?°(Q?) be the set of complex-valued measurable functions f on Q2 such
that

/ F(s,) du(s) € L°
Q

exists.

For f € L20(02) denote ||f|(w) = \/f|f<s,w>|2du<s>. Then (Z20(2), - |) is
Q

BKS over LY. Let k(t,s,w) be a complex-valued measurable function on Q? such that
J [ 1k(t, s,w)|? du(s) du(t) exists.
Q0

Consider an operator T : L?9(Q?) — L*°(Q?) defined by

T(f)(tw) = / Kt s,w)f (s.w) du(s), | € L*0(Q2).
Q

For any w € Q we put k, (¢, s) = k(t, s,w). Then for almost all w € §2 the function k, (¢, s)
belongs to L?(9?). For almost all w € € the operator T,, : L2(2) — L?(Q) is defined by

T (f)(t) = / kot $)Fu(s) du(s),  fu € T2(Q).

Q

It is well-known that T, is a compact operator for almost all w € Q. For f € L?°(Q?)
we have

T(f)(t w) :/k(t,w,S)f(&w) dp(s) :/kw(tvs)fw(s) ds = Ty, (fu)(t)
Q Q
for almost all (t,w) € Q2 where f,(s) = f(s,w). This means that {7, : w € Q} is a
measurable bundle of compact operators. Therefore, by [7, Theorem 3] the operator T'
is cyclically compact. By Theorem 4.5 we have that I — T is a V-Fredholm operator.
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