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A NOTE ON ONE DECOMPOSITION OF BANACH SPACES

M. V. MARKIN

This note is dedicated to Academician Yu. M. Berezansky in honor of his eightieth anniversary.

Abstract. For a scalar type spectral operator A in complex Banach space X, the
decomposition of X into the direct sum

X = ker A⊕R(A),

where ker A is the kernel of A and R(A) is the closure of its range R(A) is established.

Mathematicians stand on each other’s shoulders.
Carl Friedrich Gauss

1. Introduction

We are to prove that, for a scalar type spectral operator A in a complex Banach space
X, the following direct sum decomposition holds:

(1.1) X = kerA⊕R(A),

where ker · is the kernel of an operator and R(·) is the closure an operator’s range R(·).
This decomposition is a generalization of the well-known fact that, for a normal ope-

rator in a Hilbert space H,

(1.2) H = kerA⊕R(A),

the direct sum being orthogonal in this case (see, e.g., [1, 2, 5, 12]).
Observe that the implications of decomposition (1.1) can be quite instrumental when

dealing with the ergodicity of solutions of abstract evolution equations (see, e.g., [8, 7,
13, 9, 10, 11]).

Also note that, according to [14], in a Hilbert space, scalar type spectral operators are
those similar to normal ones.

As is to be expected, abandoning the Hilbert space inner product techniques, which
makes proving decomposition (1.2) positively effortless, would require a different ap-
proach.

2. Preliminaries

Let A be a scalar type spectral operator and EA(·) be its spectral measure (the res-
olution of the identity), the operator’s spectrum σ(A) being the support for the latter
[3, 6].

For such operators, there has been developed an operational calculus for Borel mea-
surable functions on the spectrum of A [3, 6].
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Provided F (·) is such a function, a new scalar type spectral operator

F (A) =
∫

σ(A)

F (λ) dEA(λ)

is defined as follows:
F (A)f := lim

n→∞
Fn(A)f, f ∈ D(F (A)),

D(F (A)) :=
{
f ∈ X

∣∣ lim
n→∞

Fn(A)f exists
}

(D(·) is the domain of an operator), where

Fn(·) := F (·)χ{λ∈σ(A) | |F (λ)|≤n}(·), n = 1, 2, . . . ,

(χα(·) is the characteristic function of a set α), and

Fn(A) :=
∫

σ(A)

Fn(λ) dEA(λ), n = 1, 2, . . . ,

being the integrals of bounded Borel measurable functions on σ(A), are bounded scalar
type spectral operators on X defined in the same manner as for normal operators (see,
e.g., [1, 2, 5, 12]).

Observe that

(2.3) A =
∫

σ(A)

λ dEA(λ).

The properties of the spectral measure, EA(·), and the operational calculus exhaus-
tively delineated in [3, 6] underly the proof of the succeeding theorem.

3. The decomposition

Theorem. Let A be a scalar type spectral operator in a complex Banach space X. Then
the space X is decomposable into direct sum (1.1).

Proof. For any f ∈ X, by the properties of the spectral measure [3, 6],

f = EA({0})X ⊕ EA(σ(A) \ {0})X.

The inclusion
EA({0})X ⊆ ker A

follows directly from representation (2.3) by the properties of the operational calculus.
The inverse inclusion

ker A ⊆ EA({0})X
is proved in [6] (Lemma XV.3.1) where, as is easily seen, the requirement of the bound-
edness of the operator is absolutely superfluous.

Thus,
EA({0})X = kerA,

i.e., EA({0}) is a projection onto ker A.
Let us show now that the operator EA(σ(A)\{0}) is the projection onto the subspace

R(A) parallel to ker A.
Let

Fn(λ) =

0 for λ ∈ σ(A), |λ| ≤ 1/n
1
λ

for λ ∈ σ(A), |λ| > 1/n
, n = 1, 2, . . . .
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By the properties of the spectral measure and operational calculus [3, 6], for an arbitrary
f ∈ X and any n = 1, 2, . . . ,

EA({λ ∈ σ(A)|0 < |λ| ≤ 1/n})f
= EA(σ(A) \ {0})f − EA({λ ∈ σ(A)||λ| > 1/n})f

= EA(σ(A) \ {0})f −
∫

σ(A)

χ{λ∈σ(A)||λ|>1/n}(λ) dEA(λ)f

= EA(σ(A) \ {0})f −AFn(A)f.

By the strong continuity of the spectral measure, for any f ∈ X,

EA(σ(A) \ {0})f = lim
n→∞

AFn(A)f ∈ R(A).

Hence,

(3.4) EA(σ(A) \ {0})X ⊆ R(A).

On the other hand,

(3.5) R(A) ⊆ EA(σ(A) \ {0})X.

Indeed, for an arbitrary g ∈ R(A), there is an f ∈ D(A) such that g = Af and we have

g = Af =
∫

σ(A)

λ dEA(λ)f =
∫

σ(A)\{0}

λ dEA(λ)f = EA(σ(A) \ {0})Af

∈ EA(σ(A) \ {0})X.

Inclusions (3.4) and (3.5) imply that

EA(σ(A) \ {0})X = R(A).

Note that the inclusions

ker A ⊆ EA({0})X and EA(σ(A) \ {0})X ⊆ R(A)

hold true for any spectral operator A in a complex Banach space X [3, 6] without it being
of scalar type. �
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