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BOUNDARY TRIPLETS AND KREIN TYPE RESOLVENT FORMULA
FOR SYMMETRIC OPERATORS WITH UNEQUAL DEFECT

NUMBERS

VADIM MOGILEVSKII

Abstract. Let H be a Hilbert space and let A be a symmetric operator in H with ar-
bitrary (not necessarily equal) deficiency indices n±(A). We introduce a new concept
of a D-boundary triplet for A∗, which may be considered as a natural generalization
of the known concept of a boundary triplet (boundary value space) for an operator
with equal deficiency indices. With a D-triplet for A∗ we associate two Weyl func-
tions M+(·) and M−(·). It is proved that the functions M±(·) posses a number of
properties similar to those of the known Weyl functions (Q-functions) for the case
n+(A) = n−(A). We show that every D-triplet for A∗ gives rise to Krein type for-
mulas for generalized resolvents of the operator A with arbitrary deficiency indices.
The resolvent formulas describe the set of all generalized resolvents by means of two

pairs of operator functions which belongs to the Nevanlinna type class eR (H0,H1).
This class has been earlier introduced by the author.

1. Introduction

Let H be a Hilbert space and let A be a symmetric densely defined operator in H with
the domain D(A) and defect numbers n±(A). Recall [9] that a triplet Π = {H,Γ0,Γ1},
where H is a Hilbert space and Γ0, Γ1 are operators from D(A∗) to H, is called a
boundary triplet for A∗, if the mapping Γ := (Γ0 Γ1)> is surjective and the following
abstract Green’s identity holds

(1.1) (A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ D(A∗).

In [2] an abstract Weyl function was associated to a boundary triplet. Namely, the
operator function MΠ(·) defined by

(1.2) Γ1fλ = MΠ(λ)Γ0fλ, fλ ∈ Nλ(A) := Ker (A∗ − λ), λ ∈ C+ ∪ C−
is called a Weyl function corresponding to the triplet Π. Furthermore, the above defini-
tions was extended in [16, 3] to nondensely defined operators A.

The concept of a boundary triplet and the Weyl function is a convenient tool in
the extension theory and its applications (see [9], [2]–[5], [16] and references therein). A
motivation for this concept goes back to differential operators, for which the identity (1.1)
turns into the classical Green’s–Lagrange’s identity, while the function MΠ(·) coincides
with the classical Weyl–Titchmarsh function [23, 4]. Note, however, that every boundary
triplet {H,Γ0,Γ1} for A∗ satisfies the equality n+(A) = n−(A) = dimH. Therefore the
method of boundary triplets can be applied only to an operator A with equal defect
numbers.

In the present paper a new concept of a D-boundary triplet is introduced. This con-
cept makes it possible to generalize to the case n+(A) 6= n−(A) the notion of a boundary
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triplet. Next by using the technique of D-triplets we obtain the Krein–Naimark type
formula for generalized resolvents of a symmetric operator with not necessarily equal
defect numbers.

Assume that A∗ ⊂ H2 is an adjoint linear relation to a not necessarily densely defined
symmetric operator A with arbitrary defect numbers. A D-triplet for A∗ is defined as
follows. Let H1 be a subspace in a Hilbert space H0, let H2 = H0 	H1, and let Pj be
orthoprojectors in H0 onto Hj , j ∈ {0, 1}. Then a collection Π = {H0 ⊕ H1,Γ0,Γ1},
where Γj are operators from A∗ to Hj , j ∈ {0, 1}, is called a D-boundary triplet for A∗,
if the mapping Γ := (Γ0 Γ1)> is surjective and instead of (1.1) the identity

(1.3) (f ′, g)− (f, g′) = (Γ1f̂ , Γ0ĝ)− (Γ0f̂ , Γ1ĝ) + i(P2Γ0f̂ , P2Γ0ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗. In the case D(A) = H the operators Γ0 and
Γ1 may be considered as defined on D(A∗) and the identity (1.3) takes the form

(1.4) (A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g) + i(P2Γ0f, P2Γ0g), f, g ∈ D(A∗).

Such a definition of the D-triplet can be motivated by the following simple example.
Assume that

(1.5) l[y] = i y(3)

is a differential expression of the third order on the semiaxis [0,∞). Let H be a separable
Hilbert space and let H := L2([0,∞);H) be the space of vector-functions y(·) : [0,∞) →
H such that

∫∞
0
||y(t)||2 dt < ∞. The expression (1.5) generates a minimal operator

A in H with the defect numbers n+(A) = 2 dim H, n−(A) = dim H. Moreover the
corresponding maximal operator A∗ satisfies the Lagrange’s identity

(1.6) (A∗y, z)H − (y, A∗z)H = (−iy′′(0), z(0))H − (y(0),−iz′′(0))H + i(y′(0), z′(0))H

for every y, z ∈ D(A∗). Letting now Γ0y = {y(0), y′(0)} and Γ1y = −iy′′(0) we derive
the D-triplet {H2⊕H,Γ0,Γ1}, for which the identity (1.4) coincides with the Lagrange’s
identity (1.6). Note also that in the case dim H = ∞ one has n+(A) = n−(A) = ∞. In
this case the constructed D-triplet is not a boundary triplet (in the sense of [9]), since
(H2 =)H0 6= H1(= H). This shows that D-triplets can be useful even for the operators
with equal defect numbers.

It turns out that the above example is typical for D-triplets. Namely, we prove below
that every D-triplet {H0 ⊕ H1,Γ0,Γ1} for A∗ satisfies the relation dimH1 = n−(A) ≤
n+(A) = dimH0. Moreover if H1 = H0, then n−(A) = n+(A) and a D-triplet becomes a
boundary triplet for A∗. At the same time in the case n−(A) = n+(A) = ∞ the subspace
H1 may both coincide and not coincide with H0.

With a D-triplet {H0⊕H1,Γ0,Γ1} for A∗ we associate two Weyl functions M+(·) and
M−(·) defined by

Γ1fλ = M+(λ)Γ0fλ, fλ ∈ Nλ(A), λ ∈ C+,

(Γ1 + iP2Γ0)fz = M−(z)P1Γ0fz, fz ∈ Nz(A), z ∈ C−.
(1.7)

The operator function M+(λ) is defined on C+ and takes on values in [H0,H1], while
M−(z) is defined on C− and takes on values in [H1,H0]. Moreover these functions are
associated via M∗

−(z) = M+(z), z ∈ C−. In the case H0 = H1 := H the Weyl function
MΠ(·) defined by (1.2) is connected with M±(·) by

MΠ(λ) = M+(λ), λ ∈ C+, MΠ(z) = M−(z), z ∈ C−.

We show that the operator functions M(·) : C+ ∪ C− → [H1], N+(·) : C+ → [H2,H1]
and N−(·) : C− → [H1,H2] generated by the block-matrix representations

M+(λ) = (M(λ) N+(λ)) : H1⊕H2 → H1, M−(z) = (M(z) N−(z))> : H1 → H1⊕H2
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satisfy the relations similar that for the Weyl function (1.2) (see Proposition 3.17). In
particular the function M(·) belongs to the class Ru[H1], that is Imλ ImM(λ) ≥ 0, 0 ∈
ρ(ImM(λ)) and M∗(λ) = M(λ) for every λ ∈ C+ ∪ C−.

Similarly [2, 16] a D-triplet {H0⊕H1,Γ0,Γ1} specify the parameterization of all closed
proper extensions Ã ⊃ A by means of closed linear relations θ ⊂ H0 ⊕H1 via

(1.8) Ã = Ãθ := {f̂ ∈ A∗ : {Γ0f̂ , Γ1f̂} ∈ θ}.

Such a parameterization is especially convenient for the description of extensions of
differential operators in terms of boundary conditions. In order to describe by (1.8)
various classes of extensions (symmetric, selfadjoint, etc) we use some new classes of
linear relations θ ⊂ H0 ⊕ H1 introduced in [21]. Moreover we describe the spectrum
of the extension Ãθ in terms of the parameter θ and the Weyl functions M±(·) (see
Proposition 4.1).

It is well known that the Krein–Naimark formula for generalized resolvents of the
operator A with equal defect numbers plays an important role in the extension theory
(see for instance [13, 14, 2, 3, 16]). A connection between this formula and boundary
triplets was discovered in [2, 16]. Namely, it was shown there that every boundary triplet
Π = {H,Γ0,Γ1} for A∗ (n+(A) = n−(A) ≤ ∞) gives rise to the Krein–Naimark formula

(1.9) Rλ = (A0 − λ)−1 − γ(λ)K0(λ)
(
K1(λ) + MΠ(λ)K0(λ)

)−1
γ∗(λ), λ ∈ C+ ∪ C−

where A0 := Ker Γ0 is a fixed selfadjoint extension of A, γ(λ) := (Γ0 � Nλ(A))−1 is a
γ-field and MΠ(λ) is a Weyl function (Q-function) (1.2). The formula (1.9) establishes
a bijective correspondence between the set of all generalized resolvents Rλ of A and the
class R̃(H) of all Nevanlinna pairs of operator functions (Nevanlinna families of linear
relations) {K0(λ),K1(λ)} := τ(λ) in H [13, 5, 6, 7].

The main result of this paper is the Krein–Naimark type formulas for a symmetric
operator A with not necessarily equal defect numbers. Namely, with every D-triplet
Π = {H0 ⊕H1,Γ0,Γ1} for A∗ we associate two formulas for generalized resolvents

Rλ = (A0 − λ)−1 − γ+(λ)K0(λ)
(
K1(λ) + M+(λ)K0(λ)

)−1
γ∗−(λ), λ ∈ C+,(1.10)

Rλ = (A∗0 − λ)−1 − γ−(λ)N1(λ)
(
N0(λ) + M−(λ)N1(λ)

)−1
γ∗+(λ), λ ∈ C−(1.11)

where A0 := Ker Γ0 is a maximal symmetric extension of A with n−(A0) = 0, γ+(λ) :=
(Γ0 � Nλ(A))−1, λ ∈ C+ and γ−(z) := (P1Γ0 � Nz(A))−1, z ∈ C− are γ-fields and M±(·)
are the corresponding Weyl functions (1.7). The formulas (1.10) and (1.11) describe the
set of all generalized resolvents Rλ separately on C+ and C−. The part of the parameter
here is carried out by two pairs of operator functions {K0(·),K1(·)} and {N1(·), N0(·)}
which belong to the Nevanlinna type class R̃ (H0,H1). The definition of this class and
the investigations of its properties is contained in our paper [21]. Here we only note that
in the special case H1 = H0 := H the class R̃ (H0,H1) coincides with the class R̃(H) of
Nevanlinna pairs (Nevanlinna families) in H, so that R̃(H,H) = R̃(H).

It is known that the main problem in the derivation of the formula (1.9) is the con-
struction of a generalized resolvent Rλ by a parameter τ(λ) = {K0(λ),K1(λ)}. The
classical approach to this problem is essentially based on the Krein formula for canonical
resolvents and the Naimark theorem. The new approach (coupling method) in the case
n+(A) = n−(A) has been recently proposed in [5, 6, 7]. This method is essentially based
on the realization of τ(·) as the Weyl function. Note that in the case τ(λ) /∈ Ru[H] such
an approach requires the use of boundary relations and Weyl families of linear relations
instead boundary triplets and Weyl functions respectively (see [6, 7]).

Our construction of Rλ by a parameter τ(λ) is inspired by the papers [5, 6, 7]. At the
same time, unlike these papers our approach makes it possible to derive resolvents formula
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for an operator A with arbitrary defect numbers keeping the framework of boundary
triplets (D-triplets) and the Weyl functions. This approach is based on some kind of the
dilation theorem [21], which in the case H1 = H0 := H can be reformulated in the form
of the following well known assertion [25, 8]: for every family τ(λ) ∈ R̃(H) there exist a
Hilbert space H1 and a selfadjoint linear relation θ̃ in H⊕ H1 such that

(1.12) PH(θ̃ − λ)−1 � H = −(τ(λ) + λ)−1, λ ∈ C+ ∪ C−.

Using the dilation theorem we realize a parameter τ(λ) by (1.12) and construct in the
explicit form a boundary triplet Π̃ in the exit space H ⊕ H1. Next we show that the
extension Ã := Ãeθ (in the triplet Π̃, see (1.8)) generates the desired generalized resolvent
Rλ := PH(Ãeθ−λ)−1|H. Observe that in view of (1.12) the properties of the parameter θ̃

and, consequently, of the corresponding generalized resolvent Rλ = PH(Ãeθ − λ)−1|H can
be formulated in terms of the parameter τ(λ). Therefore we suppose that our method
will be useful in some classical problems (expansion in eigenfunctions, moment and inter-
polation problems), where the parameter τ(λ) is used for the description of all solutions.

Observe also that our approach enables to obtain formula for generalized resolvents
in Straus form [25, 26] directly from the formula (1.10). Moreover we establish a simple
connection between these two formulas and find a geometric interpretation of the spectral
parameter τ(λ) by means of abstract ”boundary conditions”. These results may be
considered as a generalization to the case n+(A) 6= n−(A) the corresponding results
from [2, 5, 16] obtained for a symmetric operator with equal defect numbers.

Note in conclusion that our investigations here have also been inspired by the works of
M. M. Malamud and the author [18, 19, 20] devoted to the theory of boundary triplets and
the corresponding formulas for generalized resolvents of an isometric operator. In these
works a concept of a boundary triplet of a symmetric operator has been extended to the
case of an isometric operator V and the corresponding formulas for generalized resolvents
as well as for the resolvents matrices of an operator V have been obtained. Note, that
formulas (1.10), (1.11) are similar to that obtained in [18, 19, 20] for generalized resolvents
of an isometric operator V.

The author is sincerely grateful to M. M. Malamud for his interest to this work and
for the useful discussions.

2. Preliminaries

2.1. Notations. The following notations will be used throughout the paper: H, H de-
note Hilbert spaces; [H1,H2] is the set of all bounded linear operators defined on H1

with values in H2; [H] := [H,H]; A � L is the restriction of an operator A onto the linear
manifold L; PL is the orthogonal projector in H onto the subspace L ⊂ H; C+ (C−) is
the upper (lower) half-plain of the complex plain.

For a Hilbert space H we denote by dim H its dimension. Moreover we write dim H <
∞, if H is finite-dimensional and dim H = ∞, if H is an infinite-dimensional not necessarily
separable Hilbert space.

Let H0 and H1 be Hilbert spaces. A linear manifold T ⊂ H0 ⊕H1 is called a linear
relation in H0 ⊕ H1 (from H0 to H1). We denote by C̃(H0,H1) (C̃(H)) the set of all
closed linear relations(closed subspaces) in H0 ⊕ H1 (in H ⊕ H). For a linear relation
T ⊂ H0 ⊕ H1 we denote by D(T ), R(T ), KerT and T (0) the domain, the range, the
kernel and the multivalued part of T respectively.

If T is a relation in H0⊕H1, then the inverse T−1 and adjoint T ∗ relations are defined
as

T−1 = {{f ′, f} : {f, f ′} ∈ T}, T−1 ⊂ H1 ⊕H0,
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and

T ∗ = {{g, g′} ∈ H1 ⊕H0 : (f ′, g) = (f, g′), {f, f ′} ∈ T}, T ∗ ∈ C̃(H1,H0).

A closed linear operator T from H0 to H1 is identified with its graph grT ∈ C̃(H0,H1).
In the case T ∈ C̃(H0,H1) we write:
0 ∈ ρ(T ) if KerT = {0} and R(T ) = H1, which is equivalent to the condition
T−1 ∈ [H1,H0];
0 ∈ ρ̂(T ) if KerT = {0} and R(T ) = R(T ) 6= H1;
0 ∈ σc(T ) if KerT = {0} and R(T ) = H1 6= R(T );
0 ∈ σp(T ) if KerT 6= {0}; 0 ∈ σr(T ) if Ker T = {0} and R(T ) 6= H1.
For a linear relation T ∈ C̃(H) we denote by ρ(T ) = {λ ∈ C : 0 ∈ ρ(T − λ)} and

ρ̂(T ) = {λ ∈ C : 0 ∈ ρ̂(T − λ)} the resolvent set and the set of regular type points of
T respectively. Next, σ(T ) = C\ρ(T ) stands for the spectrum of T. The spectrum σ(T )
admits the following classification:

σc(T ) = {λ ∈ C : 0 ∈ σc(T − λ)} is the continuous spectrum;
σp(T ) = {λ ∈ C : 0 ∈ σp(T − λ)} is the point spectrum;
σr(T ) = σ(T ) \ (σp(T ) ∪ σc(T )) = {λ ∈ C : 0 ∈ σr(T − λ)} is the residual spectrum.
For a linear relation T ∈ C̃(H) and for every λ ∈ C let us introduce the lineal Mλ(T ) :=

R(T − λ) and the closed subspaces

Nλ(T ) := H	Mλ(T ) = Ker (T ∗ − λ), N̂λ(T ) := {{f, λf} : f ∈ Nλ(T )} ∈ C̃(H).

It is clear that Nλ(T ) = {f ∈ H : {f, λf} ∈ T ∗}, so that N̂λ(T ) ⊂ T ∗. Moreover if
λ ∈ ρ̂(T ) then Nλ(T ) is the defect subspace of a linear relation T .

2.2. Linear relations and holomorphic functions. Let H, H0 H1 be Hilbert spaces
and let K = (K0 K1)> ∈ [H,H0 ⊕ H1]. For a (not necessary closed) linear relation
θ ⊂ H0 ⊕H1 we write θ = {K0,K1;H} if KerK = {0} (that is Ker K0 ∩Ker K1 = {0})
and

θ = KH = {{K0h, K1h} : h ∈ H}.

Similarly let C = (C0 C1) ∈ [H0 ⊕H1,H]. For a linear relation θ ∈ C̃(H0,H1) we write
θ = {(C0, C1);H} if R(C) = H and

θ = KerC = {{h0, h1} ∈ H0 ⊕H1 : C0h0 + C1h1 = 0}.

It is clear that every linear relation θ ∈ C̃(H0,H1) admits both representations θ =
{K0,K1;H} and θ = {(C0, C1);H ′}. Moreover the equalities dim H = dim θ, dim H ′ =
codim θ are valid.

Let D be an open set in C and let K0(·) : D → [H,H0], K1(·) : D → [H,H1]
be a pair of holomorphic operator functions. Such a pair will be called admissible if
Ker K0(λ) ∩Ker K1(λ) = {0}, λ ∈ D.

Definition 2.1. Let {K0(·),K1(·)} and {K ′
0(·),K ′

1(·)} be two admissible pairs of holo-
morphic operator functions, Kj : D → [H,Hj ], K ′

j : D → [H ′,Hj ], j ∈ {0, 1}. Two such
pairs are said to be equivalent if K ′

0(λ) = K0(λ)ϕ(λ) and K ′
1(λ) = K1(λ)ϕ(λ) for some

holomorphic operator function ϕ(·) : D → [H ′,H] such that 0 ∈ ρ(ϕ(λ)) for every λ ∈ D.

Definition 2.2. A function τ(·), defined on an open set D ⊂ C with values in C̃(H0,H1)
is called holomorphic on D if there exist a Hilbert space H and an admissible pair of
holomorphic operator functions Kj(·) : D → [H,Hj ], j ∈ {0, 1} such that

(2.1) τ(λ) = {K0(λ),K1(λ);H} = {{K0(λ)h, K1(λ)h} : h ∈ H}, λ ∈ D.



KREIN TYPE FORMULA 263

It is clear that two pairs {K0(·),K1(·)} and {K ′
0(·),K ′

1(·)} define by (2.1) the same
holomorphic function τ(·), if and only if they are equivalent. Therefore we will identify
(by means of (2.1)) a holomorphic C̃(H0,H1)-valued function τ(·) and the corresponding
class of equivalent admissible pairs {K0(·),K1(·)}.

2.3. Nevanlinna type families and the dilation theorem. In this subsection some
definitions and results from our paper [21] are specified.

Let H1 be a subspace in a Hilbert space H0 and let H2 = H0	H1. Denote by Pj the
orthoprojector in H0 onto Hj , j ∈ {1, 2} and introduce the operators
(2.2)

J01 =
(

P2 −iIH1

iP1 0

)
: H0⊕H1 → H0⊕H1, J10 =

(
0 −iP1

iIH1 P2

)
: H1⊕H0 → H1⊕H0,

(2.3)

U01 =
(

P1 0
iP2 IH1

)
: H0⊕H1 → H1⊕H0, U10 =

(
IH1 −iP2

0 P1

)
: H1⊕H0 → H0⊕H1.

It is easily seen that J01 and J10 are signature operators, i.e., J01 = (J01)∗ = (J01)−1

and J10 = (J10)∗ = (J10)−1. Furthermore U01 and U10 are unitary operators connected
by the equality U10 = (U01)−1.

For a linear relation θ ∈ C̃(H0,H1) we put

(2.4) θ× = J01(θ⊥) = (J01θ)⊥, θ× ∈ C̃(H0,H1).

It is clear that θ× is the set of all vectors k̂ = {k0, k1} ∈ H0 ⊕H1 such that

(2.5) (k1, h0)− (k0, h1) + i(P2k0, P2h0) = 0, {h0, h1} ∈ θ.

If H1 = H0 := H, then a linear relation θ× ∈ C̃(H) coincides with θ∗. Moreover it was
shown in [21], Proposition 3.1 that in the general case H1 ⊂ H0 a relation θ× possesses
a number of properties similar that of θ∗.

Definition 2.3. ([21]). Let H1 be a subspace in a Hilbert space H0, let θ be a closed
linear relation in H0 ⊕H1 and let

ϕθ(ĥ) = 2Im(h1, h0) + ||P2h0||2, ĥ = {h0, h1} ∈ θ.

The relation θ belongs to the class:
1) Dis0(H0,H1) (Ac0(H0,H1)), if ϕθ(ĥ) ≥ 0 (ϕθ(ĥ) ≤ 0) for all ĥ ∈ θ;
2) Sym0(H0,H1), if θ ⊂ θ× or equivalently if ϕθ(ĥ) = 0, ĥ ∈ θ;
3) Self(H0,H1), if θ = θ×.
Moreover a linear relation θ ∈ C̃(H0,H1) belongs to one of the classes Dis(H0,H1),

Ac(H0,H1) or Sym(H0,H1) if it belongs to the class Dis0(H0,H1), Ac0(H0,H1) or
Sym0(H0,H1) respectively and there are not extensions θ̃ ⊃ θ, θ̃ 6= θ in the corre-
sponding class.

Let as before H1 be a subspace in a Hilbert space H0 and let H2 = H0 	H1. In the
next definition the concept of a Nevanlinna type class of holomorphic C̃(H0,H1)-valued
functions (families of linear relations) is introduced.

Definition 2.4. ([21]). A holomorphic C̃(H0,H1)-valued function

τ+(·) : C+ → C̃(H0,H1)
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belongs to the Nevanlinna type class R̃+(H0,H1), if −τ+(λ) ∈ Ac(H0,H1) for every
λ ∈ C+.

A pair of holomorphic functions τ+(·) : C+ → C̃(H0,H1) and τ−(·) : C− → C̃(H1,H0)
belongs to the class R̃ (H0,H1) if τ+(·) ∈ R̃+(H0,H1) and τ−(λ) = τ∗+(λ) for every
λ ∈ C+. In what follows such a pair of functions τ+(·) and τ−(·) will be denoted by
τ = {τ+, τ−}.

A pair of functions τ = {τ+(·), τ−(·)} ∈ R̃ (H0,H1) is referred to the class R̃0(H0,H1)
if τ+(λ) = τ+, λ ∈ C+; τ−(z) = τ−, z ∈ C− (ı,e., the functions τ+(·) and τ−(·) are
constant on their domains) and −τ+ ∈ Self(H0,H1).

It follows from Definition 2.2 that functions τ+(·) and τ−(·) admit the representations

τ+(λ) = {K0(λ),K1(λ);H+}, λ ∈ C+,(2.6)

τ−(z) = {N1(z), N0(z);H−}, z ∈ C−(2.7)

where H+,H− are auxiliary Hilbert spaces and Kj(·) : C+ → [H+,Hj ], Nj(·) : C− →
[H−,Hj ] j ∈ {0, 1} are holomorphic operator functions. The description of the classes
R̃+(H0,H1) and R̃ (H0,H1) in terms of the corresponding pairs {K0(·),K1(·)} and
{N1(·), N0(·)} was obtained in [21], Proposition 4.3.

Definition 2.5. ([21]). Let H0, H1 be Hilbert spaces and let H1 be a subspace in H0.
A linear relation θ̃ ∈ Self(H0 ⊕ H1,H1 ⊕ H1) is called a dilation of a C̃(H0,H1)-valued
function τ+(·) : C+ → C̃(H0,H1), if there exist representations θ̃ = {K̃0, K̃1;H1 ⊕ H1}
and τ+(λ) = {K0(λ),K1(λ);H1}, λ ∈ C+ with the following properties:

i) the operators K̃0 ∈ [H1 ⊕ H1,H0 ⊕ H1] and K̃1 ∈ [H1 ⊕ H1] have the block-matrix
representations

(2.8) K̃0 =
(

K1 K2

K3 K4

)
: H1⊕H1 → H0⊕H1, K̃1 =

(
N1 N2

N3 N4

)
: H1⊕H1 → H1⊕H1

such that 0 ∈ ρ(N4 − λK4), λ ∈ C+;
ii) the equalities

K0(λ) = −K1 + K2(N4 − λK4)−1(N3 − λK3), λ ∈ C+,(2.9)

K1(λ) = N1 −N2(N4 − λK4)−1(N3 − λK3), λ ∈ C+(2.10)

are valid.
A function τ+(·) : C+ → C̃(H0,H1) is called a compression of a linear relation θ̃ ∈

Self(H0,H1)(H0 ⊕ H1,H1 ⊕ H1), if θ̃ is a dilation of τ+(·).

One can easily verify that in the case H0 = H1 := H a dilation θ̃ = θ̃∗ ∈ C̃(H⊕ H1)
and the corresponding compression τ+(λ) : C+ → C̃(H) are connected via (c.f. (1.12))

−(τ+(λ) + λ)−1 = PH(θ̃ − λ)−1 � H, λ ∈ C+.

The following dilation theorem was proved in [21].

Theorem 2.6. If θ̃ ∈ Self(H0,H1)(H0 ⊕ H1,H1 ⊕ H1), then there exists a unique com-
pression τ+(·) of θ̃ and τ+(·) ∈ R̃+(H0,H1).

Conversely for every function τ+(·) ∈ R̃+(H0,H1) there exist a Hilbert space H1 and
a linear relation θ̃ ∈ Self(H0,H1)(H0 ⊕ H1,H1 ⊕ H1) such that θ̃ is a dilation of τ+(·).

3. Boundary D-triplets and Weyl functions

3.1. Boundary triplets and Weyl functions for dual pairs. In this subsection we
recall some definitions and results from [15, 17], concerning dual pairs of linear relations.
These results will be systematically used in what follows.
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Definition 3.1. A pair {A,B} of closed linear relations A,B in H is called a dual pair,
if

(f ′, g) = (f, g′), f̂ = {f, f ′} ∈ A, ĝ = {g, g′} ∈ B

or equivalently if A ⊂ B∗( ⇐⇒ B ⊂ A∗).
A linear relation Ã ∈ C̃(H) is called a proper extension of a dual pair {A,B} if

A ⊂ Ã ⊂ B∗. The set of all proper extensions of a dual pair {A,B} is denoted by Ext
{A,B}.

Definition 3.2. Let H0 and H1 be Hilbert spaces and let ΓB = (ΓB
0 ΓB

1 )> : B∗ →
H0 ⊕ H1 and ΓA = (ΓA

0 ΓA
1 )> : A∗ → H1 ⊕ H0 be linear maps. A collection Π =

{H0 ⊕H1,ΓB ,ΓA} is called a boundary triplet for a dual pair {A,B} if:
(i) ΓBB∗ = H0 ⊕H1, ΓAA∗ = H1 ⊕H0;
(ii) the following Green identity holds

(3.1)
(f ′, g)− (f, g′) = (ΓB

1 f̂ , ΓA
0 ĝ)− (ΓB

0 f̂ , ΓA
1 ĝ), f̂ = {f, f ′} ∈ B∗, ĝ = {g, g′} ∈ A∗.

Proposition 3.3. Let Π = {H0 ⊕ H1,ΓB ,ΓA} be a boundary triplet for a dual pair
{A,B}. Then the following statements are valid:

1) Ker ΓB = A, Ker ΓA = B and the operators ΓB and ΓA are bounded, that is
ΓB ∈ [B∗,H0 ⊕H1], ΓA ∈ [A∗,H1 ⊕H0];

2) the collection Π∗ = {H1 ⊕ H0,ΓA,ΓB} forms a boundary triplet for the dual pair
{B,A};

3) the equality

(3.2) Ã = Ãθ := {f̂ ∈ B∗ : {ΓB
0 f̂ , ΓB

1 f̂} ∈ θ}

establishes a bijective correspondence between the set of all proper extensions Ã ∈ Ext
{A,B} and the set of linear relations θ ∈ C̃(H0,H1). Moreover it follows from (3.2) that
Ã = Ãθ ⇐⇒ ΓBÃ = θ;

4) If Ã = Ãθ ∈ Ext{A,B} (in the triplet Π), then Ã∗ ∈ Ext{B,A} and Ã∗ = Ãθ∗ (in
the triplet Π∗).

The proper extensions A0 := Ker ΓB
0 and A1 := Ker ΓB

1 are naturally associated to
a boundary triplet Π = {H0 ⊕ H1,ΓB ,ΓA} for a dual pair {A,B}. It follows from
Proposition 3.3, 4) that A∗0 = KerΓA

0 and A∗1 = KerΓA
1 .

Associated to the boundary triplet Π are holomorphic operator functions (γ-fields)
γ̂Π(λ) : ρ(A0) → [H0, N̂λ(B)] and γΠ(λ) : ρ(A0) → [H0,Nλ(B)] given by

(3.3) γ̂Π(λ) := (ΓB
0 � N̂λ(B))−1, γΠ(λ) := π1γ̂Π(λ), λ ∈ ρ(A0)

(here π1 is the orthoprojection in H⊕H onto H⊕{0}). Similarly the holomorphic operator
functions γ̂Π∗(z) : ρ(A∗0) → [H1, N̂z(B)] and γΠ∗(z) : ρ(A∗0) → [H1,Nz(B)],

(3.4) γ̂Π∗(z) := (ΓA
0 � N̂z(A))−1, γΠ(z) := π1γ̂Π∗(z), z ∈ ρ(A∗0)

are associated to the boundary triplet Π∗. It is proved in [17] that the following relations
hold

(3.5)
γΠ(µ) = γΠ(λ) + (µ− λ)(A0 − µ)−1γΠ(λ), λ, µ ∈ ρ(A0),

γΠ∗(ω) = γΠ∗(z) + (ω − z)(A∗0 − ω)−1γΠ∗(z), z, ω ∈ ρ(A∗0).

Definition 3.4. ([17]). The holomorphic operator function MΠ(·) : ρ(A0) → [H0,H1]
defined by the equality

(3.6) ΓB
1 f̂λ = MΠ(λ)ΓB

0 f̂λ, f̂λ = {fλ, λfλ} ∈ N̂λ(B), λ ∈ ρ(A0)

is called the Weyl function corresponding to a boundary triplet Π.
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It follows from Definition 3.4 that the equality

(3.7) ΓA
1 f̂z = MΠ∗(z)ΓA

0 f̂z, f̂z = {fz, zfz} ∈ N̂z(A), z ∈ ρ(A∗0)

defines the Weyl function MΠ∗(·) : ρ(A∗0) → [H1,H0] corresponding to the triplet Π∗.
It is shown in [17] that the functions MΠ(·) and MΠ∗(·) satisfy the relations

MΠ(µ)−MΠ(λ) = (µ− λ)γ∗Π∗(λ)γΠ(µ), µ, λ ∈ ρ(A0),(3.8)

MΠ∗(ω)−MΠ∗(z) = (ω − z)γ∗Π(z)γΠ∗(ω), ω, z ∈ ρ(A∗0),(3.9)

MΠ∗(λ) = M∗
Π(λ), λ ∈ ρ(A0).(3.10)

Theorem 3.5. ([17, 10]). Suppose that Π = {H0 ⊕ H1,ΓB ,ΓA} is a boundary triplet
for a dual pair {A,B}, MΠ(λ) is the corresponding Weyl function, A0 := Ker ΓB

0 ,
θ = {K0,K1;H} ∈ C̃(H0,H1) and Ã = Ãθ ∈ Ext{A,B}. Then λ ∈ ρ(Ã) ∩ ρ(A0) if and
only if 0 ∈ ρ(K1−MΠ(λ)K0) and the following formula for the canonical resolvents holds
true

(Ãθ − λ)−1 = (A0 − λ)−1 + γΠ(λ)K0(K1 −MΠ(λ)K0)−1γ∗Π∗(λ), λ ∈ ρ(Ãθ) ∩ ρ(A0).

3.2. Boundary D-triplets. Let A ∈ C̃(H) be a closed symmetric linear relation with
arbitrary defect numbers n±(A) = dim Nλ(A), λ ∈ C±. Denote by ExtA the set of all
proper extensions of A, i.e., the set of all linear relations Ã ∈ C̃(H) such that A ⊂ Ã ⊂ A∗.
It is clear that {A,A} is a dual pair in H and Ext{A,A} = ExtA.

Definition 3.6. ([16, 17]). Extensions Ã1 and Ã2 ∈ ExtA are called transversal if
Ã1 ∩ Ã2 = A and Ã1 + Ã2 = A∗.

Let H0 be a Hilbert space, let H1 be a subspace in H0 and let H2 = H0	H1. Denote
by Pj the orthoprojector in H0 onto Hj , j ∈ {1, 2}.

Definition 3.7. A collection Π = {H0 ⊕ H1,Γ0,Γ1}, where Γj are linear mappings
from A∗ to Hj (j ∈ {0, 1}), will be called a D-boundary triplet (D-triplet) for A∗, if
Γ = (Γ0 Γ1)> : A∗ → H0⊕H1 is a surjective linear mapping from A∗ onto H0⊕H1 and
such that Green’s identity

(3.11) (f ′, g)− (f, g′) = (Γ1f̂ , Γ0ĝ)− (Γ0f̂ , Γ1ĝ) + i(P2Γ0f̂ , P2Γ0ĝ)

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗.

Using the operator J01 (see (2.2)) one can rewrite the identity (3.11) as

(3.12) (f ′, g)− (f, g′) = i(J01Γf̂ , Γĝ), f̂ , ĝ ∈ A∗.

Lemma 3.8. Suppose that Π = {H0⊕H1,Γ0,Γ1} is a D-triplet for A∗, U01 is the unitary
operator (2.3) and Γ̂A = (Γ̂A

0 Γ̂A
1 )> : A∗ → H0 ⊕H1, ΓA = (ΓA

0 ΓA
1 )> : A∗ → H1 ⊕H0

are the operators given by Γ̂A = Γ, ΓA = U01Γ. Then

(3.13) Γ̂A
0 = Γ0, Γ̂A

1 = Γ1, ΓA
0 = P1Γ0, ΓA

1 = Γ1 + iP2Γ0

and the collection Π̂ = {H0 ⊕H1, Γ̂A,ΓA} is a boundary triplet for the dual pair {A,A}
in the sense of Definition 3.2.

Proof. It follows from (3.11) that for every f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗

(f ′, g)− (f, g′) = (Γ1f̂ , P1Γ0ĝ)− (Γ0f̂ , Γ1ĝ + iP2Γ0ĝ) = (Γ̂A
1 f̂ , ΓA

0 ĝ)− (Γ̂A
0 f̂ , ΓA

1 ĝ).

This yields the identity (3.1) for the triplet Π̂. The mapping ΓA is surjective because
ΓAA∗ = U01ΓA∗ = U01(H0 ⊕H1) = H1 ⊕H0. �
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Proposition 3.9. Let Π = {H0 ⊕ H1,Γ0,Γ1} be a D-triplet for a linear relation A∗.
Then:

1) Ker Γ0 ∩Ker Γ1 = A and Γi is a bounded operator from A∗ to Hi, i ∈ {0, 1};
2) every proper extension Ã ∈ ExtA can be parametrized by a linear relation θ ∈

C̃(H0,H1). Namely the equality

(3.14) Ã = Ãθ := {f̂ ∈ A∗ : {Γ0f̂ , Γ1f̂} ∈ θ}

establishes a bijective correspondence between the set of all proper extensions Ã ∈ ExtA

and the set of all linear relations θ ∈ C̃(H0,H1). Moreover in view of (3.14) the equality
Ã = Ãθ means that θ = ΓÃ = {{Γ0f̂ , Γ1f̂} : f̂ ∈ Ã};

3) Ãθ′ ⊂ Ãθ′′ if and only if θ′ ⊂ θ′′. In this case dim Ãθ′′/Ãθ′ = dim θ′′/θ′ ;
4) (Ãθ)∗ = Ãθ× ;
5) an extension Ãθ ∈ ExtA is maximal dissipative, maximal accumulative, maximal

symmetric or selfadjoint if and only if θ belongs to the class Dis(H0,H1), Ac(H0,H1),
Sym(H0,H1) or Self(H0,H1) respectively;

6) extensions Ãθ′ and Ãθ′′ are transversal if and only if θ′ u θ′′ = H0 ⊕H1.

Proof. The statements 1), 2) arise from the statements 1), 3) of Proposition 3.3 applied to
the boundary triplet Π̂ for the dual pair {A,A} (see Lemma 3.8).The statement 3) follows
from the statements 1), 2). The statement 4) is implied by (3.11) and the definition (2.5)
of θ×.

5) According to (3.11) and Definition 2.3 an extension Ãθ is dissipative, accumula-
tive or symmetric if and only if θ belongs to the class Dis0(H0,H1), Ac0(H0,H1) or
Sym0(H0,H1) respectively. This and the statement 3) yield the desired statement.

6) This statement is implied by the equalities R(Γ) = H0 ⊕H1 and Ker Γ = A. �

In what follows we will systematically use two proper extensions

(3.15) A0 := Ker Γ0 = {f̂ ∈ A∗ : Γ0f̂ = 0}, A1 := Ker Γ1 = {f̂ ∈ A∗ : Γ1f̂ = 0},
which are naturally associated to a D-triplet {H0 ⊕ H1,Γ0,Γ1}. It follows from (3.15)
that A0 = Ãθ0 and A1 = Ãθ1 where

(3.16) θ0 = {0} ⊕H1 = {0H1,H0 , IH1 ;H1}, θ1 = H0 ⊕ {0} = 0H0,H1 .

Corollary 3.10. Extensions Ãθ and A0 are transversal if and only if θ ∈ [H0,H1].

Proof. The desired statement is implied by Proposition 3.9, 6) and the obvious equiva-
lence θ u θ0 = H0 ⊕H1 ⇐⇒ θ ∈ [H0,H1]. �

Proposition 3.11. Let Π = {H0 ⊕ H1,Γ0,Γ1} be a D-triplet for a linear relation A∗,
Ai = KerΓi, i ∈ {0, 1} and H2 = H0 	 H1. Then A0 and A∗1 are maximal symmetric
extensions of A and

(3.17)
dimH1 = n−(A) ≤ n+(A) = dimH0,

n−(A0) = n−(A∗1) = 0, n+(A0) = n+(A∗1) = dimH2.

Conversely let A ⊂ A∗, n−(A) ≤ n+(A) and let A0 be an extension of A such that
A0 ⊂ A∗0 and n−(A0) = 0. Then there exists a D-triplet for A∗ such that A0 = KerΓ0.

Proof. It follows from (3.16) and (2.5) that

(3.18) θ×0 = H2 ⊕H1, θ×1 = H1 ⊕ {0} = {IH1,H0 , 0;H1}.

Therefore by Proposition 3.4 from [21] the linear relations θ0 and θ×1 belong to the set
Sym(H0,H1)∩Ac(H0,H1). This and the statements 4), 5) of Proposition 3.9 imply that
A0 and A∗1 are maximal symmetric and n−(A0) = n−(A∗1) = 0.



268 VADIM MOGILEVSKII

Furthermore Proposition 3.9, 3) yields

n−(A) = dim A0/A = dim θ0 = dimH1, n+(A) = dim A∗0/A = dim θ×0 = dimH0,

n+(A0) = dim A∗0/A0 = dim θ×0 /θ0 = dimH2,

n+(A∗1) = dim A1/A
∗
1 = dim θ1/θ×1 = dimH2

which leads to (3.17).
Next we prove the converse statement. Let U = {{f ′0− i f0, f

′
0 + i f0} : {f0, f

′
0} ∈ A0}

be the Cayley transform of A0. Clearly, U is an isometric operator with D(U) = H and
such that UN−i(A) ⊂ Ni(A). To construct the desired D-triplet for A∗ we put H0 =
Ni(A), H1 = UN−i(A), H2 = H0 	H1 = Ni(A0) and make use of the decomposition

(3.19) A∗ = A⊕ N̂i(A)⊕ N̂−i(A).

Define the operators Γj : A∗ → Hj , j ∈ {0, 1} by setting

(3.20) Γ0f̂ = −i(P1fi +
√

2P2fi − Uf−i), Γ1f̂ = P1fi + Uf−i

where f̂ ∈ A∗ and according to (3.19)

f̂ = {fA, f ′A}+ {fi, ifi}+ {f−i,−if−i} = {fA + fi + f−i, f
′
A + ifi − if−i},

{fA, f ′A} ∈ A, f±i ∈ N±i.

It follows from (3.20) that for every f̂ , ĝ ∈ A∗

(Γ1f̂ , Γ0ĝ)− (Γ0f̂ , Γ1ĝ) + i(P2Γ0f̂ , P2Γ0ĝ) = 2i[(P1fi, P1gi)− (f−i, g−i) + (P2fi, P2gi)]

= 2i[(fi, gi)− (f−i, g−i)] = (f ′, g)− (f, g′).

Hence the identity (3.11) for the operators (3.20) is valid. Since the surjectivity of the
mapping Γ is obvious, the collection Π = {H0 ⊕ H1,Γ0,Γ1} with operators (3.20) is a
D-triplet for A∗. Moreover the equality Ker Γ0 = A0 is directly implied by (3.20). �

The description of all D-triplets for a given linear relation A is contained in the
following

Proposition 3.12. Let Π = {H0 ⊕ H1,Γ0,Γ1} be a D-triplet for a linear relation A∗

and let J01 be the operator (2.2). Then the equality

(3.21)

(
Γ̃0

Γ̃1

)
=
(

X00 X01

X10 X11

)(
Γ0

Γ1

)
establishes a bijective correspondence between all D-triplets Π̃ = {H0 ⊕ H1, Γ̃0, Γ̃1} for
A∗ and all J01-unitary operators X = (Xij)1i,j=0 ∈ [H0 ⊕H1].

Proof. Let Π̃ = {H0 ⊕ H1, Γ̃0, Γ̃1} be a D-triplet for A∗. Then by [17] there exists an
automorphism X = (Xij)1i,j=0 ∈ [H0 ⊕ H1] such that (3.21) holds. Moreover in view
of (3.12)

(3.22) X∗J01X = J01

that is X is a J01-unitary operator.
Conversely, let an operator Γ̃ = (Γ̃0 Γ̃1)> be given by (3.21). Then the Green’s

identity for the triplet Π̃ is implied by (3.12) and (3.22). Moreover the mapping Γ̃ is
surjective, because so are Γ = (Γ0 Γ1)> and X. �

In the next proposition we complement the result of Proposition 3.11
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Proposition 3.13. Let Π = {H0⊕H1,Γ0,Γ1} be a D-triplet for A∗. Then the extensions
Ai(:= Ker Γi), i ∈ {0, 1} are transversal.

Conversely, let Ã0, Ã1 ∈ ExtA be a pair of transversal extensions such that Ã0 ⊂
Ã∗0, Ã∗1 ⊂ Ã1 and n−(Ã0) = n−(Ã∗1) = 0. Then there exists a D-triplet for A∗ such that
Ãi = Ai(:= Ker Γi), i ∈ {0, 1}.

Proof. The transversality of the extensions A0 and A1 is implied by Proposition 3.9,6)
and the equality θ0 ⊕ θ1 = H0 ⊕H1 (here θ0 and θ1 ere defined by (3.16)).

Conversely, let extensions Ã0, Ã1 ∈ ExtA satisfy the stated conditions. Then by
Proposition 3.11 there is a D-triplet Π′ = {H0⊕H1,Γ′0,Γ

′
1} such that Ã0 = KerΓ′0. Since

Ã1 and Ã0 are transversal, it follows from Corollary 3.10 that Ã1 = ÃB = Ker (Γ′1 −
BΓ′0), B ∈ [H0,H1]. Let

(3.23) B = (B1 B2) : H1 ⊕H2 → H1

be the block matrix representation of the operator B. Then Ã∗1 = ÃB× where B× is a
linear relation defined by

B× = {(IH1 − iB∗2)>, B∗1 ;H1}

(see [21], formula (3.7)). Moreover B× ∈ Sym(H0,H1) and Proposition 3.4 in [21] yields

(3.24) 2ImB1 −B2B
∗
2 = 0.

Let now X1 ∈ [H0] and X ∈ [H0 ⊕H1] be operators given by
(3.25)

X1 =
(

IH1 0
iB∗2 IH2

)
: H1 ⊕H2 → H1 ⊕H2, X =

(
X1 0
−B IH1

)
: H0 ⊕H1 → H0 ⊕H1.

The immediate calculation with taking into account of (3.24) shows that the operator
X satisfies the equality (3.22). Moreover since 0 ∈ ρ(X1), it follows that 0 ∈ ρ(X).
Hence the operator X is J01-unitary and by Proposition 3.12 the collection Π = {H0 ⊕
H1,Γ0,Γ1} with Γ0 = X1Γ′0, Γ1 = −BΓ′0 +Γ′1 is a D-triplet for A∗. It is easily seen that
for this triplet Ker Γ0 = Ã0 and Ker Γ1 = Ã1. �

Remark 3.14. i) Let Π = {H0⊕H1,Γ0,Γ1} be a D-triplet for a linear relation A∗. Then
by Proposition 3.11 n−(A) ≤ n+(A), C+ ∈ ρ(A0) and the following equivalences hold

(3.26) H0 = H1 ⇐⇒ A0 = A∗0 ⇐⇒ A1 = A∗1 ⇐⇒ C+ 6= ρ(A0).

If at least on of the conditions (3.26) is fulfilled, then n−(A) = n+(A) and the identity
(3.11) takes the form

(f ′, g)− (f, g′) = (Γ1f̂ , Γ0ĝ)− (Γ0f̂ , Γ1ĝ), f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗.

In this case the collection Π = {H,Γ0,Γ1} (H := H0 = H1) is a boundary triplet
(boundary value space) for A∗ in the sense of [9, 16]. Observe also that in the case
n+(A) < ∞ formula (3.17) yields the equivalence H0 = H1 ⇐⇒ n−(A) = n+(A).
Therefore if n−(A) = n+(A) < ∞, then there are not other D-triplets for A∗ besides
boundary triplets. At the same time if n−(A) = n+(A) = ∞, then the subspace H1 may
coincide or not coincide with H0. In what follows we do not exclude both this cases from
our considerations.

ii) In the case of a linear relation A with equal defect numbers, the statement of Propo-
sition 3.11 and the formulas (3.20) go back to [9, 16]. Observe also that in Proposition
3.13 we generalize similar construction of a boundary triplet from [16].
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3.3. γ-fields and Weyl functions. In this subsection we introduce γ-fields and Weyl
functions associated to a boundary D-triplet and investigate their properties.

Assume that Π = {H0 ⊕ H1,Γ0,Γ1} is a D-triplet for A∗, Π̂ = {H0 ⊕ H1, Γ̂A,ΓA}
is a boundary triplet (3.13) for the dual pair {A,A} and γΠ̂(·), γΠ̂∗(·) are γ-fields (3.3),
(3.4). Since Ker Γ̂A

0 = A0(= Ker Γ0) and C+ ⊂ ρ(A0), the functions γΠ̂ and γΠ̂∗ are
defined at least on C+ and C− respectively. This allows us to introduce the holomorphic
operator-functions (γ-fields) γ̂+(·) : C+ → [H0,H

2], γ+(·) : C+ → [H0,H] and γ̂−(·) :
C− → [H1,H

2], γ−(·) : C− → [H1,H] by setting

(3.27)
γ̂+(λ) = γ̂Π̂(λ), γ+(λ) = γΠ̂(λ), λ ∈ C+,

γ̂−(z) = γ̂Π̂∗(z), γ−(z) = γΠ̂∗(z), z ∈ C−.

It follows from (3.13) that

γ̂+(λ) = (Γ0 � N̂λ(A))−1, γ+(λ) = π1γ̂+(λ), λ ∈ C+,(3.28)

γ̂−(z) = (P1Γ0 � N̂z(A))−1, γ−(z) = π1γ̂−(z), z ∈ C−(3.29)

where π1 is the orthoprojection in H⊕ H onto H⊕ {0}.
Let λ ∈ C+. According to the decomposition H0 = H1 ⊕ H2 the operator γ+(λ)

admits the block-matrix representation

(3.30) γ+(λ) = (γ(λ) δ+(λ)) : H1 ⊕H2 → H.

By means of (3.30) we define the operator-functions γ(·) : C+ → [H1,H] and δ+(·) :
C+ → [H2,H].

Proposition 3.15. 1) The operator-functions γ+(·) and γ−(·) satisfy the following re-
lations

γ+(µ) = γ+(λ) + (µ− λ)(A0 − µ)−1γ+(λ), λ, µ ∈ C+,(3.31)

γ−(ω) = γ−(z) + (ω − z)(A∗0 − ω)−1γ−(z), z, ω ∈ C−,(3.32)

γ−(z)P1 = γ+(λ) + (z − λ)(A∗0 − z)−1γ+(λ), λ ∈ C+, z ∈ C−.(3.33)

2) For every λ ∈ C+ the operator
√

2Imλ δ+(λ) is an isometry from H2 onto Nλ(A0)
and

(3.34) (µ− λ)δ∗+(λ)δ+(µ) = iIH2 , λ, µ ∈ C+.

Proof. 1) Formulas (3.31), (3.32) are implied by (3.27) and relations (3.5) for the func-
tions γΠ̂(·) and γΠ̂∗(·).

Let further λ ∈ C+, z ∈ C− and h ∈ H0. Letting

(3.35) g := γ+(λ)h + (z − λ)(A∗0 − z)−1γ+(λ)h

we derive
(3.36)
{g, zg}={γ+(λ)h, λγ+(λ)h}+ (z − λ)

{
(A∗0 − z)−1γ+(λ)h, (I + z(A∗0 − z)−1)γ+(λ)h

}
.

Applying the operator P1Γ0 to (3.36) and taking into account that

{(A∗0 − z)−1γ+(λ)h, (I + z(A∗0 − z)−1)γ+(λ)h} ∈ A∗0 = KerP1Γ0

we arrive at the relation

P1Γ0{g, zg} = P1Γ0{γ+(λ)h, λγ+(λ)h} = P1h.

It means that g = γ−(z)P1h. Combining this equality with (3.35) we arrive at (3.33).
2) Since A0 = KerΓ0, the identity (3.11) yields

(3.37)
(f ′0 − λf0, gλ) = (Γ1f̂0,Γ0ĝλ),

f̂0 = {f0, f
′
0} ∈ A0, ĝλ = {gλ, λgλ} ∈ N̂λ(A), λ ∈ C+.
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It follows from (3.37) and the equality Γ1A0 = H1 that gλ ∈ Nλ(A0)⇐⇒ Γ0{gλ, λgλ}∈
H2. This and (3.28) show that δ+(λ)H2(= γ+(λ)H2) = Nλ(A0), λ ∈ C+.

Let now λ, µ ∈ C+, h2, h
′
2 ∈ H2 and let f̂µ = γ̂+(µ)h2 = {δ+(µ)h2, µδ+(µ)h2},

ĝλ = γ̂+(λ)h′2 = {δ+(λ)h′2, λδ+(λ)h′2}. Then Γ0f̂µ = h2,Γ0ĝλ = h′2 and by (3.11)

(µ− λ)(δ+(µ)h2, δ+(λ)h′2) = i(h2, h
′
2), h2, h

′
2 ∈ H2.

Hence (3.34) is valid. Letting in (3.34) µ = λ, one obtains 2Imλ δ∗+(λ)δ+(λ) = IH2 .
Therefore the operator

√
2Imλ δ+(λ) is an isometry from H2 onto Nλ(A0). �

The same arguments as for the functions γ± allows us to introduce the following
definition.

Definition 3.16. The holomorphic operator-functions M+(·) : C+ → [H0,H1] and
M−(·) : C− → [H1,H0] given by

(3.38) M+(λ) = MΠ̂(λ), λ ∈ C+, M−(z) = MΠ̂∗(z), z ∈ C−
will be called the Weyl functions corresponding to the D-triplet Π = {H0 ⊕H1,Γ0,Γ1}
for A∗.

It follows from (3.6), (3.7) and (3.13) that the functions M+(·) and M−(·) are defined
by

Γ1 � N̂λ(A) = M+(λ)Γ0 � N̂λ(A), λ ∈ C+,(3.39)

(Γ1 + iP2Γ0) � N̂z(A) = M−(z)P1Γ0 � N̂z(A), z ∈ C−.(3.40)

Let λ ∈ C+, z ∈ C− and let
(3.41)
M+(λ) = (M(λ) N+(λ)) : H1⊕H2 → H1, M−(z) = (M(z) N−(z))> : H1 → H1⊕H2

be the block-matrix representation of the operators M+(λ) and M−(z). Formulas (3.41)
define operator-functions M(·) : C+ ∪ C− → [H1], N+(·) : C+ → [H2,H1] and N−(·) :
C− → [H1,H2].

Proposition 3.17. The Weyl functions satisfy the identities

M(µ)−M∗(λ) = (µ− λ) γ∗(λ)γ(µ), µ, λ ∈ C+,(3.42)

N+(µ) = (µ− λ) γ∗(λ)δ+(µ), µ, λ ∈ C+,(3.43)

M(ω)−M∗(z) + iN∗
−(z)N−(ω) = (ω − z) γ∗−(z)γ−(ω), ω, z ∈ C−,(3.44)

M+(λ)−M∗
−(z) = (λ− z) γ∗−(z)γ+(λ), λ ∈ C+, z ∈ C−.(3.45)

Moreover the following relations hold:

(3.46) M−(λ) = M∗
+(λ), M(λ) = M∗(λ), N−(λ) = N∗

+(λ), λ ∈ C+.

Proof. Let λ, µ ∈ C+, h1, h
′
1 ∈ H1, h2 ∈ H2 and let

f̂µ = γ̂+(µ)h1 = {γ(µ)h1, µ γ(µ)h1}, ĝλ = γ̂+(λ)h′1 = {γ(λ)h′1, λγ(λ)h′1},
ϕ̂µ = γ̂+(µ)h2 = {δ+(µ)h2, µ δ+(µ)h2}.

Then

Γ0f̂µ = h1, Γ1f̂µ = M(µ)h1, Γ0ĝλ = h′1, Γ1ĝλ = M(λ)h′1,

Γ0ϕ̂µ = h2, Γ1ϕ̂µ = N+(µ)h2

and the identity (3.11) yields

(µ− λ) (γ(µ)h1, γ(λ)h′1) = (M(µ)h1, h
′
1)− (M∗(λ)h1, h

′
1), h1, h

′
1 ∈ H1

(µ− λ) (δ+(µ)h2, γ(λ)h′1) = (N+(µ)h2, h
′
1), h′1 ∈ H1, h2 ∈ H2.
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This leads to (3.42), (3.43).
Let now z, ω ∈ C−, h1, h

′
1 ∈ H1 and let

f̂ω = γ̂−(ω)h1 = {γ−(ω)h1, ωγ−(ω)h1}, ĝz = γ̂−(z)h′1 = {γ−(z)h′1, zγ−(z)h′1}.

Then P1Γ0f̂ω = h1, P1Γ0ĝz = h′1 and by (3.40)

Γ1f̂ω = M(ω)h1, P2Γ0f̂ω = −iN−(ω)h1, Γ1ĝz = M(z)h′1, P2Γ0ĝz = −iN−(z)h′1.

This and (3.11) imply the equality

(ω − z)(γ−(ω)h1, γ−(z)h′1) = (M(ω)h1, h
′
1)− (M∗(z)h1, h

′
1) + i(N∗

−(z)N−(ω)h1, h
′
1),

h1, h
′
1 ∈ H1.

Hence (3.44) is valid.
Finally, the equalities (3.45) and (3.46) are implied by (3.38) and the relations (3.8),

(3.10) for MΠ̂(λ). �

For an operator T = T ∗ ∈ [H] we write T � 0, if T ≥ αI with some α > 0, and
T � 0, if −T � 0.

Corollary 3.18. Let M+(λ) = (M(λ) N+(λ)), λ ∈ C+ and M−(z) = (M(z) N−(z))>,
z ∈ C− be the Weyl functions corresponding to the D-triplet {H0 ⊕H1,Γ0,Γ1} for A∗.
Then:

1) 2ImM(λ)−N+(λ)N∗
+(λ) � 0, λ ∈ C+, 2ImM(z) + N∗

−(z)N−(z) � 0, z ∈ C−,
2) the function M(λ), λ ∈ C+ ∪C− belongs to the class Ru[H1], i.e., M(λ) = M∗(λ)

and Imλ ImM(λ) � 0, λ ∈ C+ ∪ C−.

Proof. In view of (3.46) the relations 1) are mutually equivalent. Moreover the second
of them is implied by (3.44) and the inclusion 0 ∈ ρ̂(γ−(z)), z ∈ C−.

The statement 2) immediately follows from 1). �

Let J01, J10, U01 and U10 be the operators (2.2), (2.3) and let
(3.47)

X =
(

X00 X01

X10 X11

)
: H0 ⊕H1 → H0 ⊕H1, Y =

(
Y00 Y01

Y10 Y11

)
: H1 ⊕H0 → H1 ⊕H0

be operators associated by Y = U01XU10( ⇐⇒ X = U10Y U01). Clearly, the operator
X is J01-unitary if and only if Y is J10-unitary.

In the next proposition we provide the connection between Weyl functions correspond-
ing to different D-triplets.

Proposition 3.19. Let Π = {H0 ⊕ H1,Γ0,Γ1} and Π̃ = {H0 ⊕ H1, Γ̃0, Γ̃1} be D-
triplets for A∗ associated by (3.21) with the J01-unitary operator X = (Xij)1i,j=0 and
let M±(·), M̃±(·) be the corresponding Weyl functions. Then

M̃+(λ) = (X10 + X11M+(λ))(X00 + X01M+(λ))−1, λ ∈ C+,(3.48)

M̃−(z) = (Y10 + Y11M−(z))(Y00 + Y01M−(z))−1, z ∈ C−(3.49)

where Y = (Yij)1i,j=0 is a J10 unitary operator given by Y = U01XU10.

Proof. It follows from (3.39) and (3.40) that for every D-triplet {H0 ⊕ H1,Γ0,Γ1} the
corresponding Weyl functions may be written as

(3.50) grM+(λ) = ΓN̂λ(A), λ ∈ C+, grM−(z) = U01ΓN̂z(A), z ∈ C−.
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Now assume that the assumptions of the proposition are satisfied. Since Γ̃ = XΓ, (3.50)
yields

(3.51) grM̃+(λ) = XgrM+(λ), λ ∈ C+, grM̃−(z) = Y grM−(z), z ∈ C−.

Let the operators X and Y have the block-matrix representation (3.47). Then in view
of (3.51)

grM̃+(λ) = {X00 + X01M+(λ), X10 + X11M+(λ); H0},(3.52)

grM̃−(z) = {Y00 + Y01M−(z), Y10 + Y11M−(z); H1}.(3.53)

Moreover since R(X00 + X01M+(λ)) = D(M̃+(λ)) = H0 and Ker (X00 + X01M+(λ)) =
Ker (X00 + X01M+(λ)) ∩ Ker (X10 + X11M+(λ)) = {0}, it follows that 0 ∈ ρ(X00 +
X01M+(λ)). This and (3.52) show that M̃+(λ) is of the form (3.48). Similar arguments
applied to (3.53) lead to the equality (3.49) for M̃−(z). �

Remark 3.20. If Π = {H0⊕H1,Γ0,Γ1} is a D-triplet for A∗ and H1 6= H0, then ρ(A0) =
C+, ρ(A∗0) = C− and, therefore, the operator-functions γ± and M± are defined on the
same natural domains as the corresponding functions γΠ̂, γΠ̂∗ ,MΠ̂ and MΠ̂∗ (compare
(3.27), (3.38) and (3.3),(3.6)).

On the other hand if H1 = H0 := H, then according to Remark 3.14 Π = {H,Γ0,Γ1}
is a boundary triplet for A∗ and A0 = A∗0, so that (C+ ∪ C−) ⊂ ρ(A0). In this case
M±(λ) = M(λ), λ ∈ C± and the operator-functions

γ(λ) :=

{
γ+(λ), λ ∈ C+

γ−(λ), λ ∈ C−

and M(λ) are γ-field and the Weyl function for Π respectively [2, 16]. Moreover in this
case all relations in Proposition 3.15 and 3.17 may be written in the well known form
[13, 14, 2, 16]

γ(µ) = γ(λ)+(µ−λ)(A0−µ)−1γ(λ), M(µ)−M∗(λ) = (µ−λ) γ∗(λ)γ(µ), µ, λ ∈ ρ(A0)

Note also that in the case H1 = H0 := H the operator J01 takes the form

J01 := J =
(

0 −iIH
iIH 0

)
: H⊕H → H⊕H

and formulas (3.21), (3.22) describe all boundary triplets (in the sense of [9, 16]) for A∗.
Moreover in this case X =Y and the equalities (3.48), (3.49) imply that the connection
between the Weyl functions for boundary triplets Π and Π̃ associated via (3.21) is given
by

M̃(λ) = (X10 + X11M(λ))(X00 + X01M(λ))−1, λ ∈ C+ ∪ C−.

These results were obtained in [3, 16].

4. Spectrum of proper extensions and formulas for generalized
resolvents

4.1. Spectrum of proper extensions and formulas for canonical resolvents. In
this subsection we describe the spectrum of a proper extension Ã = Ãθ in terms of the
boundary parameter θ and the corresponding Weyl function and derive Krein–Naimark
type formula for canonical resolvents. Note that these results are simple consequences of
similar type results obtained in [17] for dual pairs of linear relations.
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Proposition 4.1. 1) Let Π = {H0 ⊕ H1,Γ0,Γ1} be a D-triplet for A∗ with the Weyl
functions M±(·) and let Ã = Ãθ ∈ ExtA, where θ = {K0,K1;H} ∈ C̃(H0,H1). Assume
also that K0 = (K01 K02)> : H → H1 ⊕ H2 is the block-matrix representation of K0,
N1 := K01, N0 := (K1 iK02)> : H → H1 ⊕H2 and let

T+(λ) := K1 −M+(λ)K0 ∈ [H,H1], λ ∈ C+,

T−(λ) := N0 −M−(λ)N1 ∈ [H,H0], λ ∈ C−.

Then the following relations hold:

λ ∈ ρ(Ã) ⇔ 0 ∈ ρ(T±(λ)), λ ∈ σj(Ã) ⇔ 0 ∈ σj(T±(λ)), j = p, c, r, λ ∈ C±;

(4.1)

λ ∈ ρ̂(Ã) ⇐⇒ 0 ∈ ρ̂(T±(λ)), λ ∈ C±;
(4.2)

R(Ã− λ) = R(Ã− λ) ⇐⇒ R(T±(λ)) = R(T±(λ)), λ ∈ C±;

(4.3)

dim Ker (Ã− λ) = dim KerT±(λ), codimR(Ã− λ) = codimR(T±(λ)), λ ∈ C±.

(4.4)

2) Let H be a Hilbert space and let an extension Ã ∈ ExtA be defined by an abstract
boundary condition

(4.5) f̂ = {f, f ′} ∈ Ã ⇐⇒ C0Γ0f̂ + C1Γ1f̂ = 0

where C0 ∈ [H0,H], C1 ∈ [H1,H] and the range of the operator C = (C0 C1) :
H0⊕H1 → H coincides with H. Moreover assume that C0 = (C01 C02) : H1⊕H2 → H

is the block-matrix representation of C0, C̃1 := C01, C̃0 := (C1 − i C02) : H1⊕H2 → H
and let

S+(λ) := C0 + C1M+(λ) ∈ [H0,H], λ ∈ C+,

S−(λ) := C̃1 + C̃0M−(λ) ∈ [H1,H], λ ∈ C−.

Then the relations (4.1)–(4.4) hold with S±(λ) instead of T±(λ).

Proof. 1) Let Π̂ = {H0 ⊕ H1, Γ̂A,ΓA} be a boundary triplet (3.13) for the dual pair
{A,A}. Since Γ̂A = Γ, it follows that in this triplet Ã = Ãθ. Furthermore consider a
boundary triplet Π̂∗ = {H1 ⊕H0,ΓA, Γ̂A} for {A,A} and let Ã = Ãθ− in the triplet Π̂∗.
Then by Lemma 3.8

(4.6) θ− = ΓAÃ = U01ΓÃ = U01θ, θ− ∈ C̃(H1,H0)

and (2.3) yields θ− = {N1, N0;H} where

(4.7) N1 = P1K0 = K01, N0 = K1 + i P2K0 = (K1 iK02)> : H1 ⊕H2 → H0.

Note also that in view of (3.38) the Weyl functions for the triplets Π̂ and Π̂∗ coincide
with M+(·) and M−(·) respectively. Now the relations (4.1)–(4.4) are implied by [17],
Proposition 5.2 (see also (2.8)–(2.10) in [17]).

2) The relation (4.5) means that in the triplet Π̂ the extension Ã is parameterized
as Ã = Ãθ with θ = Ker C = ((C0, C1);H). Let θ− be a linear relation (4.6) and let
U01, U10 be operators (2.3). Then the following equivalences are obvious

ĥ ∈ θ− ⇐⇒ U10ĥ ∈ θ ⇐⇒ CU10ĥ = 0 ⇐⇒ ĥ ∈ Ker (CU10).



KREIN TYPE FORMULA 275

Hence θ− = Ker C̃ where

C̃ = CU10 = (C0 C1)
(

IH1 −iP2

0 P1

)
= (C01 C1P1 − iC02P2).

Letting C̃1 = C01 and C̃0 = (C1 − iC02) : H1 ⊕ H2 → H one obtains C̃ = (C̃1 C̃0) :
H1 ⊕ H0 → H. This means that θ− = {(C̃1, C̃0);H} so that for the triplet Π̂∗ the
extension Ã is defined as

f̂ = {f, f ′} ∈ Ã ⇐⇒ C̃1ΓA
0 f̂ + C̃0ΓA

1 f̂ = 0.

Now the desired statement follows from [17], Corollary 5.3. �

Theorem 4.2. Suppose that Π = {H0⊕H1,Γ0,Γ1} is a D-triplet for A∗, M±(·) are the
corresponding Weyl functions, A0 = KerΓ0 and Ã = Ãθ ∈ ExtA with θ = {K0,K1;H} ∈
C̃(H0,H1). Moreover let K0 = (K01 K02)> : H → H1 ⊕ H2 be the block-matrix rep-
resentation of K0 and let N1 := K01, N0 := (K1 iK02)> : H → H1 ⊕ H2. Then the
following formulas for canonical resolvents hold:

(Aθ − λ)−1 = (A0 − λ)−1 + γ+(λ)K0

(
K1 −M+(λ)K0

)−1
γ∗−(λ), λ ∈ C+,(4.8)

(Aθ − z)−1 = (A∗0 − z)−1 + γ−(z)N1

(
N0 −M−(z)N1

)−1
γ∗+(z), z ∈ C−.(4.9)

Proof. As in the proof of Proposition 4.1 consider the boundary triplets Π̂ and Π̂∗ for the
dual pair {A,A} defined in Lemma 3.8. It was shown in Proposition 4.1 that Ã = Ãθ in
the triplet Π̂ and Ã = Ãθ− in the triplet Π̂∗, where θ− = {N1, N0;H} and the operators
Nj , j ∈ {0, 1} are defined by (4.7). Note also that in view of (3.13) Ker Γ̂A

0 = A0(=
Ker Γ0). Applying now Theorem 3.5 to the triplets Π̂ and Π̂∗ and taking into account of
(3.27) and (3.38), we arrive at the formulas (4.8), (4.9). �

4.2. Formulas for generalized resolvents. First recall the following definition.

Definition 4.3. An operator function Rλ : C+∪C− → H is called a generalized resolvent
of a symmetric linear relation A ∈ C̃(H), if there exist a Hilbert space H̃ ⊃ H and a linear
relation Ã = Ã∗ ∈ C̃(H̃) such that A ⊂ Ã and Rλ = PH(Ã− λ)−1|H, λ ∈ C+ ∪ C−.

The next theorem plays together with Theorem 2.6 a fundamental role in our deriva-
tion of formulas for generalized resolvents.

Theorem 4.4. Suppose that A is a closed symmetric linear relation in H with defect
numbers n−(A) ≤ n+(A) ≤ ∞, Π = {H0 ⊕ H1,Γ0,Γ1} is a D-triplet for A∗, A0 =
Ker Γ0 and γ±(·), M±(·) are the corresponding γ-fields and Weyl functions respectively.
Furthermore, let H1 be a Hilbert space, H̃ := H⊕H1 and let G0, G1 ∈ [H2

1,H1] be operators
given by

(4.10) G0ĥ1 = h1, G1ĥ1 = h′1, ĥ1 = {h1, h
′
1} ∈ H2

1.

Then
1) the adjoint linear relation of A in the space H̃ is

(4.11) A∗eH = A∗ ⊕ H2
1;

2) the operators

(4.12) Γ̃0 =
(

Γ0 0
0 G0

)
∈ [A∗ ⊕ H2

1,H0 ⊕ H1], Γ̃1 =
(

Γ1 0
0 G1

)
∈ [A∗ ⊕ H2

1,H1 ⊕ H1]

form a D-triplet Π̃ = {(H0 ⊕ H1)⊕ (H1 ⊕ H1), Γ̃0, Γ̃1} for A∗eH with

(4.13) Ã0(= Ker Γ̃0) = A0 ⊕ ({0} ⊕ H1).
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Moreover the corresponding γ-fields and the Weyl functions for the triplet Π̃ are defined
by

γ̃+(λ) =
(

γ+(λ) 0
0 IH1

)
, λ ∈ C+, γ̃−(z) =

(
γ−(z) 0

0 IH1

)
, z ∈ C−,(4.14)

M̃+(λ) =
(

M+(λ) 0
0 λIH1

)
, λ ∈ C+, M̃−(z) =

(
M−(z) 0

0 zIH1

)
, z ∈ C−;(4.15)

3) if an extension Ã = Ã∗ ∈ C̃(H̃) of A is parameterized in the D-triplet Π̃ as Ã = Ãeθ
with θ̃ ∈ Self(H0,H1)(H0⊕H1,H1⊕H1) and τ+(λ) = {K0(λ),K1(λ);H+} ∈ R̃+(H0,H1)
is a compression of θ̃, then 0 ∈ ρ(K1(λ) + M+(λ)K0(λ)), λ ∈ C+ and
(4.16)
PH(Ã−λ)−1 � H = (A0−λ)−1−γ+(λ)K0(λ)

(
K1(λ)+M+(λ)K0(λ)

)−1
γ∗−(λ), λ ∈ C+.

Proof. The statement 1) is obvious.
2) Let H̃0 := H0⊕H1 be a Hilbert space, let H̃1 := H1⊕H1 be a subspace in H̃0 and

let H̃2 := H̃0 	 H̃1. It is clear that H̃2 = H2 ⊕ {0}.
In view of the decomposition (4.11) every vector f̂ ∈ A∗eH admits the representation

f̂ = {g + h1, g
′ + h′1} where {g, g′} ∈ A∗ and h1, h

′
1 ∈ H1. This and (4.12) imply the

equalities

Γ̃0f̂ = {Γ0{g, g′}, h1} ∈ H0 ⊕ H1, Γ̃1f̂ = {Γ1{g, g′}, h′1} ∈ H1 ⊕ H1,(4.17)

P eH1
Γ̃0f̂ = {P1Γ0{g, g′}, h1} ∈ H1 ⊕ H1, P eH2

Γ̃0f̂ = {P2Γ0{g, g′}, 0} ∈ H2 ⊕ {0}.
(4.18)

Now the immediate checking shows that Π̃ := {H̃0 ⊕ H̃1, Γ̃0, Γ̃1} is a D-triplet for A∗eH.

Next assume that f̂λ = {fλ, λfλ} ∈ A∗eH for some λ ∈ C. Then f̂λ = {gλ+h1, λgλ+λh1}
where {gλ, λgλ} ∈ N̂λ(A) and h1 ∈ H1. Hence in view of (4.17) and (4.18) one has

Γ̃0f̂λ = {Γ0{gλ, λgλ}, h1}, Γ̃1f̂λ = {Γ1{gλ, λgλ}, λh1}, P eH1
Γ̃0f̂λ = {P1Γ0{gλ, λgλ}, h1}

which leads to (4.14) and (4.15).
3) According to Theorem 2.6 there exists a representation θ̃ = {K̃0, K̃1;H1⊕H1} such

that the operators K̃0 ∈ [H1 ⊕ H1,H0 ⊕ H1] and K̃1 ∈ [H1 ⊕ H1] have the block-matrix
representations (2.8) with 0 ∈ ρ(N4−λK4). Moreover the compression τ+(λ) of θ̃ admits
the representation τ+(λ) := {K0(λ),K1(λ);H1}, λ ∈ C+ where K0(λ) and K1(λ) are
operator functions (2.9) and (2.10) respectively.

Applying formula (4.8) to the extension Ã = Ãeθ and taking into account (4.13) and
(4.14) we get the equality
(4.19)
PH(Ã−λ)−1 � H = (A0−λ)−1 +γ+(λ)PH0K̃0

(
K̃1−M̃+(λ)K̃0

)−1
� H1 γ∗−(λ), λ ∈ C+.

It follows from (2.8) and (4.15) that

K̃1 − M̃+(λ)K̃0 =
(

N1 −M+(λ)K1 N2 −M+(λ)K2

N3 − λK3 N4 − λK4

)
.

Let us put

F (λ) := (N1 −M+(λ)K1)− (N2 −M+(λ)K2)(N4 − λK4)−1(N3 − λK3).

Since 0 ∈ ρ(K̃1− M̃+(λ)K̃0)∩ρ(N4−λK4), the inclusion 0 ∈ ρ(F (λ)) is valid. Moreover
in view of (2.9) and (2.10)

F (λ) = K1(λ) + M+(λ)K0(λ), λ ∈ C+,
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so that 0 ∈ ρ(K1(λ) + M+(λ)K0(λ)), λ ∈ C+. Using now the Frobenius formula we
derive

(K̃1 − M̃+(λ)K̃0)−1 =
(

F−1(λ) ∗
−(N4 − λK4)−1(N3 − λK3)F−1(λ) ∗

)
.

This and the first equality in (2.8) imply

PH0K̃0

(
K̃1 − M̃+(λ)K̃0

)−1
� H1

= K1F
−1(λ) + K2[−(N4 − λK4)−1(N3 − λK3)F−1(λ)]

= [K1 −K2(N4 − λK4)−1(N3 − λK3)](K1(λ) + M+(λ)K0(λ))−1

= −K0(λ)(K1(λ) + M+(λ)K0(λ))−1.

Combining this formula with (4.19) we arrive at (4.16). �

Now we are ready to derive the Krein–Naymark type formulas for generalized re-
solvents of a symmetric operator with unequal defect numbers. These formulas give a
parameterization of all generalized resolvents Rλ by means of pairs of functions τ =
{τ+(·), τ−(·)} ∈ R̃ (H0,H1). Note, that our proof is based on Theorem 2.6, which en-
ables to represent a function τ+(λ) ∈ R̃+(H0,H1) as a compression of an exit space linear
relation θ̃ ∈ Self(H0,H1)(H0 ⊕ H1,H1 ⊕ H1). Next by using Theorem 4.4 we construct
the generalized resolvent Rλ, corresponding to the given parameter τ .

Theorem 4.5. Assume that A is a closed symmetric linear relation in H with defect
numbers n−(A) ≤ n+(A) ≤ ∞, Π = {H0⊕H1,Γ0,Γ1} is a D-triplet for A∗, A0 = KerΓ0

and M±(·) are the corresponding Weyl functions. Then the formulas

Rλ = (A0 − λ)−1 − γ+(λ) K0(λ)
(
K1(λ) + M+(λ)K0(λ)

)−1
γ∗−(λ), λ ∈ C+,(4.20)

Rλ = (A∗0 − λ)−1 − γ−(λ) N1(λ)
(
N0(λ) + M−(λ)N1(λ)

)−1
γ∗+(λ), λ ∈ C−(4.21)

establish a bijective correspondence between all generalized resolvents Rλ of A and all
pairs of functions τ = {τ+(·), τ−(·)} ∈ R̃ (H0,H1), defined by (2.6) and (2.7). Moreover,
Rλ is a canonical resolvent if and only if τ = {τ+, τ−} ∈ R̃0(H0,H1), which is possible
only in the case dimH1 = dimH0( ⇐⇒ n−(A) = n+(A)).

Proof. First we show that the formula (4.20) establishes a bijective correspondence
between all generalized resolvents Rλ, λ ∈ C+ and all C̃(H0,H1)-valued functions
τ+(·) ∈ R̃+(H0,H1) given by (2.6).

Let Rλ = PH(Ã − λ)−1 � H, λ ∈ C+ where Ã ∈ C̃(H̃) is a selfadjoint extension
of A in the exit space H̃ ⊃ H. Then by Theorem 4.4 there exists a function τ+(λ) =
{K0(λ),K1(λ);H+} ∈ R̃+(H0,H1) such that (4.20) holds.

Conversely assume that a function τ+(λ) ∈ R̃+(H0,H1) is given by (2.6) and let Rλ

be an operator function (4.20) with K0(λ) and K1(λ) taken from (2.6). Next we show
that Rλ is a generalized resolvent of A.

According to Theorem 2.6 there exist a Hilbert space H1 and a linear relation θ̃ ∈
Self(H0⊕H1,H1⊕H1) such that θ̃ is a dilation of τ+(λ), i.e., τ+(λ) is a compression of
θ̃. Let H̃ := H ⊕ H1 and let Π̃ = {(H0 ⊕ H1) ⊕ (H1 ⊕ H1), Γ̃0, Γ̃1} be a D-triplet (4.12)
for Ã∗eH. Consider an extension Ã = Ã∗ ∈ C̃(H̃) of A given by Ã = Ãeθ (in the triplet Π̃).
It follows from Theorem 4.4, 3) that the right hand side of the equality (4.20) is equal
PH(Ã − λ)−1|H, λ ∈ C+. Hence Rλ = PH(Ã − λ)−1|H, λ ∈ C+ which was had to be
proved.
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To prove the formula (4.21) note that (4.20) and (4.21) are equivalent to

Rλ = (A0 − λ)−1 − γ+(λ)
(
τ+(λ) + M+(λ)

)−1
γ∗−(λ), λ ∈ C+,(4.22)

Rλ = (A∗0 − λ)−1 − γ−(λ)
(
τ−(λ) + M−(λ)

)−1
γ∗+(λ), λ ∈ C−(4.23)

where τ+(λ) = {K0(λ),K1(λ);H+} and τ−(λ) = {N1(λ), N0(λ);H−}, Now the for-
mula (4.23) (and, consequently, (4.21)) is implied by (4.22) and the equalities Rλ =
(Rλ)∗, τ−(λ) = (τ+(λ))∗, λ ∈ C−.

Finally the last statement of the theorem follows from Proposition 3.9, 5). �

In the next corollary we obtain as a consequence of the formula (4.20) the description
of all generalized resolvents in Srtraus form. Moreover we find here a geometric inter-
pretation of the parameter τ(λ) in (4.20) by means of abstract ”boundary conditions”.

Corollary 4.6. Let the assumptions of Theorem 4.5 by satisfied. Then:
1) the formula for generalized resolvents (in the Straus form)

(4.24) Rλ = (Ã(λ)− λ)−1, λ ∈ C+ ∪ C−
establishes a bijective correspondence between the generalized resolvents Rλ of A and
C̃(H)-valued functions Ã(λ), which are holomorphic on C+ ∪C−, take on values in ExtA

and satisfy the conditions

(4.25) Imλ ImÃ(λ) ≤ 0, (Ã(λ))∗ = Ã(λ), λ ∈ C+ ∪ C−.

Moreover the connection between formulas (4.20) and (4.24) is given by Ã(λ) = Ã−τ+(λ)

where τ+(λ) := −ΓÃ(λ), λ ∈ C+.
2) for every generalized resolvent Rλ of A there exist a Hilbert space H̃+ and a pair

of holomorphic operator-functions Cj(λ) : C+ → [Hj , H̃+], j ∈ {0, 1} such that:
i)

(4.26) 2Im(C1(λ)C∗01(λ))− C02(λ)C∗02(λ) ≤ 0, 0 ∈ ρ(C0(λ) + i C1(λ)P1), λ ∈ C+

where C0j(λ) : C+ → [Hj , H̃+], j ∈ {1, 2} are operator functions generated by the block-
matrix representation C0(λ) = (C01(λ) C02(λ)) : H1 ⊕H2 → H̃+;

ii) for every g ∈ H the vector-function f = Rλg, λ ∈ C+ is a solution of the following
boundary-value problem with the spectral parameters C0(λ) and C1(λ) in the ”boundary
condition”

(4.27) f̂ = {f, f ′} ∈ A∗, f ′ − λf = g, C0(λ)Γ0f̂ + C1(λ)Γ1f̂ = 0, λ ∈ C+.

Moreover the connection between (4.20) and (4.27) is given by τ+(λ) = {(C0(λ), −C1(λ));
H̃+}, λ ∈ C+.

Proof. 1) It is known (see the proof of Theorem 4.2 in [10]) that the equality

(4.28) Ã(λ) = Ã−τ+(λ), λ ∈ C+

establishes a bijective correspondence between C̃(H)-valued functions Ã(λ), holomorphic
on C+ with values in ExtA and C̃(H0,H1)-valued holomorphic functions τ+(λ) : C+ →
C̃(H0,H1). This and Proposition 3.9, 5) imply, that the equality (4.28) defines a bijective
correspondence between holomorphic functions Ã(·) : C+ → ExtA such that ImÃ(λ) ≤ 0
and C̃(H0,H1)-valued functions τ+(·) ∈ R̃+(H0,H1).

Assume now that Ã(·) : C+ ∪ C− → ExtA is a holomorphic C̃(H)-valued function
satisfying (4.25). Then by (4.28) Ã(λ) = Ã−τ+(λ), λ ∈ C+ where τ+(λ) ∈ R̃+(H0,H1).
Let (2.6) be a representation of τ+(λ). Applying formula (4.8) for canonical resolvents to
Ã−τ+(λ) for a fixed λ ∈ C+ we arrive at (4.22) with Rλ replaced by (Ã(λ)−λ)−1. On the
other hand according to Theorem 4.5 the function τ+(λ) = {K0(λ),K1(λ);H+} generates
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a generalized resolvent Rλ by formula (4.22). Hence the equality (Ã(λ)−λ)−1 = Rλ holds
for every λ ∈ C+. This and the relations Rλ = (Rλ)∗, (Ã(λ))∗ = Ã(λ) yield the equality
(4.24) for every λ ∈ C−. The inverse statement (i.e., the construction of Ã(λ) by Rλ)
can be proved similarly.

2) Let Rλ be a generalized resolvent of A. Then by the statement 1) Rλ = (Ã(λ)−λ)−1,
where Ã(λ) satisfies (4.28) with τ+(·) ∈ R̃+(H0,H1). It follows from [10], Lemma 2.2 that
the function −τ+(·) admits the representation −τ+(λ) = {(C0(λ), C1(λ)); H̃+}, λ ∈ C+

with holomorphic operator functions Cj(·) : C+ → [Hj , H̃+], j ∈ {0, 1}. Moreover since
−τ+(λ) ∈ Ac(H0,H1) for every λ ∈ C+, Proposition 3.4 in [21] imply the relations
(4.26) for the operator functions C0(λ) and C1(λ). This and the obvious equivalence
f̂ ∈ Ã(λ) ⇐⇒ C0(λ)Γ0f̂ + C1(λ)Γ1f̂ = 0 yield the desired statement. �

Remark 4.7. 1) Let in Theorem 4.5 H0 = H1 := H, so that n−(A) = n+(A) and Π
is a boundary triplet for A∗. Then the parameter τ(·) = {K0(λ),K1(λ)} belongs to
the class R̃(H) and formulas for generalized resolvents (4.20), (4.21) take the classical
Krein–Naimark form

(4.29) Rλ = (A0 − λ)−1 − γ(λ)K0(λ)
(
K1(λ) + M(λ)K0(λ)

)−1
γ∗(λ), λ ∈ C+ ∪ C−

The description of all generalized resolvents was originally given by M. G. Krein [11,
12] and M. A. Naimark [22]. The general version of the formula (4.29) for a densely
defined operator A with equal defect numbers was obtained in [24] (see also [13]) and for
nondensely defined operators it was given in [14]. Another proof of this formula as well
as its connection with boundary triplets was discovered in [2, 16].

Observe that classical proof of (4.29) is based on the formula (4.24) and the Krein
formula for canonical resolvents. Principally another approach (coupling method) for the
construction of the generalized resolvent was proposed in [5, 6, 7], where the parameter
τ(λ) was realized as a Weyl family for some boundary relation in the exit space. Our
approach was inspired by this method.

2) A description of all generalized resolvents of a symmetric operator with arbitrary
defect numbers in the form (4.24) has been obtained by A. V. Shtraus [25, 26] (see
also [8]). In [1] this description for a densely defined operator A with n+(A) = n−(A)
has been rewritten similar that in (4.27). A connection of these results with boundary
triplets has been discovered in [2, 5, 16]. Our Corollary 4.6 is a generalization of results
of [1, 2, 16] to the case n+(A) 6= n−(A).
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