A LOCALLY CONVEX QUOTIENT CONE

ASGHAR RANJBARI AND HUSAIN SAIFLU

ABSTRACT. We define a quotient locally convex cone and verify some topological properties of it. We show that the extra conditions are necessary.

1. INTRODUCTION

A cone (cf. [1] and [2]) is a set \mathcal{P} endowed with an addition $(a, b) \to a + b$ and a scalar multiplication $(\alpha, a) \to \alpha a$ for $a, b \in \mathcal{P}$ and real numbers $\alpha \geq 0$. The addition is supposed to be associative and commutative, and there is a neutral element $0 \in \mathcal{P}$. For the scalar multiplication the usual associative and distributive properties hold, that is, $\alpha(\beta a) = (\alpha\beta)a, (\alpha+\beta)a = \alpha a + \beta a$, and $\alpha(a+b) = \alpha a + \alpha b$ for all $a, b \in \mathcal{P}$ and $\alpha, \beta \geq 0$. We have 1a = a and 0a = 0 for all $a \in \mathcal{P}$. The cancellation law, stating that a+c=b+c, implies a = b, however, is not required in general. It holds if and only if the cone \mathcal{P} may be embedded into a real vector space. In addition we assume that \mathcal{P} carries a preorder, i.e., a reflexive transitive relation \leq such that $a \leq b$ implies $a + c \leq b + c$ and $\alpha a \leq \alpha b$ for all $a, b, c \in \mathcal{P}$ and $\alpha \geq 0$.

Let \mathcal{P} be a preordered cone. A subset \mathcal{V} of \mathcal{P} is called an *(abstract) 0-neighborhood* system, if the following properties hold:

- (1) 0 < v for all $v \in \mathcal{V}$;
- (2) for all $u, v \in \mathcal{V}$ there is $w \in \mathcal{V}$ with $w \leq u$ and $w \leq v$;
- (3) $u + v \in \mathcal{V}$ and $\alpha v \in \mathcal{V}$ whenever $u, v \in \mathcal{V}$ and $\alpha > 0$.

That is \mathcal{V} is a subcone without 0 that is directed downward. Each element v of \mathcal{V} defines an *upper*, respectively *lower*, neighborhood for the elements of \mathcal{P} by

$$v(a) = \{b \in \mathcal{P} \mid b \le a + v\}, \quad \text{respectively} \quad (a)v = \{b \in \mathcal{P} \mid a \le b + v\},$$

creating the upper, respectively lower, topologies on \mathcal{P} . Their common refinement is called *symmetric topology* which we show the neighborhoods in this topology as $v(a) \cap (a)v$ or v(a)v for $a \in \mathcal{P}$ and $v \in \mathcal{V}$.

An ordered cone \mathcal{P} is called a *full locally convex cone* if it contains an (abstract) 0neighborhood system \mathcal{V} such that all its elements are *bounded below*, i.e., for every $a \in \mathcal{P}$ and $v \in \mathcal{V}$ we have $0 \leq a + \rho v$ for some $\rho > 0$. We show a full locally convex cone as a pair $(\mathcal{P}, \mathcal{V})$. A locally convex cone is a pair $(\mathcal{Q}, \mathcal{V})$ where \mathcal{Q} is a subcone of \mathcal{P} not necessarily containing the (abstract) 0-neighborhood system.

For every $a \in \mathcal{P}$, the *closure* of a is defined to be the set $\bar{a} = \{ b \in \mathcal{P} \mid b \leq a + v \text{ for all } v \in \mathcal{V} \} = \bigcap_{v \in \mathcal{V}} v(a)$. A locally convex cone is called *separated* if $\bar{a} = \bar{b}$ implies a = b, i.e., if different elements have different closures.

The extended scalar field $\mathbb{R} = \mathbb{R} \cup \{+\infty\}$ of real numbers with the usual order is an example of an ordered cone. We consider $\alpha + (+\infty) = +\infty$ and $\alpha \cdot (+\infty) = +\infty$ for all $\alpha > 0$ and $0 \cdot (+\infty) = 0$. Endowed with $\mathcal{V} = \{\epsilon \in \mathbb{R} \mid \epsilon > 0\}$, $(\mathbb{R}, \mathcal{V})$ is a full locally convex cone.

²⁰⁰⁰ Mathematics Subject Classification. 46A03.

Key words and phrases. Locally convex cone, neighborhood system, quotient.

For cones \mathcal{P} and \mathcal{P}' a mapping $T: \mathcal{P} \to \mathcal{P}'$ is called a linear operator if T(a+b) = T(a) + T(b) and $T(\alpha a) = \alpha T(a)$ hold for all $a, b \in \mathcal{P}$ and $\alpha \geq 0$. T is said to be monotone if $a \leq b$ implies $T(a) \leq T(b)$. If $(\mathcal{P}, \mathcal{V})$ and $(\mathcal{P}', \mathcal{V}')$ are locally convex cones, T is called uniformly continuous (u-continuous) if for every $v' \in \mathcal{V}'$ there is a $v \in \mathcal{V}$ such that $T(a) \leq T(b) + v'$ whenever $a \leq b + v$ for $a, b \in \mathcal{P}$. If $(\mathcal{P}, \mathcal{V})$ is a full locally convex cone and T is monotone, T is u-continuous if and only if for every $v' \in \mathcal{V}'$, there is a $v \in \mathcal{V}$ such that $T(v) \leq v'$. A linear functional on \mathcal{P} is a linear operator $\mu: \mathcal{P} \to \mathbb{R}$. μ is u-continuous if there is a $v \in \mathcal{V}$ such that $\mu(a) \leq \mu(b) + 1$ whenever $a \leq b + v$ for $a, b \in \mathcal{P}$.

The u-continuous linear operators from a locally convex cone $(\mathcal{P}, \mathcal{V})$ to another locally convex cone $(\mathcal{P}', \mathcal{V}')$ form again a cone, and the cone of u-continuous functionals from $(\mathcal{P}, \mathcal{V})$ is called the dual of \mathcal{P} and denoted by \mathcal{P}^* . The polar v° of every neighborhood $v \in \mathcal{V}$ is the set of all $\mu \in \mathcal{P}^*$ such that $\mu(a) \leq \mu(b) + 1$ whenever $a \leq b + v$ for $a, b \in \mathcal{P}$. The union of all polars yields \mathcal{P}^* and by endowing \mathcal{P}^* with the topology $w(\mathcal{P}^*, \mathcal{P}), v^\circ$ is $w(\mathcal{P}^*, \mathcal{P})$ compact and convex (cf. [2], II.2.4).

In this paper we present a quotient locally convex cone. We introduce a quotient cone, an order and an (abstract) 0-neighborhood system for it. With this (abstract) 0-neighborhood system the quotient cone is a locally convex cone. We verify some topological properties for this locally convex cone.

2. A locally convex quotient cone

Let \mathcal{P} be a cone and \mathcal{Q} be a subcone of \mathcal{P} . We consider the relation \sim on \mathcal{P} as $x \sim y$ if and only if $x + \mathcal{Q} = y + \mathcal{Q}$. It is clear that \sim is an equivalence relation on \mathcal{P} . This equivalence relation means that $x \sim y$ if both x = y + p and y = x + q for some $p, q \in \mathcal{P}$. The equivalence class \tilde{x} is a subset of $\hat{x} = x + \mathcal{Q}$ in general and if \mathcal{Q} is a vector space, then $\tilde{x} = \hat{x}$. The set $\{\hat{x} : x \in \mathcal{P}\}$ with the usual addition $\hat{x} + \hat{y} = (x + y)$ and the scalar multiplication $\alpha \hat{x} = (\alpha x)$ for $x, y \in \mathcal{P}$ and $\alpha > 0$ is a cone. The scalar multiplication is completed with $0.\hat{x} = \hat{0}$ for each $x \in \mathcal{P}$. We denote this cone by \mathcal{P}/\mathcal{Q} and we call it the *quotient* of \mathcal{P} on \mathcal{Q} . The zero element in \mathcal{P}/\mathcal{Q} is clearly $\hat{0} = \mathcal{Q}$. The mapping $k(x) = \hat{x}$ is a linear mapping, which is called the *canonical mapping* of \mathcal{P} onto \mathcal{P}/\mathcal{Q} .

If we denote by $\operatorname{Conv}(\mathcal{P})$ the set of all non-empty convex subsets of the cone \mathcal{P} , with the addition and scalar multiplication defined by

$$A + B = \{a + b | a \in A, b \in B\}, \quad A, B \in \operatorname{Conv}(\mathcal{P}) ,$$

 $\alpha A = \{ \alpha a | a \in A \}, \quad A \in \operatorname{Conv}(\mathcal{P}), \quad \alpha \ge 0,$

 $\operatorname{Conv}(\mathcal{P})$ is again a cone. The quotient cone \mathcal{P}/\mathcal{Q} is in fact a subcone of $\operatorname{Conv}(\mathcal{P})$ (cf. [2], I. Example 1.4).

If \mathcal{P}' is another cone, each linear mapping t from \mathcal{P} into \mathcal{P}' vanishing on \mathcal{Q} has the decomposition $t = u \circ k$, where u is a linear mapping of \mathcal{P}/\mathcal{Q} into \mathcal{P}' ; $u(\hat{x})$ is the common value of t(x) for $x \in \hat{x}$. It is easily verified that the mapping $t \to u$ is a one to one correspondence between the cone of all linear mappings of \mathcal{P} into \mathcal{P}' that vanish on \mathcal{Q} and the cone of all linear mappings of \mathcal{P}/\mathcal{Q} into \mathcal{P}' .

Remark 2.1. It is well-known that any linear mapping t of the vector space E into the vector space F has the decomposition $t = u \circ k$, where u is a one to one linear mapping of $E/t^{-1}(0)$ into F and k the canonical mapping of E onto $E/t^{-1}(0)$. This is not the case for cones, that is, $u : \mathcal{P}/t^{-1}(0) \to \mathcal{P}'$ is not necessarily one to one if \mathcal{P} and \mathcal{P}' are cones. See the following example.

Example 2.2. Let $\mathcal{P} = \{(x, y) \in \mathbb{R}^2 \mid x, y \ge 0\}, \ \mathcal{P}' = \mathbb{R}^+ = [0, +\infty), \text{ and } t : \mathcal{P} \to \mathcal{P}'$ defined by t(x, y) = x + y. Then we have $t^{-1}(0) = \{(0, 0)\}, \ t(z, 0) = t(0, z) = z$ and u((z, 0)) = u((0, z)) = z, but $(z, 0) = (z, 0) + t^{-1}(0) \ne (0, z) + t^{-1}(0) = (0, z)$ if $z \ne 0$.

If \leq is a preorder on \mathcal{P} , we can consider a preorder on \mathcal{P}/\mathcal{Q} defined by $\hat{x} \leq \hat{y}$ if for each $x \in \hat{x}$ there is a $y \in \hat{y}$ such that $x \leq y$. If \mathcal{V} is an (abstract) 0-neighborhood system

for \mathcal{P} , then $\hat{\mathcal{V}} = \{k(v) = \hat{v} : v \in \mathcal{V}\}$ is an (abstract) 0-neighborhood system for \mathcal{P}/\mathcal{Q} and is called the *quotient (abstract) 0-neighborhood system*. $\hat{x} \leq \hat{y} + \hat{v} = (y+v)$ means that for each $q \in \mathcal{Q}$ there is a $q' \in \mathcal{Q}$ such that $x + q \leq y + q' + v$. This implies in particular $x \leq y + q' + v$ for some $q' \in \mathcal{Q}$. Now if $(\mathcal{P}, \mathcal{V})$ is a locally convex cone and \mathcal{F} is the full cone and \mathcal{P} is a subcone of \mathcal{F} , $(\mathcal{P}/\mathcal{Q}, \hat{\mathcal{V}})$ becomes a locally convex cone such that its full cone is \mathcal{F}/\mathcal{Q} , and we call it a *quotient locally convex cone*.

Lemma 2.3. Let $(\mathcal{P}, \mathcal{V})$ be a locally convex cone, $\mathcal{Q} \subseteq \mathcal{P}$ a subcone, and $(\mathcal{P}/\mathcal{Q}, \hat{\mathcal{V}})$ the quotient locally convex cone. For every $a \in \mathcal{P}$ and $v \in \mathcal{V}$,

- (i) $(v(a)) \subseteq \hat{v}(\hat{a})$ and $((a)v) \subseteq (\hat{a})\hat{v}$.
- (ii) If for every $q \in Q$ and $v \in V$ there is an invertible element $p \in Q$ such that $p + q \leq v$, then $\hat{v'}(\hat{a}) \subseteq (v(a))$ and $(\hat{a})\hat{v'} \subseteq ((a)v)$ for some $v' \in V$.

Proof. (i) is obvious. For (ii) set $v' = \frac{v}{2}$. Let $\hat{b} \in \hat{v'}(\hat{a})$. There is a $q \in Q$ such that $b \leq a + q + v'$. Suppose p is an invertible element of Q such that $p + q \leq v'$. We have $b + p \leq a + 2v'$ and so $(b + p) \leq \hat{a} + (2v')$ and $b + p \in v(a)$. Since p is invertible, we see that $\hat{b} = (b + p)$, i.e., $\hat{b} \in (v(a))$.

An element a of a locally convex cone $(\mathcal{P}, \mathcal{V})$ is called bounded if it is also *upper* bounded, i.e., for every $v \in \mathcal{V}$ there is a $\rho > 0$ such that $a \leq \rho v$. Since every invertible element of a locally convex cone is bounded, the condition (ii) implies that every element of a subcone \mathcal{Q} with this property is bounded (similar to the elements of the topological vector spaces). Every subcone \mathcal{Q} of locally convex cone \mathcal{P} which is also a vector space has this property (for instance $\mathcal{P} = \overline{\mathbb{R}}$ and $\mathcal{Q} = \mathbb{R}$).

Theorem 2.4. Let $(\mathcal{P}, \mathcal{V})$ be a locally convex cone, $(\mathcal{P}/\mathcal{Q}, \hat{\mathcal{V}})$ a quotient cone and k be the canonical mapping. Then

- (1) the map k is monotone and u-continuous;
- if Q satisfies the conditions (ii) of Lemma 2.3, then k is an open mapping under the lower, upper and symmetric topologies;
- (3) if for each $v \in \mathcal{V}$ and each $q \in \mathcal{Q}$, $q \leq v$, then k is also a closed mapping under the lower, upper and symmetric topologies.

An open (closed) mapping is a mapping such that the image of the open (closed) set under this mapping is open (closed).

Proof. (1) It is obvious that k is monotone and we have from (i) of Lemma 2.3 that k is u-continuous. (2) If \mathcal{Q} satisfies the condition (ii) of Lemma 2.3, k is an open mapping under the upper, lower and symmetric topologies. (3) We consider the state of the upper topology. Let $A \subseteq \mathcal{P}$ be a closed set under the upper topology. We show that \hat{A} is closed. Let $\hat{x} \in \overline{\hat{A}}$, $\hat{v} \in \hat{\mathcal{V}}$ and $0 < \lambda < 1$. We have $q \leq \lambda v$ for all $q \in \mathcal{Q}$. Let $v' \leq (1 - \lambda)v$. There is an $a \in A$ such that $\hat{a} \in \hat{v'}(\hat{x})$, i.e., $\hat{a} \leq \hat{x} + \hat{v'}$, then $a \leq x + q + v'$ for some $q \in \mathcal{Q}$. Hence $a \leq x + v$, i.e., $a \in v(x)$ which implies that $x \in \overline{A} = A$ and so $\hat{x} \in \hat{A}$.

The condition (3) of Theorem 2.4 implies the condition (ii) of Lemma 2.3, since we can put $p = 0 \in Q$ to be an invertible element. So with this condition the canonical mapping k is also open under the lower, upper and symmetric topologies. In the following examples we show that without this condition, it is not necessary that k be an open or closed mapping.

Example 2.5. Let $\mathcal{P} = \mathbb{\bar{R}} = \mathbb{R} \cup \{+\infty\}$, $\mathcal{Q} = \mathbb{\bar{R}}^+ = [0, +\infty]$ and $\mathcal{V} = \{\epsilon \in \mathbb{R} \mid \epsilon > 0\}$. Let $A = \{+\infty\}$. For every $\epsilon > 0$ we have $(+\infty)\epsilon = \epsilon(+\infty)\epsilon = A$. That is the set A is open and closed under the lower and symmetric topologies. But $\hat{A} = \{+\infty\} = \{\{\infty\}\}$, $\hat{\epsilon} = [\epsilon, +\infty]$ and $(+\infty)\hat{\epsilon} = \hat{\epsilon}(+\infty)\hat{\epsilon} = \mathcal{P}/\mathcal{Q}$, that is the set \hat{A} is not open under the lower and symmetric topologies. Also for each $\epsilon > 0$ the intersection of $\hat{\epsilon}(\hat{1})$ and $(\hat{1})\hat{\epsilon}$, i.e., $\hat{\epsilon}(\hat{1})\hat{\epsilon}$ with \hat{A} is not empty and then $\hat{1}$ is in the closure of the set \hat{A} relative to the upper, lower and symmetric topologies. But $\hat{1} \notin \hat{A}$, i.e., \hat{A} is not closed under the lower and symmetric topologies.

Example 2.6. Let \mathcal{P} and \mathcal{V} be as above and $\mathcal{Q} = \{0, +\infty\}$. The set $B = (-\infty, -1)$ is an open set under the upper topology. We have $\hat{B} = \{\{r, +\infty\} \mid r < -1\}$ and for every $\epsilon > 0$, $\hat{\epsilon} = \{\epsilon, +\infty\}$. If we choose an element of \hat{B} , e.g., $-2 = \{-2, +\infty\}$, then $+\hat{\infty} \in \hat{\epsilon}(-2)$, but $+\hat{\infty} \notin \hat{B}$, i.e., the set \hat{B} is not open under the upper topology.

The set $C = [1, +\infty)$ is closed under the upper topology. $\hat{C} = \{\{r, +\infty\} | r \ge 1\}$ is not closed under the upper topology in \mathcal{P}/\mathcal{Q} , because $\{+\infty\}$ is in the closure of \hat{C} under the upper topology, but $\{+\infty\} \notin \hat{C}$.

Theorem 2.7. Let $(\mathcal{P}, \mathcal{V})$ and $(\mathcal{P}', \mathcal{V}')$ be two locally convex cones and \mathcal{Q} be a subcone of \mathcal{P} . Let $t : \mathcal{P} \to \mathcal{P}'$ be a linear mapping which vanishes on \mathcal{Q} , $k : \mathcal{P} \to \mathcal{P}/\mathcal{Q}$ be the canonical mapping and $u : \mathcal{P}/\mathcal{Q} \to \mathcal{P}'$ be a linear mapping such that $t = u \circ k$. Then t is u-continuous if and only if u is u-continuous.

Proof. Let t be u-continuous and let $v' \in \mathcal{V}'$. There is a $v \in \mathcal{V}$ such that $a \leq b+v$ implies $t(a) \leq t(b) + v'$. If $\hat{a} \leq \hat{b} + \hat{v}$, then there is a $q \in \mathcal{Q}$ such that $a \leq b+q+v$. Since t(q) = 0, we have $t(a) \leq t(b) + v'$, that is, $u(\hat{a}) \leq u(\hat{b}) + v'$, which implies that u is u-continuous. Now let u be u-continuous and let $v' \in \mathcal{V}'$ be arbitrary. There is a $\hat{v} \in \hat{\mathcal{V}}$ such that $\hat{a} \leq \hat{b} + \hat{v}$ implies $u(\hat{a}) \leq u(\hat{b}) + v'$. Now put $v + 0 \in \hat{v}$. If $a \leq b + v$, then $\hat{a} \leq \hat{b} + \hat{v}$ and so $u(\hat{a}) \leq u(\hat{b}) + v'$. This means that $t(a) \leq t(b) + v'$ and t is u-continuous.

Corollary 2.8. If $(\mathcal{P}, \mathcal{V})$ is a locally convex cone and \mathcal{Q} is a subcone of \mathcal{P} such that $(\mathcal{P}/\mathcal{Q}, \hat{\mathcal{V}})$ is a quotient cone, then there is a one to one correspondence between \hat{v}° and the set of all elements of v° that vanish on \mathcal{Q} .

Proof. The proof is easy with the use of Theorem 2.7.

Let $(\mathcal{Q}, \mathcal{V})$ be a locally convex cone. We have that $(\mathcal{Q}, \mathcal{V})$ is separated if and only if the upper topology on \mathcal{Q} is T_0 if and only if the lower topology on \mathcal{Q} is T_0 if and only if the symmetric topology on \mathcal{Q} is T_0 if and only if the symmetric topology on \mathcal{Q} is Hausdorff (cf. [2] I, 3.9).

We note that \mathcal{Q} can not be Hausdorff under the upper or the lower topologies.

Proposition 2.9. Let $(\mathcal{P}, \mathcal{V})$ be a locally convex cone and \mathcal{Q} be a subcone of \mathcal{P} . If \mathcal{P}/\mathcal{Q} is Hausdorff under the symmetric topology (separated), then \mathcal{Q} is closed under the symmetric topology.

Proof. If $a \notin \mathcal{Q}$ then $\hat{a} \neq \hat{0} = \mathcal{Q}$. Since \mathcal{P}/\mathcal{Q} is T_0 under the upper topology, there is a $v \in \mathcal{V}$ such that $\hat{a} \notin \hat{v}(\hat{0})$ or $\hat{0} \notin \hat{v}(\hat{a})$, i.e., $a \notin v(q)$ or $q \notin v(a)$ for all $q \in \mathcal{Q}$ and so $q \notin (a)v$ or $q \notin v(a)$ and then $q \notin v(a)v$, i.e., $\mathcal{Q} \cap v(a)v = \emptyset$ and then $a \notin \bar{\mathcal{Q}}$ (the closure is taken with respect to the symmetric topology). \Box

Remark 2.10. (a) We have a converse to the above proposition for locally convex spaces (cf. [4] I, 2.3), but it is not true for locally convex cones, even if the locally convex cones are separated. Consider the following two examples.

(1) If \mathcal{V} is a 0-neighborhood base for \mathbb{R} under the usual topology, $(\operatorname{Conv}(\mathbb{R}), \mathcal{V})$ with \subseteq is a locally convex cone that is not separated (since A = (-1, 1) and B = [-1, 1] but $\overline{A} = \overline{B} = [-1, 1]$). In this case $\mathcal{Q} = \{\{q\} \mid q \in \mathbb{R}\}$ is a subcone of $\operatorname{Conv}(\mathbb{R})$ that is closed under the symmetric topology, because if $A \in \overline{\mathcal{Q}}$, then $V(A)V \cap \mathcal{Q} \neq \emptyset$ for all $V \in \mathcal{V}$, i.e., there is a $\{q\} \in \mathcal{Q}$ such that $\{q\} \subseteq A + V$ and $A \subseteq \{q\} + V$ for all $V \in \mathcal{V}$. Now since \mathbb{R} is Hausdorff with the usual topology, $A \subseteq \overline{A} = \{\overline{q}\} = \{q\}$ and then $A = \{q\} \in \mathcal{Q}$.

But \mathcal{P}/\mathcal{Q} is not separated, because if A = (-1, 1) and B = [-1, 1], then $\hat{A} = \{(-1 + r, 1 + r) \mid r \in \mathbb{R}\}$ and $\hat{B} = \{[-1 + r, 1 + r] \mid r \in \mathbb{R}\}$ but $\hat{A} \neq \hat{B}$ and $\hat{A} \in \hat{V}(\hat{B})$ and $\hat{B} \in \hat{V}(\hat{A})$ for all $V \in V$, i.e., \mathcal{P}/\mathcal{Q} is not T_0 under the upper topology and so is not Hausdorff under the symmetric topology.

(2) If we consider $\mathcal{P} = \mathbb{R}$ with the usual order and $\mathcal{V} = \{\epsilon \in \mathbb{R} \mid \epsilon > o\}$ as an (abstract) 0-neighborhood system, which is separated, and $\mathcal{Q} = \mathbb{R}^+ = \{r \in \mathbb{R} \mid r \ge 0\}$, which is closed under the symmetric topology, then \mathcal{P}/\mathcal{Q} is not a separated locally convex cone, since for example $\hat{1} = [1, +\infty), \hat{2} = [2, +\infty)$ and $\hat{\epsilon}(\hat{1}) \cap \hat{\epsilon}(\hat{2}) = \mathcal{P}/\mathcal{Q}$ for all $\epsilon > 0$.

(b) We saw in (a) that it is not necessary that \mathcal{P}/\mathcal{Q} be Hausdorff under the symmetric topology and so it is not necessary for one-point sets to be closed under this topology. In spite of this, if \mathcal{Q} is closed in \mathcal{P} , the one-point set $\hat{\mathcal{Q}} = \{\mathcal{Q}\} = \{\hat{0}\}$ is closed, because if $\hat{x} \notin \hat{\mathcal{Q}}$, then $x \notin \mathcal{Q}$ and so $v(x)v \cap \mathcal{Q} = \emptyset$ for some $v \in \mathcal{V}$, i.e., $q \notin v(x)v$ for all $q \in \mathcal{Q}$ and then $\mathcal{Q} \notin \hat{v}(\hat{x})\hat{v}$. That is, $\hat{v}(\hat{x})\hat{v} \cap \{\mathcal{Q}\} = \emptyset$ and then $\hat{x} \notin \{\hat{\mathcal{Q}}\}$.

Proposition 2.11. If \mathcal{P} is Hausdorff under the symmetric topology and \mathcal{Q} satisfies the condition (3) of Theorem 2.4, then \mathcal{P}/\mathcal{Q} is Hausdorff under the symmetric topology.

Proof. Let $\bar{x} = \bar{y}$ for $\hat{x}, \hat{y} \in \mathcal{P}/\mathcal{Q}$, $\hat{v} \in \hat{\mathcal{V}}$ and $0 < \lambda < 1$. In this case $q \leq \lambda v$ for all $q \in \mathcal{Q}$. We have $\hat{x} \leq \hat{y} + ((1 - \lambda)v)$. Hence $x \leq y + q + (1 - \lambda)v$ for some $q \in \mathcal{Q}$. We have $x \leq y + v$ and so $x \in \bar{y}$. Similarly $y \in \bar{x}$. That is $\bar{x} = \bar{y}$, which implies x = y and so $\hat{x} = \hat{y}$.

Finally we note that no nonzero subspace of a topological vector space satisfies the condition (3) of Theorem 2.4, but in locally convex cones this may happen frequently. We give examples with this condition satisfied.

Example 2.12. (1) Let $\mathcal{P} = \text{Conv}(\mathbb{R})$. For $A, B \in \mathcal{P}$ by considering $A \leq B$ if for every $a \in A$ there is some $b \in B$ such that $a \leq b$, the set $\mathcal{V} = \{(\epsilon, +\infty) \mid \epsilon > 0\}$ is as an (abstract) 0-neighborhood system for \mathcal{P} . The set $\mathcal{Q} = \{\{r\} \mid r \in \mathbb{R}\}$ is a subcone of \mathcal{P} and satisfies the condition (3) of Theorem 2.4.

(2) Let $\mathcal{P} = \mathbb{R}^2$ with the following preorder:

$$(x, y) \leq (x', y')$$
 if and only if $x \leq x'$.

With $\mathcal{V} = \{(\epsilon, 0) | \epsilon > 0\}$ as an (abstract) 0-neighborhood system for \mathcal{P} , $(\mathcal{P}, \mathcal{V})$ is a locally convex cone. $\mathcal{Q} = \{(x, y) | x \leq 0\}$ is a subcone of \mathcal{P} which has satisfies the mentioned condition.

Acknowledgments. The authors would like to thank the referee for careful considerations and valuable suggestions.

References

- 1. B. Fuchssteiner and W. Lusky, Convex cones, North Holland Math. Studies, Vol. 56, 1981.
- K. Keimel and W. Roth, Ordered Cones and Approximation, Lecture Notes in Mathematics, Vol. 1517, Springer-Verlag, Heidelberg—Berlin—New York, 1992.
- W. Roth, A uniform boundedness theorem for locally convex cones, Proc. Amer. Math. Soc. 126 (1998), 1973–1982.
- H. H. Schaefer, *Topological Vector Spaces*, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, Berlin, 1971.

DEPARTMENT OF PURE MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, TABRIZ UNIVERSITY, TABRIZ, IRAN

E-mail address: ranjbari@tabrizu.ac.ir

DEPARTMENT OF PURE MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, TABRIZ UNIVERSITY, TABRIZ, IRAN

E-mail address: saiflu@tabrizu.ac.ir