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A LOCALLY CONVEX QUOTIENT CONE

ASGHAR RANJBARI AND HUSAIN SAIFLU

Abstract. We define a quotient locally convex cone and verify some topological
properties of it. We show that the extra conditions are necessary.

1. Introduction

A cone (cf. [1] and [2]) is a set P endowed with an addition (a, b) → a + b and a
scalar multiplication (α, a) → αa for a, b ∈ P and real numbers α ≥ 0. The addition is
supposed to be associative and commutative, and there is a neutral element 0 ∈ P. For
the scalar multiplication the usual associative and distributive properties hold, that is,
α(βa) = (αβ)a, (α+β)a = αa+βa, and α(a+ b) = αa+αb for all a, b ∈ P and α, β ≥ 0.
We have 1a = a and 0a = 0 for all a ∈ P. The cancellation law, stating that a+c = b+c,
implies a = b, however, is not required in general. It holds if and only if the cone P may
be embedded into a real vector space. In addition we assume that P carries a preorder,
i.e., a reflexive transitive relation ≤ such that a ≤ b implies a + c ≤ b + c and αa ≤ αb
for all a, b, c ∈ P and α ≥ 0.

Let P be a preordered cone. A subset V of P is called an (abstract) 0-neighborhood
system, if the following properties hold:

(1) 0 < v for all v ∈ V;
(2) for all u, v ∈ V there is w ∈ V with w ≤ u and w ≤ v;
(3) u + v ∈ V and αv ∈ V whenever u, v ∈ V and α > 0.

That is V is a subcone without 0 that is directed downward. Each element v of V defines
an upper, respectively lower, neighborhood for the elements of P by

v(a) = {b ∈ P | b ≤ a + v}, respectively (a)v = {b ∈ P | a ≤ b + v},
creating the upper, respectively lower, topologies on P. Their common refinement is
called symmetric topology which we show the neighborhoods in this topology as v(a)∩(a)v
or v(a)v for a ∈ P and v ∈ V.

An ordered cone P is called a full locally convex cone if it contains an (abstract) 0-
neighborhood system V such that all its elements are bounded below, i.e., for every a ∈ P
and v ∈ V we have 0 ≤ a + ρv for some ρ > 0. We show a full locally convex cone as
a pair (P,V). A locally convex cone is a pair (Q,V) where Q is a subcone of P not
necessarily containing the (abstract) 0-neighborhood system.

For every a ∈ P, the closure of a is defined to be the set ā = { b ∈ P | b ≤
a + v for all v ∈ V} =

⋂
v∈V v(a). A locally convex cone is called separated if ā = b̄

implies a = b, i.e., if different elements have different closures.
The extended scalar field R̄ = R ∪ {+∞} of real numbers with the usual order is an

example of an ordered cone. We consider α + (+∞) = +∞ and α.(+∞) = +∞ for all
α > 0 and 0.(+∞) = 0. Endowed with V = {ε ∈ R | ε > 0}, (R̄,V) is a full locally convex
cone.
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For cones P and P ′ a mapping T : P → P ′ is called a linear operator if T (a + b) =
T (a)+T (b) and T (αa) = αT (a) hold for all a, b ∈ P and α ≥ 0. T is said to be monotone
if a ≤ b implies T (a) ≤ T (b). If (P,V) and (P ′,V ′) are locally convex cones, T is called
uniformly continuous (u-continuous) if for every v′ ∈ V ′ there is a v ∈ V such that
T (a) ≤ T (b) + v′ whenever a ≤ b + v for a, b ∈ P. If (P,V) is a full locally convex cone
and T is monotone, T is u-continuous if and only if for every v′ ∈ V ′, there is a v ∈ V
such that T (v) ≤ v′. A linear functional on P is a linear operator µ : P → R̄. µ is
u-continuous if there is a v ∈ V such that µ(a) ≤ µ(b)+1 whenever a ≤ b+v for a, b ∈ P.

The u-continuous linear operators from a locally convex cone (P,V) to another locally
convex cone (P ′,V ′) form again a cone, and the cone of u-continuous functionals from
(P,V) is called the dual of P and denoted by P∗. The polar v◦ of every neighborhood
v ∈ V is the set of all µ ∈ P∗ such that µ(a) ≤ µ(b) + 1 whenever a ≤ b + v for a, b ∈ P.
The union of all polars yields P∗ and by endowing P∗ with the topology w(P∗,P), v◦ is
w(P∗,P) compact and convex (cf. [2], II.2.4).

In this paper we present a quotient locally convex cone. We introduce a quotient
cone, an order and an (abstract) 0-neighborhood system for it. With this (abstract)
0-neighborhood system the quotient cone is a locally convex cone. We verify some topo-
logical properties for this locally convex cone.

2. A locally convex quotient cone

Let P be a cone and Q be a subcone of P. We consider the relation ∼ on P as x ∼ y
if and only if x + Q = y + Q. It is clear that ∼ is an equivalence relation on P. This
equivalence relation means that x ∼ y if both x = y + p and y = x + q for some p, q ∈ P.
The equivalence class x̃ is a subset of x̂ = x + Q in general and if Q is a vector space,
then x̃ = x̂. The set {x̂ : x ∈ P} with the usual addition x̂ + ŷ = (x + y)ˆ and the scalar
multiplication αx̂ = (αx)ˆ for x, y ∈ P and α > 0 is a cone. The scalar multiplication is
completed with 0.x̂ = 0̂ for each x ∈ P. We denote this cone by P/Q and we call it the
quotient of P on Q. The zero element in P/Q is clearly 0̂ = Q. The mapping k(x) = x̂
is a linear mapping, which is called the canonical mapping of P onto P/Q.

If we denote by Conv(P) the set of all non-empty convex subsets of the cone P, with
the addition and scalar multiplication defined by

A + B = {a + b| a ∈ A, b ∈ B}, A, B ∈ Conv(P) ,

αA = {αa| a ∈ A}, A ∈ Conv(P), α ≥ 0,

Conv(P) is again a cone. The quotient cone P/Q is in fact a subcone of Conv(P) (cf. [2],
I. Example 1.4).

If P ′ is another cone, each linear mapping t from P into P ′ vanishing on Q has the
decomposition t = u◦k, where u is a linear mapping of P/Q into P ′; u(x̂) is the common
value of t(x) for x ∈ x̂. It is easily verified that the mapping t → u is a one to one
correspondence between the cone of all linear mappings of P into P ′ that vanish on Q
and the cone of all linear mappings of P/Q into P ′.

Remark 2.1. It is well-known that any linear mapping t of the vector space E into the
vector space F has the decomposition t = u ◦ k, where u is a one to one linear mapping
of E/t−1(0) into F and k the canonical mapping of E onto E/t−1(0). This is not the
case for cones, that is, u : P/t−1(0) → P ′ is not necessarily one to one if P and P ′ are
cones. See the following example.

Example 2.2. Let P = {(x, y) ∈ R2 | x, y ≥ 0}, P ′ = R+ = [0,+∞), and t : P → P ′

defined by t(x, y) = x + y. Then we have t−1(0) = {(0, 0)}, t(z, 0) = t(0, z) = z and
u( (z, 0)ˆ ) = u( (0, z)ˆ ) = z, but (z, 0)ˆ= (z, 0)+ t−1(0) 6= (0, z)+ t−1(0) = (0, z)ˆ if z 6= 0.

If ≤ is a preorder on P, we can consider a preorder on P/Q defined by x̂ ≤ ŷ if for
each x ∈ x̂ there is a y ∈ ŷ such that x ≤ y. If V is an (abstract) 0-neighborhood system
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for P, then V̂ = {k(v) = v̂ : v ∈ V} is an (abstract) 0-neighborhood system for P/Q and
is called the quotient (abstract) 0-neighborhood system. x̂ ≤ ŷ + v̂ = (y + v)ˆ means that
for each q ∈ Q there is a q′ ∈ Q such that x + q ≤ y + q′ + v. This implies in particular
x ≤ y + q′ + v for some q′ ∈ Q. Now if (P,V) is a locally convex cone and F is the full
cone and P is a subcone of F , (P/Q, V̂) becomes a locally convex cone such that its full
cone is F/Q, and we call it a quotient locally convex cone.

Lemma 2.3. Let (P,V) be a locally convex cone, Q ⊆ P a subcone, and (P/Q, V̂) the
quotient locally convex cone. For every a ∈ P and v ∈ V,

(i) (v(a))ˆ⊆ v̂(â) and ((a)v)ˆ⊆ (â)v̂.
(ii) If for every q ∈ Q and v ∈ V there is an invertible element p ∈ Q such that

p + q ≤ v, then v̂′(â) ⊆ (v(a))ˆ and (â)v̂′ ⊆ ((a)v)ˆ for some v′ ∈ V.

Proof. (i) is obvious. For (ii) set v′ = v
2 . Let b̂ ∈ v̂′(â). There is a q ∈ Q such that

b ≤ a + q + v′. Suppose p is an invertible element of Q such that p + q ≤ v′. We have
b + p ≤ a + 2v′ and so (b + p)ˆ≤ â + (2v′)ˆ and b + p ∈ v(a). Since p is invertible, we see
that b̂ = (b + p)ˆ, i.e., b̂ ∈ (v(a))ˆ. �

An element a of a locally convex cone (P,V) is called bounded if it is also upper
bounded, i.e., for every v ∈ V there is a ρ > 0 such that a ≤ ρv. Since every invertible
element of a locally convex cone is bounded, the condition (ii) implies that every element
of a subcone Q with this property is bounded (similar to the elements of the topological
vector spaces). Every subcone Q of locally convex cone P which is also a vector space
has this property (for instance P = R̄ and Q = R).

Theorem 2.4. Let (P,V) be a locally convex cone, (P/Q, V̂) a quotient cone and k be
the canonical mapping. Then

(1) the map k is monotone and u-continuous;
(2) if Q satisfies the conditions (ii) of Lemma 2.3, then k is an open mapping under

the lower, upper and symmetric topologies;
(3) if for each v ∈ V and each q ∈ Q, q ≤ v, then k is also a closed mapping under

the lower, upper and symmetric topologies.

An open (closed) mapping is a mapping such that the image of the open (closed) set
under this mapping is open (closed).

Proof. (1) It is obvious that k is monotone and we have from (i) of Lemma 2.3 that k is
u-continuous. (2) If Q satisfies the condition (ii) of Lemma 2.3, k is an open mapping
under the upper, lower and symmetric topologies. (3) We consider the state of the upper
topology. Let A ⊆ P be a closed set under the upper topology. We show that Â is closed.
Let x̂ ∈ ¯̂

A, v̂ ∈ V̂ and 0 < λ < 1. We have q ≤ λv for all q ∈ Q. Let v′ ≤ (1−λ)v. There
is an a ∈ A such that â ∈ v̂′(x̂), i.e., â ≤ x̂ + v̂′, then a ≤ x + q + v′ for some q ∈ Q.
Hence a ≤ x + v, i.e., a ∈ v(x) which implies that x ∈ Ā = A and so x̂ ∈ Â. �

The condition (3) of Theorem 2.4 implies the condition (ii) of Lemma 2.3, since we
can put p = 0 ∈ Q to be an invertible element. So with this condition the canonical
mapping k is also open under the lower, upper and symmetric topologies. In the following
examples we show that without this condition, it is not necessary that k be an open or
closed mapping.

Example 2.5. Let P = R̄ = R ∪ {+∞}, Q = R̄+ = [0,+∞] and V = {ε ∈ R | ε > 0}.
Let A = {+∞}. For every ε > 0 we have (+∞)ε = ε(+∞)ε = A. That is the set A is
open and closed under the lower and symmetric topologies. But Â = {+̂∞} = {{∞}},
ε̂ = [ε,+∞] and (+̂∞)ε̂ = ε̂(+̂∞)ε̂ = P/Q, that is the set Â is not open under the lower
and symmetric topologies. Also for each ε > 0 the intersection of ε̂(1̂) and (1̂)ε̂, i.e.,
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ε̂(1̂)ε̂ with Â is not empty and then 1̂ is in the closure of the set Â relative to the upper,
lower and symmetric topologies. But 1̂ /∈ Â, i.e., Â is not closed under the lower and
symmetric topologies.

Example 2.6. Let P and V be as above and Q = {0,+∞}. The set B = (−∞,−1)
is an open set under the upper topology. We have B̂ = {{r, +∞} | r < −1} and for
every ε > 0, ε̂ = {ε,+∞}. If we choose an element of B̂, e.g., −̂2 = {−2,+∞}, then
+̂∞ ∈ ε̂(−̂2), but +̂∞ /∈ B̂, i.e., the set B̂ is not open under the upper topology.

The set C = [1,+∞) is closed under the upper topology. Ĉ = {{r, +∞}|r ≥ 1} is not
closed under the upper topology in P/Q, because {+∞} is in the closure of Ĉ under the
upper topology, but {+∞} /∈ Ĉ.

Theorem 2.7. Let (P,V) and (P ′,V ′) be two locally convex cones and Q be a subcone
of P. Let t : P → P ′ be a linear mapping which vanishes on Q, k : P → P/Q be the
canonical mapping and u : P/Q → P ′ be a linear mapping such that t = u ◦ k. Then t is
u-continuous if and only if u is u-continuous.

Proof. Let t be u-continuous and let v′ ∈ V ′. There is a v ∈ V such that a ≤ b+v implies
t(a) ≤ t(b)+v′. If â ≤ b̂+ v̂, then there is a q ∈ Q such that a ≤ b+q+v. Since t(q) = 0,
we have t(a) ≤ t(b) + v′, that is, u(â) ≤ u(b̂) + v′, which implies that u is u-continuous.
Now let u be u-continuous and let v′ ∈ V ′ be arbitrary. There is a v̂ ∈ V̂ such that
â ≤ b̂ + v̂ implies u(â) ≤ u(b̂) + v′. Now put v + 0 ∈ v̂. If a ≤ b + v, then â ≤ b̂ + v̂ and
so u(â) ≤ u(b̂) + v′. This means that t(a) ≤ t(b) + v′ and t is u-continuous. �

Corollary 2.8. If (P,V) is a locally convex cone and Q is a subcone of P such that
(P/Q, V̂) is a quotient cone, then there is a one to one correspondence between v̂◦ and
the set of all elements of v◦ that vanish on Q.

Proof. The proof is easy with the use of Theorem 2.7. �

Let (Q,V) be a locally convex cone. We have that (Q,V) is separated if and only if the
upper topology on Q is T0 if and only if the lower topology on Q is T0 if and only if the
symmetric topology on Q is T0 if and only if the symmetric topology on Q is Hausdorff
(cf. [2] I, 3.9).

We note that Q can not be Hausdorff under the upper or the lower topologies.

Proposition 2.9. Let (P,V) be a locally convex cone and Q be a subcone of P. If
P/Q is Hausdorff under the symmetric topology (separated), then Q is closed under the
symmetric topology.

Proof. If a /∈ Q then â 6= 0̂ = Q. Since P/Q is T0 under the upper topology, there is
a v ∈ V such that â /∈ v̂(0̂) or 0̂ /∈ v̂(â), i.e., a /∈ v(q) or q /∈ v(a) for all q ∈ Q and so
q /∈ (a)v or q /∈ v(a) and then q /∈ v(a)v, i.e., Q∩ v(a)v = ∅ and then a /∈ Q̄ (the closure
is taken with respect to the symmetric topology). �

Remark 2.10. (a) We have a converse to the above proposition for locally convex spaces
(cf. [4] I, 2.3 ), but it is not true for locally convex cones, even if the locally convex cones
are separated. Consider the following two examples.

(1) If V is a 0-neighborhood base for R under the usual topology, (Conv(R),V) with
⊆ is a locally convex cone that is not separated ( since A = (−1, 1) and B = [−1, 1] but
Ā = B̄ = [−1, 1]). In this case Q = {{q} | q ∈ R} is a subcone of Conv(R) that is closed
under the symmetric topology, because if A ∈ Q̄, then V (A)V ∩ Q 6= ∅ for all V ∈ V,
i.e., there is a {q} ∈ Q such that {q} ⊆ A+V and A ⊆ {q}+V for all V ∈ V. Now since
R is Hausdorff with the usual topology, A ⊆ Ā = ¯{q} = {q} and then A = {q} ∈ Q.
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But P/Q is not separated, because if A = (−1, 1) and B = [−1, 1], then Â = {(−1 +
r, 1 + r) | r ∈ R} and B̂ = {[−1 + r, 1 + r] | r ∈ R} but Â 6= B̂ and Â ∈ V̂ (B̂) and
B̂ ∈ V̂ (Â) for all V ∈ V , i.e., P/Q is not T0 under the upper topology and so is not
Hausdorff under the symmetric topology.

(2) If we consider P = R with the usual order and V = {ε ∈ R | ε > o} as an
(abstract) 0-neighborhood system, which is separated, and Q = R+ = {r ∈ R|r ≥ 0},
which is closed under the symmetric topology, then P/Q is not a separated locally convex
cone, since for example 1̂ = [1,+∞), 2̂ = [2,+∞) and ε̂(1̂) ∩ ε̂(2̂) = P/Q for all ε > 0.

(b) We saw in (a) that it is not necessary that P/Q be Hausdorff under the symmetric
topology and so it is not necessary for one-point sets to be closed under this topology.
In spite of this, if Q is closed in P, the one-point set Q̂ = {Q} = {0̂} is closed, because
if x̂ /∈ Q̂, then x /∈ Q and so v(x)v ∩ Q = ∅ for some v ∈ V, i.e., q /∈ v(x)v for all q ∈ Q
and then Q /∈ v̂(x̂)v̂. That is, v̂(x̂)v̂ ∩ {Q} = ∅ and then x̂ /∈ ˆ{Q}.

Proposition 2.11. If P is Hausdorff under the symmetric topology and Q satisfies the
condition (3) of Theorem 2.4, then P/Q is Hausdorff under the symmetric topology.

Proof. Let ¯̂x = ¯̂y for x̂, ŷ ∈ P/Q, v̂ ∈ V̂ and 0 < λ < 1. In this case q ≤ λv for all
q ∈ Q. We have x̂ ≤ ŷ + ((1 − λ)v)ˆ. Hence x ≤ y + q + (1 − λ)v for some q ∈ Q. We
have x ≤ y + v and so x ∈ ȳ. Similarly y ∈ x̄. That is x̄ = ȳ, which implies x = y and
so x̂ = ŷ. �

Finally we note that no nonzero subspace of a topological vector space satisfies the
condition (3) of Theorem 2.4, but in locally convex cones this may happen frequently.
We give examples with this condition satisfied.

Example 2.12. (1) Let P = Conv(R). For A,B ∈ P by considering A ≤ B if for every
a ∈ A there is some b ∈ B such that a ≤ b, the set V = {(ε,+∞) | ε > 0} is as an
(abstract) 0-neighborhood system for P. The set Q = {{r}|r ∈ R} is a subcone of P and
satisfies the condition (3) of Theorem 2.4.

(2) Let P = R2 with the following preorder:

(x, y) ≤ (x′, y′) if and only if x ≤ x′.

With V = {(ε, 0)|ε > 0} as an (abstract) 0-neighborhood system for P, (P,V) is a locally
convex cone. Q = {(x, y)|x ≤ 0} is a subcone of P which has satisfies the mentioned
condition.
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