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ON SIMILARITY OF CONVOLUTION VOLTERRA OPERATORS IN
SOBOLEV SPACES

G. S. ROMASHCHENKO

Abstract. Necessary and sufficient conditions for a convolution Volterra operator
to be similar in a Sobolev space to the operator Jα are obtained. A criterion of
similarity is obtained as well.

1. Introduction

Consider a convolution Volterra operator on Wn
p [0, 1] (n ∈ Z+ \ {0}, 1 ≤ p ≤ +∞)

defined by

(1) K : f →
∫ x

0

k(x− t)f(t) dt, f ∈ Wn
p [0, 1]

with a summable kernel k ∈ L1[0, 1]. The simplest Volterra operators of the form (1) are
the operator of integration J ,

(2) J : f →
∫ x

0

f(t) dt,

and its positive powers Jα,

(3) Jα : f →
∫ x

0

(x− t)α−1

Γ(α)
f(t) dt, α ∈ R+.

Recall that two bounded operators A and B on a Banach space X are called similar if
there exists a bounded operator T on X with a bounded inverse T−1 (an automorphism
on X) such as B = TAT−1.

The first result on similarity of an operator K of the form (1) to the operator of
integration J as well as to its integer powers Jn (n ∈ Z+ \ {0}) has been obtained by
G. K. Kalish [10] and L. A. Sakhnovich [20]. These results have been specified in several
parers (see [5]–[17]).

Later, using techniques from complex analysis R. Frankfurt and J. Rovnyak [4], [5]
have obtained sufficient conditions for a convolution Volterra operator K to be similar
in L2[0, 1] to the operator Jα of the form (3) with an arbitrary α ∈ R+ \ {0}.

Using another approach, the result from [5] has been brightened up by M. M. Malamud
in [14]. He has also obtained (see [15]) sufficient conditions for a nonconvolution Volterra
operator K to be similar in Lp[0, 1] to the operator (3).

In this paper, following M. M. Malamud [14], we obtain necessary and sufficient con-
ditions for a convolution Volterra operator K to be similar in Wn

p [0, 1] (n ∈ Z+ \ {0}) to
the operator Jα of the form (3) with an arbitrary α ∈ R+ \ {0}.

For example, we show that the operator J +Jα is similar to the operator J in Wn
p [0, 1]

for n ≥ 3 if and only if α > n− 1
p .

The author is grateful to M. M. Malamud for constant attention to this work.
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Notations. Let Wn
p [0, 1] be the Sobolev space, i.e., if f has n−1 absolutely continuous

derivatives and f (n) ∈ Lp[0, 1], then f ∈ Wn
p [0, 1] .

By definition, put C∞0 [0, 1] = {f ∈ C∞[0, 1] : f (j)(0) = 0, j ∈ Z+}. We denote by
Wn

p,0[0, 1] the closure of the lineal C∞0 [0, 1] in Wn
p [0, 1].

By Ls
p[0, 1] denote the Liouville space, i.e., f ∈ Ls

p[0, 1] if f has generalized fractional

derivative f (s−[s]) of the order s− [s] and f (s−[s]) ∈ W
[s]
p [0, 1]. The functions f ∈ Ls

p[0, 1]
are characterized (see [3]) by the integral representation

(4) f(x) =
[s]+1∑
m=1

cm
xs−m

Γ(s−m + 1)
+

1
Γ(s)

∫ x

0

(x− t)s−1g(t) dt

where cm = f (s−m)(0), and g(x) = f (s)(x).
By definition, put Ls

p,0[0, 1] := {f ∈ Ls
p[0, 1] : f (s−m)(0) = 0, 1 ≤ m ≤ [s] + 1} and

L0
p,0[0, 1] := L0

p[0, 1] := Lp[0, 1].

2. Similarity of the operators K and J

Theorem 2.1. Let K be an operator of the form (1) with the kernel k(·) and let the
following conditions be satisfied:

1. k(0) = 1;
2 a). k(·) ∈ Wn−1

p [0, 1], if n ≥ 3;
2 b). k(·) ∈ W 2

1 [0, 1], if n ∈ {1, 2}.

Then the operator K is similar to the operator of integration J in the spaces Wn
p [0, 1],

p ∈ [1,+∞], n ∈ Z+.

Proof. The theorem is obtained by induction on n.
The case n = 0 was investigated by M. M. Malamud in [13] (see also [17]). Namely,

he has constructed the bounded and boundedly invertible operator V of the form

V : f → φ(x)
(

f(x) +
∫ x

0

N(x− t)f(t) dt

)
that intertwines the operators K and J in the spaces Lp[0, 1].

a) Suppose k(·) ∈ Wm−1
p [0, 1]. Then by the inductive assumption, the operator K is

similar to the operator Jm−1 of integration in the spaces Wm−1
p [0, 1].

This implies that there exists a bounded and boundedly invertible operator Vm−1 on
Wm−1

p [0, 1] that intertwines the operators K and Jm−1, that is, KVm−1 = Vm−1Jm−1.
It is clear that Wm

p [0, 1] = J(Wm−1
p [0, 1])+̇C.

Let us define an operator Vm by

(5) Vm :
(

f0

c

)
→

∫ x

0

Vm−1

(
d

dx
f0

)
dx + c, f0 ∈ JWm−1

p [0, 1], c ∈ C.

It follows from f0 ∈ JWm−1
p [0, 1] that d

dxf0 ∈ Wm−1
p [0, 1]. The operator Vm−1 is bounded

on Wm−1
p [0, 1]. Thus we have Vm−1

(
d
dxf0

)
∈ Wm−1

p [0, 1]. Therefore,
∫ x

0
Vm−1

(
d
dxf0

)
dx ∈

Wm
p [0, 1]. Hence, the operator Vm is bounded on the spaces Wm

p [0, 1].
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Then using the commutative property of convolution and the equality KVm−1 =
Vm−1Jm−1, we get

(6)

KVmf = KVm

(
f0

c

)
= K

(∫ x

0

Vm−1

(
d

dt
f0

)
dt + c

)
=

∫ x

0

KVm−1

(
d

ds
f0(s)

)
ds

+ c

∫ x

0

k(x− t) dt =
∫ x

0

Vm−1Jm−1

(
d

ds
f0(s)

)
ds + c

∫ x

0

k(x− t) dt

=
∫ x

0

Vm−1f0(s) ds + c

∫ x

0

k(x− t) dt = JVm−1f0 + cJk.

Since f(x) = x ∈ JWm−1
p [0, 1] and Vm−11 = k(x) (see [2]), and taking (5) into account

we obtain

(7)
VmJmf = VmJm

(
f0

c

)
= Vm

(
Jmf0 + cx

0

)
= JVm−1

d

dx
(Jmf0 + cx) + 0

= JVm−1f0 + cJVm−11 = JVm−1f0 + c

∫ x

0

k(t) dt = JVm−1f0 + cJk.

Combining (6) with (7) we get KVm = VmJm, that is, the operator Vm intertwines the
operators K and Jm in the spaces Wm

p [0, 1]. Further, note that the operator Vm of the
form (5) is boundedly invertible in Wm

p [0, 1]. Indeed,

(8) V −1
m :

(
f0

c

)
→

∫ x

0

(Vm−1)−1

(
d

dx
f0

)
dx + c, f0 ∈ JWm−1

p [0, 1], c ∈ C.

Therefore the operators K and J are similar in Wm
p [0, 1]. This proves the theorem. �

Example 2.2. Consider an operator

(9) Fαβ : f →
∫ x

0

[
1 + (x− t)α lnβ a

x− t

]
f(t) dt, a > 1

acting on Wn
p [0, 1]. The operator Fαβ is similar to the operator J of integration in

Wn
p [0, 1] if either α > max(n− 1− 1/p; 1) or α = max(n− 1− 1/p; 1) and β ≤ 0.

Example 2.3. Consider an operator

(10) Fαβγ : f →
∫ x

0

[
1 + (x− t)α lnβ lnγ a

x− t

]
f(t) dt, γ > 0, a > 1

on Wn
p [0, 1]. By Theorem 2.1, for the operator Fαβγ to be similar to the operator J in

Wn
p [0, 1] it is sufficient that α > max(n− 1− 1/p ; 1).

We next assert the following.

Lemma 2.4. Let the convolution operator K be bounded on W s
p [0, 1]. Then the kernel

k(·) belongs to the space W s−1
p [0, 1].

Proof. Differentiating the equality K1 =
∫ x

0
k(x−t) dt =

∫ x

0
k(t) dt ∈ W s

p [0, 1], we obtain
k(x) ∈ W s−1

p [0, 1]. �

Example 2.5. Let p ∈ [1,+∞] and either α > s − 1
p or α ∈ N. Then the operator Jα

(3) is bounded in W s
p [0, 1].

Combining Lemma 2.4 for s = n ∈ Z+ with Theorem 2.1, we get the following
criterion.

Theorem 2.6. Let K be an operator of the form (1) with a kernel k(x − t), k(0) = 1,
and n ≥ 3. Then for any p ∈ [1,+∞] the operator K is similar to the operator J of
integration in the spaces Wn

p [0, 1] if and only if k(·) ∈ Wn−1
p [0, 1].
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Theorem 2.6 immediately yields.

Corollary 2.7. Let n ≥ 3. Then for any p ∈ [1,+∞] the operator

(11) (J + Jα) : f →
∫ x

0

[
1 +

(x− t)α−1

Γ(α)

]
f(t) dt

is similar to the operator J in Wn
p [0, 1] if and only if α > n− 1

p .

The following result is presented for the sake of completeness. The proof can be found
in [2].

Proposition 2.8. Suppose that n ∈ {1, 2} and the kernel k(·) ∈ W 1
p [0, 1] satisfies the

following conditions:
(i) k(0) = 0;
(ii) k′(x) ≥ 0 for a. e. x ∈ [0, 1];
(iii) k′(·) is not bounded in a neighborhood of zero and does not increase on [0, 1].

Then the operator

(12) (J + K) : f →
∫ x

0

[1 + k(x− t)]f(t) dt

is not similar to the operator J in the spaces Wn
p [0, 1] for any p ∈ [1,+∞], n ∈ {1, 2}.

Combining Proposition 2.8 and Theorem 2.1, we obtain

Example 2.9. Let n ∈ {1, 2}. Then for any p ∈ [1,+∞] the operator J + Jα is similar
to the operator J in Wn

p [0, 1] if and only if α ≥ 2.

Example 2.10. For the operator

(13) Fα : f →
∫ x

0

[
1 + (x− t) lnα a

x− t

]
f(t) dt, a > 1, α ∈ R,

to be similar to the operator J of integration in Wn
p [0, 1] (n ∈ {1, 2}) it is necessary and

sufficient that α ≤ 0.

Example 2.11. Consider an operator

(14) Fαβ : f →
∫ x

0

[
1 + (x− t) lnα lnβ a

x− t

]
f(t) dt, a > 1, α ∈ R, β > 0,

in Wn
p [0, 1] (n ∈ {1, 2}). For the operator Fαβ to be similar to the operator J of integra-

tion in Wn
p [0, 1] it is necessary and sufficient that α ≤ 0.

Remark 2.12. For the space Lp[0, 1] both Theorem 2.1 and Proposition 2.8 have been
obtained by M. M. Malamud in [13]. Note in conclusion, that the assumptions on an
operator K to be similar to the integration operator in the spaces W j

n[0, 1] (n ∈ {1, 2})
do not require an additional smoothness comparatively with the case of the space Lp[0, 1]
(the case n = 0).

3. Sufficient conditions of similarity of K and Jα in Wn
p [0, 1]

In this section we consider sufficient conditions of similarity.
We next need the following lemmas.

Lemma 3.1. Let k(·), km(·) ∈ Wn−1
p [0, 1]∩W 2

1 [0, 1] and generate in Wn
p [0, 1] operators

K and Km by (1), and k(0) = km(0) = 1. Let also ‖Km −K‖W n−1
p [0,1] → 0 as m →∞.

Then there exists a sequence Vm of transformation operators (V −1
m KmVm = J) such

that limm→∞ ‖Vm − V ‖W n
p [0,1] = 0, where V is a transformation operator for K, i. e.,

V −1KV = J .
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Proof. For the space W 0
p [0, 1] := Lp[0, 1] the proof has been given in [14].

Note that under the conditions of lemma the operators Km and J are similar in
Lp[0, 1]. Hence we have a sequence of transformation operators Ṽm (J = Ṽ −1

m KmṼm)
such that limm→∞ ‖Ṽm − Ṽ ‖Lp[0,1] = 0.

The similarity of the operators Km and J in Sobolev space Wn
p [0, 1] follows from the

Theorem 2.1.
Moreover the transformation operator has the form

Vm : f →


JnṼmJ−n 0 0 . . . 0

0 I 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 I 0
0 0 0 0 I




f0

cn−1x
n−1

. . .
c1x
c0


where I is an identity operator and f = f0 + cn−1x

n−1 + cn−2x
n−2 + · · · + c1x + c0,

f0 ∈ Wn
p,0[0, 1].

Hence ‖Vm − V ‖W n
p [0,1] = ‖Jn(Ṽm − Ṽ )J−n‖W n

p,0[0,1] = ‖Ṽm − Ṽ ‖Lp[0,1] → 0 as m →
∞. �

We next need the following lemma, due to M. M. Malamud [14].

Lemma 3.2 ([14]). Let f(x) ∈ Wn
p [0, 1], and αm = pm/qm be a sequence of rational

numbers such that αm → α > 0 as m →∞. Then for each m the equation
(15)

pm∑
l=2

Cl
pm

∫ x

0

∫ s1

0

· · ·
∫ sl−2

0

u(x− s1)u(s1 − s2) · · ·u(sl−1) dsl−1 · · · ds1 + pmum(x)

=
qm∑
j=2

Cj
qm

∫ x

0

∫ s1

0

· · ·
∫ sj−2

0

f(x− s1)f(s1 − s2) · · · f(sj−1) dsj−1 · · · ds1 + qmf(x)

has a unique solution um(x) ∈ Wn
p [0, 1], while

(16) lim
m,n→∞

‖un − um‖W n
p [0,1] = 0.

We next assert:

Theorem 3.3. Suppose k(·) ∈ Wn+m−2
p [0, 1], k(0) = k′(0) = · · · = k(m−2)(0) = 0, and

k(m−1)(0) = 1; then there exists a function h(t) ∈ Wn−1
p [0, 1] such that the operator

(17) H : f →
∫ x

0

h(x− t)f(t) dt

is bounded on Wn
p [0, 1] and satisfies the condition Hm = K, where h(0) = 1.

Proof. Let us prove that there exists a function h(t) ∈ Wn−1
p [0, 1] such that

(18)
∫ x

0

∫ s1

0

· · ·
∫ sm−2

0

h(x− s1)h(s1 − s2) · · ·h(sm−1) dsm−1 · · · ds1 = k(x).

Differentiating (18) m times, we get

(19)

m∑
l=2

Cm
l

∫ x

0

∫ s1

0

· · ·
∫ sl−2

0

u(x− s1)u(s1 − s2) · · ·u(sl−1) dsl−1 · · · ds1

+(m− 1)u(x) = k(m)(x).
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Since k(m)(x) ∈ Wn−2
p [0, 1], then by Lemma 3.2 there exists a unique solution u(t) of

the equation (19) such that u(t) ∈ Wn−2
p [0, 1]. Hence

(20) h(x) =
∫ x

0

u(t) dt + 1.

is a solution of (18) and h(t) ∈ Wn−1
p [0, 1]. This proves the theorem. �

Now we are ready to prove the following result on similarity between K and Jm.

Theorem 3.4. Let K be an operator of the form (1) with the kernel k(·) ∈ Wn+m−2
p [0, 1]

∩ W 2
1 [0, 1] and k(0) = · · · = k(m−2)(0) = 0, k(m−1)(0) = 1. Then the operator K is

similar to the operator Jm in the spaces Wn
p [0, 1] for p ∈ [1,+∞].

Proof. By Theorem 3.3 there exists an operator H of the form (17) such that Hm = K,
where h(t) ∈ Wn−1

p [0, 1]. It follows from (20) that h(0) = 1. Therefore by Theorem
2.1, the operators H and J are similar (LHL−1 = J). Raising this equation to the mth
power, we obtain the required result. �

Theorem 3.5. Let k(·) ∈ Lα+n−2
p [0, 1] ∩ Lα

p,0[0, 1] ∩ Lα+1
1 [0, 1], either α > n − 1

p or
α ∈ N. Then the operator

(21) Jα + K : f → 1
Γ(α)

∫ x

0

(x− t)α−1f(t) dt +
∫ x

0

k(x− t)f(t) dt

is similar to the operator Jα in Sobolev spaces Wn
p [0, 1], p ∈ [1,+∞].

Proof. The proof is similar to that of Theorem 2 in [14].
1. Let α = r/q be rational.
Then (Jα + K)q = Jr +

∑q
l=1 Cl

qJ
(q−l)r/qKl = Jr + F . It easy to see that the kernel

f(x− t) of operator F satisfies the hypothesis of Theorem 3.4 for m = r. Consider one
summand Fl = J (q−l)r/qKl. The kernel fl(x− t) of the operator Fl has the form

(22) fl(x) =
xr−rl/q−1

Γ(r − rl/q)
∗ kl(x)

where kl(x − t) is the kernel of the operator Kl. By hypothesis, k(x) ∈ Lα+n−2
p [0, 1] ∩

Lα
p,0[0, 1]. It follows from (4) that k(x) = xr/q−1

Γ(r/q) ∗φ(x), where φ(x) ∈ Wn−2
p [0, 1]. Hence,

using the commutativity of convolution, we get

(23) kl(x) = [k(x)]l =
(

xr/q−1

Γ(r/q)
∗ φ(x)

)
∗ · · · ∗

(
xr/q−1

Γ(r/q)
∗ φ(x)

)
=

xlr/q−1

Γ(lr/q)
∗ φl(x),

where φl(x) = [φ]l = φ ∗ φ ∗ · · · ∗ φ︸ ︷︷ ︸
l

. Combining (22) and (23), we obtain

(24) fl(x) =
xr−rl/q−1

Γ(r − rl/q)
∗ xlr/q−1

Γ(lr/q)
∗ φl(x) =

xr−1

Γ(r)
∗ φl(x) = Jrφl(x).

Thus, it follows from (22) that

(25) f(x) =
q∑

l=1

Cl
qJ

rφl(x) =
q∑

l=1

1
Γ(r)

Cl
q

∫ x

0

(x− t)r−1φl(t) dt.

Since φ(x) ∈ Wn−2
p [0, 1], then φl(x) ∈ Wn−2

p [0, 1]. It follows from (25) that f(x) ∈
W r+n−2

p [0, 1] ∩ W r
p,0[0, 1]. Hence by Theorem 3.4, the operator Jr + F is similar to

the operator Jr in Wn
p [0, 1], i. e., V (Jr + F )V −1 = Jr. Consider the operator G =

V (Jr/q + K)V −1. It is clear that Gq = Jr and G is the Hilbert-Schmidt operator
commuting with the operator of integration J . Hence, G is a convolution operator. It is
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follows from [20, Theorem 3] that G = εJr/q (εq = 1). It is clear that ε = 1. In fact, the
transformation operator V has the form V f = exp(cx)

[
f(x) +

∫ x

0
Nm(x, t)f(t) dt

]
. By

definition, put β(x) = xr/q−1 + Γ(r/q)k(x). Using the equation G = εJr/q, we get

(26) ε
[
(x− t)r/q−1ect + (x− t)r/q−1 ∗ (ecxN(x, t))

]
= ecxβ(x−t)+ecxN(x, t)∗β(x−t).

Since by hypothesis k(x) ∈ Lα+n−2
p [0, 1] ∩ Lα

p,0[0, 1], it follows from (4) that k(x) =
xr/qβ1(x), where β1(x) =

∫ 1

0
(1−u)α−1k(α)(ux) du. Substituting s = x− (x− t)u in (26),

we get

ε
[
(x− t)r/q−1ect + (x− t)r/q

∫ 1

0

ur/q−1ec(x−(x−t)u)N(x− (x− t)u, t) du
]

= ecx(x− t)r/q−1 + ecx(x− t)r/q−1β1(x− t)

+ (x− t)r/q

∫ 1

0

ecxN(x, x− (x− t)u)
[
(1− u)r/q−1 + (1− u)r/q−1β2(x− t)u

]
du,

where β2(x) = xβ1(x). Dividing the last equation by (x− t)r/q−1 and setting x = t, we
get ε = 1.

2. Let α be irrational.
By hypothesis of the theorem, k(x) = xr/q−1

Γ(r/q) ∗ φ(x), where φ(x) ∈ Wn−2
p [0, 1]. Then

there exists a sequence of rational numbers αm = rm/qm such that αm → α as m →∞.
Consider the sequence of kernels pm(x) = xαm−1

Γ(αm) ∗ φ(x). It is easy to see that pm(x) ∈
Lαm+n−2

p [0, 1] ∩ Lαm
p,0 [0, 1]. Then it follows from the previous step that the operators

Jαm + Pm of the form

Jαm + Pm : f → 1
Γ(αm)

∫ x

0

(x− t)αm−1f(t) dt +
∫ x

0

pm(x− t)f(t) dt

are similar to the operators Jαm . We have (Jαm + Pm)qm = Jrm + Gm, where Gm are
the operators of the form (1) with the kernels gm(x− t), where

(27) gm(x) =
qm∑
l=1

Cl
qm

Jαm(qm−l)φl(x).

Consider the equation

(28)

rm∑
l=2

Cl
rm

∫ x

0

∫ s1

0

· · ·
∫ sl−2

0

u(x− s1)u(s1 − s2) · · ·u(sl−1) dsl−1 · · · ds1

+rmum(x) = gm(x).

It follows from Lemma 3.2 that the sequence um(x) is fundamental in Wn−2
p [0, 1]. Let

Hm (Hmf =
∫ x

0
hm(x− t)f(t)dt) be the root of degree rm of the operator Jrm +Gm such

that hm(0) = 1. Then, as is known [20, 13], hm(x) =
∫ x

0
um(t)dt + 1, where um(x) is a

solution of (28). Hence the sequence hm(x) is fundamental in Wn−1
p [0, 1]. By Lemma 3.1,

there exists a sequence Vm of transformation operators (VmHmV −1
m = J) that converge

to some (invertible) operator V in the uniform norm in Wn
p [0, 1]. It remains to note that

Vm is a transformation operator for the operator Jαm + K, and pass to the limit in the
equation Vm(Jαm + K) = JαmVm as m →∞. �

Example 3.6. Let p ∈ [1,+∞] and either α > n− 1
p or α ∈ N. For an operator

(29) (Jα + Jβ) : f →
∫ x

0

[
(x− t)α−1

Γ(α)
+

(x− t)β−1

Γ(β)

]
f(t) dt
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to be similar to the operator Jα in Wn
p [0, 1] it is sufficient that β > max{α + n − 1 −

1
p , α + 1}.

4. Necessary conditions of similarity of K and Jα in Wn
p [0, 1]

We consider necessary conditions of similarity.

Theorem 4.1. Let k(l)(x) ≥ 0, x ∈ [0, 1], l ∈ {0, . . . , n − 1} and k(x) not increase on
some segment [0, ε], and k(x)xα−1 →∞ as x → 0. Then for any n ∈ Z+ and p ∈ 1,+∞]
the operator

(30) (Jα + K) : f →
∫ x

0

[
(x− t)α−1

Γ(α)
+

(x− t)2α−1

Γ(2α)
k(x− t)

]
f(t) dt, α > 0,

is not similar to the operator Jα in the space Wn
p [0, 1].

Proof. The proof is similar to that of Theorem 9 in [17] and Theorem 2 in [14]. If the
operator Q with the kernel q(x) acts in the space Wn

p,0[0, 1], then

‖Qf‖p
W n

p [0,1] =
∥∥∥∥∫ x

0

q(x− t)f(t) dt

∥∥∥∥p

W n
p [0,1]

=
n−1∑
k=0

∣∣∣∣(∫ x

0

q(x− t)f(t) dt

)(k)

(0)
∣∣∣∣p

+
∥∥∥∥(∫ x

0

q(x− t)f(t) dt

)(n)∥∥∥∥p

Lp[0,1]

=
n−2∑
k=0

∣∣∣∣ k∑
l=0

q(l)(0)f (k−l)(0)
∣∣∣∣p

+
∫ 1

0

∣∣∣∣n−1∑
k=0

q(k)(x)f (n−k−1)(0) +
∫ x

0

q(x− t)f (n)(t) dt

∣∣∣∣pdx.

It is clear that the norm of the operator Q is reached for the functions f such that
f (k)(0) > 0 (k ∈ {0, . . . , n− 1}) and f (n)(x) > 0.

Let Q1 and Q2 be the operators of the form (1). It follows from the inequalities

0 ≤ q
(j)
1 (x− t) ≤ q

(j)
2 (x− t), j ∈ {0, . . . , n− 1},

that ‖Q1‖W n
p [0,1] ≤ ‖Q2‖W n

p [0,1].
It is clear that ‖(Jα + K)m‖ ≥ m‖Jα(m−1)K‖. It is easy to see that the kernel of

Jα(m−1)K has the form

k1(x− t) =
∫ x−t

0

[(x− t)− u]α(m−1)−1

Γ(α(m− 1))
u2α−1

Γ(2α)
k(u) du.

Setting u = (x− t)s, we obtain

k1(x− t) =
(x− t)αm+α−1

Γ(α(m− 1))Γ(2α)

∫ 1

0

k(s(x− t))(1− s)α(m−1)−1s2α−1ds.

Since k(x) is monotonically nonincreasing on [0, 1], we have k(s(x− t)) ≥ k(s), t ∈ [0, 1].
Therefore

k1(x− t) ≥ (x− t)αm+α−1

Γ(α(m− 1))Γ(2α)

∫ 1

0

k(s)(1− s)α(m−1)−1s2α−1ds

≥ (x− t)αm+α−1

Γ(α(m− 1))Γ(2α)

∫ 1/m

0

k(s)(1− s)α(m−1)−1s2α−1ds

≥ (x− t)αm+α−1

Γ(α(m− 1))Γ(2α)
k

(
1
m

) ∫ 1/m

0

(1− s)α(m−1)−1s2α−1ds

≥ (x− t)αm+α−1

Γ(αm + α)
· Γ(αm + α)
Γ(α(m− 1))m2α

· 1
Γ(2α + 1)

k

(
1
m

) (
1− 1

m

)α(m−1)−1

.
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Finally,

‖(Jα + K)m‖
‖Jαm‖

≥ c ·m · k
(

1
m

)
·
(

1− 1
m

)α(m−1)−1

· ‖J
αm+α‖
‖Jαm‖

· Γ(αm + α)
Γ(α(m− 1))m2α

= c · k
(

1
m

)
·
(

1− 1
m

)αm−α−1

· Γ(αm + α)(αm)αm

Γ(αm− α)m2α−1(αm + α)αm+α

× (αm + α)αm+α‖Jαm+α‖
(αm)αm‖Jαm‖

.

By assumption, k
(

1
m

) (
1
m

)α−1 →∞ as m →∞.
It follows from the asymptotic of gamma-function Γ(x) =

√
2πxxxe−x[1 + O(1)] as

x →∞ that(
1− 1

m

)α(m−1)−1

k

(
1
m

)
Γ(αm + α)(αm)αm

Γ(α(m− 1))m2α−1(αm + α)αm+α
→∞ as m →∞.

Since the order of growth of the resolvent of Jα equals 1/α, and the type of growth is
the length of the interval of integration, by the theorem on the connection between the
growth of an entire function and the rate of decrease of the coefficients of its power series
expansion, we obtain

lim
m→+∞

(α(m + 1))α(m+1)‖Jα(m+1)‖
(αm)αm‖Jαm‖

≥ lim
m→+∞

(αm)α m
√
‖Jαm‖ = (e)α.

Hence ‖(Jα+K)m‖
‖Jαm‖ → +∞. This contradiction concludes the proof.

�

Example 4.2. Suppose that p ∈ [1,+∞] and either α > n − 1
p or α ∈ N. If β <

min{2α, α + 1} then the operator Jα + Jβ of the form (29) is not similar to the operator
Jα in Wn

p [0, 1].

Theorem 4.3. Let k(l)(x) ≥ 0, x ∈ [0, 1], l ∈ {0, . . . , n − 1} and k(x) not increase on
some segment [0, ε], for some ε > 0.

Then the operator

(31) (Jα + K) : f →
∫ x

0

[
(x− t)α−1

Γ(α)
+

(x− t)α

Γ(α)
k(x− t)

]
f(t) dt, α ≥ 1

is not similar to the operator Jα in Wn
p [0, 1] for any p ∈ [1,+∞], n ∈ Z+.

The proof is similar to that of Theorem 4.1.
Combining Example 3.6 and Example 4.2, we obtain the following statement.

Corollary 4.4. Suppose either α > n − 1/p or α ∈ N. Then the operator Jα + Jβ

is similar to the operator Jα if and only if β ≥ α + 1 in the space Wn
p [0, 1] for any

p ∈ [1,+∞], n ∈ {1, 2}.

Remark 4.5. I. Domanov and M. Malamud [1] have described the lattices LatJα
n and

Hyplat Jα
n of invariant and hyperinvariant subspaces of the operator Jα

n defined on
Wn

p [0, 1] and investigated the operator algebras Alg Jα
n , commutant {Jα

n }′ and double
commutant {Jα

n }′′.
Note that similar operators have equivalent geometrical structure. So as a corollary

of similarity of the operators K and Jα we obtain a description of the lattices LatK
and HyplatK of invariant and hyperinvariant subspaces of the operator K in Wn

p [0, 1],
(1 ≤ p < +∞). We also can investigate the operator algebras Alg K, commutant {K}′
and double commutant {K}′′ of the operator K being similar to Jα in Wn

p [0, 1], (1 ≤
p < +∞).



ON SIMILARITY OF CONVOLUTION VOLTERRA OPERATORS IN SOBOLEV SPACES 295

References

1. I. Yu. Domanov, M. M. Malamud, Invariant and hyperinvariant subspaces of an operator Jα

and related operator algebras in Sobolev spaces, Linear Algebra Appl. 348 (2002), no. 1–3,
209–230.

2. G. S. Dud’eva, On similarity of Volterra operators in Sobolev spaces, Methods Funct. Anal.
Topology 5 (1999), no. 2, 1–11.

3. M. M. Dzharbashyan, Integral Transformations and the Representations of Functions in the
Complex Domain, Nauka, Moscow, 1966.

4. R. Frankfurt, Spectral analysis of finite convolution operators, Trans. Amer. Math. Soc. 214
(1975), no. 3, 279–301.

5. R. Frankfurt and J. Rovnyak, Finite convolution operators, J. Math. Anal. Appl. 49 (1975),
347–374.

6. R. Frankfurt and J. Rovnyak, Recent results and unsolved problems on finite convolution op-
erators, Linear spaces and approximation (Proc. Conf., Math. Res. Inst., Oberwolfach, 1977)
(Basel), Internat. Schriftenreihe Numer. Math., vol. 40, Birkhäuser, 1978, pp. 133–150.
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