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ON ENVELOPING C∗-ALGEBRA OF ONE AFFINE
TEMPERLEY-LIEB ALGEBRA

YURĬI SAVCHUK

Abstract. C∗-algebras generated by orthogonal projections satisfying relations of
Temperley-Lieb type are constructed.

1. Introduction

In the present paper we construct an enveloping C∗-algebra of ∗-algebra Aτ , generated
by orthogonal projections satisfying relations of Temperley-Lieb type. Temperley-Lieb
algebras appeared in the context of ice-type models, in the analysis of subfactors of II1
factors and in the theory of knots (see, e.g. [7, 4]). And were later studied in depth, see
[3, 11] for example.

Let a number τ ∈ [0, 1] be fixed. Then the algebra Aτ is a ∗-algebra over C generated
by three orthogonal projections p1, p2, p3 (p∗i = p2

i = pi) with relations of Temperley-
Lieb type between any two of them

(1) pipjpi = τpi, pjpipj = τpj , i, j ∈ {1, 2, 3}, i 6= j.

This ∗-algebra is sometimes called an affine Temperley-Lieb algebra TL(Ã3).
By a representation of ∗- or C∗-algebra we mean a ∗-homomorphism into the algebra

B(H) of bounded operators on a Hilbert space.
We recall the definition of an enveloping C∗-algebra.

Definition 1. Let A be a ∗-algebra, having at least one representation. Then a pair
(A, ρ) of a C∗-algebra A and a homomorphism ρ : A −→ A is called an enveloping pair
for A if every irreducible representation π:A −→ B(H) factors uniquely through A, i.e.,
there is precisely one irreducible representation π1 of the algebra A satisfying π1 ◦ρ = π.
The algebra A is called an enveloping C∗-algebra for A.

If A is ∗-algebra we denote by C∗(A) it’s enveloping C∗-algebra (if it exists).
Below we will need an analogue of Stone-Weierstrass theorem for C∗-algebras. To

formulate the theorem we need the following.

Definition 2. Let B ⊆ A be two ∗-algebras. An algebra B is called massive in A if two
conditions hold:

(1) for every irreducible representation π of ∗-algebra A the restriction π|B is irre-
ducible;

(2) if π and π′ are non-equivalent irreducible representations, then π|B and π′|B are
again non-equivalent.

Statement 1. For every GCR−C∗-algebra A, and massive sub-C∗-algebra B ⊆ A, we
have A = B.
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We will use the well-known fact that C∗-algebras having only finite-dimensional ir-
reducible representations are GCR-algebras (see [1]) so for such C∗-algebras the Stone-
Weierstrass theorem holds.

Note that Aτ has only finite dimensional irreducible ∗-representations. The proof can
be found in [10]. The next theorem gives a description of all irreducible ∗-representations
of Aτ (see [6] for the proof).

Theorem 1. Let π be a nontrivial irreducible ∗-representation of the algebra Aτ in a
finite dimensional Hilbert space H. Then in H there exists an orthonormal basis such
that, in this basis,

π(p1) =

 1 0 0
0 0 0
0 0 0

 ,

π(p2) =

 τ
√

τ − τ2 0√
τ − τ2 1− τ 0

0 0 0

 ,(2)

π(p3) =

 τ λ µ

λ |λ|2
τ

λµ
τ

µ µλ
τ

µ2

τ

 ,

where the parameter λ ∈ C is such that

|τ2 + λ
√

τ − τ2| = τ3/2,(3)

|λ| ≤
√

τ − τ2,(4)

and µ =
√

τ − τ2 − |λ|2.

Remark 1. Representations corresponding to different admissible values of the parameter
λ are not equivalent.

Remark 2. We consider all finitely-generated ∗-algebras to have a unit. So, for every
fixed τ ∈ [0, 1], the algebra Aτ has one additional one-dimensional representation, pi 7→
0, e 7→ 1, where e is the unit in Aτ .

For a fixed τ , the algebra Aτ can have a lot of ∗-representations. They are parameter-
ized by λ. From (3) we obtain that λ belongs to a circle O1 with center

(
−τ

√
τ

1−τ , 0
)

and radius τ
√

1
1−τ . From (4) we get that λ belongs to O2 with center (0, 0) and radius

√
τ − τ2. It is easy to show that the following holds.

(1) If τ = 0 then there exist three one-dimensional representations; one projection
is equal to 1 and other two are 0.

(2) If τ ∈ (0, 1/4) then the circle O1 is entirely in the disk O2. So λ belongs to the
whole circle O1 and dimensions of nontrivial irreducible ∗-representations are
equal to 3.

(3) If τ = 1/4 we get that the circle O1 is still in the disk O2 but they have one com-
mon point B. So, λ belongs to the whole circle O1 and dimensions of nontrivial
irreducible ∗-representations are equal to 3 when λ 6= B and to 2 otherwise.

(4) If τ ∈ (1/4, 1) then λ belongs to the arc ^ CD of the circle O1 which is inside
the disk O2. And dimensions of nontrivial irreducible ∗-representations are equal
to 3 when λ 6= C,D and to 2 otherwise.

(5) If τ = 1 we have that λ = 0, µ = 0 and the only nontrivial irreducible ∗-repre-
sentation is π(p1) = π(p2) = π(p3) = 1.
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Representations can be parameterized by values of the argument of λ. For every τ ∈
[0, 1] choose ϕτ such that the arguments of the corresponding λ’s lie in the interval
[−ϕτ , ϕτ ]. For τ ∈ [0, 1/4] we have that ϕτ = π, for τ ∈ (1/4, 1) we have 0 < ϕτ < π
and for τ = 1, ϕτ = 0.

2. Enveloping C∗-algebras

In this section we describe some C∗-algebras related to a family of the ∗-algebras Aτ .
Let S1 denote the unit circle in the complex plane. If f(·) is a matrix-valued function,

we denote by fij(·) the corresponding matrix element.

Theorem 2. The C∗-algebra C∗(Aτ ) can be realized as follows:
(1) if τ = 0 then

C∗(Aτ ) ' C⊕ C⊕ C⊕ C;

(2) if 0 < τ < 1/4 then

C∗(Aτ ) '
{
f ∈ C(S1 → M3(C))

}
⊕ C;

(3) if τ = 1/4 then

C∗(Aτ ) '
{
f ∈ C(S1 → M3(C))|f(−1) ∈ M2(C)⊕ C

}
;

(4) let 1/4 < τ < 1 and Iτ =
{
eiϕ| − ϕτ ≤ ϕ ≤ ϕτ

}
, where ϕτ is specified above,

then
C∗(Aτ ) '

{
f ∈ C(Iτ → M3(C)) | f(e−iϕτ ), f(eiϕτ ) ∈ M2(C)⊕ C,

f33(e−iϕτ ) = f33(eiϕτ )
}
;

(5) if τ = 1 then
C∗(Aτ ) ' C⊕ C.

Proof. We give proof only for the case where 0 < τ < 1/4. For other cases, the proof is
similar. Since π(pi) in formulas (2) can be considered as functions of the argument of λ,
we can introduce the functions Pi(eiϕ) := (π(pi))(λ), i = 1, 2, 3, where λ = |λ|eiϕ. To
obtain the assertion of the theorem we will make the next two steps.

(1) Let Â ⊆ C(S1 −→ M3(C))⊕ C be the C∗-algebra generated by (Pi(eiϕ), 0) and

the unit, (Eiϕ, 1), where E(eiϕ) ≡

1 0 0
0 1 0
0 0 1

 . It is easy to check that Â is an

enveloping C∗-algebra of Aτ . Indeed, we have a homomorphism of Aτ into Â,
which satisfies the universal property, so Â is an enveloping algebra by definition.

(2) We will show that Â coincides with

A =
{
f ∈ C(S1 → M3(C))

}
using Statement 1.

Let us check that Â ⊆ A. Indeed, it is easy to check that Pi(eiϕ) are continuous
matrix-functions, so we have Pi(eiϕ) ∈ A.

We need to check that Â is a massive sub-C∗-algebra in A. To check that
Â satisfies the definition of a massive subalgebra, we use the description of all
irreducible representations of A. Let π1 and π2 be two irreducible 3-dimensional
non-equivalent representations of A. Then there exist eiϕ1 , eiϕ2 ∈ S1, eiϕ1 6=
eiϕ2 such that the representations πi, i = 1, 2, are unitarily equivalent to the
representations

π̃i : A → M3(C), f 7→ f(eiϕ), i = 1, 2.
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To check that the restrictions of π̃i to Â are again irreducible and non-equivalent,
note that their restrictions to Aτ are irreducible and non-equivalent by Theo-
rem 1.

So, by Statement 1 we have Â = A.
To prove the theorem for other values of τ, use the description of irreducible representa-
tions for the corresponding A and Â. �

Remark 3. The previous theorem implies that there exist five isomorphism classes of the
algebras C∗(Aτ ). Isomorphisms of algebras C∗(Aτ1), C∗(Aτ2), 1/4 < τ1, τ2 < 1, can be
constructed by using the natural homeomorphisms of the intervals Iτ1 and Iτ2 .

Now we consider the so-called com-algebra related to the family Aτ . Namely, let

Acom = C
〈
P1, P2, P3, T |P 2

i = Pi = P ∗
i , PiT = TPi, T ∗ = T,

PiPjPi = TPi, i ∈ {1, 2, 3}
〉
.

Our aim is to describe C∗(Acom), which in some sense is a direct integral of the algebras
C∗(Aτ ). Indeed, by Schur’s lemma, in every irreducible representation, T = τI and it is
known from [10] that τ ∈ [0, 1], so the algebra Acom ”contains” all representations of the
algebras Aτ .

To describe C∗(Acom) we consider the space Dcom ⊂ I × S1, where I = [0, 1]. The
space Dcom consists of points (τ, eiϕ), where −ϕτ ≤ ϕ ≤ ϕτ .

Theorem 3. The algebra C∗(Acom) can be realized as an algebra of pairs of matrix-
functions,

C∗(Acom) '
{

(f, g)|f ∈ C(Dcom → M3(C)), g ∈ C(I → C),

f(0, eiϕ) = f(0, 1) ∈ C⊕ C⊕ C, ∀ϕ ∈ (−π, π], f(1/4,−1) ∈ M2(C)⊕ C,

f(τ, eiϕτ ), f(τ, e−iϕτ ) ∈ M2(C)⊕ C,

f33(τ, eiϕτ ) = f33(τ, e−iϕτ ) = g(τ), τ ∈ [1/4, 1),

f(1,−1) ∈ C⊕ C⊕ C, f22(1,−1) = f33(1,−1) = g(1)
}

.

(Operations in the algebra are pointwise and the norm is the usual, ‖(f, g)‖ =
max(‖f‖ , ‖g‖) .)

Proof. We introduce the matrix-functions Pi(τ, eiϕ) given by formulas (2) defined on the
space

{
(τ, eiϕ) ∈ Dcom| τ 6= 0

}
. Use (3) and (4) to define Pi(τ, eiϕ) on the whole space

Dcom by continuity. To end the proof note that the elements (Pi(τ, eiϕ), 0), i = 1, 2, 3, and

the unit element
( 1 0 0

0 1 0
0 0 1

 , 1
)

generate C∗(Acom) and use Statement 1 to establish

the required isomorphism. �
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