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∗-WILDNESS OF SOME CLASSES OF C∗-ALGEBRAS

SERGIO ALBEVERIO, KATE JUSHENKO, DANIIL PROSKURIN, AND YURII SAMOILENKO

Dedicated to the memory of Yurii Daletskii.

Abstract. We consider the complexity of the representation theory of free products
of C∗-algebras. Necessary and sufficient conditions for the free product of finite-
dimensional C∗-algebras to be ∗-wild is presented. As a corollary we get criteria for
∗-wildness of free products of finite groups. It is proved that the free product of a
non-commutative nuclear C∗-algebra and the algebra of continuous functions on the
one-dimensional sphere is ∗-wild. This result is applied to estimate the complexity of
the representation theory of certain C∗-algebras generated by isometries and partial
isometries.

Introduction

The problem of estimating the complexity of the representation theory of a certain
C∗-algebra (∗-algebra) is one of important questions of representations theory. In order
to compare C∗-algebras according to the complexity of their categories of representa-
tions S. A. Kruglyak and Yu. S. Samoilenko proposed the partial order �, see [6, 7].
Informally, if A and B are C∗-algebras, then A � B if the problem of classification of
∗-representations of A contains, as a subproblem, a classification of ∗-representations
of B, see Preliminaries below for precise definitions. A C∗-algebra A is called ∗-wild if
A � C∗(F2), where F2 is free group with two generators. In fact, if a C∗-algebra is
∗-wild, then the problem of unitary classification of its irreducible representations con-
tains, as a subproblem, the problem of classification of irreducible representations of any
finitely-generated C∗-algebra, see [6].

The notion of ∗-wildness is closely related to the notion of a free product, see [13]
for details on the free products of algebras like C∗-algebras and von Neumann algebras.
Indeed, the model example of a ∗-wild C∗-algebra, the algebra C∗(F2), is the C∗-free
product of two copies of C(T), the algebra of continuous functions on the circle. A
natural problem that arises is to establish when free products of C∗-algebras are ∗-wild.

In this paper we give a complete answer for free products of finite-dimensional C∗-
algebras.

The next step is to consider free products of non-commutative and commutative al-
gebras. In this paper we show that the free product of a non-commutative nuclear
algebra having non-trivial projection and C(T) is ∗-wild. In particular, this fact implies
∗-wildness of the algebras Mn(C) ∗C(T), n ≥ 2. This result is then applied to prove the
∗-wildness of C∗-algebras generated by partial isometries with linearly dependent range
projections and C∗-algebras generated by families of q-commuting isometries (pairs of
q-commuting isometries were also studied in [4]).

The paper is organized as follows. In preliminaries we modify the definition of ma-
jorization given in [6, 7], to make it less restrictive but preserving the most important
properties of majorization. Then we give a definition of ∗-wild C∗-algebra and list basic
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properties of ∗-wild C∗-algebras. Finally, we recall the definitions and some properties
of free products of C∗-algebras.

In Section 1, we study free products of finite-dimensional C∗-algebras. Namely, we
give criteria of ∗-wildness for such free products. As a corollary we obtain necessary and
sufficient conditions for ∗-wildness of free products of finite groups.

In Section 2.1, it is proved that the C∗-free product of a nuclear C∗-algebra with a
projection and C(T) is ∗-wild. In Section 2.2, we apply this result to prove ∗-wildness
of certain C∗-algebras generated by isometries and partial isometries.

0. Preliminaries

0.1. Enveloping C∗-algebras. In this subsection we recall the definitions of the en-
veloping C∗-algebra and the group C∗-algebra, which can be found for example in [3], [5].

Let A be a ∗-algebra. The C∗-algebra Ã with a ∗-homomorphism ϕ : A 7→ Ã is called
an enveloping C∗-algebra of the algebra A if for every representation π : A → B(H) of A
there exists a unique representation π̃ : Ã → B(H) of Ã such that the following diagram
is commutative:

@
@

@
@@R

B(H)

A

?

Ã

ϕ

-

π̃

π

A group C∗-algebra of a group G is an enveloping C∗-algebra of the group ring C[G].
More precisely, the group C∗-algebra, C∗(G), is the completion of C[G] with respect to
the C∗-norm

‖a‖ = sup{π(a) : π ∈ Rep(C[G])}.

0.2. ∗-Wild C∗-algebras and their properties. Recall that the category of represen-
tations of a certain C∗-algebra A, denoted by RepA, has representations of A as objects
and intertwining operators as morphisms.

Definition 1. We say that a C∗-algebra A is majorized by a C∗-algebra B, A ≺ B, if
there exists a homomorphism

ϕ : B → C ⊗A,
where C is a nuclear C∗-algebra, and an irreducible representation

π̃ : C → B(H)

such that the functor
FC,ϕ,eπ : RepA → RepB

defined by

FC,ϕ,eπ(π) = (π̃ ⊗ π) ◦ ϕ, π ∈ Ob(RepA),

FC,ϕ,eπ(A) = 1⊗A, A ∈ Mor(π1, π2)

is full.

Remark 1. It can be shown, see [11], that if the functor FC,ϕ,eπ is full then it is automat-
ically faithful.
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Remark 2. Originally in [6, 7], the authors considered the matrix algebras Mn(C) with
the identical representation instead of an arbitrary nuclear C∗-algebra C in the definition
of majorization. However that definition was quite restrictive. Namely, if A has not
finite-dimensional irreducible representations, then A 6� C∗(F2) according to the original
definition. In Section 2 we present an example of such a majorization in our sense.

Let us show that the majorization is a partial order.

Proposition 1. If A ≺ B and B ≺ C, then A ≺ C.

Proof. Let Ci, i = 1, 2, be nuclear C∗-algebras and

π̃i : Ci → B(Hi), i = 1, 2

be their irreducible representations. By Definition 1, there are homomorphisms

ϕ1 : B → C1 ⊗A, ϕ2 : C → C2 ⊗ B

such that the induced functors FC,ϕi,eπ are full. Consider the homomorphism

ϕ := (id C2 ⊗ ϕ1) ◦ ϕ2 : C → C2 ⊗ C1 ⊗A

and the irreducible representation

π̃ := π̃2 ⊗ π̃1 : C2 ⊗ C1 → B(H2 ⊗H1).

Now we prove that the functor

FC,ϕ,eπ : RepA → Rep C

is full. Denote FC,ϕ,eπ(π) = (π̃ ⊗ π) ◦ ϕ by π̂. Then

π̂ = (π̃2 ⊗FC1,ϕ1,eπ1(π)) ◦ ϕ2 = FC2,ϕ2,eπ2(FC1,ϕ1,eπ1(π)).

Evidently, for any Λ ∈ Mor(π1, π2), πi ∈ Ob(RepA), one has

FC,ϕ,eπ(Λ) = 1⊗ 1⊗ Λ = FC2,ϕ2,eπ2(FC1,ϕ1,eπ1(Λ)).

Hence, FC,ϕ,eπ is full as a composition of functors. �

To give a definition of a ∗-wild C∗-algebra one has to fix some C∗-algebra with a
rather complicated category of representations. The group C∗-algebra of the free group
in two generators, C∗(F2), is a suitable candidate for this purpose, see [6].

Definition 2. A C∗-algebra A is ∗-wild if

C∗(F2) ≺ A.

By Proposition 1, a C∗-algebra majorizing a ∗-wild C∗-algebra is ∗-wild.
The following property of ∗-wild algebras is obvious.

Proposition 2. An extension of a ∗-wild C∗-algebra is ∗-wild.

Proof. Let A be a quotient of a ∗-wild C∗-algebra B and the majorization B � C∗(F2)
be given by a nuclear C∗-algebra C via a homomorphism

ϕ : B → C ⊗ C∗(F2)

and an irreducible representation π̃ : C → B(H). Denote by ψ : A → B the canonical
homomorphism. Then the majorization A � C∗(F2) is defined by the triple (C, ϕ◦ψ, π̃ ◦
ψ). �

In the next Proposition we show that ∗-wild C∗-algebras are not nuclear, see also [4].

Proposition 3. Let A be a ∗-wild C∗-algebra. Then A is not nuclear.
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Proof. It is sufficient to show that A has a representation generating a non-hyperfinite
factor, since any factor-representation of a nuclear C∗-algebra is hyperfinite. Since
C∗(F2) ≺ A, one has the homomorphism

ϕ : A → C ⊗ C∗(F2),

where C is a nuclear C∗-algebra, and the irreducible representation

π̃ : C → B(H)

is as in Definition 1.
Consider the representation π of C∗(F2) generating a non-hyperfinite factor. Put

(π̃ ⊗ π) ◦ ϕ := π1 and note that

(π̃ ⊗ π)(C ⊗ C∗(F2))′′ = B(H)⊗ π(C∗(F2))′′

is also a non-hyperfinite factor. Since the functor

F : RepC∗(F2)) → RepA
defined in Definition 1 is full, we have

π1(A)′ = (π̃ ⊗ π)(C ⊗ C∗(F2))′.

Hence,
π1(A)′′ = (π̃ ⊗ π)(C ⊗ C∗(F2))′′

is a non-hyperfinite factor. �

Similarly to the definition of a ∗-wild C∗-algebra, one can define the notion of a ∗-wild
group, see [11].

Definition 3. A group G is called ∗-wild iff its group C∗-algebra is ∗-wild.

Note that there exist non-amenable but not ∗-wild groups, see [11].

0.3. C∗-free products. Here we recall the definition of the free product of a family of
C∗-algebras, see [13] for details.

Definition 4. If (Ai)i∈I is a family of unital C∗-algebras, then their free product is
a unique unital C∗-algebra A = ∗i∈IAi and a unital ∗-homomorphisms ψi : Ai → A
such that, given any unital C∗-algebra B and a unital ∗-homomorphisms Φi : Ai → B,
there exists a unique unital ∗-homomorphism Φ = ∗i∈IΦi : A → B making the following
diagram commutative,

@
@

@
@@R

B

Ai

?

A

ψi

-

Φ

Φi

The definition of the free product of groups (algebras) is absolutely analogous. More-
over, it is easy to see that the free product of the family of group C∗-algebras is isomorphic
to the group C∗-algebra of the free product of the corresponding family of groups. In-
deed, let (Gi)i∈I be a family of groups. Then a unitary representation of the free product
∗i∈IGi is determined uniquely by its restrictions to the groups Gi. Since unitary rep-
resentations of a group are in one-to-one correspondence with ∗-representations of its
group C∗-algebra, by the universal property of the C∗-free product we get the required
isomorphism,

C∗(∗i∈IGi) ' ∗i∈IC∗(Gi).
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1. The free products of finite-dimensional C∗-algebras

In this section we show that the free product of finite-dimensional C∗-algebras is either
of type 1 or is ∗-wild. In fact, we give a criterion for ∗-wildness of such free products.
Throughout this section we use the old definition of majorization, i.e., A � B if there
exists n ∈ N and

ϕ : A →Mn(B) 'Mn(C)⊗ B
such that the corresponding functor Fϕ : RepB → RepA is full. Here by Fϕ we mean
FMn(C),ϕ,idn

and
idn : Mn(C) →Mn(C)

denotes the identical representation.
Since any finite-dimensional C∗-algebra is ∗-isomorphic to the direct sum of matrix

algebras over C, see for example [10], our idea is to consider “elementary” free products
of the form ∗i∈IMni(C) for all possible values of ni ∈ N.

In the following, for A ∈Mk(C) and B ∈Mn(C), by A⊕B we mean the n+k×n+k
block-diagonal matrix of the form

A⊕B =
(
A 0
0 B

)
.

If A = (aij)ki,j=1 ∈Mk(C) and the element b belongs to some ∗-algebra B, we denote by
A⊗ b the element of Mk(B) of the form (b aij)ki,j=1.

1. Firstly we prove the ∗-wildness of the C∗-free product of two matrix-algebras with
k > 1 and n > 1.

Proposition 4. The C∗-algebra Mk(C) ∗Mn(C) is ∗-wild for every k > 1, n > 1.

Proof. Let (e(k)ij )ki,j=1 and (e(n)
ij )ni,j=1 be the matrix units of the algebras Mk(C) and

Mn(C), respectively. Let u, v be the generators and e be the unit of F2. Set L :=
LCM(n, k). We shall construct a ∗-homomorphism ψ : Mk(C) ∗Mn(C) →ML(C∗(F2))
by the following rule:

ψ(ek12) = e
(k)
12 ⊗ v ⊕

1
kL−1⊕

1

e
(k)
12 ⊗ e,

ψ(e(k+1)
ii+1 ) =

1
kL⊕
1

e
(k)
ii+1 ⊗ e, for 2 ≤ i ≤ k;

ψ(e(n)
12 ) = T (e(n)

12 ⊗ u⊕
1
nL−1⊕

1

e
(n)
12 ⊗ e)T ∗,

ψ(e(n)
ii+1) = T (

1
nL⊕
1

e
(n)
ii+1 ⊗ e)T ∗, for 2 ≤ i ≤ n.

Here

T =
(

1 − tanx
tanx 1

)
⊗ e⊕ IL−2 ⊗ e, x ∈

(
0,
π

2
)
,

Ik denotes the k × k identity matrix. In the right-hand sides of the above formulas, by
e
(k)
ij , (e(n)

ij ) we mean concrete k × k (n× n resp.) matrices.

Consider a representation π of F2 and any operator A =
(
ars

)L
r,s=1

commuting with

the operators (idL ⊗ π)(ψ(e(k)ij )), i, j = 1, . . . , k, and (idL ⊗ π)(ψ(e(n)
ij )), i, j = 1, . . . , n.
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It is just a routine to verify that

[A, (idL ⊗ π)(ψ(e(k)ij ))] = 0, i, j = 1, . . . , k,

and
[A, (idL ⊗ π)(ψ(enij))] = 0, i, j = 1 . . . , n,

implies A = diag(c, c, . . . , c) with [c, π(u)] = [c, π(v)] = 0, proving the fullness of the
functor Fψ. �

2. In the following proposition we study the free products of Ck, k ≥ 2.

Proposition 5. The C∗-algebra Cn ∗ Ck is ∗-wild iff n ≥ 2, k ≥ 3, n, k ∈ N. The
C∗-algebra C2 ∗ C2 ∗ C2 is ∗-wild.

Proof. Since for any family of groups {Gi, i ∈ I} one has C∗(∗i∈IGi) = ∗i∈IC∗(Gi), we
have the following isomorphisms:

Cn ∗ Ck ' C∗(Zn ∗ Zk),
C2 ∗ C2 ∗ C2 ' C∗(Z2 ∗ Z2 ∗ Z2).

As it was proved in [11], C∗(Z2 ∗Z2 ∗Z2) is ∗-wild and C∗(Zn ∗Zk) is ∗-wild if and only
if n ≥ 2, k ≥ 3. This yields the statement of the proposition. �

3. It remains to consider the product Ck ∗Mn(C).

Proposition 6. The C∗-algebra Cn ∗Mk(C) is ∗-wild iff n ≥ 2, k ≥ 2, n, k ∈ N.

Proof. Let (eij)ki,j=1 be matrix units of the algebra Mk(C) and let z be a generator of
C∗(Zn) ' Cn. It is known, see [11], that the group

Z2 ∗ Z3 =< u, v|v2 = u3 = e >

is ∗-wild. To prove the statement of the proposition we are going to construct a ∗-homo-
morphism

ϕ : Cn ∗Mk(C) →Ml(C∗(Z2 ∗ Z3)), for sufficient large l ∈ N

such that the corresponding functor Fϕ is full.

a) Let n = k = 2. Define

ϕ : C2 ∗M2(C) →M4(C∗(Z2 ∗ Z3))

by the following rule:

ϕ(z) =


v 0 0 0
0 0 e 0
0 e 0 0
0 0 0 −e

, ϕ(e12) = T


0 v 0 0
0 0 0 0
0 0 0 u
0 0 0 0

T ∗,

here T =


e 0 0 0
0 e 0 0
0 0 e −e tanx
0 0 e tanx e

, x ∈
(
0, π/2

)
.

One can directly check that the functor Fϕ generated by ϕ is full. Thus, C2 ∗M2(C) is
∗-wild.

b) Let n = 2, k ≥ 3. In this case we construct

ϕ : C2 ∗Mk(C) →Mk(C∗(Z2 ∗ Z3))
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as follows:

ϕ(z) =

 0 u−1 0
u 0 0
0 0 v

⊕ (Ik−3 ⊗ e), ϕ(eij) = eij ⊗ e, i, j = 1, . . . , k.

To prove that Fϕ is full we fix an arbitrary representation π of Z2∗Z3. Let A =
(
ars

)2

r,s=1

commute with (idk ⊗ π)(ϕ(eij)), i, j = 1, . . . , k, and (idk ⊗ π)(ϕ(z)). Then

[A, (idk ⊗ π)(ϕ(eij))] = 0, i, j = 1, . . . , k,

implies A = diag(a11, . . . , a11), and

[A, (idk ⊗ π)(ϕ(z))] = 0

gives [a11, π(u)] = [a11, π(v)] = 0, proving the fullness of the functor Fϕ.

c) Let n ≥ 3, k ≥ 2. Define a ∗-homomorphism

ϕ : Cn ∗Mk(C) →Mk(C∗(Zn ∗ Zn))
by the following rule:

ϕ(z) =
(
u 0
0 v

)
⊕ (Ik−2 ⊗ e), ϕ(eij) = eij ⊗ e, i, j = 1, . . . , k.

One can directly check, using similar arguments as in item b), that the functor Fϕ
generated by ϕ is full. Since C∗(Zn ∗ Zn) is ∗-wild, see [11], Cn ∗Mk(C) is also ∗-wild
for n ≥ 3, k ≥ 2. �

Proposition 7. Let A be a ∗-wild C∗-algebra and B be a finite-dimensional C∗-algebra.
Then A ∗ B is ∗-wild.

Proof. Evidently, it is sufficient to consider only the case B = Mn(C), n ∈ N. Construct
a homomorphism

φ : A ∗ B → B ⊗A
defined by φ(a) = 1⊗ a, a ∈ A, φ(b) = b⊗ 1, b ∈ B.

Let the majorization A � C∗(F2) be given by the homomorphism

ψ : A → C ⊗ C∗(F2), π̂ : C → B(K),

where C is a nuclear C∗-algebra and π̂ is its irreducible representation. Then the ma-
jorization A ∗ B is given by the homomorphism

(idB ⊗ ψ) ◦ φ : A ∗ B → B ⊗ C ⊗ C∗(F2)

and the irreducible representation id eB ⊗ π̂ : B ⊗ C → B(Cn ⊗K). �

Remark 3. The statement of the proposition above remains true if we suppose B to be
a nuclear C∗-algebra.

Now we combine the results of the previous propositions to get a criterion for ∗-wild-
ness of the C∗-free products of finite-dimensional C∗-algebras.

Theorem 1. The C∗-free product ∗i∈IAi of a family of finite-dimensional C∗-algebras
(Ai)i∈I is ∗-wild if and only if one of the following conditions holds:

1. there exist i1, i2 ∈ I such that Ai1 has Mk(C) and Ai2 has Mn(C) as a direct
summand with k > 1, n > 1;
2. there exist i1, i2 ∈ I such that Ai1 has Cn and Ai2 has Ck as a direct summand
with n ≥ 2, k ≥ 3;
3. there exist i1, i2, i3 ∈ I such that Ai1 has C2, Ai2 has C2, and Ai3 has C2 as
a direct summand;
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4. there exist i1, i2 ∈ I such that Ai1 has Cn and Ai2 has Mk(C) as a direct
summand with n ≥ 2, k ≥ 2.

Proof. In fact, the ∗-wildness of the algebras specified in items of the statement follows
from Propositions 2,4,5,6,7. The C∗-algebras products which are left aside in the list of
concerned C∗-free products are the following:

1. C2 ∗ C2,
2. the C∗-free product of any number of copies of C and one C∗-algebra Mn(C);
evidently, such a product is isomorphic to Mn(C).

The ∗-representations of the C∗-algebra C2 ∗C2 are described in [11] and this C∗-algebra
is of type 1. �

Corollary 1. G1 ∗ G2, where Gi 6= 〈e〉, i = 1, 2, are finite groups, is ∗-wild unless
Gi = Z2, i = 1, 2.

2. ∗-Wildness of the free product of a nuclear non-commutative
C∗-algebra and C(T )

2.1. Recall that the C∗-algebra generated by a single unitary element is isomorphic to
the algebra C(T) of the continuous functions on the one-dimensional torus T.

Theorem 2. Let A be non-commutative nuclear C∗-algebra having a non-trivial projec-
tion, say p. Then the C∗-algebraic free product A ∗ C(T) is ∗-wild.

Proof. In the following we denote by u the standard generator of C(T), and denote by
u1, u2 the standard free generators of C∗(F2). Then the needed majorization is given by
the homomorphism

ϕ : A ∗ C(T) → A⊗ C∗(F2)
defined by

ϕ(x) = x⊗ 1, x ∈ A, ϕ(u) = p⊗ u1 + (1− p)⊗ u2,

and the irreducible representation π̃ : A → B(H), where dimH ≥ 2 such that π̃(p) is
non-trivial.

We prove that the functor

FA,ϕ,eπ : RepC∗(F2) → RepA ∗ C(T)

is full.
Put FA,ϕ,eπ(π) := π1, π̃(p) := P , and π(ui) = Ui, i = 1, 2. Then

π1(u) = P ⊗ U1P + (1− P )⊗ U2.

Let Λ ∈ π1(A ∗ C(T))′, then it follows from the irreducibility of π̃ and the inclusion
1⊗ π̃(A) ⊂ π1(A∗C(T)) that Λ = 1⊗Λ1. We now show that Λ1 ∈ π(C∗(F2))′. In fact,
from

π1(up) = P ⊗ U1, π1(u(1− p)) = (1− P )⊗ U2,

one has

P ⊗ Λ1U
ε
1 = P ⊗ Uε1Λ1 ⊗ P, (1− P )⊗ Λ1U

ε
2 = (1− P )⊗ Uε2Λ1,

hence Λ1U
ε
i = Uεi Λ1, ε ∈ {1, ∗}, i = 1, 2, and Λ1 ∈ π(C∗(F2))′. �

Remark 4.
1. In fact, the claim of the proposition remains true if we suppose that A

has an irreducible representation π̂ such that π̂(A) is nuclear and contains the
non-trivial projection p. Indeed, in this case one can replace

ϕ : A ∗ C(T) → A⊗ C∗(F2)
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with
ϕ : A ∗ C(T) → π̂(A)⊗ C∗(F2)

defined as in the proof of Theorem 2 and put π̃ to be the identical representation
of π̂(A).
2. It follows form the results of [11, 8] that the C∗-algebra C(T) can be replaced
with C([a, b]) or C0(R).

2.2. In the following propositions we present some applications of the above result.

Proposition 8. Let B be a C∗-algebra generated by partial isometries s1, . . . , sd satis-
fying the relation

d∑
i=1

αisis
∗
i = 1.

Suppose that there exist irreducible projections Pi, i = 1, . . . , d, acting on a finite-
dimensional Hilbert space H, dimH ≥ 2, satisfying the relation

(1)
d∑
i=1

αiPi = 1.

Then B is ∗-wild.

Proof. Consider the C∗-algebra P generated by the projections Pi, i = 1, . . . , d. Con-
struct the homomorphism

ϕ : B → P ∗ C(T)

by the formulas
ϕ(si) = uPi, i = 1, . . . , d.

Evidently, ϕ is surjective, since ϕ(s∗i si) = pi and ϕ(
∑
i αisi) = u. By Theorem 2 the

C∗-algebra P ∗ C∗(T) is ∗-wild, therefore Proposition 2 implies that B has the same
property. �

Consider the C∗-algebra Aqn generated by the isometries si, i = 1, . . . , n, satisfying
the q-commutation relations of the form

sisj = qsjsi, | q |= 1, i > j.

Below we show that Aqn is ∗-wild for any q specified above.

Remark 5.
1. It is interesting to note that if we consider the C∗-algebra B̃qn generated by
isometries si satisfying relations of the form

s∗jsi = qsis
∗
j , | q |= 1, i > j,

then relations sisj = qsjsi, i > j, hold automatically, see [12], and Bq is nuclear,
so it is not ∗-wild.
2. If | q |6= 1, then there are no isometries satisfying the relation sisj = qsjsi.
Indeed, let si, sj act on a Hilbert space H. Then for any x ∈ H one has

‖x‖ = ‖sisjx‖ =| q |2 ‖sjsix‖ =| q | ‖x‖.

Below we denote by O2 the Cuntz algebra with two generators, see [2]. Namely

O2 = C∗(t1, t2 | t∗i ti = 1, i = 1, 2, t1t∗1 + t2t
∗
2 = 1).

Proposition 9. The C∗-algebra Aqn is ∗-wild for any q, | q |= 1.
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Proof. We show that O2 ∗ C([0, 1]) ≺ Aqn.
Let us construct the homomorphism

ϕ : Aqn → B⊗n−1 ⊗
(
O2 ∗ C([0, 1])

)
,

where
B = C∗(s, u | s∗s = 1, u∗u = uu∗ = 1, us = qsu).

Evidently B is nuclear, since it is the crossed product B = T (C(T))oZ, where T (C(T))
is the Toeplitz C∗-algebra. Let c, 0 < c < 1, denote the generator of C([0, 1]) and let
t1, t2 be generators of O2. Put

a1 := t1c, a2 := t2(1− c).

It is easy to verify that the following relations are satisfied

(2) a∗1a1 + a∗2a2 = 1, a∗2a1 = 0.

Then ϕ is defined by following formulas:

ϕ(si) =
⊗
j<i

u⊗ s⊗
⊗
i<j≤n

1, i = 1, . . . , n− 1 ,

ϕ(sn) =
⊗

1≤j≤n−2

u⊗ (u⊗ a1 + su⊗ a2).

Further we fix the irreducible representation π̃ of B acting on K = l2(N),

(3) π̃(s) = S, π̃(u) = D(q),

where
Sen = en+1, D(q)en = qn−1en, n ∈ N.

Then the majorization Aqn is given by functor the FB⊗n−1,ϕ,eπ.
The proof of the fullness of FB⊗n−1,ϕ,eπ is essentially the same as in Theorem 2. For

π ∈ ObRepO2 ∗ C([0, 1]), put FB⊗n−1,ϕ,eπ(π) = π1 and denote π(ai) by Ai, π(ti) = Ti,
π(c) = C.

Then the equalities C2 = A∗1A1 and Ti = AiC
−1, i = 1, 2, imply that

{Ai, A∗i , i = 1, 2}′ = {Ti, T ∗i , C, i = 1, 2}′ = π(O2 ? C([0, 1]))′.

So one has to show that any Λ ∈ π1(Aqn)′ has the form Λ = 1⊗n−1 ⊗ Λ1 with Λ1 ∈
{Ai, A∗i , i = 1, 2}′. �

The following corollary is immediate.

Corollary 2. The C∗-algebra Aqn is not nuclear.
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7. S. A. Kruglyak, Yu. S. Samŏılenko, On complexity of description of representation of ∗-algebras
generated by idempotents, Proc. Amer. Math. Soc. 128 (2002), no. 6, 1655–1664.

8. V. Mazorchuk, L. Turowska, ∗-representation type of ∗-doubles of finite-dimensional algebras,
Proc. Edinb. Math. Soc. (2) 47 (2004), no. 3, 669–678.

9. V. Mazorchuk, L. Turowska, Radical ∗-doubles of finite-dimensional algebras, Linear Algebra
Appl. 390 (2004), 293–309.

10. G. J. Murphy, C∗-Algebras and Operator Theory, Academic Press, London, 1990.
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