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PERMUTATIONS IN TENSOR PRODUCTS OF FACTORS, AND
L2 COHOMOLOGY OF CONFIGURATION SPACES

ALEXEI DALETSKII AND ALEXANDER KALYUZHNYI

Dedicated to the memory of Yuri Daletskii.

Abstract. We prove that the natural action of permutations in a tensor product of
type II factors is free, and compute the von Neumann trace of the projection onto the
space of symmetric and antisymmetric elements respectively. We apply this result to
computation of von Neumann dimensions of the spaces of square-integrable harmonic
forms (L2-Betti numbers) of N -point configurations in Riemannian manifolds with
infinite discrete groups of isometries.

1. Introduction

It is difficult to overestimate the role of the theory of von Neumann algebras and their
traces in different areas of mathematics and mathematical physics. One of the important
applications is the definition of regularized dimensions of certain infinite-dimensional
Hilbert modules, in particular of the spaces of harmonic forms over certain non-compact
manifolds. Indeed, let X be a non-compact Riemannian manifold admitting an infinite
discrete group G of isometries such that the quotient M = X/G is compact. Then G
acts by isometries on the spaces L2Ωm(X) of square-integrable m-forms over X. The
projection Pm onto the space Km(X) of square-integrable harmonic m-forms (the m-th
L2cohomology space) commutes with the action of G and thus belongs to the commutant
Am of this action, which is a von Neumann algebra. The corresponding von Neumann
trace of Pm gives a regularized dimension of the space Km(X) and is called the L2-Betti
number. L2-Betti numbers were introduced in [4] and have been studied by many authors
(see e.g. [20] and references given there).

Thus an important problem is construction of von Neumann algebras containing par-
ticular projections, and computation of the corresponding traces of these projections.
In particular, let us consider the space X(N) of all N -point subsets (configurations) of
X. Such spaces have been actively studied by geometers and topologists, see e.g. [11].
They play a significant role in the quantum field theory ([13], [14]), representation theory
([25], [15]) and statistical mechanics ([23], [12]), see also references given in these works.
Clearly,

(1) X(N) = ˜X × · · · ×X/SN ,

where ˜X × · · · ×X is the Cartesian product of N copies of X without coinciding compo-
nents and SN is the symmetric group. X(N) is a Riemannian manifold equipped with the
Riemannian structure induced from X. The space K(p) of square-integrable harmonic
p-forms on X(N) can be described in terms of symmetric and antisymmetric tensor prod-
ucts of the spaces K(m)(X), m = 1, 2, . . . , p (a ”symmetrized” version of the Künneth
formula). If X is as above, the construction of a von Neumann algebra containing the
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projection Pp onto K(p) and computation of the trace of Pp involves the study of the
algebras {A⊗n

m , Ps}
′′ and {A⊗n

m , Pa}
′′, n = 2, . . . , p, where Ps and Pa are the projections

onto the spaces of symmetric and antisymmetric elements respectively, ⊗n denoting the
n-th tensor power.

More generally, let M be a von Neumann algebra acting in a separable Hilbert space
H. An interesting problem is to describe of the structure of the von Neumann algebra
{M⊗n, α}′′, where α is the natural action of the symmetric group Sn by permutations
in H⊗n. It is clear that the answer is spatial dependent, i. e. it depends on the choice
of the concrete M-module H. For example, if H = Cm is the module over the Im-factor
M = Mm(C), then (for n = 2) M⊗M coincides with the space of all linear operators
in Cm ⊗ Cm. Therefore the permutation operator U belongs to M⊗M and

(2) {M⊗M, U}′′ = M⊗M.

However, if the same Im factor M acts on its standard form H = Cm⊗Cm by operators
x(f ⊗ g) = xf ⊗ g, x ∈ M, f, g ∈ Cm, then U does not belong to M⊗M. Thus U
induces an outer action α of the symmetric group S2 on the factor M⊗M, and the von
Neumann algebra {M⊗M, U}′′ is isomorphic to the cross-product M⊗M×α S2.

In this paper, we consider the case where H is a separable module over a type II factor
M. In Section 2, we prove that the action α of the group Sn in M⊗n generated by the
representation U is outer and free and thus there exists an isomorphism

(3) {M⊗n, {Ui}n−1
i=1 }

′′ 'M⊗n ×α Sn,

where Ui is an operator in H⊗n that permutes i-th and i + 1-th components. We com-
pute the von Neumann trace of the projections Ps and Pa onto the spaces of symmetric
and antisymmetric elements of H⊗n respectively. Moreover we show that the factors
{M⊗n, Ps}′′, {M⊗n, Pa}′′ and {M⊗n, {Ui}n−1

i=1 }′′ are isomorphic. In Section 3 we use
the finite dimensional approximation of M and prove that the obtained formulae are
consistent with the well-known formulae of the dimensions of symmetric and antisym-
metric tensor products of finite dimensional spaces. In Section 4, we apply these results
to computation of the von Neumann dimensions of the spaces of square-integrable har-
monic forms (L2-cohomologies) of the spaces of N -point configurations in Riemannian
manifolds with infinite discrete groups of isometries (L2-Betti numbers of configuration
spaces).

Let us remark that the results of the first two sections are valid for general type II
modules. In the particular case where M is the commutant of a free action of an infinite
discrete group, similar results were obtained (by different methods) in [9] (n = 2) and [2]
(n arbitrary). In the latter work, the L2-Betti numbers of infinite configuration spaces
ΓX equipped with Poisson measures were computed. Geometry and analysis on the
infinite configuration spaces, which naturally appear in different problems of statistical
mechanics and quantum physics, have been a very active topic of research in recent years,
see references in [2]. Unlike X(N), ΓX does not possess a natural manifold structure, and
many objects on ΓX are studied via the limit transition from X(N) as N →∞.

The preliminary version of this paper was published in [8]. Here, we give more detailed
proofs and include important result on isomorphism of factors {M⊗n, Ps}′′, {M⊗n, Pa}′′
and M⊗M×α Sn (Theorem 4) and on finite dimensional approximation (Theorem 6).

In what follows we denote by L(H) the algebra of all bounded operators in Hilbert
space H. We refer to [7], [24] for general notions of the theory of von Neumann algebras.

2. Permutations in a tensor product of type II factors

Let L2(M) be the standard form of a finite factor M, that is, the completion of M in
the norm generated by the canonical trace on M . Denote by Ω the corresponding cyclic
and separating vector for M (recall that separating means that zΩ = 0, z ∈ M implies
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z = 0). Let τ be a faithful normal trace on M. Since (M⊗M)′ = M′ ⊗M′, M⊗M
is a finite factor acting in Hilbert space L2(M) ⊗ L2(M). Let U be the permutation
operator in L2(M) ⊗ L2(M). Denote by αU the corresponding automorphism of the
factor M⊗M,

(4) αU (x⊗ y) = U(x⊗ y)U∗ = y ⊗ x, x, y ∈M.

This automorphism generates a natural action α of the group S2 on M⊗M. Recall that
the action of an automorphism β on M is called free, if each element x ∈ M satisfying
the equality xy = β(y)x for all y ∈ M is zero. It is well known that an automorphism
of a factor is free iff it is outer (that is, not generated by automorphisms of the form
x 7→ uxu∗, where u is unitary in M). If α : G → Aut(M) is a free action of a discrete
group G onM then the cross-productM×αG is a factor (see e.g. [16], Proposition 1.4.4).

We have the following statement.

Proposition 1.
(i). The Hilbert space L2(M)⊗ L2(M) is the standard form of the factor M⊗M;
(ii). The action α of the group S2 on M⊗M is free;
(iii). There exists a natural isomorphism of the finite factor M⊗M×α S2 and the

von Neumann algebra {M⊗M, U}′′.

Proof. Note that the vector Ω1 = Ω ⊗ Ω is cyclic for both M⊗M and (M⊗M)′ =
M′ ⊗M′. Hence Ω1 is separating for M⊗M.

Denote τ1 = τ⊗τ . It is obvious that τ1 is a trace on M⊗M. Moreover the trace τ1 is
faithful onM⊗M. Indeed, since Ω1 is separating forM⊗M, for x =

∑
i xi⊗yi ∈M⊗M

we have

(5)

τ1(x∗x) =
∑

i

τ(x∗i xk)τ(y∗i yk)

=
∑

i

(x∗i xkΩ,Ω)L2(M)(y∗i ykΩ,Ω)L2(M)

= (x∗xΩ1,Ω1)L2(M)⊗L2(M) = ‖xΩ1‖2 6= 0.

The equality

(6) τ1(x) = (xΩ1,Ω1)L2(M)⊗L2(M)

for any x ∈M⊗M implies that L2(M)⊗ L2(M) is the standard form of M⊗M.
Let us show that αU given by (4) is a nontrivial outer automorphism of M⊗M, i. e.

that the operator U does not belong to (M⊗M)∪(M⊗M)′. Suppose that U ∈M⊗M.
Rewrite the equality UΩ ⊗ Ω = Ω ⊗ Ω in the form (U − 1)Ω1 = 0. Moreover Ω1 is a
separating vector for M⊗M, which implies that U = 1. Thus U /∈ M⊗M. It can be
shown by similar arguments that U /∈ (M⊗M)′.

Since M⊗M is a factor, it is known (see e.g. [16], Proposition 1.4.4) that

(7) (M⊗M)′ ∩ (M⊗M×α S2) = C.

This implies in particular that the crossed product M⊗M×α S2 is also a finite factor.
We conclude from the equality αU (x)Ω1 = UxΩ1, x ∈M⊗M, that the map

(8) M⊗M×α S2 3 (x, σ) 7→ (x, u) ∈ {M⊗M, U}′′

is a surjective homomorphism of M⊗M×α S2 onto {M ⊗M, U}′′. Moreover, since
finite factors do not contain two-sided ideals, any normal homomorphism between them
is either identically zero or injective. Hence factors M⊗M×α S2 and {M ⊗M, U}′′
are isomorphic. �

Now we can consider the case where M is a type II factor. Let H be a separable
M-module. Denote by U the operator of permutation in H ⊗ H and let αU be the
corresponding (nontrivial) automorphism of M⊗M.
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Theorem 2. The automorphism αU defines an outer action of the group S2 on the
II-factor M⊗M, and there exists an isomorphism of factors

(9) M⊗M×α S2 ' {M⊗M, U}′′.

Proof. II1 case. Let M be a II1-factor. Denote by K the standard form of M. Using
the theorem on the structure of normal isomorphisms of von Neumann algebras [24] we
can conclude that H as M-module is isomorphic to M-module

(10) Hd = p(K ⊗ l2)

for some d ∈ [0,∞], where p ∈M′⊗L(l2) is a projection with Tr p = d. Here Tr denotes
the natural trace in M′ ⊗ L(l2), with the normalization Tr(1M ⊗ q) = 1, where q is a
projection of rank 1 in L(l2). The action of M on Hd is given by

(11) x(p(f ⊗ ξ)) = p(xf ⊗ ξ), x ∈M, f ∈ K, ξ ∈ l2.

Let us remark that the Hilbert spaces K⊗ l2⊗K⊗ l2 and K⊗K⊗ l2⊗ l2 are isomorphic.
Thus there exists a projection p̃ such that M⊗M-modules

(12) Hd ⊗Hd = (p⊗ p)(K ⊗ l2 ⊗K ⊗ l2)

and

(13) p̃(K ⊗K ⊗ l2 ⊗ l2)

are isomorphic, where the action of M⊗M on the latter space is defined by

(14) (x⊗ y)(p̃(f ⊗ g ⊗ ξ ⊗ η)) = p̃(xf ⊗ yg ⊗ ξ ⊗ η),

x, y ∈ M, f, g ∈ K, ξ, η ∈ l2. The operator U of permutation in Hd ⊗ Hd is unitarily
isomorphic to the operator U1 ⊗ U2 in p̃(K ⊗ K ⊗ l2 ⊗ l2), where U1 and U2 are the
operators of permutation in K⊗K and l2⊗ l2 respectively. It follows from Proposition 1
that U1 /∈M⊗M. Hence the operator U does not belong toM⊗M and thus αU is outer
(and consequently, free) automorphism of M⊗M. Repeating the arguments from the
proof of the Proposition 1 we conclude that the factors M⊗M×S2 and {M⊗M, U}′′
are isomorphic.

II∞ case. Let M be a II∞ factor. Fix an arbitrary finite projection p ∈ M. Then
there exists [24] a spatial isomorphism of M and the II∞ factor Mp ⊗ L(l2), where
Mp = pMp (the so-called “corner” of M) is a II1 factor. Denote Hp = pH. Then the
II∞ factor M⊗M is isomorphic to Mp⊗Mp⊗L(l2⊗ l2) and the permutation operator
U in H ⊗ H is unitarily equivalent to the operator U1 ⊗ U2, where U1 and U2 are the
operators of permutation in Hp⊗Hp and l2⊗ l2 respectively. Note that the operator U2

belongs to L(l2 ⊗ l2).
It follows from the arguments presented above that the operator U1 does not belong

to Mp ⊗Mp. Thus the operator U does not belong to M⊗M and as above α is a
free automorphism of M⊗M. Therefore M⊗M ×α S2 is a II∞ factor. It follows
from the arguments presented in the proof of Proposition 1 that there exists a normal
homomorphism of M⊗M×α S2 onto {M⊗M, U}′′, which is in fact an isomorphism
(since any normal homomorphism between factors is either identically zero or injective).
Thus we have that {M⊗M, U}′′ is also a II∞ factor isomorphic to M⊗M×α S2. �

The following result is the extension of the theorem above to the case of the symmetric
group Sn acting in M⊗n, n ≥ 2.

Theorem 3. Let M be a type II factor and H be a separable M-module. Let Uij (i, j =
1, . . . , n) be the operator in H⊗n permuting i-th and j-th components. Then the family
of operators {Uij}n

i,j=1 defines an outer action of the symmetric group Sn on the factor
M⊗n, and there exists an isomorphism

(15) M⊗n ×α Sn ' {M⊗n, {Uij}n
i,j=1}′′.
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Proof. It follows from Theorem 2 that the operator Uij does not belong to the factor
M⊗n and therefore determines the outer automorphism αUij of M⊗n. It is obvious that
the action of the symmetric group Sn on the factor M⊗n generated by automorphisms
αUij , i, j = 1, . . . , n is free. Therefore the factorsM⊗n×αSn and {M⊗n, {Uij}i,j=1,...,n}′′
are isomorphic (see the proof of Theorem 2). �

Let Ps and Pa be projections in H⊗n onto symmetric tensor product H⊗̂n and anti-
symmetric tensor product H∧n respectively,

(16) Ps =
1
n!

∑
g∈Sn

Ug

and

(17) Pa =
1
n!

∑
g∈Sn

(−1)sign(g)Ug.

It is obvious that Ps and Pa belong to Mn ×α Sn.
Denote

(18) Ms = {M⊗n, Ps}′′, Ma = {M⊗n, Pa}′′.

Theorem 4. Let M be a type II factor. Then

(19) Ms = Ma = M⊗n ×α Sn.

Proof. II1 case. Let M be a II1 factor. The inclusions M⊗n ⊂Ms ⊂M⊗n×αSn of II1
factors are obvious. Then by virtue of Proposition A.4.2 in [16] there exists a subgroup
G of Sn such that

(20) Ms = M⊗n ×α G.

It is known that the index [Ms : M⊗n] of the inclusion M⊗n ⊂Ms is given by

(21) [Ms : M⊗n] = |G|,
where |G| is the number of elements in G. Moreover, the collection {Ug|g ∈ G} is a basis
for Ms/M⊗n, thus every element x ∈Ms can be decomposed into the sum

(22) x =
∑
g∈G

EM⊗n(xU∗g )Ug,

where

(23) EM⊗n : Ms →M⊗n

is the canonical conditional expectation arising in the basic construction of towers of
factors (see [16, Proposition 4.3.3]). Then since PsUg = Ps for each g ∈ G we have

Ps =
∑
g∈G

EM⊗n(PsU
∗
g )Ug =

∑
g∈G

EM⊗n(Ps)Ug

= EM⊗n(Ps)
∑
g∈G

Ug =
1
|G|

∑
g∈G

Ug

(24)

(note that the equality EM⊗n(Ps) = [Ms : M⊗n]−11H⊗n = |G|−11H⊗n follows from the
Proposition 3.1.2 in [16]). Comparing formulae (24) and (16) we obtain G = Sn.

The case of Ma can be treated in the similar way using the relation
PaUg = (−1)sign(g)Pa.

II∞ case. Let M be a II∞ factor. The inclusion Ms ⊂ M⊗n ×α Sn is obvious. For
an inverse inclusion it suffices to show that the operators Pij = 1

2 (1+Uij) i, j = 1, . . . , n
belong to Ms. Since M'Mp ⊗ L(l2), the factor M contains an isometry V such that
(V ∗)m → 0, m → ∞ strongly (for example V = 1 ⊗W where W is unilateral shift in
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l2: Wek = ek+1 for a standard basis {ek}∞k=1 in l2). Since (V ∗)mV m = 1 we have strong
convergence

(25) (1⊗ 1⊗ (V ∗)m ⊗ · · · ⊗ (V ∗)m)Ps(1⊗ 1⊗ V m ⊗ · · · ⊗ V m) → 2
n!

P12,

m →∞. Thus P12 ∈Ms. Similar arguments show that Pij ∈Ms for any i, j = 1, . . . , n.
The case of Ma can be treated in a completely similar way. �

Remark 1. The proof of the theorem above is essentially different for II1 and II∞ Indeed,
Proposition A.4.2 in [16] does not in general hold for II∞ factors (cf. (20)). In the
latter case, our considerations are based on the existence of the isometry V ∈ M .This is
certainly wrong for II1 factors, which do not contain any isometries.

In what follows we denote by TrN the faithful normal finite resp. semifinite trace on
a II1 resp. II∞ factor N .

Corollary 5. Let M be a type II factor. Then for any A ∈M we have

(26) TrMs(A
⊗nPs) = TrMa(A⊗nPa) =

(TrMA)n

n!
.

Proof. According to Theorem 4 we will use the faithful normal finite (or semifinite) trace
on the type II factor M⊗n ×α Sn. It is obvious that αg(A⊗n) = A⊗n for any g ∈ Sn.
Therefore for any g ∈ Sn we have

(27) TrM⊗n×αSn
(A⊗nUg) = δe,gTrM⊗n(A⊗n)

(here δg,h is the Kronecker symbol). Then (26) follows from (16) and (17). �

3. Finite dimensional approximation

We first recall well known formulae for the traces of projections Ps and Pa onto
symmetric and antisymmetric n-th tensor powers H⊗̂n and H∧n of d-dimensional Hilbert
space H = Cd respectively:

TrPs =
d(d + 1) · · · (d + n− 1)

n!
,

TrPa =
d(d− 1) · · · (d− n + 1)

n!
.

(28)

Here by Tr we denote the usual trace in L(H) = Md(C).
We shall discuss the relationship between formulae (26) and (28). The first question

is whether they are consistent. In case when M = R is a hyperfinite II1 factor, positive
answer can be given by a finite dimensional approximation. Indeed, R is a weak closure
of the union of an increasing sequence

(29) A1 ⊂ A2 ⊂ · · · ⊂ Am ⊂ · · · ,

where Am = ⊗m
1 MN (C) = MNm(C). Let us denote by TrMd(C) and TrR the traces

on factors Md(C) and R normalized by the conditions TrMd(C)(1) = 1
d and TrR(1) = 1

respectively. Let Pm ∈ Am be a sequence of projections weakly converging to some
P ∈ R. Then

(30) lim
m→∞

TrAm
(Pm) = TrR(P ).

It is clear that all permutation operators Ug, g ∈ Sn, in corresponding tensor products
of finite-dimensional Hilbert spaces, belong to A⊗n

m = MNnm(C) (cf. (2)). Therefore
the projections Pm

s and Pm
a defined by formulae (16) and (17) respectively belong to
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A⊗n
m . Since the projections P⊗n

m and Pm
s (resp. Pm

a ) commute, we can define projections
P⊗n

m Pm
s and P⊗n

m Pm
a . Then, according to (28),

TrAm
(P⊗n

m Pm
s ) =

1
n!

Tr(Pm)(Tr(Pm) + 1) · · · (Tr(Pm) + n− 1)
Nmn

,

TrAm(P⊗n
m Pm

a ) =
1
n!

Tr(Pm)(Tr(Pm)− 1) · · · (Tr(Pm)− n + 1)
Nmn

.

(31)

Theorem 6.

(32) TrRs
(P⊗nPs) = lim

m→∞
TrAm(P⊗n

m Pm
s )

and

(33) TrRm(P⊗nPa) = lim
m→∞

TrAm(P⊗n
m Pm

a ).

Proof. We have according to (31) and (26),

(34)
lim

m→∞
TrAm(Pn

mPm
s ) = lim

m→∞

(
1
n!

Tr(Pm)(Tr(Pm) + 1) · · · (Tr(Pm) + n− 1)
Nmn

)
=

(TrR(P ))n

n!
= TrR(P⊗nPs)

because Tr(Pm)
Nm = TrAm

(Pm) → TrR(P ), m → ∞. Formula (33) can be obtained by
similar arguments. �

Remark 2. Using the similar arguments one can prove the analogue of Theorem 6 for the
II∞ factor R⊗ L(l2).

4. L2 cohomology of N-point configuration spaces

In this section, we apply the results described above to computation of L2-Betti num-
bers of the spaces of N -point configurations in the manifolds possessing infinite groups of
isometries. We start with the discussion of the structure of square-integrable differential
forms over configuration spaces.

Let X be a smooth connected Riemannian manifold. Consider the N -point configu-
ration space

(35) X(N) := {{x1, . . . , xN} ⊂ X} ,

the set of all N -point subsets of X. Clearly,

(36) X(N) = ˜X × · · · ×X/SN ,

where ˜X × · · · ×X is the Cartesian product of N copies of X without coinciding compo-
nents. X(N) is a Riemannian manifold equipped with the Riemannian structure induced
from X.

For a Riemannian manifold R, we denote by L2Ωp(R) the space of square-integrable
(w.r.t. the Riemannian volume) p-forms on R, and let ∆p

R to be the Hodge-de Rham
Laplacian in L2Ωp(R). Consider the space

(37) Hp(R):=Ker dp/ Im dp−1

of (reduced) L2-cohomologies of R [4]. Here

(38) dj : L2Ωj(R) → L2Ωj+1(R),

j = 0, 1, . . . , d, is the Hodge differential of R. It is known [10] that the spaces Hp(R) and
Kp(R) = Ker∆p

R are isomorphic, and we will identify them.
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Remark 3. The isomorphism of Hp(R) and Ker∆p
R is due to the weak Hodge–de Rham

decomposition

(39) L2Ωp(R) = Ker∆p
R ⊕ Im dp−1 ⊕ Im d∗p,

which follows from the general operator theory in Hilbert spaces. This fact is in general
simpler than the Hodge–de Rham decomposition of smooth forms.

For a Hilbert space K, we use the notation

(40) K
k�s =

{
Kb⊗s, k is even,

K∧s, k is odd.

Let d = dim X. The following result is a symmetrized version of the Künneth formula.

Theorem 7. For p ≤ dN we have a natural unitary isomorphism

(41) Hp(X(N)) '
⊕

s0,s1,...,sd=0,1,2,...P
k sk=N,

P
k ksk=p

d⊗
m=0

(Hm(X))
m�sm

and

(42) Hp(X(N)) = ∅, p > dN.

Proof. X(N) is an dN -dimensional manifold, which implies thatHp(X(N)) = ∅ if p > dN .
Let p ≤ dN . Remark that the space L2Ωp(X(N)) is unitarily isomorphic to L2Ωp

sym(XN ),

the latter being the space of square-integrable p-forms on XN :=

N︷ ︸︸ ︷
X × · · · ×X which are

invariant w.r.t. the permutations of variables. It is easy to see that there exists a natural
unitary isomorphism

(43) L2Ωp
sym(XN ) '

⊕
s0,s1,...,sd=0,1,2,...

d⊗
k=0

(L2Ωk(X))
k�sk ,

where
∑d

k=0 sk = N,
∑d

k=0 ksk = p. It has been proved in [1] that the restriction of
∆p

XN onto L2Ωp
sym(XN ) is essentially self adjoint on the space of smooth forms with

compact support, and coincides on this space with ∆p
X(N) . Thus we have

(44) Hp(X(N)) = Ker(∆p
XN )sym = Ker(∆p

XN ) ∩ L2Ωp
sym(XN ).

By the Künneth formula,

(45) Ker(∆p
XN ) '

⊕
k1, . . . , kN = 0, 1, 2, . . . , d

k1 + · · ·+ kN = p

Hk1(X)⊗ · · · ⊗ HkN (X).

This together with formula (43) imply the result. �

Corollary 8. If all the spaces Hk(X) are finite dimensional, then all the spaces Hp(X(N))
are so. Their dimensions are given by the following formula:

(46) dimHp(X(N)) =
∑

s1,...,sd=0,1,2,...P
k sk=N,

P
k ksk=p

d∏
m=0

β(sm)
m , p ≤ d N,
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and

(47) dimHp(X(N)) = 0, p > d N,

where

(48) β
(s)
k :=



(
βk

s

)
, k = 1, 3, . . . ,(

βk + s− 1
s

)
, k = 2, 4, . . .

s 6= 0, and β
(s)
k = 1 for s = 0. Here βk := dimHk(X), k = 0, 1, . . . , d.

This case occurs for instance when X is compact or has finite number of ends, as in
the following example.

Example 1. Let X be a manifold with a cylindrical end (that is, X = M ∪ (S × R1
+)

for some compact manifold M with boundary S). It is proved in [5] that Hk(X) is
isomorphic to the image of the canonical map Hk

0 (X) → Hk(X), where Hk(X) resp.
Hk

0 (X) is the space of the de Rham cohomologies resp. compactly supported de Rham
cohomologies of X. By e.g. [6], the spaces Hk(X) are finite-dimensional. Thus, allHk(X)
are finite-dimensional and, in general, non-trivial, and hence so are all spaces Hp(X(N)).
For a bigger class of examples of manifolds X with finite-dimensional spaces Hk(X) see
[21].

Example 2. In the framework of the previous example, let dim M = 2. Then β0 =
β2 = 0 and it is easy to see from (46) that

(49) dimHp(X(N)) =


(

β1

N

)
, p = N,

0, p 6= N.

In particular, dimHp(X(N)) = 0 for all p, if N > β1.

An important example of a manifold X with infinite dimensional spaces Hp(X) is
given by the universal covering of a compact Riemannian manifold (say M) with the
infinite fundamental group G = π1(M). In this case, G acts by isometries on X and
consequently on all spaces L2Ωp(X). The orthogonal projection

(50) Pp : L2Ωp(X) → Hp(X), p = 0, 1, . . . ,dim X,

commutes with the action of G and thus belongs to the commutant Ap of this action
which is a semifinite von Neumann algebra. The corresponding von Neumann trace
bp := TrAPp gives a regularized dimension of the space H(p)(X) and is called the L2-
Betti number of X (or M). L2-Betti numbers were introduced in [4] studied by many
authors (see e.g. [20] and references given there). It is known [4] that (because of the
elliptic regularity of ∆p

X) bp < ∞. It follows from the general theory of von Neumann
algebras that bp = 0 iff dimHp(X) < ∞.

It is natural to ask whether the notion of L2-Betti numbers can be extended to con-
figuration spaces over infinite coverings. It particular, is formula (48) valid in this case
(with βk replaced by bk )?

More generally, let X be a Riemannian manifold admitting an infinite discrete group
G of isometries such that the quotient M = X/G is a compact connected Riemannian
manifold. In what follows, we use the results of the first section in order to construct a
von Neumann algebra containing the projection

(51) Pp : L2Ωp(X(N)) → Hp(X(N)),

and to compute its von Neumann trace.
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From now on, we assume that G is an ICC group (that is, all non-trivial classes of
conjugate elements are infinite) that is acting freely on the manifold X. Under this
conditions we have that the von Neumann algebra Ap is a II∞ factor. Indeed, let U be
a fundamental domain for the action of G, then we can make an identification

(52) L2Ωp(X) ∼= L2(G)⊗ L2Ωp(U) ∼= L2(G)⊗ L2Ωp(M).

The action of G on L2Ωp(X) corresponds by (52) to the left regular representation of G
on L2(G) extended by the identity on L2Ωp(M). Then the commutant of this action is
given by R(G) ⊗ L(L2Ωp(M)), where R(G) is the von Neumann algebra generated by
the right regular representation of G. Since G is ICC group then R(G) is a II1 factor.
Therefore Ap is a II∞ factor.

Let us define the operator

(53) P(n)
p :=

{
P⊗n

p Ps, p is even,

P⊗n
p Pa, p is odd

and the von Neumann algebra

(54) A(n)
p :=

{{
A⊗n

p , Ps

}′′
, p is even,{

A⊗n
p , Pa

}′′
, p is odd

generated by A⊗n
p and the projections Ps and Pa respectively. Thus,

(55) P(n)
p :

(
L2Ωp(X)

)⊗n → (Hp(X))
p

♦n
,

n = 1, 2, . . . , is the orthogonal projection. Obviously, P(n)
p ∈ A(n)

p . It follows from
Theorem 4 that A(n)

p = A⊗n
p ×α Sn. We will use the convention A(0)

p = C1.
Further, for 0 ≤ p ≤ dN , we introduce the von Neumann algebra

(56) A(p) =
⊕

s0,...,sd=0,1,2,...P
k sk=N,

P
k ksk=p

d⊗
m=0

A(sm)
m .

Since all algebras A(sk)
k are II∞-factors, so is A(p), with the trace given by the product

of the traces in A(sk)
k .

Theorem 9. Pp ∈ A(p), and its trace is given by the formula

(57) TrA(p)Pp =
∑

s1,...,sd−1=0,1,2,...P
k sk=N,

P
k ksk=p

(b1)s1

s1!
· · · (bd)sd−1

sd−1!
,

if N ≤ p ≤ (d− 1) N, and

(58) TrA(p)Pp = 0,

if p < N, or p > (d− 1) N . Here bk are the L2-Betti numbers of X.

Proof. In the case where p > dN , the equality Pp = 0 is obvious.
Let 0 ≤ p ≤ dN . It follows from Theorem 7 that

(59) Pp =
∑

s0,...,sd=0,1,2,...P
k sk=N,

P
k ksk=p

d∏
m=0

Pm
(sm)

with the convention P(0)
k = id. Clearly Pp ∈ A(p). Corollary 5 implies that

(60) TrA(p)Pp =
∑

s0,...,sd=0,1,2,...P
k sk=N,

P
k ksk=p

d∏
m=0

(bm)sm

sm!
.
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The manifold X is connected, which implies that the spaces H0(X) and Hd(X) are one-
dimensional, and their von Neumann dimensions b0 = bd = 0. This proves formula (57).
Let us remark that, in the case where p < N resp. p > (d − 1) N , we have s0 > 0 resp.
sd > 0 in every term of the latter sum, which implies (58). �

We will use the notation bp = TrA(p)Pp and call bp the p-th L2-Betti number of X(N).
Remark 4. It is easy to see that formula (57) can be rewritten in the form

(61) bp =
1

N !

∑
k1, . . . , kN = 0, 1, 2, . . . , d

k1 + · · ·+ kN = p

bk1 · · · bkN
,

or, according to the Künneth formula (45),

(62) bp =
1

N !
TrA⊗N P,

where P is the orthogonal projection L2Ωp(XN ) → Hp(XN ).

Example 3. Let X = Hd, the hyperbolic space of dimension d. It is known that the
only non-zero L2-Betti number of Hd is bd/2 (provided d is even). Then

(63) bp =

{
(bd/2)N

N ! , p = Nd
2 ,

0, p 6= Nd
2 .

The precise value of bd/2 depends on the choice of the corresponding group G of isometries
of Hd, see [3]. In the particular case m = 2, we obtain the formula

(64) bp =

{
(b1)

N

N ! , p = N,

0, p 6= N,

which is quite different from the case of 2-dimensional non-compact surfaces with finite-
dimensional spaces of harmonic forms, cf. (49).

Remark 5. Let us consider the space of finite configurations

(65) ΓX,0 =
⊔

N=0,1,2,...

X(N),

with the convention X(0) = {∅}. The natural measure on ΓX,0 generated by Riemannian
volume measures on X(N) is called the Lebesgue-Poisson measure. The space ΓX,0

appear as a ”dual object” in the harmonic analysis on the infinite configuration space
ΓX [19], [17], [18]. Formulae for the L2-Betti numbers of ΓX,0 can be easily obtained
from (57), (58). It turns out that they coincide with the corresponding formulae for
L2-Betti numbers of ΓX equipped with the Poisson measure [2] (actually, there exists a
natural unitary isomorphism of the spaces of harmonic forms on ΓX,0 and ΓX , which are
square-integrable w.r.t. the Lebesgue-Poisson and Poisson measure respectively).
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