
Methods of Functional Analysis and Topology
Vol. 12 (2006), no. 4, pp. 353–362

ON COMPLETENESS OF THE SET OF ROOT VECTORS FOR
UNBOUNDED OPERATORS

MYROSLAV L. GORBACHUK AND VALENTYNA I. GORBACHUK

Dedicated to 80th birthday anniversary of Professor Yu. L. Daletskii.

Abstract. For a closed linear operator A in a Banach space, the notion of a vector
accessible in the resolvent sense at infinity is introduced. It is shown that the set
of such vectors coincides with the space of exponential type entire vectors of this
operator and the linear span of root vectors if, in addition, the resolvent of A is
meromorphic. In the latter case, the completeness criteria for the set of root vectors
are given in terms of behavior of the resolvent at infinity.

In what follows, we suppose A to be a closed linear operator densely defined in a
Banach space B with norm ‖ · ‖ over the field C of complex numbers.

1. We say that a vector x ∈ B is accessible in the resolvent sense for the operator A on
a set M ⊆ C if there exists a B-valued function fx(λ) analytic in a certain neighborhood
O ⊇ M , such that for any λ ∈ O, fx(λ) ∈ D(A) and

(1) (A− λI)fx(λ) = x

(D(·) is the domain of an operator, I is the identity operator). We denote the set of such
vectors by RM (A).

It is obvious that 0 ∈ RC(A); in this case fx(λ) ≡ 0.
Let x0 be the eigenvector of the operator A corresponding to an eigenvalue λ0. Then

x0 ∈ RC\{λ0}(A). In this example,

fx0(λ) =
x0

λ0 − λ
, λ ∈ C \ {λ0}.

Equality (1) shows that if x ∈ RM (A) and for any λ ∈ O there exists the inverse (A−
λI)−1 of the operator A−λI, then fx(λ) is uniquely determined as fx(λ) = (A−λI)−1x.
In particular, if M ⊆ ρ(A) (ρ(A) is the resolvent set of A), then RM (A) = B, and for
each x ∈ B, fx(λ) = RA(λ)x, where RA(λ) = (A− λI)−1 is the resolvent of A.

Let x ∈ RM (A). Then the the vector-valued function fx(λ) possesses the following
properties.

(i) If x 6= 0 and M is bounded, then

∃c > 0 ∀λ ∈ M ‖fx(λ)‖ > c.

(Here and below c > 0 denotes a constant, own in every concrete situation).
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This assertion is evident if M is finite. Suppose M to be infinite and such that there
exists a sequence {λn ∈ M}∞n=1 for which

fx(λn) → 0 as n →∞.

Then, by (1),
Afx(λn) → x as n →∞.

The closedness of A implies the equality x = 0, contrary to the assumption.
(ii) If x ∈ D(An−1), n ∈ N, then fx(λ) ∈ D(An), and

(2) fx(λ) = −
n−1∑
k=0

Akx

λk+1
+

Anfx(λ)
λn

, λ ∈ M.

We prove this property by induction.
By the definition, fx(λ) ∈ D(A) (λ ∈ M), and, according to (1), we have representa-

tion (2) for n = 1.
Suppose now assertion (ii) to be true for n = m, that is,

(3) x ∈ D(Am−1) =⇒ fx(λ) ∈ D(Am) and fx(λ) = −
m−1∑
k=0

Akx

λk+1
+

Amfx(λ)
λm

.

If x ∈ D(Am), then, by (3),
Amfx(λ)

λm
∈ D(A), so fx(λ) ∈ D(Am+1). Moreover,

Am+1fx(λ) = Am(Afx(λ)) = Am(x + λfx(λ)) = Amx + λAmfx(λ),

whence

Amfx(λ) =
Am+1fx(λ)

λ
− Amx

λ
.

Substituting this expression into the equality in (3), we obtain for fx(λ) representation
(2) in the case where n = m + 1.

We call a vector x ∈ B accessible in the resolvent sense for the operator A at infinity
if there exists a function fx(λ) with values in D(A), analytic in the domain Dα = {λ ∈
C : |λ| > α} with some α = α(x) > 0, fx(λ) → 0 as |λ| → ∞, and for λ ∈ Dα, equality
(1) is fulfilled. Denote by R∞(A) the set of all such vectors.

It is clear that 0 ∈ R∞(A) for any operator A. It is also not difficult to see that
if D(A) = B, then R∞(A) = B. But this is not the case when the operator A is
unbounded. To see this, we introduce the following notation.

Denote by E(A) the set of all exponential type entire vectors of the operator A (see
[1]), that is,

E(A) =
⋃
α≥0

Eα(A),

where
Eα(A) = {x ∈ C∞(A)

∣∣∃c > 0 ∀k ∈ N0 ‖Akx‖ ≤ cαk},
C∞(A) =

⋂
n∈N0=N∪{0}

D(An) is the space of infinitely differentiable vectors of A, 0 < c =

c(x, α) = const. Obviously, Eα(A) ⊆ Eα′
(A) as α < α′. By the type of a vector x ∈ E(A)

we mean the number
σ(x,A) = inf{α ≥ 0 : x ∈ Eα(A)}.

Lemma 1. Suppose that for the operator A, there exists a closed rectifiable contour
Γ ∈ ρ(A), and let f(λ) be a function analytic in the domain GΓ bounded by Γ, and
continuous on GΓ. Then for any x ∈ B,

y =
∫
Γ

f(λ)RA(λ)x dλ ∈ E(A).
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Proof. By virtue of closedness of A,

Ay =
∫
Γ

f(λ)ARA(λ)x dλ =
∫
Γ

f(λ)(I + λRA(λ))x dλ =
∫
Γ

λf(λ)RA(λ)x dλ.

It follows from this that Ay ∈ D(A), and

A2y =
∫
Γ

λf(λ)ARA(λ)x dλ =
∫
Γ

λ2f(λ)RA(λ)x dλ.

Repeating such a procedure n times, we get

Any =
∫
Γ

λnf(λ)RA(λ)x dλ.

Hence,
‖Any‖ ≤ crn,

where r = max
λ∈Γ

|λ|, which implies y ∈ E(A). �

Theorem 1. A vector x ∈ B is accessible in the resolvent sense for the operator A at
infinity if and only if x ∈ E(A). In other words,

R∞(A) = E(A).

For x ∈ R∞(A), the D(A)-valued function fx(λ) is uniquely determined by x as

(4) fx(λ) = −
∞∑

k=0

Akx

λk+1
.

Proof. Let x ∈ E(A) and α > σ(x,A). Then

∃c = c(x, α) > 0 ∀n ∈ N0 ‖Anx‖ ≤ cαn.

For |λ| > α, we have
∞∑

n=0

‖Anx‖
|λ|n+1

≤ c

|λ|

∞∑
n=0

(
α

|λ|

)n

=
c

|λ| − α
< ∞.

Thus the B-valued function fx(λ) appearing in (4) is analytic in Dα. Moreover,

fx(λ) → 0 as |λ| → ∞.

Since for |λ| > α,

−(A− λI)
n∑

k=0

Akx

λk+1
= x− An+1x

λn+1
→ x as n →∞,

and the operator A is closed, we may conclude that

fx(λ) ∈ D(A) and (A− λI)fx(λ) = x.

So, x ∈ R∞(A), and the function fx(λ) = −
∞∑

n=0

Anx

λn+1
is analytic in the domain Dα with

an arbitrary α > σ(x,A).
Conversely, let x ∈ R∞. Then there exists aD(A)-valued function fx(λ) analytic in the

domain Dα with a certain α > 0, fx(λ) → 0 as |λ| → ∞, and (A−λI)fx(λ) = x (|λ| > α.
Therefore, fx(λ) admits a representation

(5) fx(λ) =
∞∑

k=0

ck

λk+1
,

where
ck =

1
2πi

∫
|ξ|=r

fx(ξ)ξk dξ, r > α.
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Since the operator A is closed and the integral∫
|ξ|=r

Afx(ξ)ξk dξ =
∫

|ξ‖=r

(x + ξfx(ξ))ξk dξ

exists, ck ∈ D(A). Moreover,

Afx(λ) = λfx(λ) + x =
∞∑

k=0

ck

λk
+ x → c0 + x as |λ| → ∞.

Taking into account that fx(λ) → 0 as |λ| → ∞ and the closedness of A, we arrive at
the conclusion that D(A) 3 c0 = −x.

Further,

D(A) 3 c1 =
1

2πi

∫
|ξ|=r

ξfx(ξ) dξ =
1

2πi

∫
|ξ|=r

(ξI −A)fx(ξ) dξ +
1

2πi

∫
|ξ|=r

Afx(ξ) dξ

=
1

2πi
A

∫
|ξ|=r

fx(ξ) dξ = Ac0 = −Ax,

that is, x ∈ D(A2).
Suppose, by induction, cn = −Anx. Then

cn+1 =
1

2πi

∫
|ξ|=r

ξn+1fx(ξ) dξ =
1

2πi

∫
|ξ|=r

ξn(ξI −A)fx(ξ) dξ +
1

2πi
A

∫
|ξ|=r

ξnfx(ξ) dξ

= − 1
2πi

∫
|ξ|=r

ξn dξx + Acn = Acn = −An+1x.

Thus, x ∈ C∞(A) and −Anx = cn (n ∈ N0). It follows from (5) that fx(λ) is represented
in the form (4), so, for any λ0 : |λ0| > α, we have

‖An‖ ≤ c|λ0|n, c = c(x, λ0) > 0,

which means that x ∈ E(A).
The explicit form of the vector-valued function fx(λ), established in the course of the

proof of this theorem, verifies its uniqueness. �

The next statement follows immediately from the proof of Theorem 1.

Corollary 1. If x ∈ R∞(A), then

∃α > 0 ∃c = c(x) ‖fx(λ)‖ <
c

|λ|
, λ ∈ Dα.

For x ∈ R∞(A), denote by r(x,A) the radius of the least circle outside which the

function fx(λ) is analytic. It is evident that
1

r(x,A)
coincides with the convergence

radius of the power series
∞∑

n=0
λnAnx. So,

r(x,A) = lim
n→∞

n
√
‖Anx‖ = σ(x,A).

Corollary 2. If R∞(A) = B, then the operator A is bounded.

Corollary 2 implies, in particular, a well-known fact (see [2]) asserting that the bound-
edness of spectrum σ(A) of the operator A and the estimate

‖RA(λ)‖ ≤ c
1
|λ|

near the point at infinity have as a consequence the boundedness of A.

Corollary 3. If σ(A) = ∅, then R∞(A) = E(A) = {0}.
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Really, for a vector x ∈ E(A), under the condition that σ(A) = ∅, the vector-valued
function fx(λ) = RA(λ)x is entire, and RA(λ)x → 0 as |λ| → ∞. By the Liouville
theorem, x = 0.

2. Consider the Cauchy problem

(6)

{
dy(t)
dt

= Ay(t), t ∈ [0,∞),

y(0) = x,

where the operator A is as before, x ∈ B.
If A is bounded, then for any x ∈ B, problem (6) is solvable, and its solution y(t) has

the form

y(t) = eAtx =
∞∑

n=0

tnAnx

n!
.

Moreover, the solution y(t) is an exponential type entire B-valued function (that is, y(t)
may be extended to an exponential type entire vector-valued function y(λ) taking its
values in B). This is not, generally, the case if the operator A is unbounded: there exist
closed operators in B for which problem (6) has no nontrivial solutions in the class of
exponential type entire vector-valued functions. Here, by the type of an exponential type
entire B-valued function g(λ) we mean the number

s(g) = lim
|λ|→∞

ln ‖g(λ)‖
|λ|

.

Denote by Bexp(A) the set of all x ∈ B such that problem (6) is solvable in the class
of exponential type entire B-valued functions.

Theorem 2. (see [3]). The following equality is valid:

Bexp(A) = E(A).

Moreover, if x ∈ Bexp(A) and y(t) is the corresponding solution of problem (6), then

s(y) = σ(x,A).

Proof. Let x ∈ E(A). Then the vector-valued function

y(λ) =
∞∑

n=0

λnAnx

n!

is entire, and for any ε > 0,

‖y(λ)‖ ≤ c

∞∑
n=0

(σ(x,A) + ε)n|λ|n

n!
= ce(σ(x,A)+ε)|λ|,

so,
s(y) ≤ σ(x,A).

It is not hard to verify that y(t) satisfies (6).
Conversely, let y(t) be an entire solution of problem (6) of exponential type s = s(y).

The closedness of A implies the equality

Anx = y(n)(0) =
n!
2πi

∫
|λ|=r

y(λ)
λn+1

dλ,

whence

‖Anx‖ ≤ c
n!e(s+ε)r

rn

for an arbitrary r > 0. Taking into account the equality

min
r>0

e(s+ε)r

rn
=

en(s + ε)n

nn
,
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and the well-known Stirling formula

n! = nne−n
√

2πn

(
1 + O

(
1
n

))
,

we conclude that

(7) ‖Anx‖ ≤ c
n!en(s + ε)n

nn
= c(s + ε)n

√
2πn

(
1 + O

(
1
n

))
≤ c1(s + ε1)n,

where ε1 → 0 as ε → 0, 0 < c1 = const. Estimate (7) shows that x ∈ E(A) and
σ(x,A) ≤ s = s(y). �

3. We say that A is an operator with meromorphic resolvent if the spectrum σ(A) of
this operator consists of isolated eigenvalues λk, which are poles of RA(λ), with the only
possible accumulation point at infinity. Suppose A to be such an operator.

For each λk, we choose rk so that

{λ : |λ− λk| ≤ rk} ∩ σ(A) = {λk}.
As is known [4,5], the projector

Pλk
(A) = − 1

2πi

∫
|λ−λk|=rk

RA(λ) dλ

(the integral is taken along the contour in the counter-clockwise direction) maps B onto
the root subspace

Lk(A) = {x ∈ C∞(A)
∣∣(A− λkI)pkx = 0}

of the operator A, corresponding to λk (pk is the multiplicity of the pole λk), and

uk:|λk|<rLk(A) = − 1
2πi

∫
|λ|=r

RA(λ) dλ B,

where r is chosen so that

(8) {λ : |λ| = r} ∩ σ(A) = ∅.
It follows from here and Lemma 1 that

uk:|λk|<rLk(A) ⊂ E(A).

Conversely, let x ∈ E(A). By Theorem 1, x ∈ R∞(A). Taking into account the
uniqueness principle for analytic functions, we get

fx(λ) = RA(λ)x = −
∞∑

k=0

Akx

λk+1
for |λ| > σ(x,A),

where σ(x,A) is the type of x. If r > σ(x,A) satisfies (8), then

x =
1

2πi

∞∑
k=0

∫
|λ|=r

Akx

λk+1
dλ = − 1

2πi

∫
|λ|=r

RA(λ)x dλ ∈ uk:|λk|<rLk(A).

Thus, we have proved the following theorem.

Theorem 3. Let A be an operator with meromorphic resolvent in B and L(A) the linear
span of all root vectors of A . Then

L(A) = E(A).

Corollary 4. Suppose that A is an operator with meromorphic resolvent in B. In order
that the set of all root vectors of the operator A be complete in B, it is necessary and
sufficient that E(A) = B.
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(Recall that the completeness of a set of vectors in B means the density in B of the
linear span of these vectors.)

In the special case where the resolvent RA(λ) is compact for some λ ∈ ρ(A), this
assertion was established in [6].

Theorem 4. Let A be an operator with meromorphic resolvent in B. The set L(A) is
dense in B if and only if there exist a set M complete in B and a number m ≥ 0 such
that

∀x ∈ M ∃Γn(x) = {λ : |λ| = rn = rn(x)} ⊂ ρ(A) (n ∈ N, lim
n→∞

rn = ∞) :

(9) sup
n∈N

2π∫
0

ln
‖RA(rneiϕ)x‖

rm
n

dϕ < ∞.

Proof. Suppose L(A) = B and put M = L(A). By Theorems 1,3, M = R∞(A). It
follows from Corollary 1 that if x ∈ M, then

∃α > 0 ∀λ ∈ Dα ‖fx(λ)‖ = ‖RA(λ)x‖ ≤ c

|λ|
.

Thus, for an arbitrary sequence of circles Γn(x) = {λ : |λ| = rn}, rn > α, rn → ∞ as
n →∞, we have

‖RA(rneiϕ)x‖ = ‖fx(rneiϕ)‖ ≤ c

rn
,

whence

sup
n∈N

2π∫
0

ln ‖RA(rneiϕ)x‖ dϕ ≤ sup
n∈N

2π∫
0

ln
c

rn
dϕ = sup

n∈N
2π ln

c

rn
< +∞.

Let us prove now the sufficiency. Without loss a generality, we may assume here that
0 ∈ ρ(A).

Starting from the Hilbert resolvent identity, we obtain, by induction,

∀x ∈ M ∀λ ∈ ρ(A) ∀k ∈ N RA(λ)A−kx = −
k∑

n=1

A−nx

λk−n+1
+

RA(λ)x
λk

.

If we multiply this equality by P 2
(

λ
rn

)
, where P (λ) is a polynomial with the properties

P (0) = 1, P (i)(0) = 0 (i = 1, . . . , k − 1), and integrate along the circle Γn(x), we arrive
at the formula

yn =
1

2πi

∫
Γn(x)

P 2

(
λ

rn

)
RA(λ)A−kx dλ = −A−kx +

1
2πi

∫
Γn(x)

P 2
(

λ
rn

)
RA(λ)x

λk
dλ,

whence

‖yn + A−kx‖ ≤ 1
2π

∫
Γn(x)

‖P 2
(

λ
rn

)
RA(λ)x‖

|λ|k
dλ =

1
2π

2π∫
0

|P (eiϕ)|2 ‖RA(rneiϕ)x‖
rk−1
n

dϕ

=
1
rn

inf
P

1
2π

2π∫
0

|P (eiϕ)|2 ‖RA(rneiϕ)x‖
rk−2
n

dϕ.

By the Szegö theorem (see [7–9]),

inf
P

1
2π

2π∫
0

|P (eiϕ)|2 ‖RA(rneiϕ)x‖
rk−2
n

dϕ < exp

2k − 1
2π

2π∫
0

ln
∥∥∥∥‖RA(rneiϕ)x‖

rk−2
n

∥∥∥∥ dϕ

 .

Setting k = m + 2 and taking into account (9), we conclude that

‖yn + A−(m+2)x‖ → 0 as n →∞.
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So, each vector of the set −A−(m+2)M complete in B may be approximated by the
vectors yn which, by Lemma 1, belong to E(A) = L(A). For this reason E(A) = B. �

Corollary 5. Let A be an operator with meromorphic resolvent in B, and there exist a
set M complete in B, such that

∀x ∈ M ‖RA(λ)x‖ ≤ cxrm
n,x

on a certain (own for every x) sequence of circles

Γn,x = {λ : |λ| = rn,x} ⊂ ρ(A), rn,x →∞ as n →∞,

where cx > 0 and m ∈ R are constants, m does not depend on x. Then L(A) = B.

It should be noted that for m = −1, this assertion is contained in [10].

4. In this subsection, B = H is a Hilbert space with scalar product (·, ·). We put also

Sγ
λ0

=
{

λ ∈ C : | arg(λ− λ0)| ≤ γ
π

2

}
.

A linear operator A in H is called sectorial [4], if its numeric range

θ(A) = {(Ax, x), x ∈ D(A), ‖x‖ = 1}

is a subset of the sector Sγ
λ0

with some λ0 and γ < 1. The values λ0 and γ π
2 are known

as a vertex and a half-angle of a sectorial operator A; they are not uniquely defined.
A closed sectorial operator A is called m-sectorial, if it has not sectorial extensions.

For an m-sectorial operator A, σ(A) ⊂ Sγ
λ0

, and

(10) ‖RA(λ)‖ ≤ 1

dist(λ, Sγ
λ0

)
, λ ∈ C \ Sγ

λ0
⊂ ρ(A).

Theorem 5. Let A be an m-sectorial operator in H with vertex λ0 and half-angle γ π
2 (γ <

1), whose resolvent is meromorphic. Suppose also that there is a set M complete in H,
which possesses the following property: for any x ∈ M, there exists a sequence of circles

Γn,x = {λ ∈ C : |λ| = rn,x} ⊂ ρ(A), rn,x →∞ as n →∞,

such that

(11) ∀λ ∈ Γn,x ‖RA(λ)x‖ ≤ cxeaxr1/δ
n,x

with some constants cx > 0 and ax > 0 depending on x and δ (γ < δ < 1) independent
of x. Then L(A) = H.

Proof. Since for any α1 6= 0, α2 ∈ C, L(A) = L(α1A+α2I), we may always take λ0 = 2.
For a number β : γ < β < δ, we put

τβ(λ) = e−λ1/β

= e−|λ|
1/β(cos ϕ

β +i sin ϕ
β ), 0 ≤ ϕ ≤ 2π.

The function τβ(λ) is analytic inside the sector Sβ
0 , continuous on Sβ

0 , and

(12) |τβ(λ)| ≤ e−|λ|
1/β cos γπ

2β , λ ∈ Sγ
0 .

Taking into account that 1 ∈ ρ(A), and the Hilbert resolvent identity, we deduce

RA(λ)x
(λ− 1)2

=
RA(1)x
(λ− 1)2

+
R2

A(1)x
λ− 1

+ R2
A(1)RA(λ)x,

whence

(13)

1
2πi

∫
Γ

τβ

(
λ
n

)
(λ− 1)2

RA(λ)x dλ =
1

2πi

∫
Γ

τβ

(
λ
n

)
(λ− 1)2

RA(1)x dλ

+
1

2πi

∫
Γ

τβ

(
λ
n

)
λ− 1

R2
A(1)x dλ +

1
2πi

∫
Γ

τβ

(
λ

n

)
R2

A(1)RA(λ)x dλ,
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where n ∈ N, Γ = {λ ∈ C : | arg λ| = γ π
2 . Since the function τβ

(
λ
n

)
is analytic in Sγ

0 and
continuous on Sγ

0 , we have, by virtue of (12),

(14)
1

2πi

∫
Γ

τβ

(
λ
n

)
(λ− 1)2

RA(1)x dλ =
1
n

τ ′β

(
1
n

)
RA(1)x → 0 as n →∞,

and

(15)
1

2πi

∫
Γ

τβ

(
λ
n

)
λ− 1

R2
A(1)x dλ = τβ

(
1
n

)
R2

A(1)x → R2
A(1)x as n →∞.

Concentrate now on the integral on the left-hand side in (13). As

dist(λ, Sγ
2 ) > d > 0 when λ ∈ C \ Sγ

0 ,

we have, in view of (10), (12),

∀λ ∈ Γ

∥∥∥∥∥τβ

(
λ
n

)
RA(λ)x

(λ− 1)2

∥∥∥∥∥ <
c

|λ− 1|2
.

By the Lebesgue theorem on passage to the limit under the integral sign,

(16) lim
n→∞

1
2πi

∫
Γ

τβ

(
λ
n

)
(λ− 1)2

RA(λ)x dλ =
1

2πi

∫
Γ

RA(λ)x
(λ− 1)2

dλ = 0.

The latter integral in (16) is equal to 0 because of analyticity of the integrand in C \ Sγ
0

and the estimate ∥∥∥∥ RA(λ)
(λ− 1)2

∥∥∥∥ ≤ c

|λ− 1|2
.

At last, consider the integral

1
2πi

∫
Γ

τβ

(
λ

n

)
RA(λ)R2

A(1)x dλ = ym,n + y′m,n,

where

ym,n =
1

2πi

∫
Γ(m)

τβ

(
λ

n

)
RA(λ)R2

A(1)x dλ,

y′m,n =
1

2πi

∫
Γ′

(m)

τβ

(
λ

n

)
RA(λ)R2

A(1)x dλ,

Γ(m) = {λ ∈ Γ : |λ| ≤ rm,x} ∪ {λ : λ = rm,xeiϕ, |ϕ| ≤ γ
π

2
},

Γ′(m) = {λ ∈ Γ : |λ| > rm,x} ∪ {λ : λ = rm,xeiϕ, |ϕ| ≤ γ
π

2
}.

Using (11), (12), we find that

‖y′m,n‖ ≤
1
π

∞∫
rm,x

∣∣∣∣τβ

(
reiγ π

2

n

)∣∣∣∣ ∥∥RA

(
reiγ π

2
)
R2

A(1)x
∥∥ dr

+
rm,x

2π

γ π
2∫

−γ π
2

∣∣∣∣τβ

(
rm,xeiϕ

n

)∣∣∣∣ ∥∥RA

(
rm,xeiϕ

)
R2

A(1)x
∥∥ dϕ ≤

≤ c

[ ∞∫
rm,x

e−( r
n )1/β

cos γπ
2β dr + rm,x

γ π
2∫

−γ π
2

e−( rm,x
n )1/β

cos γπ
2β eaxr1/δ

m,x dϕ

]
.

Since β < 1, the following relation is fulfilled for an arbitrary fixed n ∈ N:
∞∫

rm,x

e−( r
n )1/β

cos γπ
2β dr ≤

∞∫
rm,x

e−
r
n cos γπ

2β dr =
1
n

cos γ
π

2β
e−

rm,x
n cos γ π

2β → 0 as m →∞.
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Taking into account that β < δ, we get

rm,x

γ π
2∫

−γ π
2

e−( rm,x
n )1/β

cos γπ
2β +axr1/δ

m,x dϕ = πγe−( rm,x
n )1/β

cos γπ
2β +axr1/δ

m,x → 0 as m →∞.

So, for a fixed n ∈ N, we have

(17) y′m,n → 0 as m →∞.

Let now y ∈ R2
A(1)M. Note that the set R2

A(1)M is complete in H. We shall show
that for any ε > 0, there exists a vector yε ∈ L(A) = E(A) such that

(18) ‖y − yε‖ < ε.

For this purpose, return to equality (13). Being based on (14)–(16), we find n0 ∈ N so
that for n > n0,∥∥∥∥ 1

2πi

∫
Γ

τβ

(
λ
n

)
RA(λ)x

(λ− 1)2
dλ

∥∥∥∥ <
ε

4
,

∥∥∥∥ 1
2πi

∫
Γ

τβ

(
λ
n

)
RA(1)x

(λ− 1)2
dλ

∥∥∥∥ <
ε

4
,

∥∥∥∥ 1
2πi

∫
Γ

τβ

(
λ
n

)
R2

A(1)x
λ− 1

dλ−R2
A(1)x

∥∥∥∥ <
ε

4
.

Making fixed n > n0 and using (17), choose now m0 ∈ N so that

‖ym,n + R2
A(1)x‖ < ε.

By Lemma 1, ym,n ∈ E(A) = L(A), so in (18) we may put yε = −ym,n. Hence,

L(A) = l.s.R2
A(1)M = l.s.M = H.

�
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