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A GENERALIZED STOCHASTIC DERIVATIVE ON THE
KONDRATIEV-TYPE SPACE OF REGULAR GENERALIZED
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This paper is dedicated to the blessed memory of my first teacher Professor Yu. L. Daletsky.

Abstract. We introduce and study a generalized stochastic derivative on the Kon-
dratiev-type space of regular generalized functions of Gamma white noise. Properties
of this derivative are quite analogous to the properties of the stochastic derivative
in the Gaussian analysis. As an example we calculate the generalized stochastic
derivative of the solution of some stochastic equation with Wick-type nonlinearity.

0. Introduction

Let S ′ be the Schwartz distributions space, µ be the Gaussian measure on S ′. As is
well known, every square integrable function f ∈ L2(S ′, µ) can be presented in the form

(0.1) f =
∞∑

n=0

〈Hn, f (n)〉,

where {〈Hn, f (n)〉}∞n=0 are the generalized Hermite polynomials, f (n) ∈ Hb⊗n, H (in the
simplest case) is the complexification of L2(R), ⊗̂ denotes a symmetric tensor product.
A stochastic derivative D : L2(S ′, µ) → L(H, L2(S ′, µ)) can be defined on its domain
{f ∈ L2(S ′, µ) :

∑∞
n=1 n!n|f (n)|2H⊗n < ∞} by the formula

(0.2) (Df)(g(1)) :=
∞∑

n=1

n〈Hn−1, 〈f (n), g(1)〉〉 ∀g(1) ∈ H,

where 〈f (n), g(1)〉 ∈ Hb⊗n−1 is defined by

〈〈f (n), g(1)〉, h(n−1)〉 = 〈f (n), h(n−1)⊗̂g(1)〉 ∀h(n−1) ∈ Hb⊗n−1

(here 〈·, ·〉 denotes the scalar product in Hb⊗n).
In the paper [1] Fred E. Benth extended the derivative D on the Kondratiev gener-

alized functions space (S)−1 (elements of (S)−1 can be presented in the similar to (0.1)
form, but the kernels {f (n)}∞n=0 are singular). This generalization is useful for different
applications. For example, as opposed to L2(S ′, µ), in the space (S)−1 one can introduce
the Wick product ♦ by setting for the Hermite polynomials 〈Hn, f (n)〉♦〈Hm, g(m)〉 :=
〈Hn+m, f (n)⊗̂g(m)〉, and D is a differentiation with respect to ♦, for all F, J ∈ (S)−1

D(F♦J) = (DF )♦J + F♦(DJ). Using this result (and another properties of D) one
can study properties of solutions of stochastic equations with Wick type nonlinearity.
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Another possible applications are connected with the fact that the stochastic derivative
is the adjoint operator to the extended (Skorokhod) stochastic integral.

If instead of the Gaussian measure we consider the (introduced in [12]) Gamma mea-
sure µ on S ′ (see the definition in Section 1) then the analog of representation (0.1) for
each f ∈ L2(S ′, µ) (with the generalized Laguerre polynomials instead of the Hermite
ones) holds true; but the kernels {f (n)}∞n=0 belong to special Hilbert spaces H(n)

ext (see
[11] and Section 1), these spaces have the structure more complicated than that of Hb⊗n.
Such a situation is natural because the Gamma measure does not have the so-called
Chaotic Representation Property, see, e.g., [8] for a more detailed explanation. But if
we construct a stochastic derivative on L2(S ′, µ) or on wider Kondratiev-type spaces
by analogy with (0.2) (on L2(S ′, µ) such a derivative is the adjoint operator to an ex-
tended stochastic integral) then the mentioned property of the Gamma measure leads to
complications with a study of this derivative. Nevertheless, in the paper [7] the author
generalized the results of [1] to the Kondratiev-type space (S ′)′ of nonregular generalized
functions of Gamma white noise. But (S ′)′ is too wide a space and the kernels from
the natural orthogonal decompositions of elements of (S ′)′ belong to the distributions
spaces without “good” description, this is inconvenient for applications. Moreover, the
“specifics” of the Gamma measure are such that the generalized stochastic derivatives
on (S ′)′ and on L2(S ′, µ) are different (see [7] for more details).

The main aim of this paper is to transfer the results of [7] to the Kondratiev-type space
(L2)−1 of regular generalized functions of Gamma white noise. This space is smaller than
(S ′)′ and there is no the mentioned problem with the natural orthogonal decompositions
of elements of (L2)−1. Simultaneously it turned out that all main results of [7] can
be transferred to (L2)−1. Moreover, the generalized stochastic derivative on (L2)−1 is
a direct generalization of the corresponding derivative on L2(S ′, µ). Finally, we note
that properties of our derivative are quite analogous to the properties of the stochastic
derivative in the Gaussian analysis.

The paper is organized in the following manner. In the first section we recall some ele-
ments of the Gamma analysis, including the stochastic integration and the Wick calculus.
The second section is devoted to the generalized stochastic derivative on (L2)−1.

1. Preliminaries

Let σ be a non-atomic positive regular σ-finite measure on (R,B(R)) satisfying some
additional condition, see Remark 1.1 for details (here and below the symbol B denotes the
Borel σ-algebra). We denote H := L2(R, σ) (the space of square integrable with respect
to σ functions on R). Let S be the Schwartz test functions space on supp σ (if, e.g., σ is
the Lebesgue measure then S is the usual Schwartz space of rapidly decreasing infinitely
differentiable functions; a more detailed description of S is given in Remark 1.1). As is
well known, there exist Hilbert spaces Hp ≡ Hp(R) ⊂ H, p ∈ N, such that there is the
nuclear chain

S ′ = ind lim
p′∈N

H−p′ ⊃ H−p ⊃ H ≡ H0 ⊃ Hp ⊃ pr lim
p′∈N

Hp′ = S,

where the spaces H−p (p ∈ N), S ′ are dual to Hp, S with respect to the zero space
H. Note that one can select spaces Hp (p ∈ N) such that for each p > p′, we will have
| · |p ≥ | · |p′ (here | · |p denotes the norm in Hp, p ∈ Z, in particular, | · |0 = | · |H). We
preserve the notation | · |p for norms in the tensor powers and complexifications of Hp,
p ∈ Z.

Remark 1.1. Let us describe the construction of the spaces Hp, p ∈ N, in details, fol-
lowing [11]. Let

(
ej

)∞
j=0

be the system of Hermite functions on R. For each p ≥ 1 we

denote by H̃p ≡ H̃p(R) the Hilbert space that is constructed by the orthogonal basis
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ej(2j + 2)−p

)∞
j=0

, and assume that the measure σ is such that for some ε ≥ 0 the space

H̃1+ε is continuously embedded into H = L2(R, σ). Further, let Op : H̃p → H be the
embedding operator. Without loss of generality one can suppose that for defined above ε
the operator O1+ε is of Hilbert-Schmidt type (for example, if σ is the Lebesgue measure
then one can put ε = 0). Now we can put Hp := H̃p+ε|KER Op+ε

(the Hilbert factor
space), S := pr limp∈N Hp.

We use the index C to denote complexifications of corresponding spaces. By 〈·, ·〉
denote the (real) dual pairing between elements of S ′C and SC (and also H−p,C and Hp,C),
this pairing is generated by the scalar product in H. This notation will be preserved for
pairings in tensor powers of spaces. Let F be the σ-algebra on S ′ generated by cylinder
sets.

Definition 1.1. The measure µ on the measurable space (S ′,F) with the Laplace trans-
form

lµ(λ) =
∫
S′

e〈x,λ〉µ(dx) = exp{−〈1, log(1− λ)〉}, 1 > λ ∈ S,

is called the Gamma measure.

The correctness of this definition was proved in [12].

Remark 1.2. Note that lµ can be continued to a function holomorphic at zero. A more
detailed description of µ is given in [12].

Remark 1.3. The term ”Gamma measure” is connected with the fact that µ is the
measure of the so-called Gamma white noise, see [12, 9, 8] for a more detailed information.

By (L2) ≡ L2(S ′, µ) we denote the space of complex-valued functions on S ′ square
integrable with respect to µ, and construct orthogonal in (L2) polynomials. Let α :
SC → SC be the function that is defined on some neighborhood of 0 ∈ SC by the formula
α(λ) := λ

λ−1 . We define the so-called Wick exponential (a generating function of the
orthogonal polynomials)

(1.1) : exp(x;λ) :
def
=

exp{〈x, α(λ)〉}
lµ(α(λ))

= exp
{
〈x,

λ

λ− 1
〉 − 〈1, log(1− λ)〉

}
,

where λ ∈ U0 ⊂ SC, x ∈ S ′, U0 is some neighborhood of 0 ∈ SC.

Remark 1.4. Note that (1.1) is the infinite-dimensional analog of the generating functions
of the one-dimensional Laguerre polynomials. These polynomials are orthogonal ”with
respect to the one-dimensional Gamma measure”, see, e.g., [16].

It is clear that : exp(x; ·) : is a function on SC holomorphic at zero for each x ∈ S ′.
So, using the Cauchy inequalities (see, e.g., [4]) and the kernel theorem (see, e.g., [3])
one can obtain the representation

: exp(x;λ) :=
∞∑

n=0

1
n!
〈Ln(x), λ⊗n〉, Ln(x) ∈ S ′C

b⊗n
, λ ∈ SC,

here and below ⊗̂ denotes a symmetric tensor product, λ⊗0 = 1 even for λ ≡ 0. (Note
that actually for x ∈ S ′, Ln(x) ∈ S ′ b⊗n.)

Definition 1.2. The polynomials {〈Ln(x), f (n)〉, f (n) ∈ S b⊗n
C , n ∈ Z+} are called gener-

alized Laguerre polynomials.

In order to formulate a statement on orthogonality of the generalized Laguerre poly-
nomials we need the following.
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Definition 1.3. We define the scalar product 〈·, ·〉ext on S b⊗n
C by the formula

(1.2)

〈f (n), g(n)〉ext :=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!
ls1
1 . . . lsk

k s1! . . . sk!

×
∫

Rs1+···+sk

f (n)(τ1, . . . , τ1︸ ︷︷ ︸
l1

, . . . , τs1 , . . . , τs1︸ ︷︷ ︸
l1

, . . . , τs1+···+sk
, . . . , τs1+···+sk︸ ︷︷ ︸

lk

)

× g(n)(τ1, . . . , τ1︸ ︷︷ ︸
l1

, . . . , τs1 , . . . , τs1︸ ︷︷ ︸
l1

, . . . , τs1+···+sk
, . . . , τs1+···+sk︸ ︷︷ ︸

lk

)

× σ(dτ1) . . . σ(dτs1+···+sk
).

By | · |ext denote the corresponding norm, i.e., |f (n)|2ext = 〈f (n), f (n)〉ext.

Example. It follows from (1.2) that for n = 1, 〈f (1), g(1)〉ext = 〈f (1), g(1)〉. Further, for
n = 2,

〈f (2), g(2)〉ext = 〈f (2), g(2)〉+
∫

R
f (2)(τ, τ)g(2)(τ, τ)σ(dτ);

for a general n ∈ N, 〈f (n), g(n)〉ext = 〈f (n), g(n)〉+ · · · .

Theorem 1.1. [12]. The generalized Laguerre polynomials are orthogonal in (L2) in the
sense that ∫

S′
〈Ln(x), f (n)〉〈Lm(x), g(m)〉µ(dx) = δmnn!〈f (n), g(n)〉ext.

By H(n)
ext (n ∈ N) denote the closure of S b⊗n

C with respect to the norm | · |ext (see Defi-
nition 1.3), H(0)

ext := C. For f (n) ∈ H(n)
ext we define (L2) 3 〈Ln, f (n)〉 := limk→∞〈Ln, f

(n)
k 〉

in (L2), where S b⊗n
C 3 f

(n)
k → f (n) (as k →∞) in H(n)

ext (the correctness of this definition
can be proved by analogy with the classical Gaussian case, see also [9, 7]). It follows
from results of [11] that the generalized Laguerre polynomials with kernels f (n) ∈ H(n)

ext

form an orthogonal basis in (L2).
Now let us introduce the Kondratiev-type spaces of regular test and generalized func-

tions. First we consider the set P := {f =
∑Nf

n=0〈Ln, f (n)〉, f (n) ∈ H(n)
ext, Nf ∈ Z+} ⊂

(L2) of polynomials and ∀q ∈ N introduce on this set the scalar product (·, ·)q by setting,
for f =

∑Nf

n=0〈Ln, f (n)〉, g =
∑Ng

n=0〈Ln, g(n)〉,

(f, g)q :=
min(Nf ,Ng)∑

n=0

(n!)22qn〈f (n), g(n)〉ext.

Let ‖ · ‖q be the corresponding norm: ‖f‖q =
√

(f, f)q =
√∑Nf

n=0(n!)22qn|f (n)|2ext.

Definition 1.4. We define the Kondratiev-type spaces of (”regular”) test functions (L2)1q
(q ∈ N) as the closures of P with respect to the norms ‖ · ‖q; (L2)1 := pr limq∈N(L2)1q.

It is not difficult to see that f ∈ (L2)1q if and only if f can be presented in the form

(1.3) f =
∞∑

n=0

〈Ln, f (n)〉, f (n) ∈ H(n)
ext

with

‖f‖2
q =

∞∑
n=0

(n!)22qn|f (n)|2ext < ∞,

therefore the generalized Laguerre polynomials play a role of an orthogonal basis in (L2)1q.
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It was proved in [8] that ∀q ∈ N (L2)1q ↪→ (L2) and this embedding is dense. Therefore
one can consider the chain

(L2)−1 = ind limeq∈N
(L2)−1

−eq ⊃ (L2)−1
−q ⊃ (L2) ⊃ (L2)1q ⊃ (L2)1,

where the spaces (L2)−1
−q, (L2)−1 are dual correspondingly to (L2)1q, (L2)1 with respect

to (L2).

Definition 1.5. The spaces (L2)−1
−q, (L2)−1 are called the Kondratiev-type spaces of

regular generalized functions (cf. [5]).

It is easy to see that F ∈ (L2)−1
−q if and only if F can be presented as the formal series

(1.4) F =
∞∑

m=0

〈Lm, F (m)〉, F (m) ∈ H(m)
ext ,

with

‖F‖2
−q :=

∞∑
m=0

2−qm|F (m)|2ext < ∞.

Moreover, the generalized Laguerre polynomials play a role of an orthogonal basis in
(L2)−1

−q in the sense that for F, J ∈ (L2)−1
−q we have (F, J)−q =

∑∞
m=0 2−qm〈F (m), J (m)〉ext

(here (·, ·)−q denotes the (real) scalar product in (L2)−1
−q, ‖F‖−q =

√
(F, F )−q; the kernels

F (m), J (m) ∈ H(m)
ext are from decompositions (1.4) for F, J correspondingly).

By 〈〈·, ·〉〉 denote the dual pairing between elements of (L2)−1
−q and (L2)1q (correspond-

ingly (L2)−1 and (L2)1), this pairing is generated by the scalar product in (L2). If
F ∈ (L2)−1

−q and f ∈ (L2)1q then we have

〈〈F, f〉〉 =
∞∑

n=0

n!〈F (n), f (n)〉ext,

where F (n), f (n) ∈ H(n)
ext are the kernels from decompositions (1.4), (1.3) for F and f ,

respectively.
Now let us recall the construction of the extended stochastic integral on the space

of regular generalized functions (see [8] for a more detailed presentation). By analogy
with the classical Gaussian analysis one can consider the compensated Gamma process
Gs = 〈L1, 1[0,s)〉 ∈ (L2) (s ∈ R+) on the probability space (S ′,F , µ) (from this point of
view µ is the measure of the Gamma white noise G′

s, formally G′
s = 〈L1, δs〉, where δs is

the ”concentrated at s” delta-function, see more details below). Let F ∈ (L2)−1
−q ⊗HC,

q ∈ N. Then (see (1.4))

(1.5) F· =
∞∑

m=0

〈Lm, F
(m)
· 〉, F

(m)
· ∈ H(m)

ext ⊗HC.

Lemma 1.1. [9]. For given F
(m)
· ∈ H(m)

ext ⊗HC and t ∈ [0,+∞] we construct an element
F̂

(m)
[0,t) ∈ H

(m+1)
ext in the following way. Let us consider a sequence

{
f

(m)
i,· ∈ S b⊗m

C ⊗SC
}∞

i=1

such that F
(m)
· = limi→∞ f

(m)
i,· in H(m)

ext ⊗HC and put

f̃
(m)
[0,t),i(τ1, . . . , τm, τ) :=

{
f

(m)
i,τ (τ1, . . . , τm)1[0,t)(τ), if τ 6= τ1, . . . , τ 6= τm,

0, in other cases,
,

f̂
(m)
[0,t),i := P f̃

(m)
[0,t),i, where 1[0,t)(τ) denotes the indicator of {τ ∈ [0, t)}, P is the sym-

metrization operator. Then F̂
(m)
[0,t) := limi→∞ f̂

(m)
[0,t),i in H(m+1)

ext . This limit does not
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depend on the sequence
{
f

(m)
i,·

}∞
i=1

and the estimate

|F̂ (m)
[0,t)|ext ≤ |F (m)

· |H(m)
ext ⊗HC

holds.

Definition 1.6. Let F ∈ (L2)−1
−q ⊗ HC, q ∈ N. For each t ∈ [0,+∞] we define the

extended stochastic integral
∫ t

0
Fsd̂Gs ∈ (L2)−1

−q by setting

(1.6)
∫ t

0

Fsd̂Gs :=
∞∑

m=0

〈Lm+1, F̂
(m)
[0,t)〉,

where the kernels F̂
(m)
[0,t) are constructed in Lemma 1.1 starting with the kernels F

(m)
·

from decomposition (1.5) for F . If F ∈ (L2)−1 ⊗HC then
∫ t

0
Fsd̂Gs ∈ (L2)−1.

The correctness of this definition was proved in [8].
Note that

∫ t

0
Fsd̂Gs is a direct generalization of the defined in [9] extended stochas-

tic integral on (L2) ⊗ HC, and therefore
∫ t

0
Fsd̂Gs is a direct generalization of the Itô

stochastic integral (see [8, 9, 7] for more details).
Finally, let us recall elements of the Wick calculus on (L2)−1 (a more detailed presen-

tation is given in [8]).

Definition 1.7. For F ∈ (L2)−1 we define the integral S-transform (SF )(λ), λ belongs
to some neighborhood of zero in SC, by setting (see (1.1))

(SF )(λ) := 〈〈F, : exp(·;λ) :〉〉.

The correctness of this definition was proved in [8].
Note that a simple calculation gives

(1.7) (SF )(λ) =
∞∑

n=0

〈F (n), λ⊗n〉ext,

where F (n) ∈ H(n)
ext (n ∈ Z+) are the kernels from decomposition (1.4) for F . In particular,

(SF )(0) = F (0), S1 = 1.

Definition 1.8. We define a set B (a characterization set of (L2)−1 in terms of the
S-transform) by setting B := S

(
(L2)−1

)
≡

{
K ∈ Hol0|∃F ∈ (L2)−1 : K = SF

}
⊂ Hol0

(see [8]), where Hol0 (see, e.g., [13]) is the set of germs of holomorphic at zero functions
on SC.

Remark 1.5. In this paper we do not need a topology on B. Nevertheless we note that
Hol0 was introduced in [13] as a topological space, therefore it seems to be natural to
introduce on B the induced from Hol0 topology; in this case S will be a topological
isomorphism between (L2)−1 and B.

Proposition 1.1. [8]. The set B is an algebra with respect to the usual (pointwise)
multiplication of functions. Moreover, if K ∈ B and h : C → C is a holomorphic at K(0)
function, then K̃(·) := h(K(·)) ∈ B. In particular, for each entire h : C → C and K ∈ B
we have h(K) ∈ B.

Definition 1.9. For F, J ∈ (L2)−1 and a holomorphic at (SF )(0) function h : C → C
we define the Wick product F♦J ∈ (L2)−1 and the Wick version of h h♦(F ) ∈ (L2)−1

by setting
F♦J := S−1(SF · SJ), h♦(F ) := S−1h(SF ).

The correctness of this definition from Proposition 1.1 follows.
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Remark 1.6. It is easy to see that if F ∈ (L2)−1 and h from Definition 1.9 is presented
in the form h(u) =

∑∞
n=0 hn(u − (SF )(0))n then h♦(F ) =

∑∞
n=0 hn(F − (SF )(0))♦n,

where for n ∈ N F♦n := F♦ . . .♦F︸ ︷︷ ︸
n times

, F♦0 := 1.

In order to make calculations with Wick products and with Wick versions of holomor-
phic functions we need coordinate forms of these objects.

Lemma 1.2. [8]. Let n, m ∈ N, F (n) ∈ H(n)
ext, J (m) ∈ H(m)

ext . We construct the element
F (n) � J (m) ∈ H(n+m)

ext by the following way. Let S b⊗n
C 3 F

(n)
k → F (n) as k →∞ in H(n)

ext,
S b⊗m

C 3 J
(m)
k → J (m) as k →∞ in H(m)

ext . We put

( ˜F (n)J (m))k(t1, . . . , tn; tn+1, . . . , tn+m)

:=

{
F

(n)
k (t1, . . . , tn)J (m)

k (tn+1, . . . , tn+m), if ∀i∈{1,...,n},
∀j∈{n+1,...,n+m} ti 6=tj

,

0, in other cases
,

( ̂F (n)J (m))k := P ( ˜F (n)J (m))k, where P is the symmetrization operator. Then F (n) �
J (m) := limk→∞( ̂F (n)J (m))k in H(n+m)

ext , this limit does not depend on the sequences
(F (n)

k )∞k=0, (J (m)
k )∞k=0. For n = 0 we put F (0) � J (m) := F (0)J (m) ∈ H(m)

ext (F (0) ∈ C), by
analogy F (n) � J (0) := F (n)J (0) ∈ H(n)

ext. For n, m ∈ Z+

|F (n) � J (m)|ext ≤ |F (n)|ext|J (m)|ext.

Remark 1.7. Note that nonstrictly speaking ̂F (n)J (m) is the symmetrization of the func-
tion

˜F (n)J (m)(t1, . . . , tn; tn+1, . . . , tn+m)

:=

{
F (n)(t1, . . . , tn)J (m)(tn+1, . . . , tn+m), if ∀i∈{1,...,n},

∀j∈{n+1,...,n+m} ti 6=tj
,

0, in other cases

with respect to n + m variables.

Remark 1.8. Let us consider the riggings

S ′C
(n) ⊃ H(n)

ext ⊃ S b⊗n
C , S ′C

b⊗n ⊃ Hb⊗n
C ⊃ S b⊗n

C , n ∈ N,

and let Un : S ′C
(n) → S ′C

b⊗n be the natural isomorphism between S ′C
(n) and S ′C

b⊗n, i.e.,
∀F (n)

ext ∈ S ′C
(n), ∀f (n) ∈ S b⊗n

C 〈F (n)
ext , f (n)〉ext = 〈UnF

(n)
ext , f (n)〉 (here by 〈·, ·〉ext denote

the dual pairing between elements of S ′C
(n) and S b⊗n

C , this pairing is generated by the
scalar product in H(n)

ext). One can prove (see [8]) that for F (n) ∈ H(n)
ext, J (m) ∈ H(m)

ext

U−1
n+m(UnF (n)⊗̂UmJ (m)) can be continued to a linear continuous functional on H(n+m)

ext

that coincides with F (n) � J (m), i.e., F (n) � J (m) = U−1
n+m(UnF (n)⊗̂UmJ (m)).

It follows from results of [8] that the ”multiplication” � is associative, commutative,
and distributive (over the field C).

Proposition 1.2. Let F, J ∈ (L2)−1 and a function h : C → C be holomorphic at
(SF )(0). Then F♦J and h♦(F ) can be presented in the form

F♦J =
∞∑

k=0

〈Lk,

k∑
n=0

F (n) � J (k−n)〉,

h♦(F ) = h0 +
∞∑

k=1

〈Lk,

k∑
n=1

hn

∑
m1,...,mn∈N:m1+···+mn=k

F (m1) � · · · � F (mn)〉,
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where the coefficients hn ∈ C (n ∈ Z+) are from the decomposition h(u) =
∑∞

n=0 hn(u−
F (0))n; F (n), J (n) ∈ H(n)

ext are the kernels from decompositions (1.4) for F, J . In particu-
lar,

〈Ln, F (n)〉♦〈Lm, J (m)〉 = 〈Ln+m, F (n) � J (m)〉.

Proof. It was proved in [8] that for F (n) ∈ H(n)
ext, J (m) ∈ H(m)

ext , λ ∈ SC

(1.8) 〈F (n), λ⊗n〉ext〈J (m), λ⊗m〉ext = 〈F (n) � J (m), λ⊗(n+m)〉ext.

Using this fact and (1.7) we obtain

F♦J = S−1(SF · SJ) = S−1

( ∞∑
n,m=0

〈F (n), λ⊗n〉ext〈J (m), λ⊗m〉ext

)

= S−1

( ∞∑
n,m=0

〈F (n) � J (m), λ⊗(n+m)〉ext

)

= S−1

( ∞∑
k=0

〈
k∑

n=0

F (n) � J (k−n), λ⊗k〉ext

)
=

∞∑
k=0

〈Lk,

k∑
n=0

F (n) � J (k−n)〉;

h♦(F ) = S−1h(SF ) = S−1h

( ∞∑
m=0

〈F (m), λ⊗m〉ext

)

= S−1

(
h0 +

∞∑
n=1

hn

( ∞∑
m=1

〈F (m), λ⊗m〉ext

)n)

= h0 + S−1

( ∞∑
n=1

hn

∞∑
m1,...,mn=1

〈F (m1), λ⊗m1〉ext . . . 〈F (mn), λ⊗mn〉ext

)

= h0 + S−1

( ∞∑
n=1

hn

∞∑
m1,...,mn=1

〈F (m1) � · · · � F (mn), λ⊗(m1+···+mn)〉ext

)

= h0 + S−1

( ∞∑
k=1

〈
k∑

n=1

hn

∑
m1,...,mn∈N:m1+···+mn=k

F (m1) � · · · � F (mn), λ⊗k〉ext

)

= h0 +
∞∑

k=1

〈Lk,

k∑
n=1

hn

∑
m1,...,mn∈N:m1+···+mn=k

F (m1) � · · · � F (mn)〉,

where F (n), J (n) ∈ H(n)
ext are the kernels from decompositions (1.4) for F, J correspond-

ingly. �

Remark 1.9. In the classical Gaussian analysis the (Gaussian) Wick exponential coincides
with exp�(〈H1, λ〉) (here H1(x) = x is the kernel of the generalized Hermite polynomial,
see, e.g., [13] for more details). But now

exp�(〈L1, λ〉) =
∞∑

n=0

1
n!
〈L1, λ〉♦n =

∞∑
n=0

1
n!
〈Ln, λ�n〉 6=: exp(·;λ) :=

∞∑
n=0

1
n!
〈Ln, λ⊗n〉

and therefore the inherited from the Gaussian analysis term ”Wick exponential” for
: exp(·;λ) : is, strictly speaking, inaccurate. Similar situations are typical for the Gam-
ma analysis.

There is a simple interconnection between the Wick calculus and the stochastic in-
tegration. In order to explain this interconnection let us consider the Kondratiev-type
space of nonregular generalized functions (S ′)′, this space can be constructed by ana-
logy with (L2)−1, but with using of singular kernels in decompositions of type (1.4) (see
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[9, 7, 8] for details). One can consider the Gamma white noise at s ∈ R+ G′
s = 〈L1, δs〉 as

an element of (S ′)′, and construct for t ∈ [0,+∞] and F ∈ (L2)−1 ⊗HC the Pettis-type
integral

∫ t

0
Fs♦G′

sσ(ds) ∈ (S ′)′, i.e., this integral is a unique element of (S ′)′ such that

〈〈
∫ t

0

Fs♦G′
sσ(ds), f〉〉 =

∫ t

0

〈〈Fs♦G′
s, f〉〉σ(ds) ∀f ∈ (S)

(here (S) is the corresponding to (S ′)′ test functions space, see [9, 7, 8] for details;
Fs ∈ (L2)−1 ⊂ (S ′)′ is a representative from the corresponding equivalence class).

Theorem 1.2. [8]. For all t ∈ [0,+∞] and F ∈ (L2)−1 ⊗ HC
∫ t

0
Fs♦G′

sσ(ds) can be
extended to a linear continuous functional on (L2)1 that coincides with

∫ t

0
Fsd̂Gs, i.e.,

(1.9)
∫ t

0

Fs♦G′
sσ(ds) =

∫ t

0

Fsd̂Gs ∈ (L2)−1.

By another words, one can ”forget” now about the spaces (S) and (S ′)′, and operate
with ♦ in the left hand side of (1.9) as with the usual Wick product.

2. Generalized stochastic derivatives

We begin from some ”technical preparation”. For F (n) ∈ H(n)
ext and f (m) ∈ H(m)

ext

(n > m) we define a ”pairing” 〈F (n), f (m)〉ext ∈ H(n−m)
ext by the formula

〈〈F (n), f (m)〉ext, g
(n−m)〉ext = 〈F (n), g(n−m) � f (m)〉ext ∀g(n−m) ∈ H(n−m)

ext

(see Lemma 1.2). Since

|〈F (n), g(n−m) � f (m)〉ext| ≤ |F (n)|ext|g(n−m) � f (m)|ext ≤ |F (n)|ext|g(n−m)|ext|f (m)|ext,

this definition is correct and

|〈F (n), f (m)〉ext|ext ≤ |F (n)|ext|f (m)|ext.

In order to define an extended stochastic derivative on (L2)−1 we need the following
statement.

Proposition 2.1. [7]. Let F (n) ∈ H(n)
ext, n ∈ N. Then there exists a unique F (n)(·) ∈

H(n−1)
ext ⊗HC such that

(2.1)
∫

R
F (n)(τ)f (1)(τ)σ(dτ) = 〈F (n), f (1)〉ext ∈ H(n−1)

ext ∀f (1) ∈ HC

and

|F (n)(·)|H(n−1)
ext ⊗HC

≤ |F (n)|ext.

Definition 2.1. Let F ∈ (L2)−1. We define the generalized stochastic derivative ∂·F ∈
(L2)−1 ⊗HC by setting

(2.2) ∂·F :=
∞∑

n=1

n〈Ln−1, F
(n)(·)〉,

where the kernels F (n)(·) ∈ H(n−1)
ext ⊗HC are constructed in Proposition 2.1 starting from

the kernels F (n) ∈ H(n)
ext from decomposition (1.4) for F .
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Let us prove the correctness of this definition. Since F ∈ (L2)−1, there exists q ∈ N
such that F ∈ (L2)−1

−(q−1) and therefore ‖F‖−(q−1) < ∞. We can estimate as follows:

‖∂·F‖2
(L2)−1

−q⊗HC
=

∞∑
n=1

2−q(n−1)n2|F (n)(·)|2
H(n−1)

ext ⊗HC

≤ 2q
∞∑

n=1

[n22−n]2−(q−1)n|F (n)|2ext ≤ 9 · 2q−3‖F‖2
−(q−1) < ∞

(we used the equality maxn∈N[n22−n] = 9/8). Hence ∂· is a well-defined linear continuous
operator acting from (L2)−1 to (L2)−1 ⊗HC.

Remark 2.1. Let us consider a generalized differential operator 〈f (m), : D :⊗m〉ext (with a
constant coefficient f (m) ∈ H(m)

ext ) that is defined on monomials 〈Ln, F (n)〉 (F (n) ∈ H(n)
ext)

by the formula

〈f (m), : D :⊗m〉ext〈Ln, F (n)〉 := 1{n≥m}
n!

(n−m)!
〈Ln−m, 〈F (n), f (m)〉ext〉,

where 1{n≥m} denotes the indicator of {n ≥ m}. This operator can be continued by
linearity and continuity on (L2)1q (q ∈ N) and can be used in order to study differential
equations on (L2)1q by analogy with [10]; another applications are connected with the
stochastic integration (see, e.g., [8]). Note that formally ∂· = 〈δ·, : D :〉ext, where δ is
the delta-function. The operator of this type in the Gaussian analysis is called the Hida
derivative (see, e.g., [6]).

Remark 2.2. Note that Definition 2.1 is a direct generalization of the definition of the
stochastic derivative on (L2), see [7]. But as it was explained in [7], this definition can
not be ”transferred” to the space of nonregular generalized functions (S ′)′, therefore in
a sense (L2)−1 is a ”more natural” space for study of the stochastic derivative than the
space (S ′)′.

In [8] the operator ∂· was introduced by formula (2.2) on the space (L2)1q (q ∈ N).
Then it was established that ∂· is connected with the extended stochastic integral by the
formula

(2.3) 〈〈
∫ t

0

Fsd̂Gs, f〉〉 =
∫ t

0

〈〈Fs, ∂sf〉〉σ(ds), ∀t ∈ [0,+∞],

where f ∈ (L2)1q, F ∈ (L2)−1
−q ⊗HC, q ∈ N. For the operator ∂· on (L2)−1 we have the

similar property.

Theorem 2.1. Let F ∈ (L2)−1, f ∈ (L2)1 ⊗HC. Then

(2.4) 〈〈F,

∫ t

0

fsd̂Gs〉〉 =
∫ t

0

〈〈∂sF, fs〉〉σ(ds), ∀t ∈ [0,+∞].

Proof. First we note that ∀q ∈ N

‖
∫ t

0

fsd̂Gs‖2
q =

∞∑
n=0

((n + 1)!)22q(n+1)|f̂ (n)
[0,t)|

2
ext

≤ 2q
∞∑

n=0

[(n + 1)22−n](n!)22(q+1)n|f (n)
· |2

H(n)
ext⊗HC

≤ 9 · 2q−2‖f‖2
(L2)1(q+1)⊗HC

< ∞

(see (1.6)), here f
(n)
· ∈ H(n)

ext⊗HC are the kernels from decomposition (1.5) for f , f̂
(n)
[0,t) ∈

H(n+1)
ext are constructed in Lemma 1.1 starting from f

(n)
· ; therefore

∫ t

0
fsd̂Gs ∈ (L2)1 and
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the left hand side of (2.4) is well-defined. Further, using decompositions (1.4) for F and
(1.6) for

∫ t

0
fsd̂Gs we obtain

〈〈F,

∫ t

0

fsd̂Gs〉〉 = 〈〈
∞∑

m=0

〈Lm, F (m)〉,
∞∑

n=0

〈Ln+1, f̂
(n)
[0,t)〉〉〉

=
∞∑

n=0

(n + 1)!〈F (n+1), f̂
(n)
[0,t)〉ext.

On the other hand, using decompositions (2.2) for ∂·F and (1.5) for f· we have

〈〈∂·F, f·〉〉 = 〈〈
∞∑

n=0

(n + 1)〈Ln, F (n+1)(·)〉,
∞∑

m=0

〈Lm, f
(m)
· 〉〉〉

=
∞∑

n=0

(n + 1)!〈F (n+1)(·), f (n)
· 〉ext.

Therefore in order to finish the proof it is sufficient to show that

〈F (n+1), f̂
(n)
[0,t)〉ext =

∫ t

0

〈F (n+1)(s), f (n)
s 〉extσ(ds),

but this equality was proved in [8]. �

Remark 2.3. Formula (2.4) (in the same way as (2.3)) can be rewritten in the form

〈〈F,

∫ t

0

fsd̂Gs〉〉 =
∫ t

0

〈〈F, ∂†sfs〉〉σ(ds) ≡ 〈〈F,

∫ t

0

∂†sfsσ(ds)〉〉,

where ∂†· is the adjoint to ∂· with respect to the scalar product in (L2) operator. Therefore∫ t

0

fsd̂Gs =
∫ t

0

∂†sfsσ(ds).

The analogous result is well-known in the Gaussian analysis, see, e.g., [6].

For further presentation it will be convenient to introduce another ”stochastic differ-
ential operator” D, in a sense D is equivalent to ∂· (see Proposition 2.2 below).

Definition 2.2. We define a generalized stochastic derivative D : (L2)−1 → L(HC,
(L2)−1) (here and below L denotes a set of linear continuous operators) by the formula

(DF )(◦) :=
∞∑

n=1

n〈Ln−1, 〈F (n), ◦〉ext〉,

where F (n) ∈ H(n)
ext (n ∈ N) are the kernels from decomposition (1.4) for F ∈ (L2)−1.

Hence, for f =
∑∞

n=0〈Ln, f (n)〉 ∈ (L2)1 (see (1.3)) and g(1) ∈ HC = H(1)
ext we have

〈〈(DF )(g(1)), f〉〉 =
∞∑

n=0

(n + 1)!〈F (n+1), f (n) � g(1)〉ext.
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Let us prove the correctness of this definition. Since ∃q ∈ N such that F ∈ (L2)−1
−(q−1),

we can estimate as follows:

|〈〈(DF )(g(1)), f〉〉| ≤
∞∑

n=0

(n + 1)!|〈F (n+1), f (n) � g(1)〉ext|

≤
∞∑

n=0

(n + 1)!|F (n+1)|ext|f (n)|ext|g(1)|ext

= |g(1)|ext

∞∑
n=0

n!2qn/2|f (n)|ext[(n + 1)2−n/2]2−(q−1)n/2|F (n+1)|ext

≤ |g(1)|ext

√√√√ ∞∑
n=0

(n!)22qn|f (n)|2ext

√√√√ ∞∑
n=0

[(n + 1)22−n]2−(q−1)n|F (n+1)|2ext

≤ |g(1)|ext‖f‖q ·
3
2
· 2

q−1
2

√√√√ ∞∑
n=0

2−(q−1)(n+1)|F (n+1)|2ext

≤ 3 · 2
q−3
2 |g(1)|ext‖f‖q‖F‖−(q−1) < ∞

(because maxn∈Z+ [(n+1)22−n] = 9/4). Therefore in fact (DF )(◦) ∈ L(HC, (L2)−1) and,
moreover, ∀g(1) ∈ HC (D◦)(g(1)) is a linear continuous operator acting from (L2)−1 to
(L2)−1.

Remark 2.4. Note that (DF )(◦) = 〈◦, : D :〉extF (see Remark 2.1).

Proposition 2.2. For all F ∈ (L2)−1, g(1) ∈ HC

(2.5)
∫

R
∂sF · g(1)(s)σ(ds) = (DF )(g(1)) ∈ (L2)−1.

Proof. Using (2.1), ∀f =
∑∞

n=0〈Ln, f (n)〉 ∈ (L2)1 (see (1.3)) we obtain

〈〈
∫

R
∂sF · g(1)(s)σ(ds), f〉〉

= 〈〈
∫

R

∞∑
m=0

(m + 1)〈Lm, F (m+1)(s)〉g(1)(s)σ(ds),
∞∑

n=0

〈Ln, f (n)〉〉〉

=
∫

R

∞∑
n=0

(n + 1)!〈F (n+1)(s), f (n)〉extg
(1)(s)σ(ds)

=
∞∑

n=0

(n + 1)!〈
∫

R
F (n+1)(s)g(1)(s)σ(ds), f (n)〉ext

=
∞∑

n=0

(n + 1)!〈〈F (n+1), g(1)〉ext, f
(n)〉ext =

∞∑
n=0

(n + 1)!〈F (n+1), f (n) � g(1)〉ext

= 〈〈(DF )(g(1)), f〉〉.

The proposition is proved. �

Theorem 2.1 can be reformulated ”in terms of D” as follows:

Theorem 2.2. For all F ∈ (L2)−1, f ∈ (L2)1 and g(1) ∈ HC

〈〈F,

∫ ∞

0

f · g(1)(s)d̂Gs〉〉 = 〈〈F, f♦〈L1, g
(1)〉〉〉 = 〈〈(DF )(g(1)), f〉〉.
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Proof. First we note that the equality
∫∞
0

f · g(1)(s)d̂Gs = f♦〈L1, g
(1)〉 follows directly

from Lemma 3.1 in [9]. Further, using (2.4) and (2.5) we obtain

〈〈F,

∫ ∞

0

f · g(1)(s)d̂Gs〉〉 =
∫ ∞

0

〈〈∂sF, f · g(1)(s)〉〉σ(ds)

= 〈〈
∫ ∞

0

∂sF · g(1)(s)σ(ds), f〉〉 = 〈〈(DF )(g(1)), f〉〉.

The theorem is proved. �

Let us study another properties of the operator D.

Theorem 2.3. For any F ∈ (L2)−1 the kernels F (n) ∈ H(n)
ext from decomposition (1.4)

satisfy the equalities

(2.6) 〈F (n), g
(1)
1 � · · · � g(1)

n 〉ext =
1
n!

E(DnF )(g(1)
1 � · · · � g(1)

n ) ∀g(1)
1 , . . . , g(1)

n ∈ HC,

where E denotes the expectation.

Proof. First we note that for F ∈ (L2)−1 and g
(1)
1 ∈ HC

(DF )(g(1)
1 ) =

∞∑
m=0

(m + 1)〈Lm, 〈F (m+1), g
(1)
1 〉ext〉 ∈ (L2)−1,

where F (m) ∈ H(m)
ext , m ∈ N are the kernels from decomposition (1.4) for F . Applying D

to (DF )(g(1)
1 ) we obtain

(2.7)

(D(DF )(g(1)
1 ))(g(1)

2 ) =
∞∑

m=0

(m + 1)(m + 2)〈Lm, 〈〈F (m+2), g
(1)
1 〉ext, g

(1)
2 〉ext〉 ∈ (L2)−1

(here g
(1)
2 ∈ HC).

Lemma 2.1. Let n, m, k ∈ Z+, n ≥ k + m. For F (n) ∈ H(n)
ext, f (m) ∈ H(m)

ext , g(k) ∈ H(k)
ext

〈〈F (n), f (m)〉ext, g
(k)〉ext = 〈F (n), g(k) � f (m)〉ext ∈ H(n−k−m)

ext .

Proof. Taking into account the associativity of �, ∀ϕ(n−k−m) ∈ H(n−k−m)
ext we obtain

〈〈〈F (n), f (m)〉ext, g
(k)〉ext, ϕ

(n−k−m)〉ext = 〈〈F (n), f (m)〉ext, ϕ
(n−k−m) � g(k)〉ext

= 〈F (n), ϕ(n−k−m) � g(k) � f (m)〉ext = 〈〈F (n), g(k) � f (m)〉ext, ϕ
(n−k−m)〉ext.

The lemma is proved. �

Considering the result of Lemma 2.1 (and the commutativity of �), we can rewrite
(2.7) in the form

(D2F )(g(1)
1 � g

(1)
2 ) := (D(DF )(g(1)

1 ))(g(1)
2 )

=
∞∑

m=0

(m + 1)(m + 2)〈Lm, 〈F (m+2), g
(1)
1 � g

(1)
2 〉ext〉.

Now it is easy to show by induction that

(2.8) (DnF )(g(1)
1 � · · · � g(1)

n ) =
∞∑

m=0

(m + n)!
m!

〈Lm, 〈F (m+n), g
(1)
1 � · · · � g(1)

n 〉ext〉.
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Therefore,
E(DnF )(g(1)

1 � · · · � g(1)
n ) ≡ 〈〈(DnF )(g(1)

1 � · · · � g(1)
n ), 1〉〉

= 〈〈
∞∑

m=0

(m + n)!
m!

〈Lm, 〈F (m+n), g
(1)
1 � · · · � g(1)

n 〉ext〉, 1〉〉

= n!〈F (n), g
(1)
1 � · · · � g(1)

n 〉ext.

The theorem is proved. �

Remark 2.5. In the classical Gaussian (and Poissonian) analysis one can write the cor-
responding analog of formula (2.6) in the form F (n) = 1

n!E(DnF ). Now this form is
incorrect because elements g

(1)
1 � · · · � g

(1)
n ∈ H(n)

ext do not form a total set in H(n)
ext. Nev-

ertheless, it is possible to generalize the operator Dn such that formula (2.6) will be
rewritten in the ”classical” form. Namely, considering (2.8) we can define for arbitrary
f (n) ∈ H(n)

ext

(DnF )(f (n)) :=
∞∑

m=0

(m + n)!
m!

〈Lm, 〈F (m+n), f (n)〉ext〉.

The operator (Dn◦)(f (n)) is well-defined as a linear continuous one in (L2)−1. In fact,
for each F ∈ (L2)−1 there exists q ∈ N such that F ∈ (L2)−1

−(q−2), and we can estimate
as follows:

‖(DnF )(f (n))‖2
−q = ‖

∞∑
m=0

(m + n)!
m!

〈Lm, 〈F (m+n), f (n)〉ext〉‖2
−q

≤
∞∑

m=0

2−qm(
(m + n)!

m!
)2|F (m+n)|2ext|f (n)|2ext

≤ (n!)2|f (n)|2ext

∞∑
m=0

2−qm22(m+n)|F (m+n)|2ext

= 2qn(n!)2|f (n)|2ext

∞∑
m=0

2−(q−2)(m+n)|F (m+n)|2ext

≤ 2qn(n!)2|f (n)|2ext‖F‖2
−(q−2) < ∞

(we used the estimate (m+n)!
m! = n!Cm

m+n ≤ n!2m+n). Now ∀F ∈ (L2)−1, ∀f (n) ∈ H(n)
ext

E(DnF )(f (n)) = 〈〈
∞∑

m=0

(m + n)!
m!

〈Lm, 〈F (m+n), f (n)〉ext〉, 1〉〉 = n!〈F (n), f (n)〉ext,

this equality can be formally rewritten in the form F (n) = 1
n!E(DnF ).

Finally we note that (DnF )(f (n)) = 〈f (n), : D :⊗n〉extF (see Remark 2.1). Therefore
we proved that the generalized differential operator 〈f (n), : D :⊗n〉ext can be continued
to a linear continuous operator on (L2)−1.

As is well known, in the classical Gaussian and Poissonian analysis the analog of the
operator D can be constructed as a pre-image of the directional derivative under the S-
transform (see [7] for more details). In the Gamma analysis the situation is slightly more
complicated, nevertheless the similar result holds true. Let us explain this explicitly.

Definition 2.3. Let g ∈ HC. We define the ”directional derivative” D�
g : B → B (see

Definition 1.8) by setting for (SF )(·) =
∑∞

n=0〈F (n), ·⊗n〉ext ∈ B

(D�
gSF )(·) :=

∞∑
n=1

n〈F (n), ·⊗(n−1) � g〉ext ≡
∞∑

n=0

(n + 1)〈〈F (n+1), g〉ext, ·⊗n〉ext ∈ B.



A GENERALIZED STOCHASTIC DERIVATIVE . . . 377

Let us prove the correctness of this definition. Let SF ∈ B. It means that S−1(SF ) =
F =

∑∞
n=0〈Ln, F (n)〉 ∈ (L2)−1 (here F (n) ∈ H(n)

ext, n ∈ Z+ are the kernels from de-
composition (1.7) for SF ) and therefore there exists q ∈ N such that ‖F‖2

−(q−1) =∑∞
n=0 2−(q−1)n|F (n)|2ext < ∞. Let us consider (formally!)

(2.9) S−1(D�
gSF ) =

∞∑
n=0

〈Ln, (n + 1)〈F (n+1), g〉ext〉.

Since

‖S−1(D�
gSF )‖2

−q =
∞∑

n=0

2−qn(n + 1)2|〈F (n+1), g〉ext|2ext

≤
∞∑

n=0

[2−n(n + 1)2]2−(q−1)n|F (n+1)|2ext|g|2ext

≤ 9
4
|g|2ext2

q−1
∞∑

n=0

2−(q−1)(n+1)|F (n+1)|2ext

≤ 9 · 2q−3|g|2ext‖F‖2
−(q−1) < ∞

(here as above we used the fact that maxn∈Z+ [2−n(n + 1)2] = 9/4), series (2.9) defines a
unique element K ∈ (L2)−1 such that SK = D�

gSF ∈ B.

Theorem 2.4. The generalized stochastic derivative D of a regular generalized func-
tion F ∈ (L2)−1 is a pre-image of the ”directional derivative” D�

◦ of SF under the
S-transform, i.e.,

(DF )(g) = S−1(D�
gSF ).

Proof. Using Definition 2.2 and (2.9) we obtain

(DF )(g) =
∞∑

n=1

n〈Ln−1, 〈F (n), g〉ext〉

=
∞∑

n=0

(n + 1)〈Ln, 〈F (n+1), g〉ext〉 = S−1(D�
gSF ).

The theorem is proved. �

Remark 2.6. It was shown in [7] that the natural generalized stochastic derivative on the
space (S ′)′ of nonregular generalized functions is the operator D̃ : (S ′)′ → L(SC, (S ′)′)
that can be defined by the formula (D̃F )(g) = S−1(DgSF ), where Dg is the directional
derivative in the direction g ∈ SC. But the operator D̃ can not be identified with ∂·, and
for a regular generalized function F ∈ (L2)−1 and g ∈ SC (D̃F )(g) can be a nonregular
generalized function. Such situation is inconvenient for applications but natural for the
Gamma analysis. The reader can find a more detailed discussion in [7], here we note
only that the operator D can not be continued on (S ′)′.

It was established in [1] that the generalized stochastic derivative in the Gaussian
analysis is a differentiation with respect to the Wick product. The generalized stochastic
derivatives in the Poissonian analysis and in the Gamma analysis on (S ′)′ have the same
property, this fact was proved in [7]. Let us prove now the similar property of D.

Theorem 2.5. The generalized stochastic derivative D is a differentiation with respect
to the Wick product, i.e., ∀F, J ∈ (L2)−1 we have

(2.10) D(F♦J) = (DF )♦J + F♦(DJ).



378 N. A. KACHANOVSKY

Proof. First we note that by Theorem 2.4 ∀g ∈ HC

(D(F♦J))(g) = S−1(D�
g(S(F♦J))) = S−1(D�

g(SF · SJ)),

(DF )(g)♦J = S−1(S(DF )(g) · SJ) = S−1(D�
g(SF ) · SJ),

F♦(DJ)(g) = S−1(SF · S(DJ)(g)) = S−1(SF ·D�
g(SJ)),

therefore it is sufficient to prove that

(2.11) D�
g(SF · SJ) = D�

g(SF ) · SJ + SF ·D�
g(SJ).

Let F (n), J (n) ∈ H(n)
ext be the kernels from decompositions (1.4) for F, J respectively.

Then (see (1.7), (1.8) and Definition 2.3)

(SF )(λ) =
∞∑

n=0

〈F (n), λ⊗n〉ext, (SJ)(λ) =
∞∑

m=0

〈J (m), λ⊗m〉ext,

(SF )(λ) · (SJ)(λ) =
∞∑

n,m=0

〈F (n) � J (m), λ⊗(n+m)〉ext,

D�
g((SF )(λ) · (SJ)(λ)) =

∞∑
n,m=0

(n + m)〈F (n) � J (m), λ⊗(n+m−1) � g〉ext,

D�
g(SF )(λ) =

∞∑
n=0

n〈F (n), λ⊗(n−1) � g〉ext,

D�
g(SJ)(λ) =

∞∑
m=0

m〈J (m), λ⊗(m−1) � g〉ext,

D�
g(SF )(λ) · (SJ)(λ) =

∞∑
n,m=0

n〈F (n), λ⊗(n−1) � g〉ext〈J (m), λ⊗m〉ext,

(SF )(λ) ·D�
g(SJ)(λ) =

∞∑
n,m=0

m〈F (n), λ⊗n〉ext〈J (m), λ⊗(m−1) � g〉ext.

Therefore in order to obtain (2.11) it is sufficient to prove that ∀n, m ∈ Z+

(2.12)

(n + m)〈F (n) � J (m), λ⊗(n+m−1) � g〉ext

= n〈F (n), λ⊗(n−1) � g〉ext〈J (m), λ⊗m〉ext

+ m〈F (n), λ⊗n〉ext〈J (m), λ⊗(m−1) � g〉ext.

It is obvious that for n = 0 (or m = 0) (2.12) holds true. Let us consider the case n, m ∈
N. Note that we can operate with F (n), J (m), F (n) � J (m) etc. as with functions. In fact,
since all operations will be ”under the integral symbol”, one can select representatives
from the corresponding equivalence classes, the result does not depend on the selected
representatives. Taking into account the symmetry of λ⊗(n+m−1) � g (this symmetry
gives us the possibility to rearrange sequences of equal arguments, if these sequences
have equal lengths; for example (λ⊗(n+m−1) �g)(t1, . . . , t1︸ ︷︷ ︸

l

, . . . , tk, . . . , tk︸ ︷︷ ︸
l

) = (λ⊗(n+m−1) �

g)(tk, . . . , tk︸ ︷︷ ︸
l

, . . . , t1, . . . , t1︸ ︷︷ ︸
l

)), by the full analogy with the proof of Lemma 3.1 in [8] we
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obtain (we use the notation of Lemma 1.2)

(n + m)〈F (n) � J (m), λ⊗(n+m−1) � g〉ext

= (n + m)
∑

k,lj ,sj∈N:j=1,...,k,l1>l2>···>lk,
l1s1+···+lksk=n+m

(n + m)!
ls1
1 . . . lsk

k s1! . . . sk!

×
∫

Rs1+···+sk

(F (n) � J (m))(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)

× (λ⊗(n+m−1) � g)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)

× σ(dt1) . . . σ(dts1+···+sk
)

= (n + m)
∑

k′,k′′,l′1,...,l′
k′ ,s

′
1,...,s′

k′ ,l
′′
1 ,...,l′′

k′′ ,s
′′
1 ,...,s′′

k′′∈N:

l′1>···>l′
k′

, l′′1 >···>l′′
k′′

,

l′1s′1+···+l′
k′

s′
k′

=n, l′′1 s′′1 +···+l′′
k′′

s′′
k′′

=m

n!

l′1
s′1 . . . l′k′

s′
k′ s′1! . . . s

′
k′ !

× m!

l′′1
s′′1 . . . l′′k′′

s′′
k′′ s′′1 ! . . . s′′k′′ !

×
∫

Rs′1+···+s′
k′

+s′′1 +···+s′′
k′′

F (n)(t1, . . . , t1︸ ︷︷ ︸
l′1

, . . . , ts′1+···+s′
k′

, . . . , ts′1+···+s′
k′︸ ︷︷ ︸

l′
k′

)

× J (m)(tn+1, . . . , tn+1︸ ︷︷ ︸
l′′1

, . . . , tn+s′′1 +···+s′′
k′′

, . . . , tn+s′′1 +···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)

× (λ⊗(n+m−1) � g)(t1, . . . , t1︸ ︷︷ ︸
l′1

, . . . , ts′1+···+s′
k′

, . . . , ts′1+···+s′
k′︸ ︷︷ ︸

l′
k′

,

tn+1, . . . , tn+1︸ ︷︷ ︸
l′′1

, . . . , tn+s′′1 +···+s′′
k′′

, . . . , tn+s′′1 +···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)

× σ(dt1) . . . σ(dts′1+···+s′
k′

)σ(dtn+1) . . . σ(dtn+s′′1 +···+s′′
k′′

)

=
∑

k′,k′′,l′1,...,l′
k′ ,s

′
1,...,s′

k′ ,l
′′
1 ,...,l′′

k′′ ,s
′′
1 ,...,s′′

k′′∈N:

l′1>···>l′
k′

, l′′1 >···>l′′
k′′

,

l′1s′1+···+l′
k′

s′
k′

=n, l′′1 s′′1 +···+l′′
k′′

s′′
k′′

=m

n!

l′1
s′1 . . . l′k′

s′
k′ s′1! . . . s

′
k′ !

× m!

l′′1
s′′1 . . . l′′k′′

s′′
k′′ s′′1 ! . . . s′′k′′ !

×
∫

Rs′1+···+s′
k′

+s′′1 +···+s′′
k′′

F (n)(t1, . . . , t1︸ ︷︷ ︸
l′1

, . . . , ts′1+···+s′
k′

, . . . , ts′1+···+s′
k′︸ ︷︷ ︸

l′
k′

)

× J (m)(tn+1, . . . , tn+1︸ ︷︷ ︸
l′′1

, . . . , tn+s′′1 +···+s′′
k′′

, . . . , tn+s′′1 +···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)

× [( ˜λ⊗(n+m−1)g)(t1, . . . , t1︸ ︷︷ ︸
l′1

, . . . , ts′1+···+s′
k′

, . . . , ts′1+···+s′
k′︸ ︷︷ ︸

l′
k′

,
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tn+1, . . . , tn+1︸ ︷︷ ︸
l′′1

, . . . , tn+s′′1 +···+s′′
k′′

, . . . , tn+s′′1 +···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

) + · · · ]

× σ(dt1) . . . σ(dts′1+···+s′
k′

)σ(dtn+1) . . . σ(dtn+s′′1 +···+s′′
k′′

),

where every next term from (n + m) summands in the sum [. . . ] is obtained from the
previous term by the ”shift of arguments”:

(·1, ·2, . . . , ·n+m−1, ·n+m) → (·n+m, ·1, . . . , ·n+m−2, ·n+m−1)

etc.
Let A(k′, k′′, l′1, . . . , l

′
k′ , s

′
1, . . . , s

′
k′ , l

′′
1 , . . . , l′′k′′ , s

′′
1 , . . . , s′′k′′ , t·) denote the sum of first

m terms in [. . . ] and B(k′, k′′, l′1, . . . , l
′
k′ , s

′
1, . . . , s

′
k′ , l

′′
1 , . . . , l′′k′′ , s

′′
1 , . . . , s′′k′′ , t·) denote the

sum of last n terms in [. . . ]. Taking into consideration the symmetry of ( ˜λ⊗(n+m−1)g)
with respect to first n + m− 1 arguments and a nonatomicity of the measure σ one can
conclude that ∑

k′,k′′,l′1,...,l′
k′ ,s

′
1,...,s′

k′ ,l
′′
1 ,...,l′′

k′′ ,s
′′
1 ,...,s′′

k′′∈N:

l′1>···>l′
k′

, l′′1 >···>l′′
k′′

,

l′1s′1+···+l′
k′

s′
k′

=n, l′′1 s′′1 +···+l′′
k′′

s′′
k′′

=m

n!m!

l′1
s′1 . . . l′k′

s′
k′ s′1! . . . s

′
k′ !l

′′
1

s′′1 . . . l′′k′′
s′′

k′′ s′′1 ! . . . s′′k′′ !

×
∫

Rs′1+···+s′
k′

+s′′1 +···+s′′
k′′

F (n)(t1, . . . , t1︸ ︷︷ ︸
l′1

, . . . , ts′1+···+s′
k′

, . . . , ts′1+···+s′
k′︸ ︷︷ ︸

l′
k′

)

× J (m)(tn+1, . . . , tn+1︸ ︷︷ ︸
l′′1

, . . . , tn+s′′1 +···+s′′
k′′

, . . . , tn+s′′1 +···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)

×A(k′, k′′, l′1, . . . , l
′
k′ , s

′
1, . . . , s

′
k′ , l

′′
1 , . . . , l′′k′′ , s

′′
1 , . . . , s′′k′′ , t·)

× σ(dt1) . . . σ(dts′1+···+s′
k′

)σ(dtn+1) . . . σ(dtn+s′′1 +···+s′′
k′′

)

= m〈F (n), λ⊗n〉ext〈J (m), λ⊗(m−1) � g〉ext

and ∑
k′,k′′,l′1,...,l′

k′ ,s
′
1,...,s′

k′ ,l
′′
1 ,...,l′′

k′′ ,s
′′
1 ,...,s′′

k′′∈N:

l′1>···>l′
k′

, l′′1 >···>l′′
k′′

,

l′1s′1+···+l′
k′

s′
k′

=n, l′′1 s′′1 +···+l′′
k′′

s′′
k′′

=m

n!m!

l′1
s′1 . . . l′k′

s′
k′ s′1! . . . s

′
k′ !l

′′
1

s′′1 . . . l′′k′′
s′′

k′′ s′′1 ! . . . s′′k′′ !

×
∫

Rs′1+···+s′
k′

+s′′1 +···+s′′
k′′

F (n)(t1, . . . , t1︸ ︷︷ ︸
l′1

, . . . , ts′1+···+s′
k′

, . . . , ts′1+···+s′
k′︸ ︷︷ ︸

l′
k′

)

× J (m)(tn+1, . . . , tn+1︸ ︷︷ ︸
l′′1

, . . . , tn+s′′1 +···+s′′
k′′

, . . . , tn+s′′1 +···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)

×B(k′, k′′, l′1, . . . , l
′
k′ , s

′
1, . . . , s

′
k′ , l

′′
1 , . . . , l′′k′′ , s

′′
1 , . . . , s′′k′′ , t·)

× σ(dt1) . . . σ(dts′1+···+s′
k′

)σ(dtn+1) . . . σ(dtn+s′′1 +···+s′′
k′′

)

= n〈F (n), λ⊗(n−1) � g〉ext〈J (m), λ⊗m〉ext.

Thus, (2.12) is proved. �



A GENERALIZED STOCHASTIC DERIVATIVE . . . 381

Corollary. Let n ∈ N, F ∈ (L2)−1, and a function h : C → C be a holomorphic one at
(SF )(0). Then we have

(2.13)
D(F♦n) = nF♦(n−1)♦(DF ),

Dh♦(F ) = h′
♦(F )♦(DF ),

where h′ denotes the usual derivative of h.

Proof. The first formula in (2.13) can be obtained by induction from (2.10), the second
formula is a consequence of the first one. �

The forthcoming statement is convenient for some applications (see an example below).

Theorem 2.6. Let F ∈ (L2)−1 ⊗HC. Then ∀t ∈ [0,+∞]

(2.14)
(
D

∫ t

0

Fsd̂Gs

)
(◦) =

∫ t

0

(DFs)(◦) d̂Gs +
∫ t

0

Fs ◦ (s)σ(ds).

Proof. First we note that (see (1.6) and Definition 2.2)∫ t

0

Fsd̂Gs =
∞∑

n=0

〈Ln+1, F̂
(n)
[0,t)〉,

(
D

∫ t

0

Fsd̂Gs

)
(◦) =

∞∑
n=0

(n + 1)〈Ln, 〈F̂ (n)
[0,t), ◦〉ext〉,

where the kernels F̂
(n)
[0,t) ∈ H(n+1)

ext , n ∈ Z+ are constructed in Lemma 1.1 starting from

the kernels F
(n)
· ∈ H(n)

ext ⊗HC from decomposition (1.5) for F . On the other hand,

(DF·)(◦) =
∞∑

n=1

n〈Ln−1, 〈F (n)
· , ◦〉ext〉,∫ t

0

(DFs)(◦)d̂Gs =
∞∑

n=1

n〈Ln,
̂〈F (n)
· , ◦〉ext[0,t)〉,∫ t

0

Fs ◦ (s)σ(ds) =
∞∑

n=0

〈Ln,

∫ t

0

F (n)
s ◦ (s)σ(ds)〉.

Therefore in order to prove the theorem it is sufficient to show that ∀n ∈ Z+

(n + 1)〈F̂ (n)
[0,t), ◦〉ext = n

̂〈F (n)
· , ◦〉ext[0,t) +

∫ t

0

F (n)
s ◦ (s)σ(ds).

In order to prove this equality it is sufficient to verify that ∀g(1) ∈ HC, ∀f (n) ∈ H(n)
ext

(2.15)
(n + 1)〈〈F̂ (n)

[0,t), g
(1)〉ext, f

(n)〉ext

= n〈 ̂〈F (n)
· , g(1)〉ext[0,t), f

(n)〉ext + 〈
∫ t

0

F (n)
s g(1)(s)σ(ds), f (n)〉ext.

As in the proof of Theorem 2.5 above, we will operate with representatives from the
corresponding equivalence classes. Using the formula

〈F̂ (n)
[0,t), f

(n+1)〉ext =
∫ t

0

〈F (n)
s , f (n+1)(s)〉extσ(ds)

(this fact was proved in [8], formula (2.7); f (n+1)(·) ∈ H(n)
ext ⊗ HC is obtained from

f (n+1) ∈ H(n+1)
ext as in Proposition 2.1) and taking into account the nonatomicity of σ we
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obtain (using the notation of Lemma 1.2)

(2.16)

(n + 1)〈〈F̂ (n)
[0,t), g

(1)〉ext, f
(n)〉ext = (n + 1)〈F̂ (n)

[0,t), f
(n) � g(1)〉ext

= (n + 1)
∫ t

0

〈F (n)
s , (f (n) � g(1))(s)〉extσ(ds)

=
∫ t

0

〈F (n)
s , ˜f (n)(·1, . . . , ·n)g(1)(s) + ˜f (n)(·2, . . . , s)g(1)(·1) + · · ·

+ ˜f (n)(s, . . . , ·n−1)g(1)(·n)〉extσ(ds) = 〈
∫ t

0

F (n)
s g(1)(s)σ(ds), f (n)〉ext

+
∫ t

0

〈F (n)
s , ˜f (n)(·2, . . . , s)g(1)(·1) + · · ·+ ˜f (n)(s, . . . , ·n−1)g(1)(·n)〉extσ(ds).

On the other hand, taking into account the fact that f (n) is a symmetric function, by
analogy with (2.16) we obtain

(2.17)

n〈 ̂〈F (n)
· , g(1)〉ext[0,t), f

(n)〉ext = n

∫ t

0

〈〈F (n)
s , g(1)〉ext, f

(n)(s)〉extσ(ds)

= n

∫ t

0

〈F (n)
s , f (n)(s) � g(1)〉extσ(ds) =

∫ t

0

〈F (n)
s , ˜f (n)(·1, . . . , ·n−1, s)g(1)(·n)

+ ˜f (n)(·2, . . . , ·n, s)g(1)(·1) + · · ·+ ˜f (n)(·n, . . . , ·n−2, s)g(1)(·n)〉extσ(ds)

=
∫ t

0

〈F (n)
s , ˜f (n)(·2, . . . , ·n, s)g(1)(·1) + ˜f (n)(·3, . . . , s, ·1)g(1)(·2) + · · ·

+ ˜f (n)(·n, s, . . . , ·n−2)g(1)(·n) + ˜f (n)(s, ·1, . . . , ·n−1)g(1))(·n)〉extσ(ds).

Substituting (2.17) in (2.16) we obtain (2.15). �

By analogy with [1, 7] as an application of our results we will calculate the generalized
stochastic derivative of the solution of the stochastic equation

(2.18) (L2)−1 3 Ft = F0 +
∫ t

0

h♦(Fs)d̂Gs,

where h : C → C is some entire function, F0 ∈ C. Under certain conditions on h a unique
solution of (2.18) Ft ∈ (L2)−1 exists. Applying D to (2.18) and taking into account (2.14)
and (2.13), ∀g(1) ∈ HC we obtain

(2.19)
(DFt)(g(1)) =

(
D

∫ t

0

h♦(Fs)d̂Gs

)
(g(1))

=
∫ t

0

h′
♦(Fs)♦(DFs)(g(1))d̂Gs +

∫ t

0

h♦(Fs)g(1)(s)σ(ds).

Let φg(1)

s (λ) := S((DFs)(g(1)))(λ). Applying the S-transform to (2.19) and taking into
account (1.9) we obtain

φg(1)

t (λ) =
∫ t

0

h′((SFs)(λ))φg(1)

s (λ)λ(s)σ(ds) +
∫ t

0

h((SFs)(λ))g(1)(s)σ(ds).

The solution of this equation is

φg(1)

t (λ) =
∫ t

0

h((SFs)(λ))g(1)(s) · exp
{ ∫ t

s

h′((SFu)(λ))λ(u)σ(du)
}

σ(ds).
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By the inverse S-transform we obtain

(DFt)(g(1)) =
∫ t

0

h♦(Fs)g(1)(s)♦ exp♦

{ ∫ t

s

h′
♦(Fu)d̂Gu

}
σ(ds) ∈ (L2)−1.

Remark 2.7. The results of this paper hold true (up to the obvious isomorphism) if we
consider the Pascal measure or the Meixner measure instead of the Gamma measure (see
[2, 14, 15] for an information about these measures). Moreover, similar results can be
obtained in the ”nonstationary” case that is based on the so-called generalized Meixner
measure ([17]). We’ll present these results in details in another paper.
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