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We dedicate this article to the memory of Yurij Lvovich Dalecky.

Abstract. A Dirichlet form associated with the infinite dimensional symmetrized
Lévy-Laplace operator is constructed. It is shown that there exists a natural con-
nection between this form and a Markov process. This correspondence is similar to
that studied in a previous paper by the same authors for the non-symmetric Lévy
Laplacian.

1. Introduction

Dirichlet form theory is an intensively developing field with deep analytical and prob-
abilistic roots both in finite and infinite dimensional spaces [1]. In our previous paper [2]
we have constructed the Dirichlet form associated with the Lévy Laplacian [3] given by

∆LF (x) = lim
n→∞

1
n

n∑
k=1

(F ′′Y (x)fk, fk)H

(H is a real separable Hilbert space, x ∈ H, fk is an orthonormal basis, Y is a dense
subspace of H, see below for details).

We recall that the absence of an infinite dimensional Lebesgue type measure prevents
any ”infinite dimensional Laplacian” and in particular the Lévy Laplacian to be a for-
mally self-adjoint operator. If the infinite dimensional Hilbert space H is equipped with
a Gaussian measure µ one can symmetrize the Lévy-Laplacian acting in L2(H,µ) [4], [5]
and construct the Dirichlet form associated with this symmetrized operator.

In this paper we study the Dirichlet forms associated with the symmetrized Lévy
Laplacian which is generated by the classical Lévy Laplacian ∆L itself.

It should be mentioned that the Dirichlet forms associated with ∆L itself and the
corresponding symmetrized Lévy-Laplacian are quite different. In fact, they are not only
determined by different expressions but what is even more important they have different
domains. At the same time they have some common features since certain distinctions
between the Lévy Laplacian and the symmetrized (in L2(H,µ)) Lévy Laplacian disappear
in the infinite dimensional case.

Let H be a separable real Hilbert space. Consider the set C2(H,Y ) of scalar functions
F defined on H and twice differentiable along a dense subspace Y of it. Recall that F
is twice differentiable along Y if the Hessian F ′′Y ∈ {Y → Y ′} is a bounded operator,
where Y ′ is dual to Y. If F ∈ C2(H,Y ) then the Lévy Laplacian ∆L is determined by

∆LF (x) = lim
n→∞

1
n

n∑
k=1

(F ′′Y (x)ek, ek)H , x ∈ H
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under the assumption that the limit exists. Here {ek} is an orthonormal basis in
H, ek ∈ Y (F ′′H(x) ≡ F ′′(x)).

Let µ be a Gaussian measure on H with zero mean and covariance operator K . We
assume that K is a trace type positive operator such that ||x||H ≤ ||K−1/2x||H , x ∈
DK−1/2 where DK−1/2 is the domain of K−1/2.

Denote by L2(H,µ) the Hilbert space of square integrable in µ functions F defined
on H with the norm

||F ||L2(H,µ) =
[ ∫

H

F 2(x)µ(dx)
] 1

2

.

Let Hα ⊆ H0 ⊆ H−α, H1 ≡ H+, H0 ≡ H, H−1 ≡ H−, α > 0 be a subset of a
set of densely embedded Hilbert spaces {Hβ} (−∞ < β < ∞) with the embedding
operator T = K−1/2 and the inner product (x, y)Hβ = (T βx, T βy)H , x, y ∈ Hβ . In
addition we assume that T−1 is a Hilbert-Schmidt operator.

For any F ∈ C2(H,Hα) with α > 0 we define the symmetrized Lévy Laplacian by

(1) ∆CF (x) = lim
n→∞

1
n

n∑
k=1

[
(F ′′Hα(x)ek, ek)H − (F ′Hα(x), ek)H(x, ek)H+

]
if the limit exists. Here F ′′Hα(x) is the Hessian, F ′Hα(x) is the gradient of F (x) at the
point x ∈ H and {ek}∞1 is an orthonormal basis in H, ek ∈ H+2, (F ′H(x) ≡ F ′(x)).

We can rewrite (1) in the form

∆CF (x) = lim
n→∞

1
n

n∑
k=1

[
d2F (x; ek)− dF (x; ek)(x, ek)H+

]
.

Consider the set of F (x) ∈ L2(H,µ) such that there exists dF (x;h) ∀h ∈ H+2

and besides ∃ε̂ > 0 : sup|ε|<ε̂ |dF (x+ εh;h)| ∈ L(H,µ)) .
By the Cameron-Martin formula we have∫

H

dF (x;h)µ(dx) =
∫
H

F (x)(h, x)H+µ(dx).

If U, V posses the above properties then we derive

(2)
∫
H

V (x)dU(x;h)µ(dx) =
∫
H

V (x)U(x)(h, x)H+µ(dx)−
∫
H

U(x)dV (x;h)µ(dx).

It results from (2) that∫
H

V (x)d2U(x; ek)µ(dx)−
∫
H

V (x)dU(x; ek)(x, ek)H+µ(dx)

= −
∫
H

dV (x; ek)dU(x; ek))µ(dx).

If in addition we can pass to the limit under the integral sign then

−
∫
H

V (x)∆CU(x)µ(dx) = lim
n→∞

∫
H

1
n

n∑
k=1

(V ′(x), ek)H(U ′(x), ek)Hµ(dx).

Applying (2) once again we get∫
H

V (x)d2U(x; ek)µ(dx)−
∫
H

V (x)dU(x; ek)(x, ek)H+µ(dx)

= −
∫
H

dV (x; ek)(x, ek)H+U(x)µ(dx) +
∫
H

d2V (x; ek)U(x)µ(dx).
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If the passage to the limit under the integral sign is allowed then

(V,∆CU)L2(H,µ) = (∆CV,U)L2(H,µ).

2. Symmetrized Lévy Laplacian and Dirichlet forms

To simplify the computation of integrals with respect to the Gaussian measure µ we
choose for the canonical basis inH the set {ek}∞1 where ek are normalized eigenvectors of
the measure µ correlation operator T , corresponding to the eigenvalues λk (k = 1, 2, . . .)
Tek = λkek. In particular in the sequel we need the following relation.

Let f(u1, . . . , um) be a measurable function of m variables and F (x) = f((x, ek)H ,
. . . , (x, em)H), then

(3)
∫
H

F (x)µ(dx) = [(2π)m
m∏
j=1

λj ]−
1
2

∫
Rm

f(u1, . . . , um)e−
1
2

Pm
i=1 λ

2
iu

2
i du1 · · · dum

and the existence of the integral at the right hand side results from the existence of the
integral at the left hand side and vice versa.

Denote by C the set of cylindrical twice differentiable functions. The set C is
everywhere dense in L2(H,µ). Each function S ∈ C admits the representation S(x) =
S(Px), x ∈ H where P is a projection onto an m-dimensional subspace. Besides its
gradient S′(x) is in Rm and the Hessian S′′(x) is a finite dimensional (m-dimensional)
operator. For such a function we get

∆CS(x) = lim
n→∞

1
n

m∑
k=1

[(S′′(x)ek, ek)H − (S′(x), ek)H(x, ek)H+ ] = 0, x ∈ H.

Thus, the symmetrized Lévy Laplacian annihilates cylindrical functions.
Let ϕ be a Lipschitz continuous function defined on R1 with the Lipschitz constant c,

ϕ′(ξ) denote the derivative of ϕ at ξ ∈ R1 and SV (x) be a cylindrical twice differentiable
function, x ∈ H. Given a scalar function Q defined onH, we set ϕQ(x) = ϕ(Q(x)), x ∈ H
and we denote by T the set

T =
{
V : V = ϕQSV such that bothV (·) and

ϕ′′(Q(·))
ϕQ(·)

V (·) ∈ L2(H,µ)
}
.

Choose Q(x) =
∞∑
k=1

ζk(x), x ∈ H where

ζk(x) =
1

2λk

∫ λkxk

−λkxk
e
u2
2

[∫ u+1

u−1

e
−ψk
λk
z− z2

2 dz
]
du,

xk = (x, ek)H and ψk = 1
λk ln2 k

.

We check that the function Q(x) is well defined since the series
∞∑
k=1

ζk(x) converges

µ a.e. on H.
To this end recall that a scalar function φ on H measurable with respect to its

Borel σ-algebra A is a random variable defined on the probability space (H,A, µ).
Its expectation and variance are given respectively by Eφ =

∫
H
φ(x)µ(dx), Dφ =

||φ − Eφ||2L2(H,µ). We also recall that the µ- everywhere convergence of a sequence of
measurable functions defined on H corresponds to the convergence of the sequence of
random variables with probability 1.

It results from (3) that∫
H

p∏
i=1

gmi(ζmi(x))µ(dx) =
p∏
i=1

∫
H

gmi(ζmi(x))µ(dx)
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for an arbitrary finite set of functions ζm1(x), . . . , ζmp(x), all continuous bounded func-
tions gm1(τ), . . . , gmp(τ) (τ ∈ R1) and any arbitrary integers mi (i = 1, . . . , p). Hence
{ζk(x)}∞1 is a sequence of independent random variables.

By (3) we get

Eζk =
∫
H

ζk(x)µ(dx)

=
λk√
2π

∫ ∞

−∞
e−

1
2λ

2
kx

2
k

{ 1
2λk

∫ λkxk

−λkxk
e
u2
2

[∫ u+1

u−1

e
−ψk
λk
z− z2

2 dz
]
du

}
dxk = 0

(because the function under the integral sign (in xk) is odd) and

Dζk(x) =
∫
H

ζ2
k(x)µ(dx)

=
λk√
2π

∫ ∞

−∞
e−

1
2λ

2
kx

2
k

{ 1
2λk

∫ λkxk

−λkxk
e
u2
2

[∫ u+1

u−1

e
−ψk
λk
z− z2

2 dz
]
du

}2

dxk

=
1

4λ2
k

√
2π

∫ ∞

−∞
e−

v2
2

{∫ v

−v
e
u2
2

[∫ u+1

u−1

e
−ψk
λk
z− z2

2 dz
]
du

}2

dv = O

(
1
λ2
k

)
.

Since T−2 = K is a trace operator we have
∞∑
k=1

1/λ2
k = SpT−2 <∞

and hence
∞∑
k=1

Dζk < ∞. By Kolmogorov’s theorem the series Q(x) =
∞∑
k=1

ζk(x)

converges almost surely i.e. for µ-almost all x ∈ H.
The set T− is a linear set. We show that it is everywhere dense in L2(H,µ).
Let U ∈ L2(H,µ). The set C is known to be everywhere dense in L2(H,µ) and

hence for any ε1 > 0 there exists S0 ∈ C such that

‖U − S0‖L2(H,µ) ≤ ε1.

Since S0 ∈ C, we have S0(x) = S0(Px) . Choose Φ0(x) = ϕQ(x)S0(x)/ϕQ(Px) and
notice that Φ0 ∈ T since S0(·)/ϕQ(P (·)) ∈ C. For such a function we obtain

‖U − Φ0‖L2(H,µ) ≤ ‖U − S0‖L2(H,µ) + ‖S0 − Φ0‖L2(H,µ) ≤ ε1 + ‖S0 − Φ0‖L2(H,µ).

If we prove that given ε2 > 0 we can find Φ0 such that ‖S0−Φ0‖2
L2(H,µ) ≤ ε2 we get that

for given ε > 0 we can find ε1, ε2 > 0 and Φ0 such that ‖U −Φ0‖L2(H,µ) ≤ ε1 + ε2 = ε,
and hence T is everywhere dense in L2(H,µ).

Now we prove the required estimate for

‖S0 − Φ0‖2
L2(H,µ) =

∫
H

[
S0(x)− ϕQ(x)S0(x)/ϕQ(Px)

]2

µ(dx)

=
∫
H

[S0(x)/ϕQ(Px)]2 [ϕQ(Px)− ϕQ(x)]2 µ(dx)

≤ c2
∫
H

[S0(x)/ϕQ(Px)]2 [Q(Px)−Q(x)]2 µ(dx)

= c2
∫
H

[S0(x)/ϕQ(Px)]2
[ ∞∑
k=m+1

ζk(x)
]2

µ(dx).

Since S0(x)/ϕQ(Px) depends only on (x, e1)H , . . . , (x, em)H , while
∞∑

k=m+1

ζk(x)
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depends only on (x, em+1)H , (x, em+2)H , . . . , by (3) we get

‖S0 − Φ0‖2
L2(H,µ) ≤ c2

∫
H

[
S0(x)/ϕQ(Px)

]2

µ(dx)
∫
H

[ ∞∑
k=m+1

ζk(x)
]2

µ(dx)

= c2
∫
H

[S0(x)/ϕQ(Px)]2 µ(dx)
∞∑

k=m+1

Dζk.

From this the estimate ‖Φ0−S0‖2
L2(H,µ) ≤ ε2 follows since S0(·)/ϕQ(P ·) ∈ L2(H,µ)

and
∞∑
k=1

Dζk <∞ .

In the sequel we choose ϕ(ξ) to be a positive solution to the equation

(4) ϕ(ξ)ϕ′′(ξ) + [ϕ′(ξ)]2 = 0, ξ ∈ R.

In the solution ϕ(ξ) =
√

2ξ + C (C is are arbitrary constant) we choose C > 2|Q(x)|
for µ−almost surely. Then ϕ(ξ) is a Lipschitz function (for ξ = Q(x)).

Set κ(ξ) = ϕ′(ξ)
ϕ(ξ) (ϕ(ξ) 6= 0), and notice that κ solves the following Riccati equation

(5) κ′(ξ) + 2κ2(ξ) = 0.

Let us mention that another Riccati equation, κ′(ξ) + 2κ2(ξ) + 2κ(ξ) = 0, has
appeared in a similar situation in our previous paper [2]. Below we use the notation
κQ(x) = κ(Q(x)) for the function κQ on H generated by κ and a scalar function Q
defined on H.

For U, V ∈ L2(H,µ) we determine1 the form EC(U, V ) by

(6) EC(U, V ) = lim
n→∞

ECn (U, V )

where

ECn (U, V ) =
∫
H

1
n

n∑
k=1

(U ′H+
(x), ek)H(V ′

H+
(x), ek)Hµ(dx).

Let us set

(7) C =

√
2
π

∫ ∞

0

e−
ξ2

2

[∫ 1

−1

e−ξu−
u2
2 du

]2

dξ.

Lemma 1. The form EC(U, V ) U, V ∈ T determined by (6) exists and

EC(U, V ) =
(
Cκ2

QU, V
)

L2(H,µ)

where C is given by (7) and κ is a positive solution to (5).
The form (6) is symmetric and densely defined.

Proof. By the definition of the space T of functions U, V ∈ T, have the form
U(x) = ϕQ(x))SU (x), V (x) = ϕQ(x)SV (x). It results

dU(x;h) = (U ′H+
(x), h)H = ϕ′(Q(x))(Q′(x), h)HSU (x) + ϕQ(x))(S′U (x), h),

dV (x;h) = (V ′
H+

(x), h)H = ϕ′(Q(x))(Q′(x), h)HSV (x) + ϕQ(x)(S′V (x), h)

1Along the whole article we use the notation EC(U, V ) for Dirichlet forms.
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(h ∈ H+2) and

1
n

n∑
k=1

(U ′H+
(x), ek)H(V ′

H+
(x), ek)H

= [ϕ′(Q(x))]2SU (x)SV (x)
1
n

n∑
k=1

(Q′(x), ek)2H

+ ϕ′(Q(x))ϕQ(x)
1
n

m∑
k=1

(Q′(x), ek)H(SU (x) + SV (x), ek)H

+ ϕ2
Q(x)

1
n

m∑
k=1

(S′U (x), ek)H(S′V (x), ek)H .

But

dQ(x;h) = (Q′(x), h)H =
∞∑
i=1

e
λ2
i x

2
i

2

∫ λixi+1

λixi−1

e
−ψi
λi
z− z2

2 dz · (h, ei)H ,

and we obtain ηk(x) = (Q′(x), ek)2H =
[
e
λ2
kx

2
k

2
∫ λkxk+1

λkxk−1
e
−ψk
λk
z−z2/2

dz
]2

.

{ηk(x)}∞1 is a sequence of random variables. By (3) we get

Eηk =
∫
H

ηk(x)µ(dx) =
λk√
2π

∫ ∞

−∞
e
λ2
kx

2
k

2

[∫ λkxk+1

λkxk−1

e
−ψk
λk
z− z2

2 dz
]2

dxk

=
1√
2π

∫ ∞

−∞
e
ξ2

2

[∫ ξ+1

ξ−1

e
−ψk
λk
z− z2

2 dz
]2

dξ

=
1√
2π

∫ ∞

−∞
e−

ξ2

2

[∫ 1

−1

e
−ψk
λk

(u+ξ)−uξ−u2
2 du

]2

dξ

→
√

2
π

∫ ∞

0

e−
ξ2

2

[∫ 1

−1

e−ξu−
u2
2 du

]2

dξ = C

and
Dηk = Eη2

k − [Eηk]2,

Eη2
k =

λk√
2π

∫ ∞

−∞
e

3
2λ

2
kx

2
k

[∫ λkxk+1

λkxk−1

e
−ψk
λk
z− z2

2 dz
]4

dxk

=
1√
2π

∫ ∞

−∞
e−

ξ2

2

[∫ 1

−1

e
−ψk
λk

(u+ξ)−uξ−u2
2 du

]4

dξ

→
√

2
π

∫ ∞

0

e−
ξ2

2

[∫ 1

−1

e−ξu−
u2
2 du

]4

dξ.

Finally we get
∞∑
k=1

Dηk
k2

<∞.

By the Strong Law of Large Numbers for independent random variables we deduce that

lim
n→∞

1
n

n∑
k=1

ηk(x) = lim
n→∞

1
n

n∑
k=1

Eηk = lim
n→∞

Eηn = C

µ-almost surely.
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Since SU , SV ∈ C we conclude that

lim
n→∞

1
n

n∑
k=1

(U ′H+
(x), ek)H(V ′

H+
(x), ek)H

= C[ϕ′Q(x)]2SU (x)SV (x) = C
[ϕ′Q(x)
ϕQ(x)

]2

U(x)V (x)

for µ-almost all x ∈ H and EC(U, V ) =
(
C
[
ϕ′Q
ϕQ

]2

U, V )
)

L2(H,µ)
, U, V ∈ T . �

Lemma 2. The symmetrized Lévy Laplacian ∆C is defined on T and µ-almost
everywhere on H acts as the multiplication operator by the function

∆CV (x) = −Cκ2
Q(x)V (x),

where C is given by (7), κ is a positive solution to (5), κQ = κ ◦Q.

Proof. Since V ∈ T, we can choose V = ϕQSV . It results for x ∈ H

dV (x;h) = (V ′
H+

(x), h)H = ϕ′(Q(x))(Q′(x), h)HSV (x) + ϕQ(x)(S′V (x), h)H ,

d2V (x;h) = (V ′′
H+

(x)h, h)H = ϕ′′(Q(x))(Q′(x), h)2HSV (x)

+ ϕ′(Q(x))(Q′′(x)h, h)HSV (x) + 2ϕ′(Q(x))(Q′(x), h)H(S′V (x), h)H
+ ϕQ(x)(S′′V (x)h, h)H .

By (1) we obtain

∆CV (x) = ϕ′′(Q(x))SV (x) lim
n→∞

1
n

n∑
k=1

(Q′(x), ek)2H

+ ϕ′(Q(x))SV (x) lim
n→∞

1
n

n∑
k=1

[(Q′′(x)ek, ek)H − (Q′(x), ek)H(x, ek)H+ ]

+ 2ϕ′(Q(x)) lim
n→∞

1
n

m∑
k=1

(Q′(x), ek)H(S′V (x), ek)H

+ ϕQ(x) lim
n→∞

1
n

m∑
k=1

[(S′′V (x)ek, ek)H − (S′V (x), ek)H(x, ek)H+ ]

= ϕ′′(Q(x))SV (x) lim
n→∞

1
n

n∑
k=1

(Q′(x), ek)2H

+ ϕ′(Q(x))SV (x) lim
n→∞

1
n

n∑
k=1

[(Q′′(x)ek, ek)H − (Q′(x), ek)H(T 2x, ek)H ]

(we recall that SV ∈ C ).
In the proof of Lemma 1 we have shown that

lim
n→∞

1
n

n∑
k=1

(Q′(x), ek)2H = C

µ everywhere on H. Hence

∆CV (x) = Cϕ′′(Q(x))SV (x) + ϕ′(Q(x))SV (x) lim
n→∞

1
n

n∑
k=1

ξk(x),

where ξk(x) = (Q′′(x)ek, ek)H − (Q′(x), ek)H(T 2x, ek)H .
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Since for the second differential we have

d2Q(x;h) = (Q′′(x)h, h)H =
∞∑
i=1

{
λ2
ixie

λ2
ixi/2

∫ λixi+1

λixi−1

e
−ψiz

λi
−z2/2

dz

+ λi
[
e
−xiψi−

ψi
λi
−λixi−1/2 − e

−xiψi+
ψi
λi

+λixi−1/2]}(h, ei)2H ,

then

(Q′′(x)ek, ek)H = λ2
kxke

λ2
kxk

∫ λkxk+1

λkxk−1

e
−ψkz

λk
−z2/2

dz

+ λk
[
e
−xkψk−

ψk
λk
−λkxk−1/2 − e

−xkψk+
ψk
λk

+λkxk−1/2]
.

But at the other hand

(Q′(x), ek) = eλ
2
kx

2
k

∫ λkxk+1

λkxk−1

e
−ψkz

λk
−z2/2

dz

and we deduce that

ξk(x) = λk[e
−xkψk−

ψk
λk
−λkxk−1/2 − e

−xkψk+
ψk
λk

+λkxk−1/2]

= −2λke−
1
2−xkψksh (λkxk + ψk/λk).

Notice that sh (λkxk + ψk/λk) > 0 for xk > −ψk/λ2
k, sh (λkxk + ψk/λk) < 0 for

xk < ψk/λ
2
k, . It results that

E|ξk| =
∫
H

|ξk(x)|µ(dx) = λke
−1/2

[ λk√
2π

∫ ∞

−ψk/λ2
k

[e
ψk
λk

+(λk−ψk)xk

− e
−ψk
λk
−(λk+ψk)xk ]e−

λ2
kxk
2 dxk −

λk√
2π

∫ −ψk/λ2
k

−∞
[e
ψk
λk

+(λk−ψk)xk

− e
−ψk
λk
−(λk+ψk)xk ]e−

λ2
kxk
2 dxk = 2e

ψ2
k

2λ2
k λk

∫ ψk

−ψk
e−z

2/2dz = O
( 1

ln2 k

)
.

From this it follows that
∞∑
k=1

E|ξk|
k < ∞ and due to B. Levi’s theorem µ -a.e. on H

∞∑
k=1

ξk(x)
k < ∞. Finally by Kronecker’s lemma we deduce lim

n→∞
1
n

n∑
k=1

ξk(x) = 0 for µ

almost all x ∈ H.
By the above considerations we derive

∆CV (x) = Cϕ′′(Q(x))SV (x) = Cϕ
′′(Q(x))
ϕQ(x)

V (x)

µ-a.e. on H.
Since ϕ solves (4), we get

∆CV (x) = = −C
[
ϕ′(Q(x))
ϕQ(x)

]2

V (x) = −Cκ2
Q(x)V (x)

µ-a.e on H. �
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It follows from Lemma 2 that the operator LCU = ∆CU has the almost everywhere
dense domain DLC = T in L2(H,µ) .

Theorem 1. The operator LC is essentially self-adjoint on the domain T, the operator
−LC is positive. The closure −L̄C , of −LC — is a self-adjoint positive operator.

Proof. The operator LC is symmetric since DLC is dense in L2(H,µ) and by lemma
2 for all V1, V2 ∈ DLC we have

(LCV1, V2)L2(H,µ) = −
∫
H

Cκ2
Q(x)V1(x)V2(x)µ(dx) = (V1, LCV2)L2(H,µ).

To show that LC is essentially self-adjoint we consider the operator L∗C adjoint to
LC in L2(H,µ).

Let Z ∈ DL∗C
. Then ∀V ∈ DLC

(LCV,Z)L2(H,µ) = (V,L∗CZ)L2(H,µ).

In other terms

−
∫
H

Cκ2
Q(x)V (x)Z(x)µ(dx) =

∫
H

V (x)(L∗CZ)(x)µ(dx).

Taking into account that V = ϕQSV we obtain∫
H

ϕQ(x)SV (x)
[
Cκ2

Q(x)Z(x) + (L∗CZ)(x)
]
µ(dx) = 0.

The equality holds for all functions having the form ϕS, where ϕ is a positive solution
to (4) and S ∈ C. Recall that C is a set of cylindrical functions, which includes in
particular the complete orthonormal system of Fourier- Hermite polynomials. It results
that µ-almost everywhere on H

L∗CZ = −Cκ2
QZ.

Eventually,

∀Z ∈ DL∗C
Cκ2

QZ ∈ L2(H,µ) and L∗CZ = −Cκ2
QZ.

By the equality
∫
H
Cκ2

Q(x)V (x)Z(x)µ(dx) =
∫
H
V (x)[Cκ2

Q(x)Z(x)]µ(dx) ), one can
easily prove that

∀Z ∈ L2(H,µ) L∗CZ = −Cκ2
QZ and Cκ2

QZ ∈ L2(H,µ).

Hence,
DL∗C

= {Z ∈ L2(H,µ) : Cκ2
QZ ∈ L2(H,µ)}.

The domain DL∗C
is dense in L2(H,µ), since DL∗C

⊃ DLC . The operator L∗CZ =
−Cκ2

QZ, Z ∈ DL∗C
is a self-adjoint operator, being a multiplication operator on its

natural domain.
Since L∗C is self-adjoint it results that LC is essentially self-adjoint. �

Consider a general solution to (5) having the form κ(ξ) = 1
2ξ+c , where c is an

arbitrary constant and κ2(ξ) > 0 as −∞ < ξ <∞ .
It is easy to check that

(−LCU,U)L2(H,µ) = (Cκ2
Q(x)U,U)L2(H,µ) > 0 ∀U ∈ DLC .

Consider the form

(8) EC(U, V ) =
(√

−L̄C U,
√
−L̄C V

)
L2(H,µ)

, U, V ∈ DEC , DEC = D√−L̄C
.
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Theorem 2. The form EC(U, V ) given by (8) is symmetric densely defined positive
and closed. It is a Dirichlet form in L2(H,µ) : that is EC(U, V ) is a closed bilinear
Markov form.

Proof. The first three statements are a direct consequence of Lemmas 1 and 2 and The-
orem 1.

The form EC(U, V ) is closed since
√
−L̄C is a closed operator and (

√
−L̄C is positive

self-adjoint).
To prove that EC is a Dirichlet form we use the sufficient condition from [6]. Let

U ∈ DEC , V = (0 ∨ U) ∧ 1.

Then V ∈ DEC , and the estimate EC(V, V ) ≤ EC(U,U) is obvious since EC(U, V ) =
(|κQ|U, |κQ|V )L2(H,µ). �

By the general theory of Dirichlet forms and symmetric Markov semigroups there is
a Markov process associated with EC with transition semigroup the one given by EC .
To prove that this process is ”nice” (strong Markov with ”nice” paths) and is properly
associated with EC it would be enough to prove that EC is quasi regular , see e.g. [1],
[7]. By the same theory the Markov process is a diffusion if EC is in addition a local
Dirichlet form. In the next section we provide an alternative construction of a Markov
process associated with EC , as limit of finite dimensional diffusion processes.

3. The symmetrized Lévy operator and stochastic processes

To construct a stochastic process associated with the symmetrized Lévy operator we
start with diffusion processes associated with finite dimensional elliptic operators giving
rise to the Lévy operator and prove the existence of a limit Markov process.

Theorem 3. A Markov process ξx(t) with values in H, associated with the form EC ,
generated by the symmetrized Lévy Laplacian can be constructed as limit (as n→∞ )
of a family of diffusion processes ξx,n(t), associated with the forms

ECn (U, V ) = (
√
l̄n U,

√
l̄n V )L2(H,µ),

where

lnU(x) = − 1
n

n∑
k=1

[
(U ′′H+

(x)ek, ek)H − (U ′H+
(x), ek)H(x, ek)H+

]
.

Proof. First we notice that ECn (U, V ) are symmetric and densely defined. Using (2) we
can give a different expression for them

ECn (U, V ) =
∫
H

1
n

n∑
k=1

(U ′H+
(x), ek)H(V ′

H+
(x), ek)Hµ(dx), U, V ∈ DEC

(see Lemma 1).
Since

U ′H+
(x) =

∞∑
k=1

∂U

∂xk
ek, U ′′H+

(x)ej =
∞∑
k=1

∂2U

∂xj∂xk
ek,

xk = (x, ek)H , (x, ek)H+ = λ2
kxk,

we obtain

ln = − 1
n

n∑
k=1

[
∂2

∂x2
k

− λ2
k

∂

∂xk

]
.
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For a fixed n ∈ N the symmetrized n-dimensional Laplacian ln is positive and
essentially self-adjoint on the set T dense in L2(H,µ). It generates the semigroup

Tn(t) = e−l̄nt (t ≥ 0)

acting on L2(H,µ). This is a contraction semigroup which preserves the positivity of a
function and possesses the property Tn(t) · 1 = 1. It results that Tn(t) is a Markov
semigroup and hence ECn (U, V ) is a Markov form.

There is one to one correspondence between the semigroup Tn(t) and the transition
probability P (t, x,B) = P{ξx,n(t) ∈ B|ξx,n(0) = x} of a diffusion process ξx,n(t)
defined on the probability space (Ω,F, P ) In addition for any bounded measurable func-
tion f

(9) (Tn(t)f)(x) =
∫
H

f(y)P (t, x, dy) = E(f(ξx,n(t)))

holds for µ-almost all x ∈ H t ≥ 0. There exists a unique solution to the Cauchy
problem ∂U(t,x)

∂t + lnU(t, x) = 0 (t > 0), U(0, x) = F (x) with a bounded continuous
function F (x) on H (here xn+1, xn+2, . . . are considered as parameters).

We show that Tn(t) strongly in L2(H,µ) converges to T (t) that is ‖Tn(t)f −
T (t)f‖L2(H,µ) → 0 as n→∞ ∀f ∈ L2(H,µ).

Let f ∈ DEC . Then

‖e−tl̄mf − e−tl̄nf‖L2(H,µ) ≤ ‖e−tl̄mf − e−t
n
m l̄nf‖L2(H,µ)

+ ‖e−t nm l̄nf − e−tl̄nf‖L2(H,µ).

If m ≥ n then lm ≥ n
m ln, because

(lmf, f)L2(H,µ) =
∫
H

1
m

m∑
k=1

(
∂f

∂xk

)2

µ(dx)

≥
∫
H

1
m

n∑
k=1

(
∂f

∂xk

)2

µ(dx) =
n

m
(lnf, f)L2(H,µ).

This means that e−tlm ≤ e−t
n
m ln and hence

‖e−t nm l̄nf − e−tl̄mf‖L2(H,µ) ≤
√
‖e−t nm l̄n − e−tl̄m‖

√([
e−t

n
m l̄n − e−tl̄m

]
f, f

)
L2(H,µ)

≤
√

2
([
e−t

n
m l̄n − e−tl̄m

]
f, f

)
L2(H,µ)

(since ‖Tn(t)‖ ≤ 1).
By Duhamel’s formula we get

e−t
n
m l̄nf − e−tl̄mf =

∫ t

0

e−(t−s) nm ln
[
l̄m − n

m
l̄n

]
e−sl̄mf ds.

Since n
m ln and lm commute, e−(t−s) nm ln and e−slm commute as well. In addition,

ln and lm commute due to the fact that qk and qj , commute where

qi =
∂2

∂x2
i

− λ2
ixi

∂

∂xi
.
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Finally,

e−t
n
m l̄nf − e−tl̄mf =

∫ t

0

e−(t−s) nm l̄n−sl̄m
[
l̄m − n

m
l̄n

]
f ds

and

‖e−t nm l̄nf − e−tl̄mf‖2
L2(H,µ) ≤ 2

([
e−t

n
m l̄n − e−tl̄m

]
f, f

)
L2(H,µ)

= 2
( ∫ t

0

e−(t−s) nm l̄n−sl̄m
[
l̄m − n

m
l̄n

]
f ds, f

)
L2(H,µ)

= 2
∫ t

0

([
l̄m − n

m
l̄n

]
f,Gstf

)
L2(H,µ)

ds

≤ 2
√([

l̄m − n

m
l̄n

]
f, f

)
L2(H,µ)

∫ t

0

√([
l̄m − n

m
l̄n

]
Gstf,Gstf

)
L2(H,µ)

ds,

where Gstf = e−(t−s) nm l̄n−l̄msf.
But { ∫ t

0

√([
l̄m − n

m
l̄n

]
Gstf,Gstf

)
L2(H,µ)

ds

}2

≤ t

∫ t

0

([
l̄m − n

m
l̄n

]
Gstf,Gstf

)
L2(H,µ)

ds

= t
(∫ t

0

e−2(t−s) nm l̄n
[
l̄m − n

m
l̄n

]
e−2sl̄mf ds, f

)
L2(H,µ)

= t
(1

2

[
e−2t nm l̄n − e−2tl̄m

]
f, f

)
L2(H,µ)

≤ t

2
‖e−2t nm l̄n − e−2tl̄m‖‖f‖2

L2(H,µ) ≤ t‖f‖2
L2(H,µ)

(due to the inequality ‖Tn(t)‖ ≤ 1).
We recall that by lemma 1 En(F, F ) is a Cauchy sequence and hence

‖e−t nm l̄nf − e−tl̄mf‖L2(H,µ) ≤
{

4t
([
l̄m − n

m
l̄n

]
f, f

)
L2(H,µ)

}1/4

‖f‖1/2
L2(H,µ)

=
{

4t
[
ECm(f, f)− n

m
ECn (f, f)

]}1/4

‖f‖1/2
L2(H,µ) → 0

as m,n→∞.
In addition e−tln ≤ e−t

n
m ln for m ≥ n, and similar by the above considerations we

have

‖e−t nm l̄nf − e−tl̄nf‖L2(H,µ) ≤
{

4t
([
l̄n −

n

m
l̄n

]
f, f

)
L2(H,µ)

}1/4

‖f‖1/2
L2(H,µ)

=
{

4t
[(

1− n

m

)
ECn (f, f)

]}1/4

‖f‖1/2
L2(H,µ) → 0

as m,n→∞.
Hence,

lim
m>n,n→∞

‖e−tl̄mf − e−tl̄nf‖L2(H,µ) = 0 ∀f ∈ DEC ,

for any t within a bounded interval.
Thus we have shown that for any t > 0, f ∈ DEC e−tl̄nf is a Cauchy sequence.

Since DEC is a dense set and the family e−tl̄n is uniformly bounded this statement
holds also for all f ∈ L2(H,µ). Hence the limit

(10) lim
n→∞

Tn(t)f = T (t)f ∀f ∈ L2(H,µ)
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exists. The semigroup T (t) is a contraction in C2(H,µ) since in the strong limit this
property of Tn(t) is inherited. Moreover T 1 = 1, since Tn1 = 1 for all n an T is
positivity preserving, since Tn are positivity preserving. Hence T is a Markov semigroup
in L2(H,µ). By Kolmogorov–Ionescu Tulcea construction there exists a Markov process
ξx(t) such that E(f(ξx(t))) = T (t)f(x) for µ-a.e. x ∈ H, for any bounded measurable
function f defined on H.

From (9) and (10) we deduce that

(T (t)f)x = lim
n→∞

E(f(ξx,n(t))) = Ef(ξx(t))

for µ-almost all x ∈ H. �
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