
Methods of Functional Analysis and Topology
Vol. 12 (2006), no. 4, pp. 389–396

ABOUT KRONROD-REEB GRAPH OF A FUNCTION ON A

MANIFOLD

V. V. SHARKO

Dedicated to the memory of Yuri Daletskii.

Abstract. We study Kronrod-Reeb graphs of functions with isolated critical points
on smooth manifolds. We prove that any finite graph, which satisfies the condition ℑ

is a Kronrod-Reeb graph for some such function on some manifold. In this connection,
monotone functions on graphs are investigated.

1. Introduction

Let Mn be a closed smooth manifold and denote by C∞(Mn) the space of smooth
functions on Mn with isolated critical points. A connected component of the level surface
f−1(a) of a function f from C∞(Mn) is often referred to as a layer. Considering all layers
of the function f , we get a decomposition of the manifold Mn into the union of layers.
The property of a point of the manifold to belong to a layer determines an equivalence
relation and, by introducing the natural quotient topology in the set of layers, we obtain
a quotient set, which we denote in sequel by ΓK−R(f). This quotient set ΓK−R(f) is
homeomorphic to a finite graph. The set ΓK−R(f) is called the Kronrod-Reeb graph
of the function f from the space C∞(Mn).

The Kronrod-Reeb graph ΓK−R(f) of the function f on a manifold Mn admits an
orientation, in order to show the direction in which the function f grows. It is a spe-
cial orientation of the graph ΓK−R(f) (see Definition 3.1). We will be denote such
orientation by f-orientation of the graph ΓK−R(f). The graph ΓK−R(f) with the
f -orientation we will called in the sequel by the f-oriented Kronrod-Reeb graph.

It is obvious that the function f determines, in a canonical way, a partial order on
vertexes of its f -oriented Kronrod-Reeb graph ΓK−R(f). A vertex x ∈ ΓK−R(f) precedes
a vertex y ∈ ΓK−R(f) if values of f at the corresponding vertexes x and y of the layers Nx

and Ny satisfy the inequality f(Nx) < f(Ny). Such an order on the graph ΓK−R(f) we
will be called the f-order. The graph ΓK−R(f) with the f -orientation and the f -order
we will called a f-pooriented Kronrod-Reeb graph.

A graph Σ = (V, E) (oriented (pooriented) graph Σ = (V, E)) for which there ex-
ist a manifold Mn and a smooth function f ∈ C∞(Mn) such that the Kronrod-Reeb
graph (f -oriented (f -pooriented) Kronrod-Reeb graph) ΓK−R(f) for this function f is
isomorphic (orientation (orientation and partial order) preserve isomorphic) to the graph
Σ = (V, E) is called an K-R-graph (oriented (pooriented) K-R-graph).

It should be noted that not every finite graph having at least two vertexes of order
one is a Kronrod-Reeb graph for a certain smooth function with finitely many critical
points on a smooth n-manifold (n ≥ 2).
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Theorem 2.1. Any finite graph Σ = (V, E) is a K-R-graph of some function on some
manifold Mn if and only if Σ = (V, E) admits some f -orientation (see Definition 3.1).

A proof of this theorem is based on the following result.

Theorem 3.1. Let Σ = (V, E) be a finite f -oriented graph. Then on the graph Σ there
exists a monotone (increasing) function g : Σ → R such that its oriented Kronrod-Reeb
graph is orientation preserving homeomorphic to an f -oriented graph Σ = (V, E) .

Let Σ = (V, E) be a finite graph. Denote by Ω the set of vertexes of order 1 in the
graph Σ = (V, E). The graph Σ = (V, E) satisfies the condition ℑ, if it is connected,
for any dividing vertex v from Σ and for any connected component Σi

v ⊂ Σv we have
Σi

v

⋂
Ω 6= ∅ and the set Ω consists of at least of two vertexes.

Theorem 5.2. A finite graph Σ = (V, E) is an K-R-graph of some function with finite
critical points on some manifold Mn if and only if it satisfies the condition ℑ.

2. The Kronrod-Reeb graph of a function on a manifold

By a smooth n-manifold Mn (resp., manifold with boundary) we mean an n-dimensional
smooth compact manifold without boundary (resp., with boundary ∂Mn). The word
“smooth” always indicates that the appropriate object belongs to the class C∞. By a
critical point x of a function f defined on a manifold Mn we mean a point at which the
partial derivatives of f vanish.

Let C∞(Mn, ∂Mn) denote the space of smooth functions on a manifold Mn with
boundary ∂Mn, with a finite number of critical points. Suppose that all critical points
of this function lie in the interior of Mn. Assume also that the functions from the space
C∞(Mn, ∂Mn) take constant values on connected components of the boundary ∂Mn (the
case where the boundary is absent is excluded). Let us consider an arbitrary connected
component of the level surface f1(a) of a function f from C∞(Mn, ∂Mn); such level
surfaces are often referred to as layers. If a is a regular value of the function f , then the
layer is a submanifold of dimension n − 1 smoothly embedded in into Mn. In the case
where a is a critical value, the layer is a closed set N . Since critical points of f on N
are isolated, we have that N is a manifold with singularities of dimension n − 1, where
singularity set consists of critical points of f which lie on N . Considering all layers of
the function f , we get a decomposition of the manifold Mn into the union of layers, i.e.,
there arises on Mn a foliation with singularities. The property of a point of the manifold
to belong to a layer determines an equivalence relation and, by introducing the natural
quotient topology in the set of layers, we obtain a quotient set, which we denote in sequel
by ΓK−R(f).

Lemma 2.1. Let f : Mn −→ [a, b] be a function from C∞(Mn, ∂Mn). Then the quotient
set ΓK−R(f) is homeomorphic to a finite graph.

A finite graph Σ = (V, E) is understood as a finite one-dimensional simplicial complex.
Here, V are the zero-dimensional simplices (vertexes) and E are the one-dimensional
simplices (i.e., edges) [2].

Proof of Lemma 2.1. Let c be a regular value of the function f . Since the manifold Mn

is compact, the set f−1(c) has a finite number of connected components. Since critical
values of the function f are isolated, for any critical value d ∈ (a, b) there exists ε > 0
such that the segment [d− ε, d + ε] does not contain other critical values. Obviously, for
any regular value c from the half-interval [d − ε, d + ε) ((d − ε, d + ε]), the number of
connected components of the level surface f−1(c) is the same. Therefore, the image of
the non-compact manifold f−1[d− ε, d + ε) (f−1(d− ε, b + ε]) into the set ΓK−R(f) will
be homeomorphic to a disconnected union of a finite number of half-intervals [d−ε, d+ε)
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((d − ε, d + ε]). By virtue of continuity of the function f , there is a level surface f−1(d)
corresponding to the set ΓK−R(f) with a finite number of points, which will be vertexes
in the graph. Therefore, the image of the manifold f−1[d−ε, d+ε] into the set ΓK−R(f)
will be a set homeomorphic to a finite subgraph.

It is clear that there exists ε > 0 such that the segment [a, a + ε] ( [b − ε, b]) does not
contain other critical values. Using above arguments we can show that the set f−1(a)
( f−1(b)) consists of a finite number of points, which will be vertexes of order 1 in the
graph, and the image of the manifold f−1[a, a+ε] ( f−1[b−ε, b]) in the set ΓK−R(f) will
be a set homeomorphic to a finite subgraph. Consequently, the quotient set ΓK−R(f) is
homeomorphic to a finite graph. �

Definition 2.1. The set ΓK−R(f) is called a Kronrod-Reeb graph for the function f
from the space C∞(Mn, ∂Mn).

Remark 2.1. For more details concerning the above definition, see [1]. To vertexes of
a Kronrod-Reeb graph ΓK−R(f) there correspond connected components of those level
surfaces that contain splitting critical points of the function f . The local extrema of the
function f correspond to vertexes of order 1.

The Kronrod-Reeb graph ΓK−R(f) of the function f on a manifold Mn admits an
orientation, i.e., one can put arrows on the edges in order to show the direction in which
the function f grows. It is the special orientation of the graph ΓK−R(f) (see Definition
3.1). We will call such an orientation by an f-orientation of the graph ΓK−R(f).

It is obvious that a function f determines, in canonical manner, a partial order on
the vertexes of its f -oriented Kronrod-Reeb graph ΓK−R(f). A vertex x ∈ ΓK−R(f)
precedes a vertex y ∈ ΓK−R(f) if the values of f at the layers Nx and Ny corresponding
to the vertexes x and y satisfy the inequality f(Nx) < f(Ny). Such an order on the
graph ΓK−R(f) we will be referred to as an f-order.

Definition 2.2. The Kronrod-Reeb graph ΓK−R(f) with the f -orientation (with the f -
orientation and the f -partial order on vertexes) defined by the function f will be called
an f-oriented (f-pooriented) Kronrod-Reeb graph for the function f from the space
C∞(Mn, ∂Mn).

Definition 2.3. The graph Σ = (V, E) (oriented (pooriented) graph Σ = (V, E)) for
which there exist a manifold Mn and a smooth function f ∈ C∞(Mn) such that the
Kronrod-Reeb graph (f -oriented (f -pooriented) Kronrod-Reeb graph) ΓK−R(f) for this
function f is isomorphic (orientation (orientation and partial order) preserving isomor-
phic) to the graph Σ = (V, E) is called a K-R-graph (oriented (pooriented) K-R-graph).

It should be noted that not every finite graph (with orientation (orientation and
partial order)) having at least two vertexes of order one is a Kronrod-Reeb (f -oriented
(f -pooriented) Kronrod-Reeb) graph for a certain smooth function with finitely many
critical points on a smooth n-manifold (n ≥ 2).

Fig. 1 shows a graph that is not a K-R-graph.

Figure 1. Not a K-R graph.
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Theorem 2.1. Any finite graph Σ = (V, E) is a K-R-graph of some function on some
manifold Mn if and only if Σ = (V, E) admits some f -orientation (see Definition 3.1).

For a proof of this theorem, we need to consider monotone functions on graphs.

3. Monotone functions on finite graphs

Let Σ = (V, E) be a finite graph. Let us assume that the number of vertexes of order
1 in the graph Σ = (V, E) is greater than 1. By an f-orientation of the graph
Σ = (V, E) we mean assigning arrows to the edges in such way that following conditions
are satisfied:

a) there exist two vertexes of order 1 incident to edges with entering and outgoing
arrows;

b) for every vertex of order n ≥ 2 we can find two edges with entering and outgoing
arrows incident to it;

c) the graph Σ = (V, E) does not have oriented closed cycles.

By the definition, an oriented closed cycle of a graph Σ = (V, E) is the set of oriented
edges of Σ which forms a homeomorphic image of an oriented circle.

It is clear that the f -orientation of a graph Σ = (V, E) determines, in a canonical way,
a partial order Po on the vertexes V of Σ. A vertex x ∈ Σ = (V, E) precedes a vertex
y ∈ Σ = (V, E) if there is an f -oriented path beginning at the vertex x and ending at
the vertex y.

The partial order P on the vertexes V of an f -oriented graph Σ = (V, E) will be
called consistent with the f-orientation of Σ = (V, E), if for any two vertexes from
Σ = (V, E) that are in some relation relatively to the order Po there exists the same
relation between these vertexes relatively to the order P .

Definition 3.1. A finite graph Σ = (V, E) with the f -orientation (with the f -orientation
and some partial order on vertexes of Σ consistent with the f -orientation of Σ) will be
called f-oriented (f-pooriented) graph.

Definition 3.2. Let g : Σ → R be a continuous function on the graph Σ = (V, E). We
say that the function g is monotone on the graph Σ, if

a) the restriction of the function g to edges E of the graph Σ is a strongly monotone
function;

b) local extrema of the function g lie on vertexes of the order 1 .

Remark 3.1. For a monotone function g on the graph Σ = (V, E), we can introduce
the notion of the Kronrod-Reeb graph (oriented (pooriented) Kronrod-Reeb graph) for
this function g, which we will call a K-R-graph (oriented (pooriented) K-R-graph) of
g. Obviously, the K-R-graph of a monotone function g on the graph Σ = (V, E) is
homeomorphic to Σ.

Theorem 3.1. Let Σ = (V, E) be a finite f -oriented graph. Then on the graph Σ =
(V, E) there exists a monotone (increasing) function g : Σ → R such that its oriented
K-R-graph is homeomorphic (orientation preserving homeomorphic) to the f -oriented
graph Σ = (V, E) .

Proof. First we will construct some increasing function g on the f -oriented graph Σ. Our
arguments will be of inductive character. Let vi, i = 1, 2, . . . , s, be an arbitrary indexing
of vertexes in the graph Σ. Consider the first vertex v1 from Σ and put g(v1) = 1. Let v2

be the second vertex. If there is not an f -oriented path w in Σ connecting vertexes v1 and
v2, then put g(v2) = 1. In the case when there is an f -oriented way w connecting these
vertexes in Σ, we put g(v2) = 2, (g(v2) = 0), if the vertex v2 is the end (origin) of the path
w. Suppose that we have values of the function g on the vertexes vi, i = 1, 2, . . . , k − 1.
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Consider the vertex vk from the graph Σ. There are four possibilities to connect the
vertex vk with vertexes vi, i = 1, 2, . . . , k − 1, with an f -oriented path in the graph Σ,

a) the vertex vk could not be connected in the graph Σ with an f -oriented path to
the vertexes vi, i = 1, 2, . . . , k − 1;

b) in the graph Σ there is an f -oriented path w with the origin at the vertex vi0 ,
1 ≤ i0 ≤ k − 1, and the end in the vertex vi1 , 1 ≤ i1 ≤ k − 1, and the vertex vk

belongs to the path w;
c) in the graph Σ there exists only an f -oriented path w with the origin at the

vertex vi0 , 1 ≤ i0 ≤ k − 1, and the end at the vertex vk (there is not an f -
oriented path w in Σ with the origin at the vertex vk and the end at the vertex
vi0 , 1 ≤ i0 ≤ k − 1;

d) in the graph Σ there exists only an f -oriented path w with the origin at the
vertex vk and with the end in vertex vi0 , 1 ≤ i0 ≤ k − 1, (there is not an f -
oriented path w in Σ with the origin at the vertex vi0 , 1 ≤ i0 ≤ k − 1), and the
end at the vertex vk.

In the case a) we put g(vk) = 1.
Consider the case b). Let w be an f -oriented path in the graph Σ which satisfies the

following conditions:

1) the origin of the path w is the vertex vi0 , 1 ≤ i0 ≤ k − 1, on which the function
g takes a maximal value g(vi0) = ai0 with the respect to the relation on other
vertexes from vi, i = 1, 2, ..., k − 1, which are origins of f -oriented paths in Σ,
going to the vertex vk;

2) the end of the path w is the vertex vi1 , 1 ≤ i1 ≤ k − 1, on which the function g
takes a minimal value g(vi0) = bi0 with the respect to the order relation on the
vertexes vi, i = 1, 2, ..., k − 1, which are ends of oriented paths in Σ, going from
the vertex vk.

In this case we put

g(vk) = ai0 + 1/2(bi0 − ai0) .

Consider the case c). Let ck be a maximal value the function g takes on the set of the
vertexes vi, i = 1, 2, . . . , k − 1. Let us put

g(vk) = ck + 1 .

In the last case we shall act in similar manner. Let dk be a minimal value the function
g takes on the set of the vertexes vi, i = 1, 2, . . . , k − 1. Set

g(vk) = dk − 1 .

This finishes the inductive step.
It is not difficult to show that the function g constructed as above on vertexes of

Σ could be extended on edges to a strong increasing function on the graph Σ. Let e
be an arbitrary f -oriented edge with the origin at a vertex vi and the end at a vertex
vj . Suppose that i < j (i > j) then, in the process of constructing the function g,
the vertex vi (vj) will appear first for the function g to be defined. By the method of
the construction of the function g, the value of g on the vertex vj (vi) will be greater
(less) than the value g on the vertex vi (vj). Therefore, the function g may be correctly
extended from vertexes of the graph Σ on its edges.

The fact that the function g does not have local extrema in vertexes of the order greater
than 1 follows from the condition that, in these vertexes, there exist both incoming and
outgoing edges. Our construction will result from the fact that the function g is increasing
on the f -oriented graph Σ. �
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Remark 3.2. The consideration of the case where the graph Σ = (V, E) is (f -pooriented)
reduces to the case of an f -oriented graph. The graph Σ has the partition Po induced by
the f -orientation which is compatible with the partition P for the pooriented graph Σ.
If there exists a couple of vertexes v1 and v2 in the graph Σ, which are non-congruent in
the partition Po but v1 < v2 in the partition P , then we introduce a new oriented edge e
from the vertex v1 to the vertex v2. As a result, we obtain a new oriented graph Σ ⊇ Σ.
Obviously, the graph Σ doe not have oriented cycles. On the graph Σ, we construct an
increasing function g by analogy with the previous case. The restriction of the function
g to the subgraph Σ in the graph Σ gives the desired increasing function g.

4. The proof of Theorem 2.1

Necessity. It is obvious.

Sufficiency. Let Σ = (V, E) be a finite f -oriented graph. First, we shall construct a closed
surface M2 and a smooth function g : M2 −→ R such that its f -oriented Kronrod-Reeb
graph ΓK−R(g) is isomorphic to the f -oriented graph Σ = (V, E).

Consider a neighborhood Ui of the vertex ei ∈ V in the graph Σ = (V, E) having the
order li ≥ 3. Take a two-dimension sphere S2 and remove from it l non-intersecting open
disks. As a result we obtain a smooth surface with boundary, N2

i . Let the neighborhood
Ui correspond to this surface N2

i .
On Fig. 2, the order of vertexes ei is li = 5 .

Figure 2. The neighborhood Ui corresponding to the surface N2
i .

Using the function Re Z li−1 + ai (ai ∈ R) we construct on the surface N2
i a smooth

function gi, the Kronrod-Reeb graph ΓK−R(gi) of which is isomorphic to Ui. Fig. 3
shows the function gi = ReZ4.

If a neighborhood Ũj of the vertex ej ∈ V has order two, then it correspondents to

the Möbius band Ñ2j with an open disk removed. Fig. 4 shows this case.

Using the function Re Z2 + bj (bj ∈ R), we will construct on the Möbius band Ñ2
j

a smooth function g̃j , the Kronrod-Reeb graph ΓK−R(g̃j) of which is isomorphic to Ũj .
The function gj = Re Z2 on the Möbius band is shown in Fig. 5.

At last, if a neighborhood Ûk of the vertex ek ∈ V has order one, then it corresponds

to the two-dimensional disk D̂2

k. On this disk D̂2

k, using orientation of the neighborhood

Ûk, we construct a smooth function gk = |z|2 + ck or gk = −|z|2 + ck. Using the

graph Σ = (V, E), glue the surfaces N2
i , Ñ2j and D̂2

k along their boundaries. As a
result we obtain a closed surface M2. By Theorem 3.1, on the graph Σ = (V, E) there
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Figure 3. The level line of the function gi = Re Z4 on the surface N2
i .

Figure 4. The neighborhood Ũj corresponding to a Möbius band

Figure 5. The function g̃j = ReZ2 on Möbius band

exists a monotone function f such that its f -oriented K-R-graph is orientation preserving
homeomorphic to the graph Σ. Using the function f , we use the functions gi, g̃j , ĝk to
construct the increasing function g : M2 −→ R such that its f -oriented K-R-graph is
orientation preserving isomorphic to the f -oriented graph Σ = (E, V ).

Using the method of F. Takens [4] for tracing degenerate critical points from non-
degenerate critical points we can construct an n-dimensional manifold Mn and a smooth
function f on Mn such that its f -oriented K-R-graph is orientation preserving isomorphic
to the f -oriented graph Σ = (E, V ).

Theorem 2.1 is proved. �

Remark 4.1. There is a similar theorem in case where the graph Σ = (E, V ) is an
f -pooriented graph. The proof of this theorem is analogous.
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5. Necessary and sufficient condition for a finite graph to be a

Kronrod-Reeb graph of a function on a manifold

Let Σ = (V, E) be a finite graph. Let v be a vertex of graph Σ = (V, E) and Ev denote
the set of edges incident with the vertex v. The graph Σv = (V \ v, E \ Ev) is obtained
as a result of eliminating the vertex v and the incident to it edges Ev. The vertex v is
called dividing, if the graph Σv = (V \ v, E \Ev) is a disconnected set. Denote by Ω the
set vertexes of order 1 in the graph Σ.

Definition 5.1. A finite graph Σ = (V, E) satisfies condition ℑ if

a) the graph Σ is a connected set;
b) for any dividing vertex v from Σ and any connected component Σi

v ⊂ Σv, we
have Σi

v

⋂
Ω 6= ∅;

c) the set Ω consists of at least of two vertexes.

In [3], the following theorem is proved.

Theorem 5.1. Let Σ = (V, E) be a finite graph which satisfies the condition ℑ. Then
on the graph Σ = (V, E) there exists an increasing function.

Corollary 5.1. Any finite graph Σ = (V, E) that satisfies the condition ℑ may be con-
verted to an f -oriented (f -pooriented) graph.

Theorem 5.2. A finite graph Σ = (V, E) is a K-R-graph of some function on some
manifold Mn if and only if it satisfies condition ℑ.

Proof. Necessity. Let f be a smooth function on a connected manifold Mn, which be-
longs to C∞(Mn, ∂Mn), and ΓK−R(f) be an f -oriented (f -pooriented) K-R-graph of f .
Obviously, ΓK−R(f) satisfies condition a).

Consider condition b). Let v ∈ V be a split vertex corresponding to the layer
N ∈ f−1(x) for some critical value x. It is clear that set Mn\N consists of a finite
a number of connected submanifolds Mn

1 , . . . , Mn
k . The restriction of the function f to

any submanifold Mn
i , f |Mn

i
, gives some smooth function fi that has necessarily either a

maximum or a minimum. Therefore, condition b) is fulfilled.
Validity of condition c) is obvious.
Sufficiency. Let Σ = (V, E) be a finite graph Σ = (V, E) that satisfies condition ℑ.

Then, by Corollary 5.1 and Theorem 2.1, it is a K-R-graph of some function on some
manifold Mn. �

Remark 5.1. The question when a finite graph Σ = (V, E) will be a K-R-graph of some
function g on a fixed manifold Mn is more difficult and will be considered in the next
paper.
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