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ABOUT KRONROD-REEB GRAPH OF A FUNCTION ON A
MANIFOLD

V. V. SHARKO

Dedicated to the memory of Yuri Daletskii.

ABSTRACT. We study Kronrod-Reeb graphs of functions with isolated critical points
on smooth manifolds. We prove that any finite graph, which satisfies the condition &
is a Kronrod-Reeb graph for some such function on some manifold. In this connection,
monotone functions on graphs are investigated.

1. INTRODUCTION

Let M™ be a closed smooth manifold and denote by C°°(M™) the space of smooth
functions on M™ with isolated critical points. A connected component of the level surface
f~Y(a) of a function f from C°°(M™) is often referred to as a layer. Considering all layers
of the function f, we get a decomposition of the manifold M™ into the union of layers.
The property of a point of the manifold to belong to a layer determines an equivalence
relation and, by introducing the natural quotient topology in the set of layers, we obtain
a quotient set, which we denote in sequel by 'k _r(f). This quotient set I'x_g(f) is
homeomorphic to a finite graph. The set I'x_r(f) is called the Kronrod-Reeb graph
of the function f from the space C>*°(M™).

The Kronrod-Reeb graph T'x_pr(f) of the function f on a manifold M™ admits an
orientation, in order to show the direction in which the function f grows. It is a spe-
cial orientation of the graph I'x_gr(f) (see Definition 3.1). We will be denote such
orientation by f-orientation of the graph I'x_g(f). The graph I'x_g(f) with the
f-orientation we will called in the sequel by the f-oriented Kronrod-Reeb graph.

It is obvious that the function f determines, in a canonical way, a partial order on
vertexes of its f-oriented Kronrod-Reeb graph ' _g(f). A vertex x € 'k _gr(f) precedes
avertex y € Tk _g(f) if values of f at the corresponding vertexes x and y of the layers N,
and N, satisfy the inequality f(N) < f(IVy). Such an order on the graph I'x _r(f) we
will be called the f-order. The graph I'k_g(f) with the f-orientation and the f-order
we will called a f-pooriented Kronrod-Reeb graph.

A graph ¥ = (V, E) (oriented (pooriented) graph ¥ = (V, E)) for which there ex-
ist a manifold M™ and a smooth function f € C°(M™) such that the Kronrod-Reeb
graph (f-oriented (f-pooriented) Kronrod-Reeb graph) I'x_g(f) for this function f is
isomorphic (orientation (orientation and partial order) preserve isomorphic) to the graph
¥ = (V,E) is called an K-R-graph (oriented (pooriented) K-R-graph).

It should be noted that not every finite graph having at least two vertexes of order
one is a Kronrod-Reeb graph for a certain smooth function with finitely many critical
points on a smooth n-manifold (n > 2).
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Theorem 2.1. Any finite graph X = (V, E) is a K-R-graph of some function on some
manifold M™ if and only if 2 = (V, E) admits some f-orientation (see Definition 3.1).

A proof of this theorem is based on the following result.

Theorem 3.1. Let ¥ = (V, E) be a finite f-oriented graph. Then on the graph ¥ there
exists a monotone (increasing) function g : ¥ — R such that its oriented Kronrod-Reeb
graph is orientation preserving homeomorphic to an f-oriented graph ¥ = (V, E) .

Let ¥ = (V, E) be a finite graph. Denote by Q the set of vertexes of order 1 in the
graph ¥ = (V, E). The graph ¥ = (V, E) satisfies the condition S, if it is connected,
for any dividing vertex v from ¥ and for any connected component ¥! C ¥, we have
YN Q # 2 and the set (2 consists of at least of two vertexes.

Theorem 5.2. A finite graph ¥ = (V, E) is an K-R-graph of some function with finite
critical points on some manifold M™ if and only if it satisfies the condition .

2. THE KRONROD-REEB GRAPH OF A FUNCTION ON A MANIFOLD

By a smooth n-manifold M™ (resp., manifold with boundary) we mean an n-dimensional
smooth compact manifold without boundary (resp., with boundary dM™). The word
“smooth” always indicates that the appropriate object belongs to the class C*°. By a
critical point = of a function f defined on a manifold M™ we mean a point at which the
partial derivatives of f vanish.

Let C*°(M™,0M™) denote the space of smooth functions on a manifold M™ with
boundary OM™, with a finite number of critical points. Suppose that all critical points
of this function lie in the interior of M™. Assume also that the functions from the space
C>*(M"™,0M™) take constant values on connected components of the boundary dM™ (the
case where the boundary is absent is excluded). Let us consider an arbitrary connected
component of the level surface f!(a) of a function f from C°°(M™, dM™); such level
surfaces are often referred to as layers. If a is a regular value of the function f, then the
layer is a submanifold of dimension n — 1 smoothly embedded in into M™. In the case
where a is a critical value, the layer is a closed set N. Since critical points of f on NV
are isolated, we have that N is a manifold with singularities of dimension n — 1, where
singularity set consists of critical points of f which lie on N. Considering all layers of
the function f, we get a decomposition of the manifold M™ into the union of layers, i.e.,
there arises on M™ a foliation with singularities. The property of a point of the manifold
to belong to a layer determines an equivalence relation and, by introducing the natural
quotient topology in the set of layers, we obtain a quotient set, which we denote in sequel
by I'k—r(f)-

Lemma 2.1. Let f : M™ — [a, b] be a function from C°(M™,0M™). Then the quotient
set 'k _g(f) is homeomorphic to a finite graph.

A finite graph ¥ = (V, E) is understood as a finite one-dimensional simplicial complex.
Here, V' are the zero-dimensional simplices (vertexes) and E are the one-dimensional
simplices (i.e., edges) [2].

Proof of Lemma 2.1. Let ¢ be a regular value of the function f. Since the manifold M™
is compact, the set f~!(c) has a finite number of connected components. Since critical
values of the function f are isolated, for any critical value d € (a,b) there exists £ > 0
such that the segment [d — e, d + €] does not contain other critical values. Obviously, for
any regular value ¢ from the half-interval [d — e,d + ¢) ((d — €,d + ¢€]), the number of
connected components of the level surface f~!(¢) is the same. Therefore, the image of
the non-compact manifold f=1[d —e,d+¢) (f~1(d —&,b+¢]) into the set T _r(f) will
be homeomorphic to a disconnected union of a finite number of half-intervals [d—¢, d+¢)
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((d — &,d + €]). By virtue of continuity of the function f, there is a level surface f~1(d)
corresponding to the set T'x_r(f) with a finite number of points, which will be vertexes
in the graph. Therefore, the image of the manifold f~![d —¢,d+ €] into the set T _g(f)
will be a set homeomorphic to a finite subgraph.

It is clear that there exists € > 0 such that the segment [a,a +¢€] ( [b —¢€,b]) does not
contain other critical values. Using above arguments we can show that the set f~!(a)
( f~1(b)) consists of a finite number of points, which will be vertexes of order 1 in the
graph, and the image of the manifold f~1[a,a+¢] ( f71[b—¢,b]) in the set T'x_p(f) will
be a set homeomorphic to a finite subgraph. Consequently, the quotient set I'x g (f) is
homeomorphic to a finite graph. O

Definition 2.1. The set 'k _g(f) is called a Kronrod-Reeb graph for the function f
from the space C*°(M™, oM™).

Remark 2.1. For more details concerning the above definition, see [1]. To vertexes of
a Kronrod-Reeb graph T'x_g(f) there correspond connected components of those level
surfaces that contain splitting critical points of the function f. The local extrema of the
function f correspond to vertexes of order 1.

The Kronrod-Reeb graph T'x_pr(f) of the function f on a manifold M™ admits an
orientation, i.e., one can put arrows on the edges in order to show the direction in which
the function f grows. It is the special orientation of the graph I'x _r(f) (see Definition
3.1). We will call such an orientation by an f-orientation of the graph I'x_g(f).

It is obvious that a function f determines, in canonical manner, a partial order on
the vertexes of its f-oriented Kronrod-Reeb graph T'x_g(f). A vertex x € T'x_gr(f)
precedes a vertex y € I'g_g(f) if the values of f at the layers N, and N, corresponding
to the vertexes = and y satisfy the inequality f(N,) < f(&Vy). Such an order on the
graph ' _r(f) we will be referred to as an f-order.

Definition 2.2. The Kronrod-Reeb graph I'x_g(f) with the f-orientation (with the f-
orientation and the f-partial order on vertexes) defined by the function f will be called
an f-oriented (f-pooriented) Kronrod-Reeb graph for the function f from the space
C>®(M™,0M™).

Definition 2.3. The graph ¥ = (V, E) (oriented (pooriented) graph ¥ = (V, E)) for
which there exist a manifold M™ and a smooth function f € C°°(M™) such that the
Kronrod-Reeb graph (f-oriented (f-pooriented) Kronrod-Reeb graph) I'x_g(f) for this
function f is isomorphic (orientation (orientation and partial order) preserving isomor-
phic) to the graph ¥ = (V, E) is called a K-R-graph (oriented (pooriented) K-R-graph).

It should be noted that not every finite graph (with orientation (orientation and
partial order)) having at least two vertexes of order one is a Kronrod-Reeb (f-oriented
(f-pooriented) Kronrod-Reeb) graph for a certain smooth function with finitely many
critical points on a smooth n-manifold (n > 2).

Fig. 1 shows a graph that is not a K-R-graph.

FI1GURE 1. Not a K-R graph.
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Theorem 2.1. Any finite graph ¥ = (V, E) is a K-R-graph of some function on some
manifold M™ if and only if ¥ = (V, E) admits some f-orientation (see Definition 3.1).

For a proof of this theorem, we need to consider monotone functions on graphs.

3. MONOTONE FUNCTIONS ON FINITE GRAPHS

Let ¥ = (V, E) be a finite graph. Let us assume that the number of vertexes of order
1 in the graph ¥ = (V,E) is greater than 1. By an f-orientation of the graph
¥ = (V,E) we mean assigning arrows to the edges in such way that following conditions
are satisfied:

a) there exist two vertexes of order 1 incident to edges with entering and outgoing
arrows;

b) for every vertex of order n > 2 we can find two edges with entering and outgoing
arrows incident to it;

¢) the graph ¥ = (V, E) does not have oriented closed cycles.

By the definition, an oriented closed cycle of a graph 3 = (V, E) is the set of oriented
edges of ¥ which forms a homeomorphic image of an oriented circle.

It is clear that the f-orientation of a graph ¥ = (V| F) determines, in a canonical way,
a partial order P, on the vertexes V of ¥. A vertex z € ¥ = (V, F) precedes a vertex
y € ¥ = (V,E) if there is an f-oriented path beginning at the vertex z and ending at
the vertex y.

The partial order P on the vertexes V of an f-oriented graph ¥ = (V| E) will be
called consistent with the f-orientation of ¥ = (V| E), if for any two vertexes from
¥ = (V,E) that are in some relation relatively to the order P, there exists the same
relation between these vertexes relatively to the order P.

Definition 3.1. A finite graph ¥ = (V| E)) with the f-orientation (with the f-orientation
and some partial order on vertexes of ¥ consistent with the f-orientation of ¥) will be
called f-oriented (f-pooriented) graph.

Definition 3.2. Let g : ¥ — R be a continuous function on the graph ¥ = (V, E). We
say that the function g is monotone on the graph ¥, if
a) the restriction of the function g to edges F of the graph X is a strongly monotone
function;
b) local extrema of the function g lie on vertexes of the order 1 .

Remark 3.1. For a monotone function g on the graph ¥ = (V| E), we can introduce
the notion of the Kronrod-Reeb graph (oriented (pooriented) Kronrod-Reeb graph) for
this function g, which we will call a K-R-graph (oriented (pooriented) K-R-graph) of
g. Obviously, the K-R-graph of a monotone function g on the graph ¥ = (V, E) is
homeomorphic to X.

Theorem 3.1. Let ¥ = (V, E) be a finite f-oriented graph. Then on the graph ¥ =
(V, E) there exists a monotone (increasing) function g : & — R such that its oriented
K-R-graph is homeomorphic (orientation preserving homeomorphic) to the f-oriented
graph ¥ = (V E) .

Proof. First we will construct some increasing function g on the f-oriented graph ¥. Our
arguments will be of inductive character. Let v;, i = 1,2,...,s, be an arbitrary indexing
of vertexes in the graph ¥. Consider the first vertex v; from ¥ and put g(vy) = 1. Let vy
be the second vertex. If there is not an f-oriented path w in 3 connecting vertexes v; and
vg, then put g(vs) = 1. In the case when there is an f-oriented way w connecting these
vertexes in X, we put g(ve) = 2, (g(vg) = 0), if the vertex vs is the end (origin) of the path
w. Suppose that we have values of the function g on the vertexes v;, 1 =1,2,...,k — 1.
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Consider the vertex vy from the graph 3. There are four possibilities to connect the
vertex vy with vertexes v;, i =1,2,...,k — 1, with an f-oriented path in the graph X,

a) the vertex vy could not be connected in the graph ¥ with an f-oriented path to
the vertexes v;, 1 =1,2,...,k —1;

b) in the graph ¥ there is an f-oriented path w with the origin at the vertex v;,,
1 <ip < k—1, and the end in the vertex v;,, 1 < i3 <k — 1, and the vertex vy,
belongs to the path w;

c¢) in the graph ¥ there exists only an f-oriented path w with the origin at the
vertex v;,, 1 < 49 < k — 1, and the end at the vertex vy (there is not an f-
oriented path w in 3 with the origin at the vertex vy and the end at the vertex
Um,lgiogk—l;

d) in the graph 3 there exists only an f-oriented path w with the origin at the
vertex vy and with the end in vertex v;,, 1 < 49 < k — 1, (there is not an f-
oriented path w in ¥ with the origin at the vertex v;,, 1 <ig < k — 1), and the
end at the vertex vy.

In the case a) we put g(vg) = 1.
Consider the case b). Let w be an f-oriented path in the graph ¥ which satisfies the
following conditions:

1) the origin of the path w is the vertex v;,, 1 < iy < k — 1, on which the function
g takes a maximal value g(v;,) = a;, with the respect to the relation on other
vertexes from v;, i = 1,2, ...,k — 1, which are origins of f-oriented paths in X,
going to the vertex vy;

2) the end of the path w is the vertex v;,, 1 < i3 < k — 1, on which the function g
takes a minimal value g(v;,) = b;, with the respect to the order relation on the
vertexes v;, i = 1,2, ...,k — 1, which are ends of oriented paths in ¥, going from
the vertex vy.

In this case we put
g(vk) = Q4 + 1/2(bi0 - aio) .

Consider the case ¢). Let ¢, be a maximal value the function g takes on the set of the
vertexes v;, ¢ = 1,2,...,k — 1. Let us put

glvg) =cx + 1.

In the last case we shall act in similar manner. Let dj be a minimal value the function
g takes on the set of the vertexes v;, 1 =1,2,...,k — 1. Set

g(vk) de—l.

This finishes the inductive step.

It is not difficult to show that the function g constructed as above on vertexes of
Y. could be extended on edges to a strong increasing function on the graph . Let e
be an arbitrary f-oriented edge with the origin at a vertex v; and the end at a vertex
v;j. Suppose that ¢ < j (i > j) then, in the process of constructing the function g,
the vertex v; (v;) will appear first for the function g to be defined. By the method of
the construction of the function g, the value of g on the vertex v; (v;) will be greater
(less) than the value g on the vertex v; (vj). Therefore, the function g may be correctly
extended from vertexes of the graph X on its edges.

The fact that the function g does not have local extrema in vertexes of the order greater
than 1 follows from the condition that, in these vertexes, there exist both incoming and
outgoing edges. Our construction will result from the fact that the function g is increasing
on the f-oriented graph X. a
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Remark 3.2. The consideration of the case where the graph ¥ = (V, E) is (f-pooriented)
reduces to the case of an f-oriented graph. The graph X has the partition P, induced by
the f-orientation which is compatible with the partition P for the pooriented graph X.
If there exists a couple of vertexes vy and v in the graph X, which are non-congruent in
the partition P, but v; < vy in the partition P, then we introduce a new oriented edge €
from the vertex vy to the vertex vy. As a result, we obtain a new oriented graph DX
Obviously, the graph ¥ doe not have oriented cycles. On the graph ¥, we construct an
increasing function g by analogy with the previous case. The restriction of the function
7 to the subgraph ¥ in the graph ¥ gives the desired increasing function g.

4. THE PROOF OF THEOREM 2.1

Necessity. It is obvious.

Sufficiency. Let ¥ = (V, E) be a finite f-oriented graph. First, we shall construct a closed
surface M? and a smooth function g : M? — R such that its f-oriented Kronrod-Reeb
graph ' _r(g) is isomorphic to the f-oriented graph ¥ = (V) E).

Consider a neighborhood U; of the vertex e; € V' in the graph ¥ = (V| E) having the
order I; > 3. Take a two-dimension sphere S? and remove from it I non-intersecting open
disks. As a result we obtain a smooth surface with boundary, N?. Let the neighborhood
U; correspond to this surface N2.

On Fig. 2, the order of vertexes e; is [; =5 .

FIGURE 2. The neighborhood U; corresponding to the surface N7.

Using the function Re Z%~! + a; (a; € R) we construct on the surface N? a smooth
function g;, the Kronrod-Reeb graph I'x_pg(g;) of which is isomorphic to U;. Fig. 3
shows the function g; = Re Z4.

If a neighborhood ﬁ; of the vertex e; € V has order two, then it correspondents to
the Mobius band N2; with an open disk removed. Fig. 4 shows this case.

Using the function Re Z% + b; (b; € R), we will construct on the Mdbius band Z,V:Q

a smooth function gj, the Kronrod-Reeb graph I'x_r(g;) of which is isomorphic to [AJ;
The function g; = Re Z2 on the Mébius band is shown in Fig. 5.

At last, if a neighborhood l/]; of the vertex e, € V has order one, then it corresponds
to the two-dimensional disk DZ. On this disk D%, using orientation of the neighborhood
Uk, we construct a smooth function gp = [2|> + ¢ or gr = —|2|?> + cx. Using the

graph ¥ = (V, E), glue the surfaces N?, K/'\QJJ and D7 along their boundaries. As a
result we obtain a closed surface M2. By Theorem 3.1, on the graph ¥ = (V, E) there
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FIGURE 3. The level line of the function g; = Re Z* on the surface N7

FI1GURE 4. The neighborhood @'VJ corresponding to a Mobius band

2

FIGURE 5. The function g; = Re Z? on Mébius band

exists a monotone function f such that its f-oriented K-R-graph is orientation preserving
homeomorphic to the graph ¥. Using the function f, we use the functions g;, g;, gx to
construct the increasing function g : M? — R such that its f-oriented K-R-graph is
orientation preserving isomorphic to the f-oriented graph ¥ = (E, V).

Using the method of F. Takens [4] for tracing degenerate critical points from non-
degenerate critical points we can construct an n-dimensional manifold M™ and a smooth
function f on M™ such that its f-oriented K-R-graph is orientation preserving isomorphic
to the f-oriented graph ¥ = (E, V).

Theorem 2.1 is proved. O

Remark 4.1. There is a similar theorem in case where the graph ¥ = (E,V) is an
f-pooriented graph. The proof of this theorem is analogous.
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5. NECESSARY AND SUFFICIENT CONDITION FOR A FINITE GRAPH TO BE A
KRONROD-REEB GRAPH OF A FUNCTION ON A MANIFOLD

Let ¥ = (V, E) be a finite graph. Let v be a vertex of graph ¥ = (V, E) and F, denote
the set of edges incident with the vertex v. The graph ¥, = (V \ v, E'\ E,) is obtained
as a result of eliminating the vertex v and the incident to it edges F,. The vertex v is
called dividing, if the graph ¥, = (V' \ v, E'\ E,) is a disconnected set. Denote by € the
set vertexes of order 1 in the graph X.

Definition 5.1. A finite graph ¥ = (V, F) satisfies condition < if
a) the graph ¥ is a connected set;
b) for any dividing vertex v from ¥ and any connected component %! C ¥, we
have ¢ (N Q # @;
¢) the set Q consists of at least of two vertexes.

In [3], the following theorem is proved.

Theorem 5.1. Let ¥ = (V, E) be a finite graph which satisfies the condition . Then
on the graph ¥ = (V, E) there exists an increasing function.

Corollary 5.1. Any finite graph ¥ = (V, E) that satisfies the condition S may be con-
verted to an f-oriented (f-pooriented) graph.

Theorem 5.2. A finite graph ¥ = (V, E) is a K-R-graph of some function on some
manifold M™ if and only if it satisfies condition 3.

Proof. Necessity. Let f be a smooth function on a connected manifold M™, which be-
longs to C*°(M™,0M™"), and I'x_g(f) be an f-oriented (f-pooriented) K-R-graph of f.
Obviously, T'x_r(f) satisfies condition a).

Consider condition b). Let v € V be a split vertex corresponding to the layer
N € f~1(z) for some critical value z. It is clear that set M™\N consists of a finite
a number of connected submanifolds M7, ..., M. The restriction of the function f to
any submanifold M, f|yr, gives some smooth function f; that has necessarily either a
maximum or a minimum. Therefore, condition b) is fulfilled.

Validity of condition ¢) is obvious.

Sufficiency. Let X = (V, E) be a finite graph X = (V, E) that satisfies condition .
Then, by Corollary 5.1 and Theorem 2.1, it is a K-R-graph of some function on some
manifold M™. |

Remark 5.1. The question when a finite graph ¥ = (V, E) will be a K-R-graph of some
function ¢ on a fixed manifold M™ is more difficult and will be considered in the next

paper.
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