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THE EFIMOV EFFECT FOR A MODEL OPERATOR ASSOCIATED
WITH THE HAMILTONIAN OF A NON CONSERVED NUMBER OF

PARTICLES

SERGIO ALBEVERIO, SAIDAKHMAT N. LAKAEV, AND TULKIN H. RASULOV

Abstract. A model operator associated with the energy operator of a system of
three non conserved number of particles is considered. The essential spectrum of the
operator is described by the spectrum of a family of the generalized Friedrichs model.
It is shown that there are infinitely many eigenvalues lying below the bottom of the
essential spectrum, if a generalized Friedrichs model has a zero energy resonance.

1. Introduction

The main goal of the paper is to give a complete proof of the existence of infini-
tely many eigenvalues (the Efimov effect) for the model operator H associated with the
Hamiltonian of a non conserved number of particles on lattices, announced in [18].

Roughly speaking the Efimov effect consists in the following: if in a system of three-
particles, interacting by means of short-range pair potentials, none of the three two-
particle subsystems has bound states with negative energy, but at least two of them have
a resonance with zero energy, then this three-particle system has an infinite number of
three-particle bound states with negative energies, accumulating at zero.

This effect was first discovered by Efimov [7]. Since then this problem has been studied
in many works [1, 2, 5, 6, 8, 25, 28, 29, 30, 31]. A rigorous mathematical proof of the
existence of the Efimov effect was originally carried out by Yafaev in [31] and then in
[25, 28, 29, 30].

In a systems of three-particles on three-dimensional lattices, due to the fact that the
discrete analogue of the Laplacian or its generalizations are not rotationally invariant,
the Hamiltonian of a system does not separate into two parts, one relating to the center-
of-mass motion and the other one to the internal degrees of freedom. In particular,
in this case the Efimov effect exists only for the zero value of the three-particle quasi-
momentum K ∈ T3 = (−π, π]3 (see, e.g., [3, 4, 15, 17, 21] for relevant discussions and
[9, 12, 13, 21, 23, 24, 26] for the general study of the low-lying excitation spectrum for
quantum systems on lattices).

In the theory of solid-state physics [21, 24], quantum field theory [11] and statistical
physics [20, 22] some important problems arise where the number of quasi-particles is
not fixed. The study of systems with a non conserved, but bounded, number of particles
is reduced to the study of the spectral properties of self-adjoint operators acting in ”the
cut” subspace H(n), consisting of one particle, two particle and n-particle subspaces of
the Fock space [22, 24].
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In the present paper a model operator H acting in H(3) associated to a system de-
scribing three-particles in interactions without conservation of the number of particles
on lattices is considered.

The essential spectrum of H is described by the spectrum of a family of generalized
Friedrichs models.

The presence of an infinite number of eigenvalues below the bottom of the essential
spectrum of H is proved, if the corresponding generalized Friedrichs model has a zero
energy resonance. The result can be considered as a first step towards a general proof
of the Efimov effect for the Hamiltonians of the systems of solid state physics with a
non conserved number of particles. Mathematically the results require new techniques in
addition to those used in the proof of the Efimov effect for three-particle lattice system [3].

The organization of this paper is as following: Section 1 is an introduction to the
whole work. In Section 2 the model operator H is described as bounded and self-adjoint
operator in H(3) and the main result is formulated. Some spectral properties of a family
of generalized Friedrichs model h(p), p ∈ T3 is studied in Section 3. In Section 4 we
introduce the ”channel operator” and describe its spectrum. In Section 5 we obtain an
analogue of the Faddeev-Newton type system of integral equations for the eigenfunctions
of H. In Section 6 we prove the main result of the present paper. Some technical material
is collected in Appendix A.

Throughout the present paper we adopt the following conventions: Denote by T3 the
three-dimensional torus, the cube (−π, π]3 with appropriately identified sides. For each
δ > 0 the notation Uδ(0) = {p ∈ T3 : |p| < δ} stands for a δ-neighborhood of the origin.

2. Preliminary information and statements of the main result

Let C = C1 be the field of complex numbers and let L2(T3) be the Hilbert space of
square-integrable (complex) functions defined on T3 and Ls

2((T3)2) be the Hilbert space
of square-integrable symmetric (complex) functions on (T3)2.

Denote by H(3) the direct sum of spaces H0 = C1, H1 = L2(T3) and H2 = Ls
2((T3)2),

that is, H = H0 ⊕H1 ⊕H2.
Let the operator H act in the Hilbert space H(3) as a matrix operator

(2.1) H =

 H00 H01 0
H10 H11 H12

0 H21 H22

 ,

with the entries Hij : Hj → Hi, i, j = 0, 1, 2 defined by

(H00f0)0 = u0f0, (H01f1)0 =
∫

T3
b(q′)f1(q′) dq′, (H10f0)1(p) = b(p)f0,

(H11f1)1(p) = u(p)f1(p), (H12f2)1(p) =
∫

T3
b(q′)f2(p, q′) dq′,

(H21f1)2(p, q) =
1
2
(b(p)f1(q) + b(q)f1(p)), (H22f2)2(p, q) = w(p, q)f2(p, q).

Here fi ∈ Hi, i = 0, 1, 2, u0 is a real number, u and b are real-analytic even functions
on T3 and w is defined by the equality

w(p, q) = ε(p) + ε(p+ q) + ε(q),

where

ε(p) = 3− cos p1 − cos p2 − cos p3, p = (p1, p2, p3) ∈ T3.(2.2)

Under these assumptions the operator H defined by (2.1) is bounded and self-adjoint.
We remark that the operators H10 and H21 resp. H01 and H12 defined in the Fock

space are called creation resp. annihilation operators.
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To formulate the results we introduce a family of generalized Friedrichs model h(p), p ∈
T3, which acts in H0 ⊕H1 as

h(p)
(
f0
f1(q)

)
=

(
u(p)f0 + 1√

2

∫
T3 b(q′)f1(q′)dq′

1√
2
b(q)f0 + w(p, q)f1(q)

)
.(2.3)

Let the operator h0(p) act in H0 ⊕H1 as

h0(p)
(
f0
f1(q)

)
=
(

0
wp(q)f1(q)

)
.

The perturbation h(p)− h0(p) of the operator h0(p) is a self-adjoint operator of rank 2.
Therefore in accordance with the invariance of the essential spectrum under the finite
rank perturbations the essential spectrum σess(h(p)) of h(p) fills the following interval
on the real axis:

σess(h(p)) = [m(p),M(p)],
where the numbers m(p) and M(p) are defined by

m(p) = min
q∈T3

w(p, q) and M(p) = max
q∈T3

w(p, q).

Remark 2.1. For some p ∈ T3 (for example p = (π, π, π) ∈ T3) the essential spectrum
of h(p) can be degenerated to the set consisting of unique point [m(p),m(p)]. Because
of we can not state that the essential spectrum of h(p) is absolutely continuous for any
p ∈ T3.

The following theorem describes the essential spectrum of the operator H by the
spectrum of the family h(p), p ∈ T3 of generalized Friedrichs model.

Theorem 2.2. For the essential spectrum σess(H) of the operator H the equality

σess(H) =
⋃

p∈T3

{σd(h(p)) ∪ [m(p),M(p)]}

holds, where σd(h(p)) is the discrete spectrum of h(p), p ∈ T3.

For any p ∈ T3 we define an analytic function ∆(p, ·) (the Fredholm determinant
associated to the operator h(p)) in C \ [m(p),M(p)] by

(2.4) ∆(p, z) = u(p)− z − 1
2

∫
T3

b2(q′) dq′

w(p, q′)− z
.

Let σ be the set of complex numbers z ∈ C \ [m(p),M(p)] such that the equality
∆(p, z) = 0 holds for some p ∈ T3.

Remark 2.3. We remark that in [19] the essential spectrum of the operator H has been
described by zeroes of the Fredholm determinant defined in (2.4) and the spectrum of
the multiplication operator H22 as follows:

σess(H) = σ ∪ [0,M ],

where
M = max

p,q∈T3
w(p, q).

We notice that the equality
σ =

⋃
p∈T3

σd(h(p))

holds.

Definition 2.4. The set σ resp. [0,M ] is called two- resp. three-particle branch of the
essential spectrum σess(H) of H, which will be denote by σtwo(H) resp. σthree(H).
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The function w(0, ·) has a unique non-degenerate minimum at q = 0 (see Lemma A.1)
and hence by dominated convergence theorem the finite limit

∆(0, 0) = lim
z→−0

∆(0, z)

exists.
Let C(T3) be the Banach space of continuous functions on T3.

Definition 2.5. Let u(0) 6= 0. The operator h(0) is said to have a zero energy resonance,
if the number 1 is an eigenvalue of the integral operator given by

(Gψ)(q) =
b(q)
2u(0)

∫
T3

b(t)ψ(t)
w(0, t)

dt, ψ ∈ C(T3)

and the associated eigenfunction ψ (up to constant factor) satisfies the condition
ψ(0) 6= 0.

Remark 2.6. a) If u(0) ≤ 0, then the equation h(0)f = 0 has only the trivial solution
f ∈ C1 ⊕ L1(T3).
b) Assume that u(0) > 0 and ∆(0, 0) = 0.

(i) If b(0) 6= 0, then the operator h(0) has a zero energy resonance and the vector
f = (f0, f1) obeys the equation h(0)f = 0, where

(2.5) f0 = const 6= 0, f1(q) = − b(q)f0√
2w(0, q)

,

and hence f1 ∈ L1(T3) \ L2(T3) (see Lemma 3.2).
(ii) If b(0) = 0, then the operator h(0) has a zero eigenvalue and the vector f = (f0, f1),

where f0 and f1 are defined by (2.5), obeys the equation h(0)f = 0 and hence f1 ∈ L2(T3)
(see Lemma 3.3).

Throughout the paper we assume the following additional assumption.

Assumption 2.7. The function u has a unique minimum at 0 ∈ T3.

The main result of the paper is the following.

Theorem 2.8. Let Assumption 2.7 be fulfilled and the operator h(0) have a zero energy
resonance. Then the operator H has infinitely many negative eigenvalues (En)n∈N such
that limn→∞En = 0.

Remark 2.9. We remark that if Assumption 2.7 is fulfilled and the operator h(0) has
either a zero energy resonance or a zero eigenvalue, then the operator h(p), p ∈ T3 has
no negative eigenvalues and hence inf σess(H) = 0 (see Lemma 3.4).

3. Spectral properties of the operators h(p), p ∈ T3

In this section we study some spectral properties of the family of the generalized
Friedrichs model h(p), p ∈ T3 given by (2.3), which plays an important role in the study
of the spectral properties of H. We notice that the spectrum and resonances of the
generalized Friedrichs model have been studied in detail in [14].

Lemma 3.1. For any p ∈ T3 the operator h(p) has an eigenvalue z ∈ C \ [m(p),M(p)]
if and only if ∆(p, z) = 0.

Proof. If u(p) ∈ R \ [m(p),M(p)] for any p ∈ T3, then the equation h(p)f = m(p)f, f ∈
H0 ⊕ H1 has only a trivial solution and hence the value u(p) ∈ R \ [m(p),M(p)] can
not be an eigenvalue of the operator h(p). The number z ∈ (C \ [m(p),M(p)]) ∪ {u(p)}
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is an eigenvalue of the operator h(p), p ∈ T3 if and only if (by the Birman-Schwinger
principle) the number 1 is an eigenvalue of the integral operator

(G(p, z)ψ)(q) =
b(q)

2(u(p)− z)

∫
T3

b(t)ψ(t) dt
w(p, t)− z

, ψ ∈ L2(T3).

According to the Fredholm theorem the number λ = 1 is an eigenvalue of the operator
G(p, z) if and only if ∆(p, z) = 0. �

Lemma 3.2. The operator h(0) has a zero energy resonance iff ∆(0, 0) = 0 and b(0) 6= 0.

Proof. ”Only If Part”. Let the operator h(0) have a zero energy resonance. Then by
Definition 2.5 we have that u(0) 6= 0 and the equation

(3.1) ψ(q) =
b(q)
2u(0)

∫
T3

b(t)ψ(t)dt
w(0, t)

, ψ ∈ C(T3)

has a simple solution ϕ ∈ C(T3) and ϕ(0) 6= 0.
This solution is equal to the function b (up to a constant factor) and hence ∆(0, 0) = 0.
”If Part”. Let the equality ∆(0, 0) = 0 hold and b(0) 6= 0. Then the function b ∈

C(T3) is a solution of the equation (3.1), that is, the operator h(0) has a zero energy
resonance. �

Lemma 3.3. The operator h(0) has a zero eigenvalue iff ∆(0, 0) = 0 and b(0) = 0.

Proof. ”Only If Part”. Suppose f = (f0, f1) ∈ H0⊕H1 is an eigenvector of the operator
h(0) associated with the zero eigenvalue. Then f0 and f1 satisfy the system of equations

(3.2)

{
u(0)f0 + 1√

2

∫
T3 b(q′)f1(q′) dq′ = 0

1√
2
b(q)f0 + w(0, q)f1(q) = 0.

From (3.2) we find that f0 and f1 are given by (2.5) and from the first equation of (3.2)
we derive the equality ∆(0, 0) = 0.

Since w(0, ·) and b are even analytic functions on T3 and the function w(0, ·) has a
unique non-degenerate minimum at the origin we can conclude that f1 ∈ L2(T3) if and
only if b(0) = 0.

”If Part”. Let b(0) = 0 and ∆(0, 0) = 0. Then the vector f = (f0, f1) ∈ H0 ⊕ H1,
where f0 and f1 are defined by (2.5), obeys the equation h(0)f = 0 and f1 ∈ L2(T3). �

Lemma 3.4. If Assumption 2.7 is fulfilled and the operator h(0) has either a zero en-
ergy resonance or a zero eigenvalue, then the operator h(p), p ∈ T3 has no negative
eigenvalues.

Proof. Let the function Λ(·, z), z ≤ 0 be defined in T3 as

Λ(p, z) =
∫

T3

b2(t) dt
w(p, t)− z

.

First we prove that the inequality Λ(p, 0) < Λ(0, 0) holds for any nonzero p ∈ T3.
Since w and b are even the function Λ(·) is also even. Then we get

(3.3)

Λ(p, 0)− Λ(0, 0)

=
1
4

∫
T3

2w(0, t)− (w(p, t) + w(−p, t))
w(p, t)w(−p, t)w(0, t)

[w(p, t) + w(−p, t)]b2(t) dt

− 1
4

∫
T3

[w(p, t)− w(−p, t)]2

w(p, t)w(−p, t)w(0, t)
b2(t) dt.
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From the equality

w(0, t)− w(p, t) + w(p,−t)
2

=
3∑

i=1

(cos pi − 1)(1 + cos ti)

and (3.3) we get the inequality Λ(p, 0) − Λ(0, 0) < 0 for all nonzero p ∈ T3, that is, the
function Λ(·) has a unique maximum at p = 0.

Since the function ∆(p, ·) is decreasing on (−∞, 0) and the function u(·) (resp. Λ(·, 0))
has a unique minimum (resp. maximum) at p = 0 we have

(3.4) ∆(p, z) = u(p)− z − 1
2
Λ(p, z) > u(0)− 1

2
Λ(0, 0)

for all z < 0 and p ∈ T3.
If the operator h(0) has either a zero energy resonance or a zero eigenvalue, then by

Lemmas 3.2 and 3.3 we have ∆(0, 0) = 0. Hence by inequality (3.4) we have ∆(p, z) > 0
for all p ∈ T3 and z < 0. By Lemma 3.1 the operator h(p), p ∈ T3 has no negative
eigenvalues. �

Set

C+ = {z ∈ C : Re z > 0}, R+ = {x ∈ R : x > 0}, R0
+ = R+ ∪ {0}.

Let V (0) be the ball of radius γ > 0 with the center at ζ = 0 ∈ C.
Let w0(·, ·) be the function defined on Uδ(0)× T3, δ > 0 – sufficiently small, as

(3.5) w0(p, q) = wp(q + q0(p))−m(p),

where q0(·) is analytic function on Uδ(0) and for any p ∈ Uδ(0) the point q0(p) is the
non-degenerate minimum of the function wp(·) (see Lemma A.1).

For any p ∈ T3 we define an analytic function D(·, ζ) in C+ by

D(p, ζ) = u(p)−m(p) + ζ2 − 1
2

∫
T3

b2(q + q0(p)) dq
w0(p, q) + ζ2

.

Lemma 3.5. Then there exist a number δ > 0 such that
i) For any ζ ∈ C+ the function D(·, ζ) is analytic in Uδ(0) and the following decom-

position holds

(3.6) D(p, ζ) = D(0, ζ) +Dres(p, ζ),

where Dres(p, ζ) = O(p2) as p→ 0 uniformly in ζ ∈ R0
+.

ii) The derivative of D(0, ·) at ζ = 0 exists and the decomposition

(3.7) D(0, ζ) = D(0, 0) +
1
2
π2b2(0)ζ +Dres(ζ)

holds, where Dres(ζ) = O(ζ2), ζ ∈ C+ ∪ V (0).

Proof. i) Since m(·) is analytic in Uδ(0) (i.e. is analytic in a complex neighborhood of
Uδ(0)) by definition of the function D and Assumption 2.7 we obtain that the function
D(·, ζ) is also analytic in Uδ(0) for any ζ ∈ C+.

Using

w0(p, q) = q2 +O(|p|2|q|2) +O(|q|4) as |p|, |q| → 0

we obtain that there exists C > 0 such that for any ζ ∈ R0
+ and i, j = 1, 2, 3 the

inequalities ∣∣∣ ∂2

∂pi∂pj

b2(q + q0(p))
w0(p, q) + ζ2

∣∣∣ ≤ C

q2
, p, q ∈ Uδ(0)(3.8)
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and ∣∣∣ ∂2

∂pi∂pj

b2(q + q0(p))
w0(p, q) + ζ2

∣∣∣ ≤ C, p ∈ Uδ(0), q ∈ T3 \ Uδ(0)(3.9)

hold.
The dominated convergence theorem implies that

∂2

∂pi∂pj
D(p, 0) = lim

ζ→0+

∂2

∂pi∂pj
D(p, ζ).

Repeating the application of the Hadamard lemma (see [32] V.1, p. 512) we obtain

D(p, ζ) = D(0, ζ) +
3∑

i=1

∂

∂pi
D(0, ζ)pi +

3∑
i,j=1

Hij(p, ζ)pipj ,

where for any ζ ∈ R0
+ the functions Hij(·, ζ), i, j = 1, 2, 3 are continuous in Uδ(0) and

Hij(p, ζ) =
1
2

∫ 1

0

∫ 1

0

∂2

∂pi∂pj
D(x1x2p, ζ) dx1dx2.

The estimates (3.8) and (3.9) give

|Hi,j(p, ζ)| ≤
1
2

∫ 1

0

∫ 1

0

∣∣∣ ∂2

∂pi∂pj
D(x1x2p, ζ)

∣∣∣ dx1dx2 ≤ C
(
1 +

∫
Uδ(0)

dq

q2

)
for any p ∈ Uδ(0) uniformly in ζ ∈ R0

+.
Since for any ζ ∈ R0

+ the function D(·, ζ) is even in Uδ(0) we have[
∂

∂pi
D(p, ζ)

]
p=0

= 0, i = 1, 2, 3.

ii) The function D(0, ·) can be analytically continued (see [16]) to C+ ∪ V (0). Denote
by D∗(0, ·) this analytic continuation. Then the representation

D∗(0, ζ) = D(0, 0) +
∂

∂ζ
D(0, 0)ζ +D∗,res(ζ)

holds, where D∗,res(ζ) = O(ζ2) as ζ → 0.
It is easy to compute that (see Lemma A.2)

∂

∂ζ
D(0, 0) =

1
2
π2b2(0).

�

The following decomposition plays a crucial role in the proof of the main result.

Lemma 3.6. Let Assumption 2.7 be fulfilled and the operator h(0) have a zero energy
resonance. Then there exist a number δ > 0 such that for all p ∈ Uδ(0) the asymptotics

∆(p, 0) =
√

3
4
π2b2(0)|p|+O(|p|2) as p→ 0(3.10)

holds.

Proof. By Lemma 3.5 the asymptotics m(p) = 3
4p

2 + O(|p|4) as p → 0 (see (A.1)) and
the equality ∆(p, 0) = D(p,

√
m(p)) yields (3.10).

Corollary 3.7. Let Assumption 2.7 be fulfilled and the operator h(0) have a zero energy
resonance. Then there exist numbers C1, C2 > 0 and δ > 0 such that the following
inequalities hold:
(i) C1|p| ≤ ∆(p, 0) ≤ C2|p| for all p ∈ Uδ(0),
(ii) 0 < C1 ≤ ∆(p, 0) ≤ C2 for all p ∈ T3 \ Uδ(0).
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Proof. From the representation (3.10) we have (i) for some positive numbers C1 and C2.
Assertion (ii) follows from the positivity (see proof of Lemma 3.4) and continuity of

the function ∆(·, 0) on the compact set T3 \ Uδ(0).

4. The spectrum of the channel operator Ĥ

In this section we describe the spectrum of the channel operator Ĥ defined below.
Using the decomposition into direct operator integrals (see [26]) we reduce to study the
spectral properties of the operator Ĥ to the investigation of the spectral properties of
the family of operators h(p), p ∈ T3 defined by (2.3).

Let us consider the channel operator Ĥ acting in Ĥ = L2(T3)⊕ L2((T3)2) as

Ĥ

(
f1(p)
f2(p, q)

)
=

(
u(p)f1(p) + 1√

2

∫
T3 b(q′)f2(p, q′) dq′

1√
2
b(q)f1(p) + w(p, q)f2(p, q)

)
.(4.1)

It is easy to see that the operator Ĥ is bounded and self-adjoint in Ĥ.
The operator Ĥ commutes with any multiplication operator Uγ by the function γ(·)

acting in Ĥ as

Uγ

(
f1(p)
f2(p, q)

)
=
(
γ(p)f1(p)
γ(p)f2(p, q)

)
, γ ∈ L2(T3).

Therefore the decomposition of the space Ĥ into the direct integral

Ĥ =
∫

T3
⊕(H0 ⊕H1) dp

yields the decomposition into the direct integral

Ĥ =
∫

T3
⊕h(p) dp,

where the fiber operators h(p), p ∈ T3 are defined by (2.3).
For the spectrum σ(h(p)) of the operator h(p), p ∈ T3 the following equality

(4.2) σ(h(p)) = σd(h(p)) ∪ [m(p),M(p)]

holds.
The theorem on the spectrum of decomposable operators and the information on the

structure (4.2) of the spectrum of h(p) yield the following:

Lemma 4.1. For the spectrum σ(Ĥ) of the operator Ĥ the equality

σ(Ĥ) =
⋃

p∈T3

{σd(h(p)) ∪ [m(p),M(p)]}

holds.

Theorem 4.2. The essential spectrum σess(H) of the operator H coincides with the
spectrum of Ĥ, that is,

(4.3) σess(H) = σ(Ĥ).

Proof. In [19] it has been proved that the essential spectrum σess(H) of the operator H
coincides with σ ∪ [0,M ]. By Lemma 3.1 we have

σ =
⋃

p∈T3

σd(h(p))

and hence by Lemma 4.1 we obtain (4.3).
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5. The Faddeev-Newton type system of integral equations

In this section we derive an analogue of the Faddeev-Newton type system of integral
equations for the eigenvectors, corresponding to the eigenvalues lying below the bottom
τess(H) of the essential spectrum of the operator H.

Let T (z), z ≤ τess(H) be the self-adjoint operator which acts in H0 ⊕H1 as follows

T (z) =
(
T00(z) T01(z)
T10(z) T11(z)

)
,

let its entries Tij(z) : Hj → Hi, i, j = 0, 1 be defined by the rule

(T00(z)f0)0 = (u0 − z + 1)f0, (T01(z)f1)0 = −
∫

T3

b(q′)f(q′) dq′√
∆(q′, z)

,

(T10(z)f0)1(p) = − b(p)f0√
∆(p, z)

,

(T11(z)f1)1(p) =
b(p)

2
√

∆(p, z)

∫
T3

b(q′)f(q′) dq′√
∆(q′, z)(w(p, q′)− z)

.

The following lemma establishes a connection between of eigenvalues of H and T (z).

Lemma 5.1. The number z < τess(H) is an eigenvalue of the operator H if and only if
the number 1 is an eigenvalue of the operator T (z).

Proof. Let z < τess(H) be an eigenvalue of the operator H and f ∈ H be the correspond-
ing eigenvector, that is, the system of equations

(5.1)


(u0 − z)f0 +

∫
T3 b(q′)f1(q′) dq′ = 0

b(p)f0 + (u(p)− z)f1(p) +
∫

T3
b(q′)f2(p, q′) dq′ = 0

1
2 (b(p)f1(q) + b(q)f1(p)) + (w(p, q)− z)f2(p, q) = 0

has a nontrivial solution f = (f0, f1, f2) ∈ H. Since z 6∈ [0,M ], from the third equation
of the system (5.1) for f2 we have

(5.2) f2(p, q) = −b(p)f1(q) + b(q)f1(p)
2(w(p, q)− z)

.

Substituting the expression (5.2) for f2 into the second equation of the system (5.1) we
obtain that the system of equations

(5.3)


(u0 − z)f0 +

∫
T3
b(q′)f1(q′) dq′ = 0

∆(p, z)f1(p)−
b(p)
2

∫
T3

b(q′)f1(q′) dq′

w(p, q′)− z
= −b(p)f0

has a nontrivial solution and this system of equations has a nontrivial solution if and
only if the system of equations (5.1) has a nontrivial solution.

By the definition of σ the inequality ∆(p, z) > 0 holds for all p ∈ T3 and z < τess(H).
Therefore, the following system of equations

(5.4)


(u0 − z)f0 +

∫
T3

b(q′)f1(q′)√
∆(q′, z)

dq′ = 0

f1(p)−
b(p)

2
√

∆(p, z)

∫
T3

b(q′)f1(q′) dq′√
∆(q′, z)(w(p, q′)− z)

= − b(p)f0√
∆(p, z)

has a nontrivial solution iff the system of equations (5.3) has a nontrivial solution.
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Remark 5.2. We point out that the equation T (z)g = g is an analogue of the symmetric
version of the Faddeev-Newton type system of integral equations for eigenvectors of the
operator H.

Henceforth, we shall denote by C,C1, C2, C3 different positive numbers and set
Tδ = T3 \ Uδ(0).

Lemma 5.3. There exist numbers C1, C2, C3 > 0 and δ > 0 such that the following
inequalities hold
(i) C1(|p|2 + |q|2) ≤ w(p, q) ≤ C2(|p|2 + |q|2) for all p, q ∈ Uδ(0);
(ii) w(p, q) ≥ C3 > 0 for all (p, q) ∈ (Tδ × T3) ∪ (T3 × Tδ).

Proof. The function ε has a unique non-degenerate minimum at 0 ∈ T3 and hence

w(p, q) = |p|2 + (p, q) + |q|2 +O(|p|4 + |q|4) as p, q → 0.

Then there exist positive numbers C1, C2 and a δ−neighborhood of p = 0 ∈ T3 so that
(i) and (ii) hold true.

Lemma 5.4. Let Assumption 2.7 be fulfilled and the operator h(0) have a zero energy
resonance. The operator T (z), z ≤ 0 is bounded in the Hilbert space L2(T3) and the
operator T (z) converges to the operator T (0) in the strongly operator topology as z → 0.

Proof. To check the boundedness of the operator T (z) we show that the operators Tij(z),
i, j = 0, 1 are bounded. We represent T11(z) as a sum of two operators T (1)

11 (z) and T (2)
11 (z)

acting in L2(T3), respectively, as

T
(1)
11 (z)f1(p) =

b(p)
2
√

∆(p, z)

∫
Tδ

b(q′)f1(q′) dq′√
∆(q′, z)(w(p, q′)− z)

, f1 ∈ L2(T3)

T
(2)
11 (z)f1(p) =

b(p)
2
√

∆(p, z)

∫
Uδ(0)

b(q′)f1(q′) dq′√
∆(q′, z)(w(p, q′)− z)

, f1 ∈ L2(T3).

We will prove the boundedness of the operators T (1)
11 (z) and T

(2)
11 (z). First we estimate

the norm of g(p) = T
(2)
11 (z)f1(p). We have

(5.5)

∫
T3
|g(p)|2dp ≤ B

4

∫
Tδ

1
∆(p, z)

∣∣∣∣ ∫
Uδ(0)

f1(q′)dq′√
∆(q′, z)(w(p, q′)− z)

∣∣∣∣2dp
+
B

4

∫
Uδ(0)

1
∆(p, z)

∣∣∣∣ ∫
Uδ(0)

f1(q′)dq′√
∆(q′, z)(w(p, q′)− z)

∣∣∣∣2dp,
where B = [maxt∈T3 |b(t)|]4.

Now we estimate each summand on the r.h.s. of (5.5).
Applying the Schwartz inequality for the first summand on the r.h.s. of (5.5) and

using statements of Corollary 3.7 and Lemma 5.3 we get that the first summand on the
r.h.s. of (5.5) does not exceed∫

Uδ(0)

dq′

|q′|

∫
Uδ(0)

|f1(q′)|2dq′ < C‖f1‖2.

Applying the Schwartz inequality and using statements (i) of Corollary 3.7 and Lemma 5.3
we get that the second summand on the r.h.s. of (5.5) does not exceed

C

∫
Uδ(0)

dp

|p|

∫
Uδ(0)

dq′

|q′|2(|q′|2 + |p|2)

∫
Uδ(0)

|q′||f1(q′)|2dq′

|q′|2 + |p|2
.

Passing on to a spherical coordinate system in the second integral and changing the order
of integrations we get that the second summand on the r.h.s. of (5.5) does not exceed
C ′‖f1‖2 for some C ′ > 0.
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Thus,
‖T (2)

11 (z)f1‖ ≤ C‖f1‖.
In analogy with the estimate for ‖T (2)

11 (z)f1‖ one proves that

‖T (1)
11 (z)f1‖ ≤ C‖f1‖.

Hence, the operator T11(z) is bounded as a sum of bounded operators .
It is easy to see that the operators T00(z), T01(z) and T10(z) are bounded .
Now we show the convergence T (z) to T (0) in the strongly operator topology as z → 0.
Denote by Q(p, q; z) the kernel of the integral operator T11(z)− T11(0), that is,

Q(p, q; z) =
b(p)b(q)

2
√

∆(p, z)
√

∆(q, z)(w(p, q)− z)
− b(p)b(q)

2
√

∆(p, 0)
√

∆(q, 0)w(p, q)
.

Then for any ϕ ∈ L2(T3) we have

(5.6)

‖(T11(z)− T11(0))ϕ‖2

=
∫

Tδ

∣∣∣ ∫
Tδ

Q(p, q; z)ϕ(q) dq
∣∣∣2dp+

∫
Tδ

∣∣∣ ∫
Uδ(0)

Q(p, q; z)ϕ(q) dq
∣∣∣2dp

+
∫

Uδ(0)

∣∣∣ ∫
Tδ

Q(p, q; z)ϕ(q) dq
∣∣∣2dp+

∫
Uδ(0)

∣∣∣ ∫
Uδ(0)

Q(p, q; z)ϕ(q) dq
∣∣∣2dq.

Since the kernel of T11(z) is continuous on T2
δ and Q(p, q; z) → 0 as z → 0 for any

p, q ∈ Tδ, the first summand on the r.h.s. of (5.6) tends to zero as z → 0.
Let us consider the second summand on the r.h.s. of (5.6). According to statements

(ii) of Corollary 3.7 and Lemma 5.3 we have∫
Tδ

∣∣∣ ∫
Uδ(0)

Q(p, q; z)ϕ(q) dq
∣∣∣2dp < C

∣∣∣ ∫
Uδ(0)

ϕ(q) dq√
∆(q, 0)

∣∣∣2.
Applying the Schwartz inequality and using statement (i) of Corollary 3.7 we get∫

Tδ

∣∣∣ ∫
Uδ(0)

Q(p, q; z)ϕ(q) dq
∣∣∣2dp < C

∫
Uδ(0)

|ϕ(q)|2dq.

By virtue of the absolutely continuity of the Lebesgue integral the latter integral tends
to zero as δ → 0.

Similarly one proves that the third summand on the r.h.s. of (5.6) also tends to zero
as δ → 0.

Consider the fourth summand on the r.h.s. of (5.6). We have

(5.7)

∫
Uδ(0)

∣∣∣ ∫
Uδ(0)

Q(p, q; z)ϕ(q) dq
∣∣∣2dp ≤ C

∫
Uδ(0)

dp

∆(p, 0)

∣∣∣ ∫
Uδ(0)

ϕ(q) dq√
∆(q, 0)w(p, q)

∣∣∣2
+ C

∫
Uδ(0)

dp

∆(p, 0)

∣∣∣ ∫
Uδ(0)

ϕ(q) dq√
∆(q, 0)

∣∣∣2.
Applying the Schwarz inequality to the interior integral of the first summand on the
r.h.s. of (5.7) and using the statements (i) of Corollary 3.7 and Lemma 5.3 we obtain
that the first summand on the r.h.s. of (5.6) does not exceed

(5.8) C

∫
Uδ(0)

dp

|p|

∫
Uδ(0)

|q|ϕ2(q) dq
|q|2 + |p|2

∫
Uδ(0)

|q|−2dq

|q|2 + |p|2
.

Passing to a spherical coordinate system in the latter integral and then changing the
order of integration we have that the integral (5.8) does not exceed

C

∫
Uδ(0)

|ϕ(q)|2dq.
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Analogously the second summand on the r.h.s. of (5.6) is bounded by

C

∫
Uδ(0)

|ϕ(q)|2dq.

Hence, ∫
Uδ(0)

∣∣∣ ∫
Uδ(0)

Q(p, q; z)ϕ(q) dq
∣∣∣2dp ≤ C

∫
Uδ(0)

|ϕ(q)|2dq.

By the absolutely continuity of the Lebesgue integral it follows that∫
Uδ(0)

|ϕ(q)|2dq → 0 as δ → 0.

Thus, ‖(T11(z)− T11(0))ϕ‖ → 0 as z → 0.
In the same manner we can see that other entries of the operator T (z)−T (0) converges

to zero in the strongly operator topology as z → 0.

6. The proof of the main result

In this section we shall prove Theorem 2.8. Throughout the proof of Theorem 2.8 we
shall use some facts of [17].

It was proved in Lemma 5.4 that the operator T (0) acting in H0 ⊕ H1 is bounded
and self-adjoint. Let us show that the essential spectrum of the ”limiting” operator T (0)
contains a closed interval lying on the r.h.s. of the point 1.

Denote by χδ(p) the characteristic function of the set Uδ(0).
Let Tδ(0) be the operator acting in H0 ⊕H1 as

Tδ(0) =
(

0 0
0 T

(0)
δ (0)

)
,

where

(T (0)
δ (0)f)(p) =

b(p)χδ(p)
2
√

∆(p, 0)

∫
T3

b(q)χδ(q)f(q) dq√
∆(q, 0)w(p, q)

.

Lemma 6.1. Let Assumption 2.7 be fulfilled and the operator h(0) have a zero energy
resonance. Then the operator T (0)− Tδ(0) is compact.

Proof. Denote by Q(p, q) the kernel of the operator T11(0)− T
(0)
δ (0). Then

Q(p, q) = 0, for all p, q ∈ Uδ(0)

and

Q(p, q) =
b(p)b(q)

2
√

∆(p, 0)
√

∆(q, 0)w(p, q)
for all (p, q) ∈ (Tδ × T3) ∪ (T3 × Tδ).

It is sufficient to show that the kernel Q(p, q) is square-integrable. In fact

(6.1)
∫

T3

∫
T3
|Q(p, q)|2dp dq =

∫
Tδ

∫
Tδ

|Q(p, q)|2dp dq + 2
∫

Tδ

∫
Uδ(0)

|Q(p, q)|2dp dq.

Since Q(p, q) is continuous on T2
δ = Tδ × Tδ, the first summand on the r.h.s. of (6.1)

is finite. From Corollary 3.7 and Lemma 5.3 it follows that the second summand on the
r.h.s. of (6.1) is bounded by

C + C1

∫
Uδ(0)

dp

|p|
<∞.

Now the assertion of the Lemma follows from the fact that the operator T11(0)−T (0)
δ (0)

is a Hilbert-Schmidt operator and the operators T00(0), T01(0) and T10(0) are of rank 1.
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The space of all functions of L2(T3) with support in Uδ(0) is an invariant subspace
of the operator T (0)

δ (0). Let the operator T (1)
δ (0) be the restriction of T (0)

δ (0) to this
subspace.

Let the operator T (2)
δ (0) : L2(Uδ(0)) → L2(Uδ(0)) act as

(T (2)
δ (0)f)(p) =

b2(0)
2
√

∆(p, 0)

∫
Uδ(0)

f(q) dq√
∆(q, 0)w(p, q)

.

Lemma 6.2. Let Assumption 2.7 be fulfilled and the operator h(0) have a zero energy
resonance. Then T

(1)
δ (0)− T

(2)
δ (0) is a Hilbert-Schmidt operator.

Proof. It suffice to prove that the integral

J =
∫

Uδ(0)

∫
Uδ(0)

∣∣∣ b(p)b(q)− b2(0)√
∆(p, 0)

√
∆(q, 0)w(p, q)

∣∣∣2dp dq
is finite.

We represent the function b(p)b(q) as b(p)b(q) = b2(0) + ψ(p, q), where the function
ψ is real-analytic and ψ(0, 0) = 0. By virtue of the statements (i) of Corollary 3.7 and
Lemma 5.3 we have

J ≤ C

∫
Uδ(0)

∫
Uδ(0)

|ψ(p, q)|2dp dq
|p||q|(p2 + q2)2

.

Passing on to the spherical coordinate system with respect to the variables p and q
and then going over the polar coordinate system we obtain

J ≤ C

∫ δ

0

|ψ(r, r)|2

r
dr.

Since ψ is real-analytic and ψ(0, 0) = 0, the latter integral converges.

Set
w̃(p, q) = p2 + (p, q) + q2.

Let T (3)
δ (0) be the operator acting in L2(Uδ(0)) by

(T (3)
δ (0)f)(p) =

2√
3π2

∫
Uδ(0)

f(q) dq√
|p|
√
|q|w̃(p, q)

.

Lemma 6.3. Let Assumption 2.7 be fulfilled and the operator h(0) have a zero energy
resonance. Then T

(2)
δ (0)− T

(3)
δ (0) is a Hilbert-Schmidt operator.

Proof. It suffices to show that the integral

J =
∫

Uδ(0)

∫
Uδ(0)

| b2(0)√
∆(p, 0)

√
∆(q, 0)w(p, q)

− 2√
3π2
√
|p|
√
|q|w̃(p, q)

|2dp dq

is finite.
For any p, q ∈ Uδ(0) the function w is represented as

w(p, q) = p2 + (p, q) + q2 +O(p4) +O(q4) as p, q → 0.

From this and the representation (3.10) for the function ∆(·, 0) it follows that

J =
4

3π4

∫
Uδ(0)

∫
Uδ(0)

O(|p|) +O(|q|)
|p||q|w̃2(p, q)

dq dp.

Now passing on to the polar coordinate system we obtain

J < C

∫ δ

0

O(r)
r

dr <∞.
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In [17] it has been proved that the essential spectrum of T (3)
δ (0) contains a closed

interval lying on the r.h.s. of the point 1.
The well known Weyl theorem [27] on the stability of the essential spectrum under

compact perturbations and Lemmas 6.1–6.2 imply that the essential spectrum T (0) con-
tains a closed interval lying to the r.h.s. of the point 1.

Now Theorem 2.8 can be proved applying Lemma 5.1 in the same way as Theorem 2.1
in [17].

Appendix A

Lemma A.1. (i) For any p∈(−π, π)3 the point q0(p) = −p/2 is a unique non-degenerate
minimum of w(p, ·).
(ii) The function m(·) = w(·, q0(·)) is analytic in (−π, π)3 and has the asymptotics

(A.1) m(p) =
3
4
p2 +O(|p|4) as p→ 0.

Proof. (i) The function w can be represented in the form

(A.2) w(p, q) = ε(p) +
3∑

i=1

(
2− 2 cos

pi

2
cos
(
qi +

pi

2

))
, p, q ∈ (−π, π)3.

It follows that for any p∈(−π, π)3 the point q0(p) = −p/2 is a unique non-degenerate
minimum of w(p, ·).

(ii) The analyticity of the functions w on (T3)2 implies that the function m(·) =
w(·, q0(·)) is also analytic in (−π, π)3. By the Taylor theorem and the representation
(A.2) we get the asymptotics (A.1).

Lemma A.2. The following equality

(A.3)
∂

∂ζ
D∗(0, 0) =

1
2
π2b2(0)

holds.

Proof. The function w0(0, ·) has a unique non-degenerate minimum at q = 0. Therefore,
by virtue of the Morse lemma (see [10]) there exists a one-to-one mapping q = ϕ(t) of a
certain ball Wγ(0) of radius γ > 0 with the center at t = 0 to a neighborhood W̃ (0) of
the point q = 0 such that:

w0(0, ϕ(t)) = t2(A.4)

with ϕ(0) = 0 and for the Jacobian Jϕ(t) of the mapping q = ϕ(t) the equality

Jϕ(0) =
1
2

holds.
For any ζ ∈ C+ the function ∂

∂ζD(0, ·) can be represented in the form

∂

∂ζ
D(0, ζ) = D1(ζ) +D2(ζ), ζ ∈ C+(A.5)

with

D1(ζ) = ζ

∫
T3\W̃ (0)

b2(q) dq
(w0(0, q) + ζ2)2

, ζ ∈ C+(A.6)

and

D2(ζ) = ζ

∫
W̃ (0)

b2(q) dq
(w0(0, q) + ζ2)2

, ζ ∈ C+.(A.7)
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Since the function w0(0, ·) has a unique minimum at q = 0 and is continuous on the
compact set T3 \ W̃ (0) there exists M = const > 0 such that |w0(0, q)| > M for all
q ∈ T3 \ W̃ (0).

Then we have∫
T3\W̃ (0)

b2(q) dq
(w0(0, q) + ζ2)2

→
∫

T3\W̃ (0)

b2(q) dq
(w0(0, q))2

as ζ → 0.(A.8)

In the integral in (A.7) making a change of variable q = ϕ(t) and using the equality (A.4)
we obtain

D2(ζ) = ζ

∫
Wγ(0)

b2(ϕ(t))Jϕ(t)
(t2 + ζ2)2

dt.(A.9)

Going over in the integral in (A.9) to spherical coordinates t = rω, we reduce it to
the form

(A.10) D2(ζ) = ζ

∫ γ

0

r2F (r)
(r2 + ζ2)2

dr

with
F (r) =

∫
Ω2

b2(ϕ(rω))Jϕ(rω) dω,

where Ω2 is the unit sphere in R3 and dω is the element of the unit sphere in this space.
Computing the integrals∫ γ

0

ζ

r2 + ζ2
dr and

∫ γ

0

ζr2(F (r)− F (0))
(r2 + ζ2)2

dr

we obtain

(A.11)
∫ γ

0

ζ

r2 + ζ2
dr → π

2
and

∫ γ

0

ζr2(F (r)− F (0))
(r2 + ζ2)2

dr → 0 as ζ → 0 + .

Hence the equality (A.3) holds.
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theorem, Letters Math. Phys. 43 (1998), 73–85.

3. S. Albeverio, S. N. Lakaev, and Z. I. Muminov, Schrödinger operators on lattices. The Efimov
effect and discrete spectrum asymptotics, Ann. Henri Poincaré 5 (2004), 743–772.
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