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ON ∗-REPRESENTATIONS OF ALGEBRAS GIVEN BY GRAPHS

S. V. IVANOV

Abstract. *-algebras given by trees generated by projections with Temperley-Lieb
type relations are considered in this work. Formulas of representations are built by
algorithms for *-algebras, associated with the Dynkin diagrams, and we get estimates
for the parameters at which non-trivial *-representations of the *-algebras exist.

1. Introduction

The problem of describing ∗-representations of ∗-algebras generated by projections
which is linked with some additional relations was considered in [1], [2], [3], [7]. Relations
of the kind

(1) pipjpi = τpi, pjpipj = τpj ,

where τ is some number, first arose in works of physicists Temperley and Lieb (see [4])
on statistical physics in the case of studies of two-dimensional model of ice and Potts
model. The algebra of Temperley-Lieb,

TLn(τ) = C〈1, p1, . . . , pn−1 | pipi±1pi = τpi; pipj = pjpi, i 6= j ± 1〉,
later arose in case of being an index of a sub-factor in a Neiman factor of

∏
1-type

(see [5]), and in the theory of invariants of knots (see [6]).
The ∗-algebras AΓ,τ,⊥, defined by finite nonoriented graphs Γ without multiple edges

and loops, with numbers τ placed at the edges, were considered in the works [3], [8]. To
the nodes of the graph there correspond generating projections. If between the nodes of
the graph there is an edge, marked with a number τ , then for the corresponding pair of
generators, relation (1) holds, and if there is no an edge, then pipj = pjpi = 0. Results
about the dimension of such algebras were obtained in [3], there is given a description of
∗-representations in the case where the graph Γ is a tree, or a cycle with glued trees. In
work [8], there was grounded an algorithm allowing to write formulas for representations
of the algebra AΓ,τ,⊥, if Γ is a tree.

In this work, we consider ∗-algebras AΓ,τ,⊥, where Γ is a tree with numbers placed at
its edges. Necessary definitions and facts about previously studied ∗-algebras are given in
Section 2. Section 3 is devoted to algorithms considered in work [8]. In Section 4, formulas
for ∗-representations of the ∗-algebras associated with Dynkin diagrams, which are trees,
are given, as well as estimates for parameters for which non-trivial ∗-representations of
the corresponding ∗-algebras exists.

2. The ∗-algebra AΓ,τ,⊥ and its representations

Thoughout the paper, Γ is some finite nonoriented graph whithout multiple edges and
loops with the number of nodes denoted by V Γ (|V Γ| = n) and the number of edges EΓ.
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In the sequel, τ : EΓ → (0; 1) assigns numbers to its edges. An indexing of the nodes of
Γ in a random way with numbers from 1 to n and will denoted by τ(i, j) = τij = τji.

Definition 1. AΓ,τ,⊥ is a ∗-algebra with 1 over the field C, generated by projections pi,
i ∈ V Γ (p2

i = p∗i = pi ∀i), with the relations{
pipjpi = τijpi, pjpipj = τijpj , if (i, j) ∈ EΓ,

pipj = pjpi = 0, if (i, j)∈EΓ.

Such algebras were considered in [3], where their growth is determined and, in partic-
ular, the dimension depending on the type of the graph, and in the case where the graph
is a tree, on placing τ , such that the algebra AΓ,τ,⊥ has non-trivial ∗-representations.

Lemma 1. If the graph Γ does not contain cycles, then the ∗-algebra AΓ,τ,⊥ is finite
dimensional.

Lemma 2. If the graph Γ is a tree, then the algebra AΓ,τ,⊥ has no infinite dimensional

irreducible ∗-representations in the Hilbert space. If AΓ,τ,⊥ has non-trivial irreducible

∗-representations, then the rank of all generating projections in them is equal 1.

Consider a self-adjoint matrix A(Γ, τ) = ‖Aij‖n
i,j=1, where Aii = 1 ∀i, Aij = 0 if

(i, j)∈EΓ, and Aij =
√

τij otherwise.

Theorem 1. Let the graph Γ be a tree. Non-trivial ∗-representations of the algebra

AΓ,τ,⊥ exist if and only if the matrix A(Γ, τ) is non-negative definite. Irreducible non-
trivial *-representation of AΓ,τ,⊥ are unique up to unitary equivalence, and its dimension

is equal to the rank of the matrix A(Γ, τ).

3. Algorithm for constructing a representation of the ∗-algebra AΓ,τ,⊥

Let Γ be some finite nonorianted tree without multiple edges and loops. The number
of nodes in the set | V Γ |= n, and that of edges is by one less then | V Γ |, that is,
| EΓ |= n − 1. Arbitrarily index the nodes of the graph with the numbers i = 1, n and
place numbers on the edges, τ : EΓ → (0; 1). Thus every edge of the graph with nodes i

and j gets the index τij = τji. Consider the following algorithm.

The algorithm of marking the tree

1. s := 1, G(1) := Γ.
2. Choose an arbitrary node i in the graph G(1) with valence 1 in the graph G(s) and

not marked.
3. si := s, ai := 1.
4. If there exist nodes of the graph G(1), contiguous with node i and not marked,

index all such nodes with i1, i2, . . . , il. Then ai := ai −
l∑

j=1

τi,ij

aij

. If ai < 0 or if ai = 0

and in graph G(1) there are not marked nodes, then the algorithm is interrupted.
5. Consider a node k of the graph G(1), contiguous with node i in the graph G(s) and

not marked. If such a node does not exist, then go to the item 10.
6. If the valence of k in the graph G(s) is more than 2, then go to the item 7, else go

to item 3.
7. If the set of nodes of the graph G(s) with valence 1 is empty, then go to item 8,

else go to item 2.
8. s := s + 1. Build graph G(s). The nodes of the graph G(s) are:
1) the nodes of the graph G(s−1) with valence 2 and unmarked;
2) the nodes of the graph G(s−1) with valence more than 2 and unmarked.
The graph G(s) is a subgraph of the graph G(s−1) generated by the indicated set of

nodes.
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9. If G(s) = P1, then sole node i gets marks si = s, ai = 1−
l∑

j=1

τi,ij

aij

, where i1, i2, . . . , il

are all the nodes of graph G(1) that are contiguous with the node i and not marked and,
go to item 10, else go to item 2.

10. If ai ≥ 0, then marking of the tree is completed. Otherwise the algorithm is
interrupted.

We shall say that marking of a tree is executed correctly, if it is completed. We shall
notice that marking of a tree Γ will be executed correctly, if during the work of the
algorithm, the marks will be ai > 0, and the last mark aj ≥ 0. Let us denote by ΩΓ the
set of placing τ , for which there exists correct markings of the tree Γ.

Suppose that, for Γ, a correct marking is executed, that is, τ ∈ ΩΓ. Then the marking
conducted by the algorithm allows to build a non-trivial ∗-representation π of the ∗-
algebra AΓ,τ,⊥, thus, if the last mark obtained in the algorithm is ai 6= 0 then the
dimension of the representation is equal to n, and if ai = 0, then the dimension is equal
to n − 1.

Let us denote Pi = π(pi), i = 1, n. The following algorithm describes a construction
of this ∗-representation. The first part places the main diagonal elements in matrices of
operators of orthogonal projection. The first element in the first line is considered as
a current position at the start of the algorithm and all nodes supposed not used. The
second part of the algorithm completes the other elements of matrices of operators.

An algorithm for constructing a the ∗-representation

I part:

1. s := 1.
2. Choose an arbitrary used node i in the graph G(1) which has the valence 1 in G(s).
3. If ai 6= 0 then place ai in the current position in the matrix of the operator Pi and

pass to the following diagonal element.
4. If the nodes, which are contiguous with the node i in the graph G(1) and used,

exist, then we let i1, i2, . . . , il for all such nodes. Consider that nodes on m = 1, l and in
matrix of operator Pi stage a number

τi,im

aim
in that position in which number aim

is placed

in matrix of operator Pim
. Work with Pi is closed after completion of this considering.

Node i is considered as used.
5. If the set of not used nodes in the graph G(1) is empty then go to item 8.
6. Consider a node j of the graph G(1) contiguous with the node i in the graph G(s)

and not used. If sj > si then go to 7 else i := j and go to item 3.

7. If set of not used nodes with valence 1 in the graph G(s) is empty then s := s + 1.
Go to item 2.

8. The work of the algorithm is finished.

II part:

To complete the construction of the operators consider them on i = 1, n and do the
following.

1. If on the diagonal of the matrix Pi there is placed only 1 then all other elements
make equal to zero and Pi is built.

2. If on the diagonal of matrix Pi in the positions i1, i2, . . . , il there are the numbers
si1 , si2 , . . . , sil

, consider all possible combinations from {i1, i2, . . . , il} for two and for each
{ik, im} matrix elements of Pi with the indexes ik, im and im, ik, and put them equal to√

sik
sim

. Other elements of the matrix Pi are set to zero. Pi is built.

By the construction, the matrix Pi satisfies P 2
i = Pi = P ∗

i and, consequently, make
an operator of orthogonal projection.
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Thus ΣΓ is a set of placing τ for which there exists non-trivial ∗-representations of the
∗-algebra AΓ,τ,⊥. Then taking into account the foresaid we get that ΩΓ ⊆ ΣΓ.

Theorem 2. If Γ is a tree then, for the ∗-algebra AΓ,τ,⊥, the identity ΩΓ = ΣΓ holds.

The proof of this theorem can be found in [8]. From the theorem we get the following.

Corollary 1. If for the tree Γ, a correct marking has been carried out, then for the

algebra AΓ,τ,⊥, the dimension of the representation is either equal to n, if the last mark
aj > 0, or is equal to n − 1, if aj = 0. Other dimensions are impossible.

4. Formulas for ∗-representations of ∗-algebras associated with Dynkin’s

diagrams and estimations of the parameters

Let us consider Dynkin diagrams. Numbering the nodes of these trees for every tree
Γ will conduct placing numbers on edges τ : EΓ → (0; 1) (fig. 1).

Figure 1

Suppose that for these numbers τi, the representations of the algebras AAn,τ,⊥, ADn,τ,⊥,
AE6,τ,⊥, AE7,τ,⊥, AE8,τ,⊥ exist. So that τi ∈ ΣΓ for the corresponding tree.

Denote by P (p11, p22, . . . , pnn) the matrix of the orthogonal projection P with numbers
on the main diagonal being p11, p22, . . . , pnn, and the other entries of the matrix, pij , when
i 6= j, are determined as follows:

pij = pji =

{ √
pii · pjj if pii 6= 0 and pjj 6= 0,

0 otherwise.

We will write down formulas for representations of these algebras obtained from the
algorithms. For the sake of brevity, assume that the last marks obtained from the
algorithms are different from zero. That is, the dimensions of the presentations are equal
to the orders of the proper graphs. Notice that if the last mark is equal to zero, it is
enough to delete the last zeros in the corresponding formulas.



ON ∗-REPRESENTATIONS OF ALGEBRAS GIVEN BY GRAPHS 21

1. The algebra AAn,τ,⊥. After an implementation of marking, every node will get the
following marks:

a1 = 1, a2 = 1 − τ1, a3 = 1 − τ2

1−τ1

= 1 − τ2

a2

, . . . ,

ai = 1 − τi−1

ai−1
, . . . , an = 1 − τn−1

an−1
.

Then
P1 = (1, 0, 0, 0, . . . , 0), P2 = (τ1, a2, 0, 0, . . . , 0),
P3 = (0, τ2

a2

, a3, 0, . . . , 0), . . . ,

Pi = (0, 0, . . . , 0,
τi−1

ai−1

, ai, 0, . . . , 0), . . . ,

Pn = (0, 0, 0, . . . , 0,
τn−1

an−1
, an).

2. The algebra ADn,τ,⊥. Executing the marking we will get:

a1 = 1, a2 = 1 − τ1,

a3 = 1 − τ2

1−τ1

= 1 − τ2

a2

, . . . , ai = 1 − τi−1

ai−1

, . . . ,

an−3 = 1 − τn−4

an−4
, an−2 = 1 − τn−3

an−3
− τn−2 − τn−1,

an−1 = 1, an = 1.

Then
P1 = (1, 0, 0, 0, . . . , 0), P2 = (τ1, a2, 0, 0, . . . , 0),
P3 = (0, τ2

a2

, a3, 0, . . . , 0), . . . ,

Pi = (0, 0, . . . , 0,
τi−1

ai−1
, ai, 0, . . . , 0), . . . ,

Pn−2 = (0, 0, 0, . . . , 0,
τn−3

an−3

, τn−2, τn−1, an−2), Pn−1 = (0, 0, 0, . . . , 0, 1, 0, 0),

Pn = (0, 0, 0, . . . , 0, 1, 0).

3. The algebra AE6,τ,⊥. After implementation of marking we will get:

a1 = a4 = a6 = 1, a2 = 1 − τ1, a5 = 1 − τ5,

a3 = 1 − τ2

1−τ1
− τ4

1−τ5
− τ3 = 1 − τ2

a2
− τ4

a5
− τ3

a4
.

Then
P1 = (1, 0, 0, 0, 0, 0), P2 = (τ1, a2, 0, 0, 0, 0), P3 = (0, τ2

a2
, τ3, 0, τ4

a5
, a3),

P4 = (0, 0, 1, 0, 0, 0), P5 = (0, 0, 0, τ5, a5, 0), P6 = (0, 0, 0, 1, 0, 0).

4. The algebra AE7,τ,⊥. Conducting the marking we will get:

a1 = a4 = a7 = 1, a2 = 1 − τ1, a6 = 1 − τ6,

a5 = 1 − τ5

a6

, a3 = 1 − τ2

a2

− τ4

a5

− τ3

a4

.

Then
P1 = (1, 0, 0, 0, 0, 0, 0), P2 = (τ1, a2, 0, 0, 0, 0, 0), P3 = (0, τ2

a2

, τ3, 0, 0, τ4

a5

, a3),

P4 = (0, 0, 1, 0, 0, 0, 0), P5 = (0, 0, 0, 0, τ5

a6
, a5, 0), P6 = (0, 0, 0, τ6, a6, 0, 0),

P7 = (0, 0, 0, 1, 0, 0, 0).

5. The algebra AE8,τ,⊥. The results of the marking are

a1 = a4 = a8 = 1, a2 = 1 − τ1, a7 = 1 − τ7,

a6 = 1 − τ6

a7

, a5 = 1 − τ5

a6

, a3 = 1 − τ2

a2

− τ4

a5

− τ3

a4

.

Then
P1 = (1, 0, 0, 0, 0, 0, 0, 0), P2 = (τ1, a2, 0, 0, 0, 0, 0, 0),
P3 = (0, τ2

a2

, τ3, 0, 0, 0, τ4

a5

, a3), P4 = (0, 0, 1, 0, 0, 0, 0, 0),

P5 = (0, 0, 0, 0, 0, τ5

a6
, a5, 0), P6 = (0, 0, 0, 0, τ6

a7
, a6, 0, 0),

P7 = (0, 0, 0, τ7, a7, 0, 0, 0), P8 = (0, 0, 0, 1, 0, 0, 0, 0).

Consider the extended Dynkin diagrams which are trees (all, except for Ãn). We will
number the nodes of the graphs and execute placing of the numbers on edges in the same
arbitrary way (fig. 2).

Supposing that for these numbers τ , the representations of the proper algebras exist
and using the algorithms we get formulas for the representations.

1. The algebra A eDn,τ,⊥. Executing the marking we will get:
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Figure 2

a1 = a2 = 1, a3 = 1 − τ1 − τ2 = 1 − τ1

a1

− τ2

a2

, a4 = 1 − τ3

a3

,

. . . , ai = 1 − τi−1

ai−1
, . . . ,

an−3 = 1 − τn−4

an−4

, an−2 = 1 − τn−3

an−3

− τn−2 − τn−1, an−1 = an = 1.

Then
P1 = (1, 0, 0, 0, . . . , 0), P2 = (0, 1, 0, 0, . . . , 0),
P3 = (τ1, τ2, a3, 0, . . . , 0), P4 = (0, 0, τ3

a3

, a4, . . . , 0),

. . . , Pi = (0, 0, . . . , 0,
τi−1

ai−1

, ai, 0, . . . , 0), . . . ,

Pn−2 = (0, 0, 0, . . . , 0,
τn−3

an−3
, τn−2, τn−1, an−2),

Pn−1 = (0, 0, 0, . . . , 0, 1, 0, 0), Pn = (0, 0, 0, . . . , 0, 1, 0).

2. The algebra A eE6,τ,⊥. After implementation of the marking we will get:

a1 = a5 = a7 = 1, a2 = 1 − τ1, a4 = 1 − τ4,

a6 = 1 − τ6, a3 = 1 − τ2

a2

− τ3

a4

− τ5

a6

.

Then
P1 = (1, 0, 0, 0, 0, 0, 0), P2 = (τ1, a2, 0, 0, 0, 0, 0),
P3 = (0, τ2

a2

, τ3

a4

, 0, τ5

a6

, 0, a3), P4 = (0, 0, a4, τ4, 0, 0, 0),

P5 = (0, 0, 0, 1, 0, 0, 0), P6 = (0, 0, 0, 0, a6, τ6, 0),
P7 = (0, 0, 0, 0, 0, 1, 0).

3. The algebra A eE7,τ,⊥. Conducting the marking we will get:

a1 = a5 = a8 = 1, a2 = 1 − τ1, a3 = 1 − τ2

a2

,

a7 = 1 − τ7, a6 = 1 − τ6

a7

, a4 = 1 − τ3

a3

− τ5

a6

− τ4.

Then
P1 = (1, 0, 0, 0, 0, 0, 0, 0), P2 = (τ1, a2, 0, 0, 0, 0, 0, 0),
P3 = (0, τ2

a2

, a3, 0, 0, 0, 0, 0), P4 = (0, 0, τ3

a3

, τ4,
τ5

a6

, 0, 0, a4),

P5 = (0, 0, 0, 1, 0, 0, 0, 0), P6 = (0, 0, 0, 0, a6,
τ6

a7

, 0, 0),

P7 = (0, 0, 0, 0, 0, a7, τ7, 0), P8 = (0, 0, 0, 0, 0, 0, 1, 0).

4. The algebra A eE8,τ,⊥. Results of the marking:
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a1 = a4 = a9 = 1, a2 = 1 − τ1, a8 = 1 − τ8,

a7 = 1 − τ7

a8

, a6 = 1 − τ6

a7

, a5 = 1 − τ5

a6

, a3 = 1 − τ2

a2

− τ4

a5

− τ3.

Then
P1 = (1, 0, 0, 0, 0, 0, 0, 0, 0), P2 = (τ1, a2, 0, 0, 0, 0, 0, 0, 0),
P3 = (0, τ2

a2
, τ3,

τ4

a5
, 0, 0, 0, 0, a3), P4 = (0, 0, 1, 0, 0, 0, 0, 0, 0),

P5 = (0, 0, 0, a5,
τ5

a6
, 0, 0, 0, 0), P6 = (0, 0, 0, 0, a6,

τ6

a7
, 0, 0, 0),

P7 = (0, 0, 0, 0, 0, a7,
τ7

a8

, 0, 0), P8 = (0, 0, 0, 0, 0, 0, a8, τ8, 0),

P9 = (0, 0, 0, 0, 0, 0, 0, 1, 0).

Conducting an estimation of parameters τi is possible by algorithms at which the non-
trivial representations of algebras exist. Consider an example of the algebras AE6,τ,⊥,
AE7,τ,⊥, AE8,τ,⊥, A eE6,τ,⊥, A eE7,τ,⊥, A eE8,τ,⊥ with the two parameters τ1 and τ2 (fig. 3).

Figure 3

1. The algebra AE6,τ,⊥. After implementation of the marking we will get:

a1 = a4 = a6 = 1, a2 = 1 − τ1, a5 = 1 − τ1,

a3 = 1 − τ1

a2

− τ1

a5

− τ2

a4

= 1 − τ1

1−τ1

− τ1

1−τ1

− τ2 = 1 − 2τ1

1−τ1

− τ2.

Then we will get the following limitations on parameters:{
1 − τ1 > 0
1 − 2τ1

1−τ1

− τ2 ≥ 0
or

{
τ1 < 1
τ2 ≤ 1−3τ1

1−τ1

.

2. The algebra AE7,τ,⊥. Conducting the marking we will get:

a1 = a4 = a7 = 1, a2 = 1 − τ1, a6 = 1 − τ1,

a5 = 1 − τ1

a6

= 1−2τ1

1−τ1

, a3 = 1 − τ1

a2

− τ1

a5

− τ2

a4

=
1−5τ1+6τ2

1
−τ3

1

(1−τ1)(1−2τ1)
− τ2.

Then we will get the following limitations on parameters:



1 − τ1 > 0
1−2τ1

1−τ1

> 0
1−5τ1+6τ2

1
−τ3

1

(1−τ1)(1−2τ1)
− τ2 ≥ 0

or

{
τ1 < 1

2

τ2 ≤ 1−5τ1+6τ2

1
−τ3

1

(1−τ1)(1−2τ1)
.
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Figure 4

Figure 5

3. The algebra AE8,τ,⊥. The results of the marking are

a1 = a4 = a8 = 1, a2 = 1 − τ1, a7 = 1 − τ1,

a6 = 1 − τ1

1−τ1

= 1−2τ1

1−τ1

, a5 = 1 − τ1

a6

=
1−3τ1+τ2

1

1−2τ1

,

a3 = 1 − τ1

a2

− τ1

a5

− τ2

a4

=
1−6τ1+10τ2

1
−4τ3

1

(1−τ1)(1−3τ1+τ2

1
)
− τ2.

Then we will get the following limitations on parameters:





1 − τ1 > 0
1−2τ1

1−τ1
> 0

1−3τ1+τ2

1

1−2τ1

> 0
1−6τ1+10τ2

1
−4τ3

1

(1−τ1)(1−3τ1+τ2

1
)
− τ2 ≥ 0

or

{
τ1 ∈ (0; 3−

√
5

2 )

τ2 ≤ 1−6τ1+10τ2

1
−4τ3

1

(1−τ1)(1−3τ1+τ2

1
)
.
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Figure 6

4. The algebra A eE6,τ,⊥. After implementation of the marking we will get:

a1 = a5 = a7 = 1, a2 = 1 − τ1, a4 = 1 − τ2,

a6 = 1 − τ1, a3 = 1 − τ2

a2

− τ2

a4

− τ1

a6

= 1−3τ1

1−τ1

− τ2

1−τ2

.

Then we will get the following limitations on the parameters:



1 − τ1 > 0
1 − τ2 > 0
1−3τ1

1−τ1

− τ2

1−τ2

≥ 0
or





τ1 < 1
τ2 < 1

τ2

1−τ2

≤ 1−3τ1

1−τ1

.

Figure 7

5. The algebra A eE7,τ,⊥. Conducting the marking we will get:
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a1 = a5 = a8 = 1, a2 = 1 − τ1, a3 = 1 − τ1

a2
= 1−2τ1

1−τ1
,

a7 = 1 − τ1, a6 = 1 − τ1

a7

= 1−2τ1

1−τ1

,

a4 = 1 − τ1

a3

− τ1

a6

− τ2 =
1−4τ1+2τ2

1

1−2τ1

− τ2.

Then we will get the following limitations on the parameters:



1 − τ1 > 0
1−2τ1

1−τ1

> 0
1−4τ1+2τ2

1

1−2τ1

− τ2 ≥ 0

or

{
τ1 < 1

2

τ2 ≤ 1−4τ1+2τ2

1

1−2τ1

.

Figure 8

6. The algebra A eE8,τ,⊥. The results of the marking are

a1 = a4 = a9 = 1, a2 = 1 − τ1, a8 = 1 − τ1,

a7 = 1 − τ1

a8

= 1−2τ1

1−τ1

, a6 = 1 − τ1

a7

=
1−3τ1+τ2

1

1−2τ1

, a5 = 1 − τ1

a6

=
1−4τ1+3τ2

1

1−3τ1+τ2

1

,

a3 = 1 − τ1

a2

− τ1

a5

− τ2 =
1−7τ1+15τ2

1
−10τ3

1
+τ4

1

(1−τ1)(1−4τ1+3τ2

1
)

− τ2.

Then we will get the following limitations on parameters:



1 − τ1 > 0
1−2τ1

1−τ1
> 0

1−3τ1+τ2

1

1−2τ1

> 0
1−4τ1+3τ2

1

1−3τ1+τ2

1

> 0
1−7τ1+15τ2

1
−10τ3

1
+τ4

1

(1−τ1)(1−4τ1+3τ2

1
)

− τ2 ≥ 0

or

{
τ1 ∈ (0; 1

3 )

τ2 ≤ 1−7τ1+15τ2

1
−10τ3

1
+τ4

1

(1−τ1)(1−4τ1+3τ2

1
)

.
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