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CLASSIFICATION OF NONCOMPACT SURFACES WITH

BOUNDARY

A. O. PRISHLYAK AND K. I. MISCHENKO

Abstract. We give a topological classification of noncompact surfaces with any
number of boundary components.

0. Introduction

A well-known classification of compact surfaces belongs to H. R. Brahana [1]. The
first attempt to classify noncompact surfaces was made by B. V. Kerékjártó in 1923 [2].
Later this problem was considered by I. Richards [3]. There, the case of surfaces without
boundaries was considered. A theorem on a classification of noncompact surfaces with
a finite number of boundary components was considered in A. O. Prishlyak, K. I. Mis-
chenko [4]. A generalization of this theorem to the case of any number of boundary
components is the main result of this paper.

We consider, as our basic subject of the study, triangulable connected surfaces with a
finite base of topology. To work with noncompact surfaces, we give a few new definitions
and invariants, a boundary component (or an end) of a noncompact surface and an
ideal boundary (or the set of ends) of the surface. Then, defining four “orientability
classes” of surfaces and genus, we describe characteristic properties of ideal boundaries
of noncompact surfaces with any number of boundary components. Thus, a task is to
classify surfaces without boundary.

1. Basic definitions

The fundamental classification theorem for compact surfaces with border is the fol-
lowing: two compact triangulable surfaces with border are homeomorphic if and only if
they both have the same number of boundary curves, the same Euler characteristic and
are either both orientable or nonorientable.

Let P1 ⊃ P2 ⊃ . . . be a nested sequence of connected unbounded regions in S such
that the following holds:

a) the boundary of Pn in S is compact for all n;
b) for any bounded subset A of S, Pn ∩ A = ∅ for n sufficiently large.

We say that two sequences P1 ⊃ P2 ⊃ P3 ⊃. . . and Q1 ⊃ Q2 ⊃ Q3 ⊃. . . are
equivalent if for any n there is a corresponding integer N such that Pn ⊂ QN and vice
versa.

Definition 1. The equivalence class of sequences containing p = P1 ⊃ P2 ⊃ P3 ⊃. . . is
called an end and denoted by p∗.

Definition 2. The ideal boundary (the set of ends) B(S) of a surface S is a topological
space having the ends of S as elements and endowed with the following topology: for any
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set U in S whose boundary in S is compact, we define U∗ to be the set of all ends p∗,
represented by some p = P1 ⊃ P2 ⊃ P3 ⊃. . . , such that Pn ⊂ U for a sufficiently large
n; we take the set of all such U∗ to be a basis for the topology of B(S).

Another definition of the set of ends can be given as follows.

Definition 3. Let S be a noncompact surface. Then there exists a compactification S∗

of S (its existence was proved in [5]) such that
1) S∗ is a locally connected set;
2) B(S) = S∗ − S does not disconnect S∗;
3) B(S) is a totally disconnected set.
Thus determined B(S) is the ideal boundary of S.

Definition 4. Let p∗, represented by p = P1 ⊃ P2 ⊃ P3 ⊃. . . , be an end of S. We
say that p∗ is planar and\or orientable if the sets Pn are planar and\or orientable for all
sufficiently large n.

Following Definition 4, we will consider the set of ends to be a nested triple of the sets
B(S) ⊃ B′(S) ⊃ B′′(S), where B(S) is the hole ideal boundary, B′(S) is the part which
is not planar, and B′′(S) is the part which is not orientable. It follows directly from the
definitions that B′(S) and B′′(S) are closed subsets of B(S).

Definition 5. A surface S with boundary is of infinite genus and\or infinitely nonori-
entable if there is no a bounded subset A of S such that S − A is of genus zero and\or
orientable.

Clearly, an infinitely nonorientable surface is also of infinite genus.
So, we distinguished two “orientability classes” of noncompact surfaces. There are

orientable and infinitely nonorientable surfaces. A surface which belongs to neither of
these categories is said to be of odd or even nonorientability type according to whether
every sufficiently large compact subsurface contains, respectively, an odd or an even
number of “cross cups” (i.e., has half integral or integral reduced genus.)

Consequently, we defined four “orientability classes” of noncompact surfaces.
Kerékjártó [2] has obtained the following result.

Theorem 1. Let S1 and S2 be two separable surfaces of the same genus and orientability

class. Then S1 and S2 are homeomorphic if and only if their ideal boundaries, considered

as triple of spaces, are topologically equivalent.

In addition, Richards [3] extended and proofed Kerékjártó’s results as follows.

Theorem 2. 1. Let X be a totally disconnected metrical space, U and V its open subsets

U ⊃ V . Then there exists a noncompact surface S such that there is a homeomorphism

from B(S) onto X that maps B′(S) onto U and B′′(S) onto V .

2. The set of ends of a separable surface is totally disconnected, separable, and com-

pact.

3. Let (X, Y, Z) be any triple of compact, separable, totally disconnected spaces with

Z ⊂ Y ⊂ X. Then there exists a surface S whose ideal boundary (B(S), B′(S), B′′(S))
is topologically equivalent to the triple (X, Y, Z).

2. Boundary ends

A disk punctured at the boundary is homeomorphic to a disk with an open interval
cut outfrom the boundary. This was proved in [4].

Considering noncompact surfaces with a finite number of boundary components, we see
that components of the boundary can be compact (circles) and noncompact (intervals).
In the case of circles, obviously they can be gathered to a point or glued up by a disk.
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This case is trivial. When we deal with intervals, our purpose is to show that these
components can also be represented as circles which are punctured at a finite number of
points.

Let p∗ be an equivalence class of S which lies on the boundary. Then there are exactly
two ends which are joined to p∗ and, for these ends, p∗ is a boundary point [4].

So, the components of the boundary and the boundary ends can be subdivided into
groups such that one group is a cyclic sequence made up of ends and components of the
boundary in which two any neighboring elements make a component of the boundary
and its corresponding end. Such a sequence is called a boundary cycle.

Gathering boundary cycles on points or gluing them up by disks, we will get a non-
compact surface without boundary. Thus a classification of noncompact surfaces with a
finite number of boundary components becomes a classification of noncompact surfaces
without boundary.

3. Surfaces with an infinite number of boundary components

Farther we will classify surfaces which can have an infinite number of boundary com-
ponents. To do this, at first we classify the ends which lie on the boundary.

The set of boundary ends will be denoted by C. To classify them, we will consider pairs
(B, C), (B′, C′) and (B′′, C′′) in lines with the given before classification of noncompact
surfaces with a finite number of boundary component. Let us define an equivalence
relation on the set C.

Definition 6. Several ends belong to the same class of equivalence if they can be con-
nected in pairs by sequences of adjacent ends.

Definition 7. Two ends are adjacent if there exists a boundary component for which
they are the ends of it.

An equivalence Relation on the sets of C′ and C′′ is defined similarly.
We note that, in the case of an infinite number of boundary components, boundary

cycles can be infinite.
the equivalence relation ∼ defined above gives rise to the set D := C/ ∼. Consequently,

D is a set of boundary cycles or, which is the same, a set of circles with punctured points.
Then we have the following lemma.

Lemma 1. The union of boundary ends can be represented as circles with embedded

subsets of the Cantor.

Construction. Let S be a noncompact surface with boundary. It is possible to
arrange the boundary components αk in circles with the pricked points out. If we throw
away the boundary of the considered surface, we obtain a noncompact surface without
boundary. To classify such surfaces, we can apply Richard’s theorem. Interiors of surfaces
are homeomorphic and there exist a sequences of compact surfaces Fk such that every
next contains the previous one, ∀k ≥ 1 : Fk ⊂ Fk+1.

The compact connected bordered surface is topologically determined by its orientabil-
ity, genus and the number of its boundary curves. Then, linking each of the compact
surfaces Fk with the components αk, we will get a complete classification of noncompact
surfaces with boundary.

To do this, to every subsurface Fk, we glue strips which continuously connect Fk with
the corresponding component αk (see Fig.1).

As far as punctured points are on the circle, this circle can be represented as a limit
of a sequence of closed segments. So there exist a sequence βi

k → αk , i → ∞, for the
boundary component αk. Then there is a sequence of finite unions of βi

k :
⋃
k,i

βi
k, i ≥ 1.

Fixing the numbers of these segments from the list, we make gluing as follows: we
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Figure 1

continuously connect the first segment with the first (the least) subsurface F1. We require
that crossing near every surface of Fk be transversal in one point. To get a surface with
boundary, we extend this path to a closed neighborhood. To avoid an ambiguity in the
subsequent gluing, the first time a point on a surface is picked arbitrarily. Each following
time, a point on a surface is picked depending on the sets D and D′. All paths on the
surface S1 are constructed arbitrarily with a following condition satisfied: if a path goes
out from the boundary of surface Fk, then it crosses the boundary of every surface Fn

(n > k) transversely in one point only. The paths on the surface S2 are constructed
such that the first path is built arbitrarily, the other paths are chosen as follows: the
curvilinear quadrangles are formed by parts of the boundary of the surface Fk and parts
of this and the previous paths that were boundaries of the regions homeomorphic to the
corresponding regions of the surface S1. These quadrangles must have the same number
of ends, caps or cross caps. It is easy to do that in a way that a neighborhood of each
following path that connects the point pricked out from the circle with a subsurface of
the corresponding index, would contain the previous one. At every step of gluing of the
strips, we have the finite number of segments.

Lemma 2. Lets for certain k there be two paths γ1 and γ2 that connect the surface Fk

with the corresponding component of the boundary. Then the surfaces obtained by gluing

the strips with these paths are homeomorphic.

Proof. Since, by the construction, every path crosses the boundary transversely, we may
assume that the paths γ1 and γ2 coincide in some neighborhood of the boundary com-
ponent. Consequently, there is a number n ∈ N such that the paths γ1 and γ2 do not
coincide on the set M = Fk+n\Fn. This means that there exists a homeomorphism of
this set onto itself, ϕ : M → M , which maps γ1 to γ2 : ϕ(γ1) = γ2. So, Lemma 2 is
proved. �

Consequently, every closed segment between two arbitrary points pricked out on a
circle is continuously connected with the corresponding subsurface Fk. Then, passing to
the limit, we obtain an initial noncompact surface with a boundary as a limit of compact
surfaces with boundary.

Lemma 3. The so obtained sequence of surfaces with boundary and the glued strips

approaches the noncompact surface S.

Proof. Denote by F̃k the obtained sequence of surfaces with boundary with the glued

strips. Obviously, ∀k ≥ 1 : Fk ⊂ F̃k. Then lim
k→∞

Fk ⊂ lim
k→∞

F̃k, and lim
k→∞

Fk = Int S ⊂

lim
k→∞

F̃k. By the construction, F̃k contains each boundary component. Consequently,

the union of boundary components with the interior of the surface S is the surface S.
Lemma 3 is proved. �
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Theorem 3. Two any noncompact separable surfaces with boundary, S1 and S2, are

homeomorphic if and only if they have the same genus, orientability class and there exists

a homeomorphism which maps B(S1) on B(S2), C(S1) on C(S2), B
′(S1) on B′(S2),

C′(S1) on C′(S2), B′′(S1) on B′′(S2), C′′(S1) on C′′(S2) and D(S1) on D(S2).

Proof. The necessity is obviously, because if noncompact separable surfaces with a bound-
ary are homeomorphic, then they have the same genus, orientability class and there exists
a homeomorphism which maps all indicated sets of one surface on the corresponding sets
of other surface.

Sufficiency. Lets there be two noncompact separable surfaces with boundary, S1 and
S2, which have the same genus, orientability class and there exist a homeomorphism
that maps B(S1) on B(S2), and there exist a homeomorphism which maps B(S1) on
B(S2), C(S1) on C(S2), B

′(S1) on B′(S2), C′(S1) on C′(S2), B′′(S1) on B′′(S2), C′′(S1)
on C′′(S2) and D(S1) on D(S2). We apply the construction described above. Then the

surfaces F̃ 1
k and F 1

k are homeomorphic by Lemma 2. The same can be stated about F̃ 2
k

and F 2
k . Then F̃ 1

k ,→ S1, F̃ 2
k ,→ S2, k → ∞ and, for all k ≥ 1, Fk ⊂ Fk+1 by Lemma

3. Consequently, there exist homeomorphisms fk : F̃ 1
k → F̃ 2

k , and the sequence of
homeomorphisms {fk, k ≥ 1} defines a homeomorphism f : S1 → S2, where f = lim

k→∞

fk.

So, the theorem is proved. �

Conclusion. Thus, we obtained a complete classification of noncompact surfaces with
an arbitrary number of boundary components. It may be used for a study of functions
with isolated critical points on surfaces, harmonic functions and forms.
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