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SPECTRAL MEASURE OF COMMUTATIVE JACOBI FIELD
EQUIPPED WITH MULTIPLICATION STRUCTURE

OLEKSII MOKHONKO

Abstract. The article investigates properties of the spectral measure of the Jacobi
field constructed over an abstract Hilbert rigging H− ⊃ H ⊃ L ⊃ H+. Here L is a
real commutative Banach algebra that is dense in H.

It is shown that with certain restrictions, the Fourier transform of the spectral
measure can be found in a similar way as it was done for the case of the Poisson field
with the zero Hilbert space L2(∆, dν). Here ∆ is a Hausdorff compact space and ν
is a probability measure defined on the Borel σ-algebra of subsets of ∆.

The article contains a formula for the Fourier transform of a spectral measure of
the Jacobi field that is constructed over the above-mentioned abstract rigging.

1. Introduction

It is known that the Gaussian measure on the Schwartz space S′(R) is the spectral
measure of a commuting family of boson field of self-adjoint operators that act in the sym-
metric Fock space F(H) constructed with the use of the Hilbert space H = L2

Re(R, dt).
Similar results were obtained in [8] and [9] by Yoshifusa Ito and Izumi Kubo. They

used results contained in the papers of T. Hida and N. Ikeda (see [5], [6]) where both
the Gaussian and Poisson cases were considered. The results of these works gave a
possibility to assume that the Poisson measure with intensity dt on the space S′(R) is
also the spectral measure of a family of self-adjoint operators perturbed by diagonal
operators of some quite general form. The proof of this statement can be found in the
paper of Yurij M. Berezansky [10].

In [10] the author claims that the same result can be obtained without a considerable
change for the following more general construction.

Suppose, instead of the space R with the Lebesgue measure dt, one has a mea-
surable space T with a σ-finite measure dν(t). Construct the Fock space F(H) using
H = L2

Re(T, dν(t)). In the space F(H) one defines a family of commuting self-adjoint
operators which forms a Poisson field. The spectral measure of this field dρ(x) is a Borel
measure on the negative Hilbert real space H− of the rigging H− ⊃ L2

Re(T, dν(t)) ⊃ H+

with a Hilbert-Schmidt type embedding H+ ↪→ L2
Re(T, dν(t)). Then the Fourier trans-

form of dρ(x) has the form∫
H−

ei(x,ϕ)dρ(x) = exp
( ∫

T

(
eiϕ(t) − 1− iϕ(t)

)
dν(t)

)
, ϕ ∈ H+.

In this paper, a next step is carried out. The scalar complex multiplication is re-
placed with some abstract algebraic one. Origins of this idea can be found in [11,
p. 24, remark 8.1]. Using constructions similar to the one from [10], a new Jacobi
field (”Generalized Poisson Field ”) is constructed. The corresponding expression for the
Fourier transform of the spectral measure of this field is calculated.
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2. Preliminaries

Consider a rigging of an infinite-dimensional real Hilbert space H with real Hilbert
spaces H+ and H− = H ′

+ : H− ⊃ H ⊃ H+ with a quasinuclear embedding O : H+ ↪→ H
(i.e., the operator O is of Hilbert-Schmidt type).

Let F(H) =
⊕∞

n=0 Fn(H) be the corresponding symmetric Fock space. Each element
of F(H) can be associated with a sequence f = (fn)∞n=0, fn ∈ Fn(H) = H

b⊗n
C , where HC

denotes the complexification of H and the sign ⊗̂ denotes the symmetric tensor product.
Denote by Ffin(H) the linear subset of finite vectors and by Ω = (1, 0, 0, . . .) ∈ Ffin(H)

the so-called vacuum.
Consider a family J = (J(ϕ))ϕ∈H+ of operator-valued Jacobi matrices

J(ϕ) =


b0(ϕ) a∗0(ϕ) 0 0 0 · · ·
a0(ϕ) b1(ϕ) a∗1(ϕ) 0 0 · · ·

0 a1(ϕ) b2(ϕ) a∗2(ϕ) 0 · · ·
0 0 a2(ϕ) b3(ϕ) a∗3(ϕ) · · ·
...

...
...

...
...

. . .


with the entries

(1)
an(ϕ) : Fn(H) −→ Fn+1(H),
a∗n(ϕ) : Fn+1(H) −→ Fn(H),

bn(ϕ) = b∗n(ϕ) : Fn(H) −→ Fn(H).

Every matrix J(ϕ) generates a Hermitian operator A(ϕ) : Ffin(H) −→ Ffin(H).

Definition 2.1. The family J is called a Jacobi field if the following conditions hold
(see [11, p. 11], [10, p. 123]):

(a) The operators (1) are bounded and real (i.e., act from real subspaces of Fn(H)
into real ones).

(b) The dependence of elements of J(ϕ) on ϕ ∈ H is linear and the operators

(2)
∀fn ∈ Fn(H) H 3 ϕ 7→ an(ϕ)fn ∈ Fn+1(H),
∀fn ∈ Fn(H) H 3 ϕ 7→ bn(ϕ)fn ∈ Fn(H), n ∈ Z+

∀fn+1 ∈ Fn+1(H) H 3 ϕ 7→ a∗n(ϕ)fn+1 ∈ Fn(H),

are linear and bounded.
(c) The operators A(ϕ), ∀ϕ ∈ H+, are essentially self-adjoint and their closures Ã(ϕ)

commute strongly (i.e. their resolutions of identity commute).
(d) (regularity) Consider ∀n ∈ N a real operator Vn,n : Fn(H) → Fn(H) defined by

the equality

(3) Vn,n(ϕ1⊗̂ϕ2⊗̂ . . . ⊗̂ϕn) = (J(ϕ1) . . . J(ϕn)Ω)n = an−1(ϕ1) . . . a0(ϕn)1.

We assume that this operator is continuous and, after being extended by continuity, is
invertible in Fn(H); we also put V0,0 = 1.

(e) (smoothness) Properties (a), (b), (d) are preserved for restrictions of the oper-
ators (1), (2), (3) onto the space Fn(H+), Fn+1(H+),H+ and with values in Fn+1(H+)
and Fn(H+), respectively.

Consider one example of such a field (see [11, p. 25]). Take H = `2 and fix some
orthonormal basis (ej)∞j=0 of this space. Choose some weight γ = (γn)∞n=0 such that
γn > 1 ∀n > 0 and

∑∞
n=0

1
γn

<∞. Denote

`2(γ) = {f ∈ `2 :
∞∑

n=0

|fk|2γk <∞}
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and take H+ = `2(γ). The last inequality guarantees that the embedding H+ ↪→ H is
quasinuclear. At last, takeH− = `2(γ−1) where `2(γ−1) = {f = (fn)∞n=0 :

∑∞
n=0 |fk|2 1

γk
<

∞} and construct the corresponding symmetric Fock space F(H). The matrices J(ϕ)
are built in the following way: ∀ϕ ∈ H+, fn ∈ Fn(H)

an(ϕ)fn =
√
n+ 1ϕ⊗̂fn,

bn(ϕ)fn = 0 .

The family J(ϕ), ϕ ∈ H+ satisfies the definition of a Jacobi field and is called the Classical
Free Field.

Note that throughout this paper (particularly in the case of the Classical Free Field)
all constructions of Jacobi Fields are based on Theorem 8.1 from [11, p. 24]. Consider
this question in details.

In [11] after formula (5.5), one can find a description of smoothness condition. After
Definition 5.1 in the same paper, a detailed description of regularity axiom is contained.
This axiom uses the smoothness condition. After formula (8.19) and in the statement
of Theorem 8.1, the author placed a set of necessary assumptions for building a Jacobi
field.

Using the notations of [11], in our case X = 1,H1 = H+. So the assumption that
X : H1 −→ H1 acts continuously and is invertible is fulfilled (see the paragraph after
formula (8.21)).

The second assumption is that, for ϕ ∈ H1, the operator (b(ϕ)) � H1 acts continuously
in H1 and depends on ϕ ∈ H1 continuously in the sense of the norm of operators in H1.
For the case of the Classical Free Field, this condition is obviously satisfied because
b(ϕ) = 0. For our case, assumptions (A) and (B) from the next section correspond to
this condition.

3. Generalized Poisson field

We represent each matrix J(ϕ) in the form

(4) J(ϕ) = J+(ϕ) +B(ϕ) + J−(ϕ), ϕ ∈ H+,

where J+(ϕ) (B(ϕ), J−(ϕ)) has nonzero entries on the lower (correspondingly main,
upper) diagonals.

We define the action of J+(ϕ) as follows:

J+(ϕ)fn = an(ϕ)fn =
√
n+ 1ϕ⊗̂fn ∈ Fn+1(H), fn ∈ Fn(H), ϕ ∈ H+.

The action of J−(ϕ) can be deduced from the previous formula for J+(ϕ),

J−(ϕ)fn+1 = a∗n(ϕ)fn+1 ∈ Fn(H), fn+1 ∈ Fn+1(ϕ), ϕ ∈ H+.

Let us define the action of b(ϕ) : H −→ H, ϕ ∈ H+. Suppose there is a real commutative
Banach algebra between H+ and H in the rigging

(5) H− ⊃ H ⊃ L ⊃ H+.

We make the following assumptions:
(A) the algebraic multiplication ∗ can be extended by continuity from L × L onto

H+ ×H. This condition is equivalent to the following inequality:

‖a ∗ b‖H 6 C1‖a‖L · ‖b‖H , ∀a ∈ H+ ⊂ L, b ∈ L;

(B) the algebraic multiplication ∗ generates a bounded operator in H+. This condition
is equivalent to the following inequality:

‖a ∗ b‖H+ 6 C2‖a‖L · ‖b‖H+ , ∀a, b ∈ H+ ⊂ L;

(C) the algebraic multiplication is Hermitian,

(a ∗ b, c)H = (b, a ∗ c)H , ∀a, b, c ∈ L.
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Under these assumptions we define the action of b(ϕ) in the following way:

(6) b(ϕ)f = ϕ ∗ f, ϕ ∈ H+ ⊂ L, ∀f ∈ H.
Assumptions (A), (C) correspond to a condition on the operator b(ϕ) of [11, Theo-

rem 8.1]. Assumption (B) corresponds to the smoothness condition (axiom (e)), because

‖b(ϕ)‖L(H+) 6 C2‖ϕ‖L 6 C2‖ϕ‖H+

(see [11, paragraph after formula (8.19)]).
The operator B(ϕ) is equal to the differential quantization of operator b(ϕ). This

means, that

B(ϕ)fn = {b(ϕ)⊗ 1⊗ 1⊗ . . .+ 1⊗ b(ϕ)⊗ 1⊗ 1⊗ . . .+ · · ·+ 1⊗ 1⊗ . . .⊗ 1⊗ b(ϕ)}fn.

We need the family J = (J(ϕ))ϕ∈H+ to be a commutative Jacobi field.
Assumptions (a), (b) are satisfied because of the way of construction of J(ϕ).
Essential self-adjointness and commutativity (c) follow from the general result [11,

p. 14]. Namely suppose that the family J = (J(ϕ))ϕ∈H+ consists of algebraically com-
muting matrices and for all ϕ ∈ H+ : ‖ϕ‖H+ = 1 the series

∑∞
n=0 ‖an(ϕ)‖−1 diverge.

Then the corresponding operators A(ϕ) are essentially self-adjoint and strongly commute.
In our case,

∑∞
n=0

1
‖an(ϕ)‖ >

∑∞
n=0

1√
n+1‖ϕ‖H

= ∞.

Regularity condition holds in our case while Vn,n =
√
n! Id.

Definition 3.1. The Jacobi field J = (J(ϕ))ϕ∈H+ that is built in the above specified
way is called a generalized Poisson field.

It is possible to apply the projection spectral theorem (see [11, Theorem 5.1]) to the
field J. Here we give only the final result. It is necessary for introduction of the term
spectral measure.

Theorem 3.2. For the Jacobi field J there exists a Borel probability measure ρ on the
space H− (the spectral measure) and a vector-valued function H− 3 ξ 7→ P (ξ) ∈
(Ffin(H+))′ such that the following statements hold:

1) For every ξ ∈ H− the vector P (ξ) = (Pn(ξ))∞n=0 ∈ (Ffin(H+))′ is a generalized
joint eigenvector of J with eigenvalue ξ, i.e.,

〈P (ξ), J(ϕ)ψ〉 = 〈ξ, ϕ〉〈P (ξ), ψ〉, ϕ ∈ H+, ψ ∈ Ffin(H+).

2) After being extended by continuity to the whole space F(H)the Fourier transform

F(H) ⊃ Ffin(H+) 3 Φ = (Φn)∞n=0 7→ (IΦ)(ξ)

= 〈Φ, P (ξ)〉 =
∞∑

n=0

〈Φn, Pn(ξ)〉 ∈ L2(H−, dρ)

becomes a unitary operator between F(H) and L2(H−, dρ).
3) I maps every operator J(ϕ), ϕ ∈ H+ into the operator of multiplication by the

function H− 3 ξ 7→ 〈ξ, ϕ〉 ∈ R in the space L2(H−, dρ).

The angle brackets 〈·, ·〉 denote the pairing between the positive H+ and the negative
H− spaces.

Now we can formulate the main result of this paper.

Theorem 3.3. Let L be a real Banach algebra, H+, H− be real separable Hilbert spaces.
Assume that L is dense in the real separable Hilbert space H. Let H+ ↪→ H be a dense
quasinuclear embedding. The Hilbert rigging has the following form: H− ⊃ H ⊃ L ⊃ H+.
Additionally we make the following assumptions:

1) ‖ · ‖H 6 ‖ · ‖L 6 ‖ · ‖H+;
2) ‖a ∗ b‖H 6 C1‖a‖L · ‖b‖H , ∀a ∈ H+, b ∈ L;



32 OLEKSII MOKHONKO

3) ‖a ∗ b‖H+ 6 C2‖a‖L · ‖b‖H+ , ∀a, b ∈ H+;
4) the multiplication is Hermitian, (a ∗ b, c)H = (b, a ∗ c)H , ∀a, b, c ∈ L;
5) ∃ω ∈ H : the set {a ∗ ω|a ∈ L} is dense in H.

Then on the space H− there exist a σ-algebra U and a measure σ, that is spectral for the
generalized Poisson field A = (A(ϕ))ϕ∈H+ , for which the Fourier-transform has the form∫

H−

ei〈x,ϕ〉dσ(x) = exp
( ∫

M

(eiϕ(t) − 1− iϕ(t)) dν(t)
)
,

where M is some Hausdorff compact, ν Borel measure.

It is interesting to note that in comparison with the analogous result in the paper [10,
p. 128], for the case of the generalized Poisson field, the support of the spectral measure
is contained in the compact set M. Thus here we don’t have a ”pure” generalization of
the classical Poisson field case (where the support is a subset of real axis).

The proof of the theorem will be conducted in several steps. The next two sections
describe the way how we can pass from abstract Hilbert spaces to scalar-valued functional
spaces without a considerable loss of generality.

4. Foundation of replacement of the base chain

Here we prove an abstract theorem that will substantiate the replacement of the
Hilbert rigging with the one where, instead of the zero Hilbert space, one uses L2 and
the abstract algebraic multiplication maps into scalar one. The main result of this section
is contained in the following theorem.

Theorem 4.1. Let L be a commutative complex Banach algebra with involution, H be a
complex separable Hilbert space and the following assumptions hold:

1) L is dense in H;
2) ∀a, b ∈ L, ‖a ∗ b‖H 6 C‖a‖L · ‖b‖H;
3) ∀a, b, c ∈ L, (a ∗ b, c)H = (b, a∗ ∗ c)H;
4) ∃ω ∈ H such that the set {a ∗ ω|a ∈ L} is dense in H, ‖ω‖H = 1.

Then there exists a Hausdorff compact set M and a Borel measure ν : B(M) → [0; 1]
such that

a) there exists an isometric isomorphism G : H−̃→L2
C(M,dν) (the index C denotes

that field of scalars of this space is C);
b) denote by Ya ∈ L(H) the operator of multiplication by the element a ∈ L (it exists

due to assumption 2). Then its resolution of identity, Ea, is mapped, under G, into the
operator of multiplication by a continuous function from CC(M).

Remark 4.2. Assumption 3) is equivalent to Y ∗
a = Ya∗ , ∀a ∈ L. It’s necessary to draw

attention to the fact that the operators of multiplication have the same multiplication
structure as the algebra, YaYb = Yab ∀a, b ∈ L. And as a consequence they form a
commutative family of normal operators, ∀a ∈ L

YaY
∗
a = YaYa∗ = Yaa∗ = Ya∗a = Ya∗Ya = Y ∗

a Ya.

Proof. Let A be the algebra generated by the family of resolutions of identity Ea(·) of the
operators Ya (first build the linear span of all possible linear combinations of all possible
products of resolutions of identity Ea(∆),∀∆ ∈ B(C),∀a ∈ L, then complete it in the
norm ‖ · ‖L(H)). It is well-known that the space A obtained in this way is a C∗-algebra
with identity Id = Ea(C).

According to the Gelfand-Naimark theorem (see [7, p. 311]) there exists an algebraic
isometric isomorphism g : A −→ CC(M), where M is a Hausdorff compact space of
maximal ideals of the algebra A.
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In a similar way as it was done in [12, p. 208], consider the linear functional

` : CC(M) −→ C, `(α) =
(
g−1(α)ω, ω

)
H
, α ∈ CC(M).

The functional ` is continuous due to the following inequality:

|`(α)| = |(g−1(α)ω, ω)H| 6 ‖g−1(α)‖L(H) · ‖ω‖2
H = ‖α‖CC(M).

Moreover, it is non-negative, ∀α ∈ CC(M) : α(t) > 0 ∀t ∈ M it holds `(α) > 0. The
proof of this statement is conducted as follows. Let α ∈ CC(M) : α(t) > 0 ∀t ∈ M.
Choose a concrete linear bounded functional t0 ∈M : t0(A) = (Aω, ω)H ∀A ∈ A. Recall
that the Gelfand transformation is defined by (g(A))t = t(A), ∀t ∈M,A ∈ A, so

0 6 α(t0) = t0(g−1(α(·))) = (g−1(α(·))ω, ω)H = `(α), thus `(α) > 0.

By the Riesz theorem, the functional ` can be presented as

`(α) =
∫

M

α(t) dν(t), α ∈ CC(M),

where ν : B −→ R+ is Borel measure. This is a probability measure, because

ν(M) =
∫

M

1 ν(t) = `(1) = (g−1(1)ω, ω)H = (Idω, ω)H = ‖ω‖2
H = 1.

Proposition 4.3. ∀A,B ∈ A the following equality takes place:

(Aω,Bω)H = (g(A), g(B))L2
C(M,dν).

Proof.

(Aω,Bω)H = (B∗Aω, ω)H = `(g(B∗A)) = `(g(B∗)g(A)) = `
(
g(B)g(A)

)
=

∫
M

(
g(A)

)
(t)

(
g(B)

)
(t) dν(t) =

(
g(A), g(B)

)
L2

C(M,dν)
.

�

Proposition 4.4. The set {Aω|A ∈ A} is dense in H.

Proof. It is sufficient to prove that the set {Ea(∆)ω|a ∈ L, ∆ ∈ B(C)} is dense in H.
Let f ⊥ Ea(∆)ω ∀a ∈ L, ∀∆ ∈ B(C), then

(a ∗ ω, f)H = (Yaω, f)H =
∫

C
λ d(Ea(λ)ω, f)H = 0.

Thus f ⊥ a ∗ ω ∀a ∈ L, but this set is dense in H, so f = 0. �

Corollary 4.5. There exists an isometric isomorphism G : H−̃→L2
C(M,dν) with the

property

(7) G(Aω) = g(A) ∀A ∈ A.

Proof. Define G on the dense (due to Proposition 4.4) set A = {Aω|A ∈ A} ⊂ H using
the formula (7).

Due to the properties of the Gelfand-Naimark isomorphism g, we have Ran g =
CC(M). And from (7) it is obvious that Ran g = RanG. So RanG = G(A) = CC(M).

Due to Proposition 4.3, G is an isometry and can be continued to an isometry G̃ with
the domain Dom G̃ = H. Since the range G(A) = CC(M) is dense in L2

C(M,dν), we
obtain Ran G̃ = L2

C(M,dν). Thus G̃ is an isometric isomorphism between the spaces H
and L2

C(M,dν). We shall preserve the old notation G for this isometry. �

Proposition 4.6. Under the action of the isometry G, each operator A ∈ A is mapped
into the operator of multiplication in L2

C(M,dν) by a continuous function
(
g(A)

)
(·),(

G(Af)
)
(·) =

(
g(A)

)
(·) ·

(
Gf

)
(·), ∀f ∈ H, ∀A ∈ A.
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Proof. Fix any f ∈ H. Due to Proposition 4.4, ∃An ∈ A : Anω
‖·‖H−→ f. All the following

limits are taken with respect to the norm ‖ · ‖L2
C(M,dν),

G(Af) = lim
n→∞

G(AAnω) = lim
n→∞

g(AAn) = lim
n→∞

g(A)g(An)

= g(A) lim
n→∞

g(An) = g(A) lim
n→∞

G(Anω) = g(A)(Gf).

Note that the equality limn→∞ g(A)g(An) = g(A) limn→∞ g(An) follows from compact-
ness of M ,

‖g(A)g(Am)− g(A) lim
n→∞

g(An)‖L2
C(M,dν)

6 max
M

|g(A)| · ‖g(Am)− lim
n→∞

g(An)‖L2
C(M,dν)

m→∞−→ 0.

�

Corollary 4.7. Take in the previous statement A = Ea(∆) for some fixed a ∈ L,
∆ ∈ B(C), (

G(Ea(∆)f)
)
(·) =

(
g(Ea(∆))

)
(·) ·

(
Gf

)
(·).

This formula corresponds to the statement b) of our theorem. Making another step,
we conclude that due to the former equality being valid for every ∆ ∈ B(C) we have the
equality of the measures,

dG(Ea(·)f) = (dg(Ea(·)))(Gf),

and we are able to determine the image of the operator of multiplication Ya under the
action of the isometry G,

(8)
(G(Yaf))(·) = G

( ∫
C
λ dEa(λ)f

)
=

∫
C
λ dG

(
Ea(λ)f

)
=

( ∫
C
λ dg

(
Ea(λ)

))
· (Gf)

=
[
g

( ∫
C
λ dEa(λ)

)
(·)

]
· (Gf)(·) = (Gf)g(Ya).

This formula is valid because both G and g are linear and continuous. Thus Ya belongs
to the C∗-algebra A and is mapped into the operator of multiplication by a continuous
function g(Ya)(·). �

5. Replacement of the base chain

Now we are able to replace the abstract algebraic chain (5) with a chain of functional
spaces and make sure that this construction in essence is still quite general.

First we should build complexifications of the spacesH and L.Denote them by H = HC
and L = LC. In accordance with the just proved theorem and (8) we can map HC into
the space L2

C(M,dν) and LC into the subset {g(Ya) | a ∈ LC} ⊂ CC(M). By taking real
subspaces we obtain an isometric isomorphism between the real parts of these spaces,
H w L2

Re(M,dν), L ↪→ CRe(M). Recall that the real part of an algebra with involution
is the set of elements that are invariant with respect to this involution.

The main purpose of the replacement of the base chain is that the abstract multi-
plication turns into the usual scalar multiplication. This allows us to use a wide range
of well-known properties of L2 instead of dealing with quite obscure properties of the
abstract H.

By restricting the isometric isomorphism G from H onto its dense subspace H+ we
obtain a bijection between H+ and some subset Ĥ+ ⊂ L2

Re(M,dν). Since H+ ⊂ L and
all images of elements of L are continuous functions we can conclude that Ĥ+ consists
of continuous functions. Taking, by definition, ‖G(a)‖Ĥ+

= ‖a‖H+ ∀a ∈ H+ we obtain a

new Hilbert space (Ĥ+, ‖ · ‖Ĥ+
)R, isometric to H+. In the same way we build Ĥ− w H−.

As a result, the original chain (5) turns into

(9) Ĥ− ⊃ L2
Re(M,dν) ⊃ CRe(M) ⊃ Ĥ+.
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We finish this section with the proof of an essential fact that plays an important role in
the whole paper and is not obvious.

Theorem 5.1. The space L2
Re(M,dν) is separable.

Proof. We shall use the following well-known fact ([14, Chapter 11.4, Theorem 4]):
Let (X,F , λ) be a space with a σ-finite measure, F = σa(K), K the semiring of subsets

of X. (Here we denote σa(T ) the sigma-algebra spanned over the class of sets T .) Then
for any f ∈ Lp

Re(X,F , λ) and ∀ε > 0 there exists a function h(x) =
∑j

i=1 ciκAi(t), t ∈ X,
Ai ∈ K, ci ∈ R such that ‖f − h‖Lp < ε.

Corollary 5.2. If the semiring K consists of a countable set of subsets then the set
{
∑j

i=1 ciκAi(t) : ci ∈ Q, t ∈ X, Ai ∈ K, j ∈ N} is countable and dense in Lp
Re(X,F , λ).

Thus Lp is separable.

In C, the set K = {(a, b] × (c, d] : a, b, c, d ∈ Q} is a countable semiring. It is easy to
prove that the Borel σ-algebra B(C) = σa(K). Denote by G(C) the class of open sets in
C. By definition, B(C) = σa(G(C)).

The topology ofM was built as the weak topology, the open sets fromM are preimages
of open subsets from C for the functions g(A) : M −→ C, ∀A ∈ A

G(M) = {(g(A))−1(U) : U ∈ G(C), A ∈ A} = {(g(A))−1(G(C)), A ∈ A}.
By definition, B(M) = σa(G(M)). It’s not difficult to check that

B(M) = σa({(g(A))−1(K), A ∈ A}).
From the properties of preimages, it follows that each class of sets (g(A))−1(K), A ∈ A
is a countable semiring. There is only left to prove that it is sufficient to take only a
countable part of A ∈ A to build B(M).

If the algebra A is separable (it is really so because L is separable from the very
beginning) the problem is solved. Let (An)∞n=1 be a dense countable set of elements from
A. Take any A ∈ A and choose a corresponding subsequence Anj

that approximates it,
Anj −→ A. The following equality takes place:

max
t∈M

|g(A)(t)− g(Anj )(t)| = ‖g(A)− g(Anj )‖C(M) = ‖A−Anj‖A
j→∞−→ 0.

This means that images of g(A) and g(Anj ) tend to coincidence.
Let εk = 1

m(k)+1 , k ∈ N. Here the function m : N −→ N is defined recursively,
m(1) = 1, m(k + 1) = 2m(k)(m(k) + 1)− 1. There exists Mk ∈ N such that

∀j > Mk ‖g(A)− g(Anj
)‖C(M) <

1
m(k) + 1

.

Take two rectangles (ak, bk]× (ck, dk] ⊂ (a, b]× (c, d], where

ak = a+
1

m(k)
, bk = b− 1

m(k)
, ck = c+

1
m(k)

, dk = d− 1
m(k)

.

Denote Tj,k = (g−1(Anj ))((ak, bk] × (ck, dk]). We have maxt∈Tj,k
|g(A)(t) − g(Anj )(t)|

6 maxt∈M |g(A)(t) − g(Anj
)(t)| = ‖g(A) − g(Anj

)‖C(M) <
1

m(k)+1 . But (g(Anj ))(Tj,k)
= (ak, bk]× (ck, dk] ⊂ (a, b]× (c, d]. Moreover, by the construction,

min
r ∈ (ak, bk]× (ck, dk]
s ∈ ∂(a, b]× (c, d]

|r − s| = 1
m(k)

>
1

m(k) + 1
> max

t∈Tj,k

|g(A)(t)− g(Anj )(t)|.

We can conclude that ∀j > Mk

g(A)(Tj,k) ⊂ (a, b]× (c, d],
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min
r ∈ g(A)(Tj,k)

s ∈ ∂(a, b]× (c, d]

|r − s| > 1
m(k)

− 1
m(k) + 1

=
1

m(k)(m(k) + 1)
.

And if we take next εk+1 = 1
m(k+1)+1 = 1

2·m(k)(m(k)+1) and build the corresponding
set g(A)(TMk,k) we will have the following inclusion g(A)(TMk,k) ⊂ g(A)(TMk+1,k+1)
⊂ (a, b] × (c, d]. So we have a monotone sequence of sets that span (a, b] × (c, d] from
inside. Thus (g(A))−1((a, b]× (c, d]) =

⋃
k∈N g(A)(TMk,k).

We have shown that any element from {(g(A))−1(K), A ∈ A} can be represented as
a countable union of elements of {(g(An))−1(K), n ∈ N}. That’s why

σa({(g(A))−1(K), A ∈ A}) ⊂ σa({(g(An))−1(K), n ∈ N}).

The opposite inclusion is obvious, because An ∈ A. Thus

B(M) = σa({(g(An))−1(K), n ∈ N}).

The family in braces is countable and derive σ-algebra (it can be checked that the ring
K = k(K)) is also countable). So the linear combinations with rational coefficients of
indicators built over sets from K with values in Q will form a dense subset in L2

Re(M,dν).
Thus L2 is separable. �

6. Spectral measure for a finite-dimensional subspace

The main purpose now is to adapt ideas from [10] to the chain (9) and then to apply
the obtained results to the original chain (5). The main difference between the case under
discussion and the case described in [10] is that the zero Hilbert space L2 is built over a
compact set M instead of the real axis.

Consider some fixed finite partition of the compact set M into Borel sets γ1, . . . , γd.
Consider κj(t) = κγj (t), t ∈ M, j = 1, . . . , d and build a d-dimensional subspace Ĥd ⊂
L2

Re(M,dν) of functions ϕ(t) =
∑d

j=1 ϕjκj(t). By associating each function ϕ(·) ∈ Ĥd

with a d-tuple of real numbers (ϕ1, . . . , ϕd) ∈ Rd the space Ĥd can be interpreted as the
space Rd.

The initial Jacobi field J = (J(ϕ))ϕ∈H+ that acts on the Fock space F(H) is mapped
under G into the Jacobi field Ĵ = (Ĵ(ϕ))ϕ∈Ĥ+

that acts on the Fock space F̂ =

F(L2
Re(M,dν)). Note that Ĥd 6⊂ Ĥ+ because the indicators are not continuous. But

the spaces Ĥd and Ĥ+ have the same multiplication (the ordinary pointwise complex
multiplication, that is the image of the algebraic multiplication under G).

Consider two families of Jacobi matrices. Construct Ĵ◦d = (Ĵ(ϕ))ϕ∈Ĥd
that act in the

Fock space F̂ . Consider then the same set of matrices Ĵd acting as restriction of Ĵ(ϕ) ∈ Ĵ
to the subspace F(Ĥd) ⊂ F̂ . It is possible to calculate the spectral measure of Ĵd and
then prove that it is common for both families Ĵd and Ĵ◦d . The next step will be passing
to the limit with respect to d to carry the obtained result from Ĵ◦d over Ĵ . At last we
shall go back to the original Jacobi field J by applying G−1.

Construct an orthonormal basis of space Ĥd,

ej = ej(t) =
κγj (t)√
ν(γj)

, j = 1, . . . , d, t ∈M,

the orthonormal basis of n-particle subspace Fn(Ĥd),

eα = εαe
⊗α1
1 ⊗̂e⊗α2

2 ⊗̂ · · · ⊗̂e⊗αd

d , εα =

√
|α|!

α1!α2! · · ·αd!
,
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where α = (α1, α2, . . . , αd) ∈ Zd
+,fin, |α| = α1 + α2 + · · · + αd = n, e⊗0

j = 1 and the
corresponding BON (Basis of Occupation Numbers) of F(Ĥd),

ẽα = (0, . . . , 0, eα
|α|
, 0, . . . ).

Construct J(ϕ) ∈ Ĵd as follows:

J+(ei)ẽα = J+(ei)



0
.
0
eα

0
0
.


=



0
.
0
0√

|α|+ 1ei⊗̂eα

0
.


=
√
αi + 1ẽα+1i

because
√
|α|+ 1εα =

√
|α|+ 1

√
1·2···|α|

α1!α2!...αd! =
√

(|α|+1)!
α1!α2!...αd! =

√
(|α|+1)!

α1!α2!...(1·2···αi)...αd!

=
√
αi + 1

√
(|α|+1)!

α1!α2!...(1·2···αi·(αi+1))...αd! =
√
αi + 1ε(α1,...,αi+1,...αd)

df
=
√
αi + 1εα+1i . It is

quite simple to find the action of J−(ϕ) = (J+(ϕ))∗.
For every

f =
∑∞

n=0

∑
β:|β|=n fβ ẽβ ∈ F(Ĥd) the following equality is true:

(f, J−(ei)ẽα) =
∞∑

n=0

∑
β:|β|=n

fβ(J+(ei)ẽβ , ẽα) =
∞∑

n=0

∑
β:|β|=n

fβ(
√
βi + 1ẽβ+1i

, ẽα)

= fα−1i

√
(αi − 1) + 1(ẽ(α−1i)+1i

, ẽα)

= fα−1i

√
αi · 1 = fα−1i

√
αi(ẽα−1i , ẽα−1i)

=
∞∑

n=0

∑
β:|β|=n

√
αifβ(ẽβ , ẽα−1i) = (f,

√
αiẽα−1i).

Thus J−(ei)ẽα =
√
αiẽα−1i . Analogously, B(ei)ẽα = qjαj ẽα where qj = (ν(γj))−1/2. As

a result we have

J(ej)ẽα =
√
αj + 1ẽα+1j + qjαj ẽα +

√
αj ẽα−1j .

Let (Hj)d
j=1 be a sequence of some complex infinite-dimensional separable Hilbert

spaces, (k(j)
i )∞i=0 a set of their orthonormal bases. Build the tensor product H(d) =⊗d

j=1Hj as the Hilbert space spanned by the formal products as an orthonormal basis,

k(1)
α1

⊗ · · · ⊗ k(d)
αd

= kα, α = (α1, . . . , αd) ∈ Zd
+.

Build the isomorphism
K : H(d) −→ F(Ĥd)

kα 7−→ ẽα

and the corresponding operator J (ej) = K−1 ◦ Ĵ(ej) ◦K :

H(d) J (ej)−→ H(d)

↓ K K ↓

F(Ĥd)
Ĵ(ej)−→ F(Ĥd)

So we obtain the following expression:

J (ej)kα =
√
αj + 1kα+1j + qjαjkα +

√
αjkα−1j .
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Note that kα±1j = k
(1)
α1 ⊗ . . . ⊗ k

(j−1)
αj−1 ⊗ k

(j)
αj±1 ⊗ k

(j+1)
αj+1 ⊗ . . . ⊗ k

(d)
αd . So the operator

A(ej) (that is the closure of the operator generated by the matrix J (ej) in H(d)) is not
identity only in the space Hj and this operator can be represented as a tensor product
of operators,

A(ej) = 1⊗ . . .⊗ 1⊗ Lj ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
d

: Dom(A(ej)) −→ H(d).

Here the operator Lj has the following form:

Lj =


0

√
1 0 0 0 · · ·√

1 1qj
√

2 0 0 · · ·
0

√
2 2qj

√
3 0 · · ·

0 0
√

3 3qj
√

4 · · ·
...

...
...

...
...

. . .

 .

In the article [10] it is proved that the spectral measure of the operator

Mj =


0

√
h
√

1 0 0 0 · · ·√
h
√

1 1
√
h
√

2 0 0 · · ·
0

√
h
√

2 2
√
h
√

3 0 · · ·
0 0

√
h
√

3 3
√
h
√

4 · · ·
...

...
...

...
...

. . .


is the measure πc

h({k− h}) = hk

k! e
−h, k ∈ Z+. Denote by Mj = q−1

j Lj . Then we have the
following spectral measure:

σj(xj) = πc
q−2

j

(xj), xj ∈ R.

Here we use the following fact: if ρ(λ) is a spectral measure of a self-adjoint operator
A, then for c ∈ R, c 6= 0 the measure ρ(c−1λ) is a spectral measure of the operator cA.
In our case, Lj = qjMj , thus for spectral measures of the operators Lj , we obtain the
following expression:

ρj(xj) = πc
q−2

j

(q−1
j xj), xj ∈ R.

Finally, the spectral measure of the Jacobi field (A(ej))d
j=1 and the spectral measure of

the field Ĵd is the following product:

ρ(x) = ρ1(x1)× · · · × ρd(xd), x = (x1, . . . , xd) ∈ Rd.

Calculate the Fourier transform for the obtained measure. The characteristic function
of the measure πc

h(sx) is∫
R
eixλdπc

h(sx) =
∞∑

k=0

eiλ( k−h
s ) e

−hhk

k!
= exp

{
h

(
e

iλ
s − 1− iλ

s

)}
, λ ∈ R, h > 0.

It is not difficult to find the characteristic function of the measure ρj(xj),∫
R
eixjϕjdρj(xj) =

∫
R
eixjϕjdπc

q−2
j

(q−1
j xj) = exp

{
q−2
j

(
eiϕjqj − 1− iϕjqj

)}
.

Note that∫
Rd

ei(x,ϕ)dρ(x) =
∫

Rd

exp
(
i

d∑
j=1

xjϕj

)
dρ1(x1) · · · dρd(xd) =

d∏
j=1

∫
R
eixjϕjdρj(xj).
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the Fourier transform of the spectral measures has the following form:

(10)

∫
Rd

ei(x,ϕ)dρ(x) =
d∏

j=1

exp
{
q−2
j

(
eiϕjqj − 1− iϕjqj

)}
= exp

{ d∑
j=1

q−2
j

(
eiϕjqj − 1− iϕjqj

) }

= exp
{ ∫

M

(
eiϕ(t) − 1− iϕ(t)

)
dν(t)

}
The last formula is obtained in the following way. Build the function ϕ(·) as a lin-
ear combination of indicator functions, ϕ(t) =

∑d
j=1 ϕj

1√
ν(γj)

κγj
(t) =

∑d
j=1 ϕjqjκj(t).

Then rewrite the sum in braces in an integral form using the measure ν.

7. The spectral measure of Ĵ◦d

In this section we prove that the spectral measures of Ĵd and Ĵ◦d are identical.
Let Pd be the projector from L2

C(M,dν) into ĤC
d (here C denotes the complexification),

(11) ∀ϕ ∈ L2
C(M,dν), Pdϕ =

d∑
k=1

(ϕ, ek)ek.

Then the operator P (n)
d acts from Fn(L2

Re(M,dν)) into Fn(Ĥd). Let

∀f ∈ Fn(L2
Re(M,dν)), f =

∑
α ∈ Z∞+,fin

|α| = n

fα[εαe
⊗α1
1 ⊗̂ . . . ⊗̂e⊗αd

d ⊗̂ . . . ].

Here the part of vectors that is denoted as the last dot sequence belongs to the orthogonal
complement Fn(L2

Re(M,dν))	Fn(Ĥd). Then for P (n)
d we have the following expression:

P
(n)
d f =

∑
α ∈ Z∞+,fin

|α| = n

fα[εαe
⊗α1
1 ⊗̂ . . . ⊗̂e⊗αd

d ] ∈ Fm(Ĥd), m 6 n.

Construct the following projector P :

P =
∞⊕

n=0

P
(n)
d : F(L2

Re(M,dν)) −→ F(Ĥd).

Proposition 7.1.

∀ϕ ∈ Ĥd, ∀f ∈ Ffin(L2
Re(M,dν)) J(ϕ)Pf = PJ(ϕ)f.

Proof. Recall that J(ϕ) = J+(ϕ) + B(ϕ) + J−(ϕ). So the equality can be checked for
each component of J(ϕ) separately.
J+(ϕ) : ∀ϕ ∈ Ĥd, ∀fn ∈ Fn(L2

Re(M,dν))

P
(n+1)
d (an(ϕ)fn) = P

(n+1)
d (

√
n+ 1ϕ⊗̂fn) =

√
n+ 1ϕ⊗̂(P (n)

d fn) = an(ϕ)(P (n)
d fn).

To obtain the same result for J−(ϕ), it is sufficient to form the adjoint of the equality
just proved, P (n+1)

d an(ϕ) = an(ϕ)P (n)
d

a∗n(ϕ)P (n+1)
d = P

(n)
d a∗n(ϕ).

There is only left to prove the same equality for B(ϕ). It is sufficient to show that

∀ϕ ∈ Ĥd, ψ ∈ L2
Re(M,dν) Pd(ϕ · ψ) = ϕ · Pdψ.
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This can be done by an explicit calculation using (11) and the property of orthogonality
of ej . �

Now we can prove that the spectral measures of Ĵd and Ĵ◦d are identical.

Proposition 7.2. The family Ĵ◦d has the spectral measure

ρ(x) = ρ1(x1)× · · · × ρd(xd), x = (x1, . . . , xd) ∈ Rd,

where
ρj(xj) = πc

q−2
j

(q−1
j xj).

Proof. Take the Jacobi matrix J(ϕ), ϕ ∈ Ĥd. This matrix generates an operator A(ϕ) :
Ffin(L2

Re(M,dν)) −→ Ffin(L2
Re(M,dν)). By taking the closure of this operator in the

space F(L2
Re(M,dν)) obtain the operator Ã(ϕ). By taking closure of A(ϕ) in F(Ĥd) we

obtain the operator Ã′(ϕ). Since F(Ĥd) is a subspace in F(L2
Re(M,dν)) it is obvious

that DomÃ′(ϕ) ⊂ Ã(ϕ). On finite vectors both operators act identically, so the following
equality is true:

Ã(ϕ)Pf = Ã′(ϕ)Pf, f ∈ Dom(A(ϕ)).
Note that for f ∈ Dom(Ã(ϕ)), we have Pf ∈ Dom(Ã′(ϕ)) ⊂ Dom(Ã(ϕ)).

Denote by Eϕ the resolution of identity of Ã(ϕ) and consider the measure Eϕ(·)P. Its
range consists of projectors in the space F(Ĥd). Eϕ(·)P is some resolution of identity,
because the operators P and Ã(ϕ) strongly commute (see the previous statement).

Since ∀f ∈ Dom(Ã′(ϕ)) ⊂ F(Ĥd)

Ã′(ϕ)f = Ã′(ϕ)Pf = Ã(ϕ)Pf =
∫

R
λdEϕ(λ)Pf,

the measure E′
ϕ(·) = Eϕ(·)P is a resolution of identity for Ã′(ϕ). The corresponding

spectral measure ρ′ϕ was found in the previous section. Since Ω ∈ F(Ĥd) we have
PΩ = Ω.

From the procedure of construction of the joint resolution of identity for commuting
self-adjoint operators (see [10, Sec. 3]) we have ∀∆ ∈ B(Rd)

ρ′ϕ(∆) = (E′
ϕ(∆)Ω,Ω)F(Ĥd) = (Eϕ(∆)PΩ,Ω)F(Ĥd) = (Eϕ(∆)Ω,Ω)F(L2

Re(M,dν)) = ρϕ(∆).

Here ρϕ(·) is the spectral measure of the operator Ã(ϕ). Thus both spectral measures
are identical. �

8. Passing to the limit

We have found the spectral measure for the family Ĵ◦d = (Ĵ(ϕ))ϕ∈Ĥd
. Here the op-

erators generated by Ĵ(ϕ) act in the Fock space F̂ = F(L2
Re(M,dν)). In this section

this result will be extended to the family Ĵ = (Ĵ(ϕ))ϕ∈Ĥ+
that acts on the Fock space

F̂ = F(L2
Re(M,dν)).

Here is the final result:
The spectral measure ρ of the field Ĵ is a probability measure on B(Ĥ−) for which the
Fourier transform has the form∫

Ĥ−

ei〈x,ϕ〉dρ(x) = exp
( ∫

M

(eiϕ(t) − 1− iϕ(t)) dν(t)
)
, ϕ ∈ Ĥ+.

The angle brackets 〈·, ·〉 denote a pairing between the positive Ĥ+ and the negative Ĥ−
spaces.
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We shall use the notations from the previous section. Each operator of the family
Ã = (Ã(ϕ))ϕ∈Ĥ+

can be represented as a spectral integral in two ways: using the standard
resolution of identity and using the corollary of the spectral projection theorem (see [10,
p. 125]),

Ã(ϕ) =
∫

bH−

〈λ, ϕ〉 dE(λ) =
∫

R
λ dEϕ(λ).

Here E(·) is the joint resolution of identity of the family Ã (see [10, Section 3]). Thus
∀ϕ ∈ Ĥ+ the following equality takes place:

eiÃ(ϕ)f =
∫

bH−

ei〈λ,ϕ〉dE(λ)f =
∫

R
eiλdEϕ(λ)f.

The Fourier transform for the spectral measure ρ̂ of the field Ã has the following form:∫
bH−

ei〈x,ϕ〉dρ̂(x) =
( ∫

bH−

ei〈λ,ϕ〉dE(λ)Ω,Ω
)
F(L2

Re(M,dν))

=
( ∫

R
eiλdEϕ(λ)Ω,Ω

)
F(L2

Re(M,dν))

=
(
eiÃ(ϕ)Ω,Ω

)
F(L2

Re(M,dν))
.

Since Ĥ+ ⊂ CRe(M), each function ϕ ∈ Ĥ+ can be uniformly approximated by step
functions ϕn from the space L2

Re(M,dν) (see [13, p. 78]).
Build the corresponding operators Ã(ϕn). In [10, p. 136] it is proved that, in the weak

sense,
Eϕn

−→ Eϕ, n→∞.

Note that this proof uses the fact that ν is a finite measure. Continue the chain of
transformations for the Fourier transform of the spectral measure,(

eiÃ(ϕ)Ω,Ω
)
F(L2

Re(M,dν))
= lim

n→∞

(
eiÃ(ϕn)Ω,Ω

)
F(L2

Re(M,dν))

= lim
n→∞

∫
R
eiλd (Eϕn(λ)Ω,Ω)F(L2

Re(M,dν))

= lim
n→∞

∫
R
eiλdρϕn(λ).

Associate the step function

ϕn(t) =
dn∑

k=1

χk · 1t∈γk
(t)

with the vector (χ1, . . . , χdn) ∈ Rdn . Then the operators Ã(ϕn) belong to the family
(Ã(ϕ))ϕ∈Rdn . Transform the last integral to the form that is convenient for applying the
corresponding result for the finite-dimensional case (formula (10)),∫

R
eiλdρϕn

(λ) =
( ∫

R
eiλdEϕn(λ)Ω,Ω

)
F(L2

Re(M,dν))

=
( ∫

Rdm

ei(x,ϕn)Rdn dEn(x)Ω,Ω
)
F(L2

Re(M,dν))

=
∫

Rdn

ei(x,ϕn)Rdn dρ̂dn(x),

where ρ̂dn(δ) = (En(δ)Ω,Ω)F(L2
Re(M,dν)), δ ∈ B(Rdn) is the spectral measure of the

family (Ã(ϕ))ϕ∈Rdn = Ãdn . After applying (10) we finally obtain∫
bH−

ei〈x,ϕ〉 dρ̂(x) = lim
n→∞

exp
( ∫

M

(eiϕn(t) − 1− iϕn(t)) dν(t)
)

= exp
( ∫

M

(eiϕ(t) − 1− iϕ(t)) dν(t)
)
.
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The last equality is obtained using the classical Lebesgue theorem: ϕ ∈ Ĥ+ ⊂ L2
Re(M,dν),

ϕn are integrable and tend pointwise to ϕ. Here we have even uniform convergence. ϕ is
a continuous function on the compact set M, so this function is bounded and the family
ϕn is uniformly bounded: ∃C ∈ R : ∀n ∈ N,∀t ∈M : |ϕn(t) < C|. Here C is a constant
that can be used as majorant in the Lebesgue theorem. It is integrable because the
measure ν is finite. The proof is finished.

The last thing left is to build the preimage of the spectral measure dρ onto the space
H−. Denote U = G−1(B(Ĥ−)) = {G−1(∆) : ∆ ∈ B(Ĥ−)} and the corresponding mea-

sure image σ(δ)
df
= ρ(G(δ)) ∀δ ∈ U. In accordance with the theorem about change of

variables in spectral integrals obtain the final result.
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