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SUPERSTABLE CRITERION AND SUPERSTABLE BOUNDS FOR
INFINITE RANGE INTERACTION I: TWO-BODY POTENTIALS

S. N. PETRENKO AND A. L. REBENKO

ABSTRACT. A continuous infinite system of point particles interacting via two-body
infinite-range potential is considered in the framework of classical statistical mecha-
nics. We propose some new criterion for interaction potentials to be superstable and
give a very transparent proof of the Ruelle’s uniform bounds for a family of finite
volume correlation functions. It gives a possibility to prove that for any tempera-
ture and chemical activity there exists at least one Gibbs state. This article is a

generalization of the work [12] for the case of infinite range interaction potential.

1. INTRODUCTION

In the article [12] one of the author has proposed a new method to prove the uniform
boundedness of the family of the finite volume correlation functions for classical system of
point particles which interact by means of pair potential of superstable type with a finite
range interaction. This method enables to simplify Ruelle’s proof considerably and to
improve the estimate of the work [14]. Besides in the article [13] the method of the work
[12] was generalized for the case of many-body potentials with finite range interaction.
However, till now it was not clear how to extend this method for the case of potentials
with infinite range interaction. In the present paper the construction of the work [12]
is modified for such kind of potentials. Furthermore this paper offers a simple criterion
(condition for interaction potential), which easily allows to prove superstability of con-
sidered particles system. The short content of this article is the following. In Section 2
we give some notations, define the system and formulate the main result. In Section 3
we construct a Poisson integral cluster expansion over densities of the configurations and

give all needed estimates to prove the main theorems.

2. DEFINITIONS AND MAIN RESULT

2.1. Configuration space. Let R? be a d-dimensional Euclidean space. By O(R9) and
B(R?) we denote the family of all open and Borel sets, respectively. O.(R?), B.(R9)
denote the systems of all sets in O(R?), B(R?), respectively, which are bounded.

The set of positions {z;};en of identical particles is considered to be a locally finite

subset in R? and the set of all such subsets creates the configuration space:
[=Tga:={yC Rd‘ [y NA| < oo, for all A € B.(R)},

where |A| denotes the cardinality of the set A. The symbol | - | may also represent the
Lebesgue measure of the set, but the meaning will always be clear from the context.
For any A € B(R?) we denote by 5 the ggojection of v on A and the corresponding
configuration space by I'y. We also need to define the space of finite configurations I'g,

To= | | T™, T .={ncR||y=n}, Ny=NU{0}.
n€eNy
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For every A € B.(R?) one can define a mapping Ny : I' — Ny of the form
Na(n) := [n VA

The Borel o-algebra B(T') is equal to o(Np ‘A € B.(R?)) and additionally one may
introduce the following filtration:

BA(D) := o(Nas |A € B.(RY), A" C M),

see [6], [7] for details.
By B(T's) we denote the corresponding o-algebras on I'y and I'ps. For a given
intensity measure 0 = zdx (z > 0) on B(R?) and any n € N the product measure o®”

can be considered as a measure on

—~

(Rd)n = {(xlv"wl'n) € (Rd)n| Ty 7é Ty if k # l}

and hence as a measure ¢(™ on I'™ through the map

sym,, : (RO)™ 3 (x4, ..., 2n) — {x1, ..., 2} € D),

c.f. [5]. For simplicity we will write (z), instead of {z,...,x,} € T,
Define the Lebesgue-Poisson measure A, on B(Iy) by the formula
1
— g ()
(1) Ao = —ot.
n>0
The restriction of A, to B(I'y) we also denote by A,. For a more detailed structure

of the configuration spaces I', Ty, T' see [1].

2.2. Definition of the system. Let A\ € R, be arbitrary. For each r € Z¢ we define
(following [14]) an elementary cube Ay (r)with rib A and center r by the formula
(2) Ax(r) ={z eRY | At —1/2) <z’ < A(r® +1/2)}.

We will sometimes write A instead of Ax(r), if a cube A is considered to be arbitrary
and there is no reason to emphasize that it is centered at a particular point r € Z?. Let
A be the partition of R? into cubes Ay (r). Without any restriction in general case, we
consider only that A € B.(R?) which is a union of cubes Ay (7).

Define configuration spaces in which we will work in this paper

Tp:={v €T ygan =0},

for any bounded fixed set A € B.(R?).

For any A € A introduce a space of dilute configuration
(3) IA'=={v€Tlal hl=0Vv1}
and a space of dense configuration,

(4) L™= {y €Tal Iyl > 2}.

For any A € A and any fixed configuration n € I'y we split the space of dense
configuration FdAen in two subspaces,

(5) () =18 = {7 e T 7| > d5(A)}
and
(6) ) =T = {7 e T | < d(A)},

where A = Ay(r), 0 < e <1 and d,(A) = dist(n, A).

It’s obviously that F‘ie“ = I’(A>) U I’(A<).

We consider a general type of two-body interaction potential ¢(z,y) = ¢(|z — yl),
where © : R - RU {+o0}.
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Define an energy functional as
(7) Upm) =U(m) = Y @l(lz—yl), neTo,
{=,y}Cn
where {-, -} means summation over all possible different pairs of particles from the config-
uration 7. For a given v € I'y define the interaction energy between 1 € T'y, A € B.(R%)

and v by

(8) Wnly) = > ez —yl),
xen
yEY

and introduce the following notation:

9) Unly) = U(n) + W(nly).

Following [14] let us define three important characteristics of the interaction U.

Definition 2.1. An interaction U is stable (S), if there exists B > 0 such that
(10) U(n) > —|n|B, forall neTly.

Definition 2.2. An interaction U is superstable (SS), if there exist A > 0 and B > 0
such that

(11) Um) = Y (Inal>A~nalB), forall n €Ty

AEA
Definition 2.3. An interaction U is lower regular (LR) if there exists a decreasing
function ¥ on Ny such that
(12) > W(r]) < oo

rezd
and the interaction energy W(n|y) satisfies the following inequality:
1

(13) W) =2 =5 > W(r = s (Inaym? + a1

r,s€Z4

for all n,v € I'y.

Conditions (10)—(13) are rather general and guarantee a uniform estimate for the
family of finite volume correlation functions and the existence of Gibbs measure [13]
(see, also, [8]). A separate problem is to establish a condition on the potential ¢, which
ensures (10)—(13). See [8] for a discussion of this problem. Consider decomposition of

the potential ¢(|z|) into two parts
(14) o(lz]) = o™ (lz]) — ¢~ (|2]),

where 7 (|z]) := max{0, p(|z])}, ¢~ (Jz]) := — min{0, p(|z|)}.
Using (14), for any fixed Ay C R? define the values

(15) Ve(A, Ag) Z sup sup ¢ (Jz —y|)|lz —y|° forall e€]0,1]
—_ €A yelAy
A€l
and
16 b\, Ag) := inf Tz —y)).
(16) (0= inf (e =)

It’s clear from the definition that v. and b do not depend on the position of Ay. So we
will write
Ve(A, Ag) = ve(A) = v,
b\, Ag) = b(A) = b.
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To prove the property (10)—(13) for the potential ¢ we assume the following.
There exists a partition of A into cubes (2) with fixed A > 0 such that
Al.

(17) 0 < vy < +o0,
A2.
1
(18) 5 b > vg.

These assumptions are very similar to those proposed by A. Ya. Povzner and discussed
in [15] or in the integral form by R. L. Dobrushin in [2].

In this article we propose a vary transparent construction for proving existence of
uniform bounds for the family of finite volume correlation functions p®, which we define
in the next subsection. For this purpose we need a little bit stronger assumption instead
of (18),

A3. There exists a constant § € (0,1) such that

(19) %(1 —8)b > v

and the potential

(20) w5 = 0pT(|lz]) — ()

is stable,

(21) Us* :=Ugs(y) > —Bshyl, ~eTo.

Remark 2.1. It will be clear from the proof of the Theorem 2.1 that if for § > % the
inequality (19) is true then 5" is superstable.

A4. There exists some constant ¢ > 0 such that
(22) ve < 00.

Remark 2.2. Tt is clear from the definition of v, in (15) that the potential ¢, for which ¢~
has an asymptotic behavior like |z|~%~" (¢ > 0) at large |z, satisfies (22) with ¢ < &’

Remark 2.3. To satisfy (17)—(18) or (17), (19) it’s sufficient, for example, to have non-
integrability of ¢ at the origin, because for small A, v « A~%4||p~(|z|)||1, where |- is

the L' (R%)-norm and in the case of the behavior ¢t (|z|) «» £% | u > d, the inequalities

|z|w

(18), (19) are true for sufficiently small A\. In the case y < d, in order to satisfy (18),
(19), we have to chose A small but fixed and g sufficiently large.

At the end of this subsection we introduce the following notations (see also (20) and
definition (7)):

(23) Ui =U,r, 5 (lz]) = (1-0)¢™(|z]).

So from (20) and (23), we have a decomposition for any ¢ € (0, 1),
(24) (lz]) = o7 (1)) + &5 (|z])
and the corresponding decomposition for the energy (7),

(25) U(y) = Us (v) + U5 (7).
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2.3. Gibbs specification and correlation functions. Let A € B.(R%), A¢:=R%\ A,

and v € I'. The finite volume Gibbs state with a fixed boundary configuration 7 := yN A€

for U, z>0and g > 0is

exp {—BU (1] 7)}
Zx()

Under assumptions A1-A2, the finite volume Gibbs state is well defined as Zj (¥) < .

paldn| ) = Ao (dn).

For 7 = 0 let us write ua (dn|0) = pa(dn).
The corresponding finite-volume correlation functions with boundary configuration
7 € I" have the following form:

1 _
26 A7) = o= / e AUMIMN (dy), n €Ty,
(26) P 17) 7@ I (dv), meTla
(27) Za(3) = / UM, (dv),
T'a

with U(-,-) defined by (9).
Let {ma} denote the specification associated with z, 8 and the Hamiltonian U (see
[10]), which is defined on I' by

ma(A19) = [ paldnl 7).

where A’ ={neTx: nUF,. C A}, A € B(T).
A probability measure p on I' is called a Gibbs state for U, 3, and z if
u(ma(Al 7)) = n(A)
for every A € B(T) and every A € B.(R?).
This relation is the well known (DL R)-equation (Dobrushin-Lanford-Ruelle equation),
see [4] for more details. The class of all Gibbs states which correspond to the specifications

{7A}aeB. (re) We denote by G(U, z, 3).
2.4. Main results.
Theorem 2.1. Let ¢(|x|) satisfy A1-A2. Then the potential o(|x|) is superstable.

Theorem 2.2. Suppose that the interaction potential p(|x|) satisfies the assumptions
A3—-A4. Then, for any A € B.(R?) and any 3,z > 0 there exists a constant & = £(f3, z)
(independent of A) such that the finite volume correlation function p™(n) = p™(n | 0)

satisfies the following inequality:

(28) pM(n) < €le=PUSD ey

Remark 2.4. The estimate (28) without the exponent factor in the right-hand side is the
well-known Ruelle bound [14]. We call (28) a generalized Ruelle bound. This result is a

generalization of the work [12] to the case of an infinite range interaction.

Remark 2.5. Theorem 2.2 is also valid for potentials that satisfy the weaker assumption
A1-A2. But for our method of the proof, we need assumption A3—A4.

As a corollary of Theorem 2.2 we have the following theorem.

Theorem 2.3. Let the interaction potential p(|x|) satisfy A3—A4. Then for any z > 0
and 3> 0,
G, = 0) #0.

Remark 2.6. The proof of Theorem 2.3 can be found in [13].
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3. THE PROOF OF THEOREMS

3.1. The proof of Theorem 2.1. This theorem gives a new criterion for potentials to

be superstable and extends the class of superstable potentials.

Proof. For any v € I'g,

U= > ele—yh=> > ele—yh+ > > elz—y)

{zy}C~ AcA{zy}Cra {A,AT}CA fG;YAA,
1 B
> > shallhal =10 = > halhal sup sup ¢~ (|l —y))
AEN {AA}CA TEYA YEIA
1 1 B
> > shallhal=Db—5 > (al +hal) sup sup o~ (|l —y))
AeA {A AYCA TEYA ¥ETN
> > \ml(lml—lb 2. Z Yal? Y sup sup ¢ (|z —y))
AEN AGA Aren TETA VeI
1 b b
> 3 staP-pahb- ¥ haPu = ¥ (haP(5-w) - ghal).
AeA AeA Ae A

In the second line we used the inequality

1
allval < S(val* + [var ).

O

3.2. Cluster expansion in densities of configurations. The proof is based on the
cluster expansion of the Lebesgue-Poisson integral for the correlation functions (26)—(27)
into series over dense configurations (cf. [12]).

The main technical idea consists in separation of the dilute parts of configurations
from the demse parts. In order to do this, we define an indicator function for the
configuration v5, A € Jx(R9) in the cube A, where Jy(R?) are all finite unions of cubes
of the form A, (r) (such sets are used in the construction of the Jordan measure). The
indicator for dilute configurations is defined by

1, for |[ya|=0V1,
X2(a) = hal
0, otherwise

and, for dense configurations, by
X3T(a) = 1=x2(1a).

To obtain an expansion we use the following partition of unity for any v € I'p:

1= ]I x2(a) +x2(7a)]

ACA
(29) Na n
=> > 1% ]I xf(v) = ) X W,
n=0{Aq,...,A,}CAi=1 ACA\U_ A PCXCA
where Np : = |A|/|A] (here the symbol | - | denotes the Lebesgue measure of the set)

is the number of cubes A in the volume A, X is a union of cubes A for which |ya| > 2
and for convenience we denoted it by

H Xi(*yA), X :=A\X.
ACX
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Inserting (29) into (26) for 7 = () we get
(30) ) = 5 [ R e O ).
Apcxca/Ta
Define a hard-core potential by
1, if A;NA; =0 farall 4 # 7,
(31) Xcor(Al’.”’An) — y 1 ﬂ J @ ar a. Z#]
0, otherwise.

Then (30) can be rewritten as

FRUEED D S SRS CLNINNY

(32) n>0 " (A1,...,An)CA
x / X (e PN N (dr),
Ta

where (Aq,...,A,) is a sequence of cubes unlike the set of these cubes in (29). The
summation is taken independently over every A; in (32).
The next step is to split the exponent in (32) using (7) and (25),

n

eI — @=BUS () =0U3 () T] =AU G =AW lba) - [ e PWOaihay)

i=1 1<i<j<n

(33) .
« e~ BWnlvxg) ¢ =BU(vxg) H e BW(ra; lvxg)

Then, using decomposition (33) and infinite divisible property of the Lebesgue-Poisson

measure (see, for example, (2.5) in [11]) we have

e—BUF () 1 _
(34) ) = —5—> P,
n>0
where
= D XA Ay)e P
(A1,....,An)CA
« (dva, e ﬁU(mi)BW(nlmi)>
E <\/Fden
(35)
« H e—ﬁW(’YAi\’YAj)/ )\U(d,yXC)e*ﬁW(ﬂhxg)e*ﬁU(“/X;)
1<i<j<n e ’
% H e BWa;lvxg)
i=1
Note that
1
(36) D ) = Za.

n>0

Taking into account that T4 = F(A>) UF(A<), each integral in the first product in formula
(35) subdivides into two parts,

/ Ag—(d’YAv)eiﬂU(vAi)iﬁw(n"YAi)
Fden

A

i

N /<>> Ao (dyaJem PP moN R 4 /<<> Ao (dya, e PUCA) =AW (nlia,)
r¢ rs

(37)
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It follows from (36)—(37) that the sum over all possible (Aq,...,A,) C A can be subdi-

vided into
- n!
D —
kZ:O El(n — k)!

items, in each of them the sum over (Aq, ..., A,) splits into the sum over (Aq,...,Ag) C

A, where the integration is taken over the configuration ya, € I‘(Ai)

and the summation
is taken over (All, RN A;_ x) C A, where the integration is taken over the configuration
Yar € F(>)

Then the expression (34) can be rewritten as

e—BUS (m)

(38) P = ———— > Z i 1 P ok (1),

n>0 k=0

=Y 3 YO (A, A AL AL L)

(A1, AR)CA (A)LLAL_)CA

k
—BU(va;)=BW (nlva;) —BW (va;17a,)
U F(<) o(dya,)e A A ) H e A4

i=1 1<i<j<k

X

Aoldra)e (n)

U 1) —BW ’ st
(39) « -8 (vAi) B (’MAi)>eﬁUa

=1

<.

k n—k
AWy \WA/) —BW (74, |’YA r) —BW(
Ao (dyxe nlyxe)
e [TII ¢ ” (dyxg)e

n—=k i=1j=1

X

(
(/.

1<i<

n—Fk
(H oW O ) )(H ﬁwmmxp) o—BU(rxg)
i=1
n—=k
and X,, = (Ui:l AU (Uj:l Aj)'
The condition (36) is rewritten as

(40) Z Z k' 'pn k(@) = ZA'

n>0 k=0
3.3. The proof of Theorem 2.2. In this subsection we estimate factors from (39). Let
o(z) satisfy A4. Then from Definition (15), it follows that, for any k& > 0, the following

inequality holds:
k

sup > sup g (|z —yl)le -yl < v,
TEN ;7 Y€,

which gives the first estimate,

k k
B Wha,) < 8Y Wo-(nlva,) ﬁZZ > o (e —yl)
=1 =1 =1 xENYEYA,
k

< Blnlsup Yy sup @ (|z —yl)lva,
zen = yera,

(41)

Ve.
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The last inequality in (41) is true, because ya, € I’(:i), S0 |va, S(A) < |z =y,
where |ya,| := card{ya,}, and |z — y| is the distance between particles in x €  and in
Y EYA,;-

Using assumption A3 (see (21)) we get

(UEt(vA;) + W?(nlm;)) HUS )+ DD Witarhiay)
i=1 1<i<j<n—k
42
(42) .
= U5'(nUrgp—ra)) = =Bs (Il + D st )
i=1
Because of positivity of ¢,
(43) *ﬁ )y k W+(77|"/A;) <1, 6*521§i<jgn,k W;(’YAQ"YA;.) <1,
and
— k nk ) ’
(44) . Bz 25 W+ (“/Al\‘YAj) <1

It is also clear that if condition (19) is true for some ¢ > 0 then there exists ¢’ > § for
which (19) is also valid. So we can chose, in the decomposition (20) and (23)—(25),

6:61_5//

and rewrite Uy (I'y/) in the form

Us (var) = (1= 0" Ups (7p1) + 6" Up (7a7) = Ugi (7a7) + 8" Uyt (v47) -

Now using the fact that v,/ € F(A>{) (see def. (5)) and the definition (16) one can

obtain the following inequality:

1 /
S(1 _5,)b|’YA |(|’YA | — 1) + 5Nbdf,(Ai)-

(45) U+ (7A ) 9

Lemma 3.1. Let ¢(|z|) satisfy A4, then the next inequality holds:

k n—k n—k
@) B Y W (abia) < B b (v + (| + Do)
i=1 j=1 j=1
Proof.
k n—k k n—k
=BY Y We-(raldia) =82 > e (lz—yl)
i=1 j=1 i=1 j=1 zE€7a, YEY
J
k n—k
< B D hadbvarlsup sup o~ (|2~ y))
i=1 j=1 TEAI yeA]
k n—k
<BY D barlsup sup o (lz —y)le —pf°
i=1 j=1 €A yeA!
n—=k

IN

BZ Yl Z sup sup ¢ (Jo — y|)|z —y|°

T xEA,; . =N
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n—k
N Z sup sup ¢~ (|lz —y[)|y — pl°
j=1 i=1 T€A/i yeA!

< ﬂz ra | Z sup sup ¢~ (le —y))le —yl°

i= 1ze I’UEA

n—k k

+ B lvarl Y sup sup o (o =yl (1] +1)
j=1 i—1 €A yeA
n—k

<p Z |’7A; |(ve + (|’7A;| + 1)vo).
j=1

The second inequality holds, because ya, € I‘(<) (see def. (6)), and so |ya,| < d;(A;) <
|z — z|¢, where z is the coordinate of the partlcle from 7, lying nearest to A;, |ya,| =
card{ya,}, |x — z| is the distance between the particles with coordinate z € A; and

zen = |r—z| <|r—p|, where p € A, and such that it is situated nearest to A;-.

In the third inequality we use the modified triangle inequality, namely, Ve € [0;1],
Va,y,peR?,

[z —pl* < |z —yl"+ly—pl°
Because y € v, and p € 7 is specially chosen (see above), for a sufficiently small A,
J

namely A < i, the next inequality holds:
ly —pl|° < dn(Aj) + 2VA < |7A;| + 1.
This inequality concludes the proof. O

Using the fact that |ya,| <1, VA € A\ X,,, we get

(47) —BW(n|vxe) < B1nlvo
and
(48) —ﬁW('YA; |vxe) < ﬁ|’YA;_ |vo.

Now, using an elementary estimate (see def. (31)),
(49) X (AL A AL AL ) S XA A,
and estimates (41)—(49), ﬁ%k(n) can be estimated (see (39)) in the following way:

D) < @ Bavotva Il N T O (A LA
(Aq,...,AL)CA

~ Ao (dyx,) e~ BU(rxy,)

ka

Ao (d /
- Z /me , By _ovx)
(50) (A7, AL )CA (A\X, O\ X,

—BW (vx, Pavx!, ) e—ﬂ Ut anx!

)\ Xk _k)\Xk)

X e
1 ’
Ao (d —3(1=8)Bblval(lval-1)
< L ([ e
ACX, A

« B (Batuo (2+|7A|)+vs)m|5”5bdi(A)> ’
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where X;L_k. = U:Zlk A;, Xi = U?:l A;.
Lemma 3.2.

/ Ao (dya) e~ 300088 11al(ral=D+8 (Bs+vo (2+1yal+vo)lval
(51) Tden
= Kl()v%ﬁ,@) = Kla

where K1 is a constant that depends on \, z, 8, ¢ and independent of A.
Proof. From the definition of the measure A, (see (1)), we have

/ Ao (dya) e~ 3A=)80 al(iral=D)+6 (Bs+vo (2+11a ) +ve)bral
Fden

e 1Bbn(n=1)+B (Bs+vo (2+n)+ve)n

0 d TL2 n
-y (A72)" (e—%(l—é')ﬁb+5vo) (e—%(1—5')5b+5(35+2v0+v5))

n=2
The convergence of the series follows from A3. |
Lemma 3.3.
(52) D ¢ IEE) <l Ka(\,Bre) = [l Ko,

A'CA

where Ko is a constant that depends on X\, 3,¢ and is independent of A.

Proof. Let n = {x1,...,2m}. Split A into domains Aj,...,A,, in such a way that if
A" C A, then d5(A") = d5, (A"). Then

>y -8B (A _ 3 (OB, $ e )

A'cA A'chy A'CAm
—5"pds, (A
<l D e ERA) < |yl Ky (), Be),
A'ca
where diO(A/) is the distance from any fixed point 2o € R? and A’ O

Denote by X,,_j, the unions of all cubes All U.. .UA;hk = X;kk on which the integral

(50) over configurations in (A\ X, ,)\ Xj takes a maximal value. We have
I vo+v n—k ~A\Xn_x
(53) Pr(n) = P Prtoote il (| Ky k G ),

where K = Kj Ks (see (51), (52)), and p ~A\X” (@) which is defined by formula (35).
Denote £ := e#(Bstvotve) “then, inserting (53) into (38), we get (using def. (40)) that

Al n

K)»="F
An) < Ui gl ZZ |77| T ()
n=0 k=0
[A] [A]—
_ |77|Kl ~ n— k
) - ey S e

—BUS gm\z |77|K A\Xz

=0
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The fact that Zn, < Zj, for Ay C Ay gives the inequality

(55) P () < e PUS () glnl (B(Bstvotve)+K)
which is (28) with & = &Il O
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