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SUPERSTABLE CRITERION AND SUPERSTABLE BOUNDS FOR
INFINITE RANGE INTERACTION I: TWO-BODY POTENTIALS

S. N. PETRENKO AND A. L. REBENKO

Abstract. A continuous infinite system of point particles interacting via two-body

infinite-range potential is considered in the framework of classical statistical mecha-

nics. We propose some new criterion for interaction potentials to be superstable and

give a very transparent proof of the Ruelle’s uniform bounds for a family of finite

volume correlation functions. It gives a possibility to prove that for any tempera-

ture and chemical activity there exists at least one Gibbs state. This article is a

generalization of the work [12] for the case of infinite range interaction potential.

1. Introduction

In the article [12] one of the author has proposed a new method to prove the uniform
boundedness of the family of the finite volume correlation functions for classical system of
point particles which interact by means of pair potential of superstable type with a finite
range interaction. This method enables to simplify Ruelle’s proof considerably and to
improve the estimate of the work [14]. Besides in the article [13] the method of the work
[12] was generalized for the case of many-body potentials with finite range interaction.
However, till now it was not clear how to extend this method for the case of potentials
with infinite range interaction. In the present paper the construction of the work [12]
is modified for such kind of potentials. Furthermore this paper offers a simple criterion
(condition for interaction potential), which easily allows to prove superstability of con-
sidered particles system. The short content of this article is the following. In Section 2
we give some notations, define the system and formulate the main result. In Section 3
we construct a Poisson integral cluster expansion over densities of the configurations and
give all needed estimates to prove the main theorems.

2. Definitions and main result

2.1. Configuration space. Let Rd be a d-dimensional Euclidean space. By O(Rd) and
B(Rd) we denote the family of all open and Borel sets, respectively. Oc(Rd), Bc(Rd)
denote the systems of all sets in O(Rd), B(Rd), respectively, which are bounded.

The set of positions {xi}i∈N of identical particles is considered to be a locally finite
subset in Rd and the set of all such subsets creates the configuration space:

Γ = ΓRd :=
{

γ ⊂ Rd
∣∣ |γ ∩ Λ| < ∞, for all Λ ∈ Bc(Rd)

}
,

where |A| denotes the cardinality of the set A. The symbol | · | may also represent the
Lebesgue measure of the set, but the meaning will always be clear from the context.
For any Λ ∈ B(Rd) we denote by γΛ the projection of γ on Λ and the corresponding
configuration space by ΓΛ. We also need to define the space of finite configurations Γ0,

Γ0 =
⊔

n∈N0

Γ(n), Γ(n) := {η ⊂ Rd | |η| = n}, N0 = N ∪ {0}.
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For every Λ ∈ Bc(Rd) one can define a mapping NΛ : Γ → N0 of the form

NΛ(η) := |η ∩ Λ|.

The Borel σ-algebra B(Γ) is equal to σ(NΛ

∣∣Λ ∈ Bc(Rd) ) and additionally one may
introduce the following filtration:

BΛ(Γ) := σ(NΛ′
∣∣Λ′ ∈ Bc(Rd), Λ′ ⊂ Λ),

see [6], [7] for details.
By B(ΓΛ) we denote the corresponding σ-algebras on ΓΛ and Γ0,Λ. For a given

intensity measure σ = zdx (z > 0) on B(Rd) and any n ∈ N the product measure σ⊗n

can be considered as a measure on

(̃Rd)n =
{

(x1, . . . , xn) ∈ (Rd)n
∣∣ xk 6= xl if k 6= l

}
and hence as a measure σ(n) on Γ(n) through the map

symn : (̃Rd)n 3 (x1, ..., xn) 7→ {x1, ..., xn} ∈ Γ(n),

c.f. [5]. For simplicity we will write (x)n instead of {x1, ..., xn} ∈ Γ(n).
Define the Lebesgue-Poisson measure λσ on B(Γ0) by the formula

(1) λσ :=
∑
n≥0

1
n!

σ(n).

The restriction of λσ to B(ΓΛ) we also denote by λσ. For a more detailed structure
of the configuration spaces Γ, Γ0, ΓΛ see [1].

2.2. Definition of the system. Let λ ∈ R+ be arbitrary. For each r ∈ Zd we define
(following [14]) an elementary cube ∆λ(r)with rib λ and center r by the formula

(2) ∆λ(r) := {x ∈ Rd | λ(ri − 1/2) ≤ xi < λ(ri + 1/2)}.

We will sometimes write ∆ instead of ∆λ(r), if a cube ∆ is considered to be arbitrary
and there is no reason to emphasize that it is centered at a particular point r ∈ Zd. Let
∆ be the partition of Rd into cubes ∆λ(r). Without any restriction in general case, we
consider only that Λ ∈ Bc(Rd) which is a union of cubes ∆λ(r).

Define configuration spaces in which we will work in this paper

ΓΛ :=
{

γ ∈ Γ| γRd\Λ = ∅
}

,

for any bounded fixed set Λ ∈ Bc(Rd).
For any ∆ ∈ ∆ introduce a space of dilute configuration

(3) Γdil
∆ := {γ ∈ Γ∆| |γ| = 0 ∨ 1}

and a space of dense configuration,

(4) Γden
∆ := {γ ∈ Γ∆| |γ| ≥ 2} .

For any ∆ ∈ ∆ and any fixed configuration η ∈ ΓΛ we split the space of dense
configuration Γden

∆ in two subspaces,

(5) Γ(>)
∆ (η) = Γ(>)

∆ :=
{

γ ∈ Γden
∆

∣∣ |γ| > dε
η(∆)

}
and

(6) Γ(<)
∆ (η) = Γ(<)

∆ :=
{

γ ∈ Γden
∆

∣∣ |γ| ≤ dε
η(∆)

}
,

where ∆ ≡ ∆λ(r), 0 < ε < 1 and dη(∆) = dist(η, ∆).
It’s obviously that Γden

∆ = Γ(>)
∆ ∪ Γ(<)

∆ .
We consider a general type of two-body interaction potential φ(x, y) = ϕ(|x − y|),

where ϕ : R → R ∪ {+∞}.
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Define an energy functional as

(7) Uϕ(η) = U(η) :=
∑

{x,y}⊂η

ϕ(|x− y|), η ∈ Γ0,

where {·, ·} means summation over all possible different pairs of particles from the config-
uration η. For a given γ ∈ ΓΛ define the interaction energy between η ∈ ΓΛ, Λ ∈ Bc(Rd)
and γ by

(8) W (η|γ) :=
∑
x∈η
y∈γ

ϕ(|x− y|),

and introduce the following notation:

(9) U(η|γ) := U(η) + W (η|γ).

Following [14] let us define three important characteristics of the interaction U .

Definition 2.1. An interaction U is stable (S), if there exists B ≥ 0 such that

(10) U(η) ≥ −|η|B, for all η ∈ Γ0.

Definition 2.2. An interaction U is superstable (SS), if there exist A > 0 and B ≥ 0
such that

(11) U(η) ≥
∑
∆∈∆

(|η∆|2A− |η∆|B), for all η ∈ Γ0.

Definition 2.3. An interaction U is lower regular (LR) if there exists a decreasing
function Ψ on N0 such that

(12)
∑
r∈Zd

Ψ(|r|) < ∞

and the interaction energy W (η|γ) satisfies the following inequality:

(13) W (η|γ) ≥ −1
2

∑
r,s∈Zd

Ψ(|r − s|)(|η∆λ(r)|2 + |γ∆λ(s)|2)

for all η, γ ∈ Γ0.

Conditions (10)–(13) are rather general and guarantee a uniform estimate for the
family of finite volume correlation functions and the existence of Gibbs measure [13]
(see, also, [8]). A separate problem is to establish a condition on the potential ϕ, which
ensures (10)–(13). See [8] for a discussion of this problem. Consider decomposition of
the potential ϕ(|x|) into two parts

(14) ϕ(|x|) = ϕ+(|x|)− ϕ−(|x|),

where ϕ+(|x|) := max{0, ϕ(|x|)}, ϕ−(|x|) := −min{0, ϕ(|x|)}.
Using (14), for any fixed ∆0 ⊂ Rd define the values

(15) υε(λ, ∆0) :=
∑
∆∈∆

sup
x∈∆

sup
y∈∆0

ϕ−(|x− y|)|x− y|ε for all ε ∈ [0, 1]

and

(16) b(λ, ∆0) := inf
{x,y}⊂∆0

ϕ+(|x− y|).

It’s clear from the definition that υε and b do not depend on the position of ∆0. So we
will write

υε(λ, ∆0) = υε(λ) = υε,

b(λ, ∆0) = b(λ) = b.
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To prove the property (10)–(13) for the potential ϕ we assume the following.
There exists a partition of ∆ into cubes (2) with fixed λ > 0 such that
A1.

(17) 0 < υ0 < +∞,

A2.

(18)
1
2

b > υ0.

These assumptions are very similar to those proposed by A. Ya. Povzner and discussed
in [15] or in the integral form by R. L. Dobrushin in [2].

In this article we propose a vary transparent construction for proving existence of
uniform bounds for the family of finite volume correlation functions ρΛ, which we define
in the next subsection. For this purpose we need a little bit stronger assumption instead
of (18),

A3. There exists a constant δ ∈ (0, 1) such that

(19)
1
2

(1− δ)b > υ0

and the potential

(20) ϕst
δ := δϕ+(|x|)− ϕ−(|x|)

is stable,

(21) U st
δ := Uϕst

δ
(γ) ≥ −Bδ|γ| , γ ∈ Γ0.

Remark 2.1. It will be clear from the proof of the Theorem 2.1 that if for δ ≥ 1
2 the

inequality (19) is true then ϕst
δ is superstable.

A4. There exists some constant ε > 0 such that

(22) υε < ∞ .

Remark 2.2. It is clear from the definition of υε in (15) that the potential ϕ, for which ϕ−

has an asymptotic behavior like |x|−d−ε′ (ε′ > 0) at large |x|, satisfies (22) with ε < ε′.

Remark 2.3. To satisfy (17)–(18) or (17), (19) it’s sufficient, for example, to have non-
integrability of ϕ at the origin, because for small λ, υ0 v λ−d‖ϕ−(|x|)‖1, where ‖·‖1 is
the L1(Rd)-norm and in the case of the behavior ϕ+(|x|) v ϕ0

|x|µ , µ ≥ d, the inequalities
(18), (19) are true for sufficiently small λ. In the case µ < d, in order to satisfy (18),
(19), we have to chose λ small but fixed and ϕ0 sufficiently large.

At the end of this subsection we introduce the following notations (see also (20) and
definition (7)):

(23) U+
δ := Uϕ+

δ
, ϕ+

δ (|x|) := (1− δ) ϕ+(|x|).

So from (20) and (23), we have a decomposition for any δ ∈ (0, 1),

(24) ϕ(|x|) = ϕ+
δ (|x|) + ϕst

δ (|x|)

and the corresponding decomposition for the energy (7),

(25) U(γ) = U+
δ (γ) + U st

δ (γ).
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2.3. Gibbs specification and correlation functions. Let Λ ∈ Bc(Rd), Λc := Rd \Λ,
and γ ∈ Γ. The finite volume Gibbs state with a fixed boundary configuration γ := γ∩Λc

for U , z > 0 and β > 0 is

µΛ(dη| γ) =
exp {−βU(η| γ)}

ZΛ(γ)
λσ(dη).

Under assumptions A1–A2, the finite volume Gibbs state is well defined as ZΛ(γ) < ∞.
For γ = ∅ let us write µΛ (dη | ∅) ≡ µΛ(dη).

The corresponding finite-volume correlation functions with boundary configuration
γ ∈ Γ have the following form:

(26) ρΛ(η | γ) =
1

ZΛ(γ)

∫
ΓΛ

e−βU(η∪γ|γ)λσ(dγ), η ∈ ΓΛ.

(27) ZΛ(γ) =
∫

ΓΛ

e−βU(γ|γ)λσ(dγ),

with U(·, ·) defined by (9).
Let {πΛ} denote the specification associated with z, β and the Hamiltonian U (see

[10]), which is defined on Γ by

πΛ(A| γ) =
∫

A′
µΛ(dη| γ),

where A′ = {η ∈ ΓΛ : η ∪ γΛc ⊂ A}, A ∈ B(Γ).
A probability measure µ on Γ is called a Gibbs state for U , β, and z if

µ(πΛ(A| γ)) = µ(A)

for every A ∈ B(Γ) and every Λ ∈ Bc(Rd).
This relation is the well known (DLR)-equation (Dobrushin-Lanford-Ruelle equation),

see [4] for more details. The class of all Gibbs states which correspond to the specifications
{πΛ}Λ∈Bc(Rd) we denote by G(U, z, β).

2.4. Main results.

Theorem 2.1. Let ϕ(|x|) satisfy A1–A2. Then the potential ϕ(|x|) is superstable.

Theorem 2.2. Suppose that the interaction potential ϕ(|x|) satisfies the assumptions
A3–A4. Then, for any Λ ∈ Bc(Rd) and any β, z ≥ 0 there exists a constant ξ = ξ(β, z)
(independent of Λ) such that the finite volume correlation function ρΛ(η) = ρΛ(η | ∅)
satisfies the following inequality:

(28) ρΛ(η) ≤ ξ|η|e−βU+
δ (η), η ∈ ΓΛ.

Remark 2.4. The estimate (28) without the exponent factor in the right-hand side is the
well-known Ruelle bound [14]. We call (28) a generalized Ruelle bound. This result is a
generalization of the work [12] to the case of an infinite range interaction.

Remark 2.5. Theorem 2.2 is also valid for potentials that satisfy the weaker assumption
A1–A2. But for our method of the proof, we need assumption A3–A4.

As a corollary of Theorem 2.2 we have the following theorem.

Theorem 2.3. Let the interaction potential ϕ(|x|) satisfy A3–A4. Then for any z ≥ 0
and β ≥ 0,

G(U, z, β) 6= ∅.

Remark 2.6. The proof of Theorem 2.3 can be found in [13].
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3. The proof of Theorems

3.1. The proof of Theorem 2.1. This theorem gives a new criterion for potentials to
be superstable and extends the class of superstable potentials.

Proof. For any γ ∈ Γ0,

U(γ) =
∑

{x,y}⊂ γ

ϕ(|x− y|) =
∑

∆∈∆

∑
{x,y}⊂ γ∆

ϕ(|x− y|) +
∑

{∆,∆′}⊂∆

∑
x∈γ∆
y∈γ∆′

ϕ(|x− y|)

≥
∑

∆∈∆

1
2
|γ∆|(|γ∆| − 1)b −

∑
{∆,∆′}⊂∆

|γ∆||γ∆′ | sup
x∈γ∆

sup
y∈γ∆′

ϕ−(|x− y|)

≥
∑

∆∈∆

1
2
|γ∆|(|γ∆| − 1)b− 1

2

∑
{∆,∆′}⊂∆

(|γ∆|2 + |γ∆′ |2) sup
x∈γ∆

sup
y∈γ∆′

ϕ−(|x− y|)

≥
∑

∆∈∆

1
2
|γ∆|(|γ∆| − 1)b− 2 · 1

2

∑
∆∈∆

|γ∆|2
∑

∆′∈∆

sup
x∈γ∆

sup
y∈γ∆′

ϕ−(|x− y|)

≥
∑

∆∈∆

1
2
(|γ∆|2 − |γ∆|)b−

∑
∆∈∆

|γ∆|2υ0 =
∑

∆∈∆

(
|γ∆|2

(
b

2
− υ0

)
− b

2
|γ∆|

)
.

In the second line we used the inequality

|γ∆||γ∆′ | ≤ 1
2
(|γ∆|2 + |γ∆′ |2).

�

3.2. Cluster expansion in densities of configurations. The proof is based on the
cluster expansion of the Lebesgue-Poisson integral for the correlation functions (26)–(27)
into series over dense configurations (cf. [12]).

The main technical idea consists in separation of the dilute parts of configurations
from the dense parts. In order to do this, we define an indicator function for the
configuration γΛ, Λ ∈ Jλ(Rd) in the cube ∆, where Jλ(Rd) are all finite unions of cubes
of the form ∆λ(r) (such sets are used in the construction of the Jordan measure). The
indicator for dilute configurations is defined by

χ∆
−(γ∆) =

{
1, for |γ∆| = 0 ∨ 1,

0, otherwise

and, for dense configurations, by

χ∆
+(γ∆) = 1− χ∆

−(γ∆).

To obtain an expansion we use the following partition of unity for any γ ∈ ΓΛ:

(29)

1 =
∏

∆⊂Λ

[
χ∆
−(γ∆) + χ∆

+(γ∆)
]

=
NΛ∑
n=0

∑
{∆1,...,∆n}⊂Λ

n∏
i=1

χ∆i
+ (γ)

∏
∆⊂Λ\∪n

i=1∆i

χ∆
−(γ) =

∑
∅⊆X⊆Λ

χ̃X
+ (γ)χ̃Xc

− (γ),

where NΛ : = |Λ|�|∆| (here the symbol | · | denotes the Lebesgue measure of the set)
is the number of cubes ∆ in the volume Λ, X is a union of cubes ∆ for which |γ∆| ≥ 2
and for convenience we denoted it by

χ̃X
± (γ) =

∏
∆⊂X

χ∆
±(γ∆), Xc := Λ\X.
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Inserting (29) into (26) for γ = ∅ we get

(30) ρΛ(η) =
1

ZΛ

∑
∅⊆X⊆Λ

∫
ΓΛ

χ̃X
+ (γ)χ̃Xc

− (γ)e−βU(η∪γ)λσ(dγ).

Define a hard-core potential by

(31) χcor(∆1, . . . ,∆n) =

{
1, if ∆i ∩∆j = ∅ far all i 6= j,
0, otherwise.

Then (30) can be rewritten as

(32)

ρΛ(η) =
1

ZΛ

∑
n≥0

1
n!

∑
(∆1,...,∆n)⊂Λ

χcor(∆1, . . . ,∆n)

×
∫

ΓΛ

χX
+ (γ)χXc

− (γ)e−βU(η∪γ)λσ(dγ),

where (∆1, . . . ,∆n) is a sequence of cubes unlike the set of these cubes in (29). The
summation is taken independently over every ∆i in (32).

The next step is to split the exponent in (32) using (7) and (25),

(33)

e−βU(η∪γ) = e−βU+
δ (η)e−βUst

δ (η)
n∏

i=1

e−βU(γ∆i
)−βW (η|γ∆i

)
∏

1≤i<j≤n

e−βW (γ∆i
|γ∆j

)

× e−βW (η|γXc
n

)e−βU(γXc
n

)
n∏

i=1

e−βW (γ∆i
|γXc

n
).

Then, using decomposition (33) and infinite divisible property of the Lebesgue-Poisson
measure (see, for example, (2.5) in [11]) we have

(34) ρΛ(η) =
e−βU+

δ (η)

ZΛ

∑
n≥0

1
n!

ρ̃Λ
n(η),

where

(35)

ρ̃Λ
n(η) =

∑
(∆1,...,∆n)⊂Λ

χcor(∆1, . . . ,∆n)e−βUst
δ (η)

×
n∏

i=1

( ∫
Γden

∆i

λσ(dγ∆i)e
−βU(γ∆i

)−βW (η|γ∆i
)

)
×

∏
1≤i<j≤n

e−βW (γ∆i
|γ∆j

)

∫
Γdil

Xc
n

λσ(dγXc
n
)e−βW (η|γXc

n
) e−βU(γXc

n
)

×
n∏

i=1

e−βW (γ∆i
|γXc

n
).

Note that

(36)
∑
n≥0

1
n!

ρ̃Λ
n(∅) = ZΛ.

Taking into account that Γden
∆ = Γ(>)

∆ ∪Γ(<)
∆ , each integral in the first product in formula

(35) subdivides into two parts,

(37)

∫
Γden

∆i

λσ(dγ∆i)e
−βU(γ∆i

)−βW (η|γ∆i
)

=
∫

Γ
(>)
∆i

λσ(dγ∆i)e
−βU(γ∆i

)−βW (η|γ∆i
) +

∫
Γ

(<)
∆i

λσ(dγ∆i)e
−βU(γ∆i

)−βW (η|γ∆i
).
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It follows from (36)–(37) that the sum over all possible (∆1, . . . ,∆n) ⊂ Λ can be subdi-
vided into

2n =
n∑

k=0

n!
k! (n− k)!

items, in each of them the sum over (∆1, . . . ,∆n) splits into the sum over (∆1, . . . ,∆k) ⊂
Λ, where the integration is taken over the configuration γ∆i ∈ Γ(<)

∆i
and the summation

is taken over (∆
′

1, . . . ,∆
′

n−k) ⊂ Λ, where the integration is taken over the configuration
γ∆

′
i
∈ Γ(>)

∆
′
i

.

Then the expression (34) can be rewritten as

(38) ρΛ(η) =
e−βU+

δ (η)

ZΛ

∑
n≥0

n∑
k=0

1
k! (n− k)!

ρ̃Λ
n;k(η),

where

(39)

ρ̃Λ
n;k(η) =

∑
(∆1,...,∆k)⊂Λ

∑
(∆

′
1,...,∆

′
n−k)⊂Λ

χcor(∆1, . . . ,∆k,∆
′

1, . . . ,∆
′

n−k)

×
k∏

i=1

( ∫
Γ

(<)
∆i

λσ(dγ∆i
)e−βU(γ∆i

)−βW (η|γ∆i
)

) ∏
1≤i<j≤k

e−βW (γ∆i
|γ∆j

)

×
n−k∏
i=1

( ∫
Γ

(>)

∆
′
i

λσ(dγ∆
′
i
)e
−βU(γ

∆
′
i
)−βW (η|γ

∆
′
i
)
)

e−βUst
δ (η)

×
∏

1≤i<j≤n−k

e
−βW (γ

∆
′
i
|γ

∆
′
j
)

k∏
i=1

n−k∏
j=1

e
−βW (γ∆i

|γ
∆
′
j
)
∫

Γdil
Xc

n

λσ(dγXc
n
)e−βW (η|γXc

n
)

×
( n−k∏

j=1

e
−βW (γ

∆
′
j
|γXc

n
)
)( k∏

i=1

e−βW (γ∆i
|γXc

n
)

)
e−βU(γXc

n
)

and Xn = (
⋃k

i=1 ∆i) ∪ (
⋃n−k

j=1 ∆
′

j).
The condition (36) is rewritten as

(40)
∑
n≥0

n∑
k=0

1
k! (n− k)!

ρ̃Λ
n;k(∅) = ZΛ.

3.3. The proof of Theorem 2.2. In this subsection we estimate factors from (39). Let
ϕ(x) satisfy A4. Then from Definition (15), it follows that, for any k > 0, the following
inequality holds:

sup
x∈η

k∑
i=1

sup
y∈γ∆i

ϕ−st(|x− y|)|x− y|ε ≤ υε,

which gives the first estimate,

(41)

−β

k∑
i=1

W (η|γ∆i) ≤ β

k∑
i=1

Wϕ−(η|γ∆i) = β

k∑
i=1

∑
x∈η

∑
y∈γ∆i

ϕ−(|x− y|)

≤ β |η| sup
x∈η

k∑
i=1

sup
y∈γ∆i

ϕ−(|x− y|)|γ∆i | ≤ β |η| υε.
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The last inequality in (41) is true, because γ∆i ∈ Γ(<)
∆i

, so |γ∆i | ≤ dε
η(∆i) ≤ |x − y|ε,

where |γ∆i | := card{γ∆i}, and |x − y| is the distance between particles in x ∈ η and in
y ∈ γ∆i .

Using assumption A3 (see (21)) we get

(42)

n−k∑
i=1

(
U st

δ (γ∆
′
i
) + W st

δ (η|γ∆
′
i
)
)

+ U st
δ (η) +

∑
1≤i<j≤n−k

W st
δ (γ∆

′
i
|γ∆

′
j
)

= U st
δ (η ∪ γ∪n−k

i=1 ∆
′
i
) ≥ −Bδ ( |η|+

n−k∑
i=1

|γ∆
′
j
|).

Because of positivity of ϕ+,

(43) e
−β

Pn−k
i=1 W+

δ (η|γ
∆
′
j
)
≤ 1, e

−β
P

1≤i<j≤n−k W+
δ (γ

∆
′
i
|γ

∆
′
j
)
≤ 1,

and

(44) e
−β

Pk
i=1

Pn−k
j=1 Wϕ+ (γ∆i

|γ
∆
′
j
)
≤ 1.

It is also clear that if condition (19) is true for some δ > 0 then there exists δ′ > δ for
which (19) is also valid. So we can chose, in the decomposition (20) and (23)–(25),

δ = δ′ − δ′′

and rewrite U+
δ (Γ∆

′
i
) in the form

U+
δ (γ∆

′
i
) = (1− δ′) Uϕ+(γ∆

′
i
) + δ′′ Uϕ+(γ∆

′
i
) = U+

δ′ (γ∆
′
i
) + δ′′Uϕ+(γ∆

′
i
) .

Now using the fact that γ∆
′
i
∈ Γ(>)

∆
′
i

(see def. (5)) and the definition (16) one can
obtain the following inequality:

(45) U+
δ (γ∆

′
i
) ≥ 1

2
(1− δ′) b |γ∆

′
i
| (|γ∆

′
i
| − 1) + δ′′ b dε

η(∆
′

i).

Lemma 3.1. Let ϕ(|x|) satisfy A4, then the next inequality holds:

(46) −β

k∑
i=1

n−k∑
j=1

Wϕ−(γ∆i |γ∆
′
j
) ≤ β

n−k∑
j=1

|γ∆
′
j
|(υε + (|γ∆

′
j
|+ 1)υ0).

Proof.

− β

k∑
i=1

n−k∑
j=1

Wϕ−(γ∆i |γ∆
′
j
) = β

k∑
i=1

n−k∑
j=1

∑
x∈γ∆i

∑
y∈γ

∆
′
j

ϕ−(|x− y|)

≤ β

k∑
i=1

n−k∑
j=1

|γ∆i ||γ∆
′
j
| sup
x∈∆i

sup
y∈∆

′
j

ϕ−(|x− y|)

≤ β

k∑
i=1

n−k∑
j=1

|γ∆
′
j
| sup
x∈∆i

sup
y∈∆

′
j

ϕ−(|x− y|)|x− p|ε

≤ β

n−k∑
j=1

|γ∆
′
j
|

k∑
i=1

sup
x∈∆i

sup
y∈∆

′
j

ϕ−(|x− y|)|x− y|ε
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+ β

n−k∑
j=1

|γ∆
′
j
|

k∑
i=1

sup
x∈∆i

sup
y∈∆

′
j

ϕ−(|x− y|)|y − p|ε

≤ β

n−k∑
j=1

|γ∆
′
j
|

k∑
i=1

sup
x∈∆i

sup
y∈∆

′
j

ϕ−(|x− y|)|x− y|ε

+ β

n−k∑
j=1

|γ∆
′
j
|

k∑
i=1

sup
x∈∆i

sup
y∈∆

′
j

ϕ−(|x− y|)(|γ∆
′
j
|+ 1)

≤ β

n−k∑
j=1

|γ∆
′
j
|(υε + (|γ∆

′
j
|+ 1)υ0).

The second inequality holds, because γ∆i ∈ Γ(<)
∆i

(see def. (6)), and so |γ∆i | ≤ dε
η(∆i) ≤

|x − z|ε, where z is the coordinate of the particle from η, lying nearest to ∆i, |γ∆i | :=
card{γ∆i}, |x − z| is the distance between the particles with coordinate x ∈ ∆i and
z ∈ η ⇒ |x− z| ≤ |x− p|, where p ∈ ∆η, and such that it is situated nearest to ∆

′

j .
In the third inequality we use the modified triangle inequality, namely, ∀ ε ∈ [0; 1],

∀x, y, p ∈ Rd,

|x− p|ε ≤ |x− y|ε + |y − p|ε.

Because y ∈ γ∆
′
j

and p ∈ η is specially chosen (see above), for a sufficiently small λ,

namely λ < 1
4 , the next inequality holds:

|y − p|ε ≤ dη(∆
′

j) + 2
√

λ ≤ |γ∆
′
j
|+ 1.

This inequality concludes the proof. �

Using the fact that |γ∆i
| ≤ 1, ∀∆ ∈ Λ \Xn, we get

(47) −βW (η | γXc
n
) ≤ β |η| υ0

and

(48) −βW (γ∆
′
j
| γXc

n
) ≤ β|γ∆

′
j
|υ0.

Now, using an elementary estimate (see def. (31)),

(49) χcor(∆1, . . . ,∆k,∆
′

1, . . . ,∆
′

n−k) ≤ χcor(∆1, . . . ,∆k),

and estimates (41)–(49), ρ̃Λ
n;k(η) can be estimated (see (39)) in the following way:

(50)

ρ̃Λ
n;k(η) ≤ eβ(Bδ+υ0+υε) |η|

∑
(∆1,...,∆k)⊂Λ

χcor(∆1, . . . ,∆k)

×
∫

ΓXk

λσ(dγXk
) e−βU(γXk

)

×
∑

(∆
′
1,...,∆

′
n−k)⊂Λ

∫
Γ

(dil)

(Λ\X
′
n−k

)\Xk

λσ(dγ(Λ\X′
n−k)\Xk

)

× e
−β W (γXk

|γ
(Λ\X

′
n−k

)\Xk
)
e
−β U(γ

(Λ\X
′
n−k

)\Xk
)

×
∏

∆⊂X
′
n−k

( ∫
Γden

∆

λσ(dγ∆) e−
1
2 (1−δ′)β b |γ∆|(|γ∆|−1)

× eβ (Bδ+υ0 (2+|γ∆|)+υε)|γ∆|−δ′′β b dε
η(∆)

)
,



60 S. N. PETRENKO AND A. L. REBENKO

where X
′

n−k =
⋃n−k

i=1 ∆
′

i, Xk =
⋃k

j=1 ∆j .

Lemma 3.2.

(51)

∫
Γden

∆

λσ(dγ∆) e−
1
2 (1−δ′)β b |γ∆|(|γ∆|−1)+β (Bδ+υ0 (2+|γ∆|)+υε)|γ∆|

= K1(λ, z, β, ϕ) = K1,

where K1 is a constant that depends on λ, z, β, ϕ and independent of Λ.

Proof. From the definition of the measure λσ (see (1)), we have∫
Γden

∆

λσ(dγ∆) e−
1
2 (1−δ′)β b |γ∆|(|γ∆|−1)+β (Bδ+υ0 (2+|γ∆|)+υε)|γ∆|

=
∞∑

n=2

(λd z)n

n!
e−

1
4 β b n(n−1)+β (Bδ+υ0 (2+n)+υε)n

=
∞∑

n=2

(λd z)n

n!

(
e−

1
2 (1−δ′)β b+βυ0

)n2 (
e−

1
2 (1−δ′)β b+β(Bδ+2υ0+υε)

)n

.

The convergence of the series follows from A3. �

Lemma 3.3.

(52)
∑

∆′⊂Λ

e−δ′′β dε
η(∆

′
) = |η|K2(λ, β, ε) = |η|K2,

where K2 is a constant that depends on λ, β, ε and is independent of Λ.

Proof. Let η = {x1, . . . , xm}. Split Λ into domains Λ1, . . . ,Λm in such a way that if
∆
′ ⊂ Λk, then dε

η(∆
′
) = dε

xk
(∆

′
). Then∑

∆′⊂Λ

e−δ′′β dε
η(∆

′
) =

∑
∆′⊂Λ1

e−δ′′β dε
x1

(∆
′
) + · · · +

∑
∆′⊂Λm

e−δ′′β dε
xm

(∆
′
)

≤ |η|
∑

∆′⊂Λ

e−δ′′β dε
x0

(∆
′
) = |η|K2(λ, β, ε),

where dε
x0

(∆
′
) is the distance from any fixed point x0 ∈ Rd and ∆

′
. �

Denote by Xn−k the unions of all cubes ∆
′

1∪ . . .∪∆
′

n−k = X
′

n−k on which the integral
(50) over configurations in (Λ \X

′

n−k) \ Xk takes a maximal value. We have

(53) ρ̃Λ
n;k(η) = eβ(Bδ+υ0+υε) |η| (|η|K)n−k ρ̃

Λ\Xn−k

k (∅),

where K = K1 K2 (see (51), (52)), and ρ̃
Λ\Xn−k

k (∅) which is defined by formula (35).
Denote ξ̄ := eβ(Bδ+υ0+υε), then, inserting (53) into (38), we get (using def. (40)) that

(54)

ρΛ(η) ≤ 1
ZΛ

e−β U+
δ ξ̄|η|

|Λ|∑
n=0

n∑
k=0

(|η|K)n−k

k!(n− k)!
ρ̃
Λ\Xn−k

k (∅)

=
1

ZΛ
e−β U+

δ ξ̄|η|
|Λ|∑
l=0

(|η|K)l

l!

|Λ|−l∑
k=0

1
k!

ρ̃
Λ\Xn−k

k (∅)

= e−β U+
δ ξ̄|η|

|Λ|∑
l=0

(|η|K)l

l!

ZΛ\Xl

ZΛ
.
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The fact that ZΛ1 ≤ ZΛ2 for Λ1 ⊂ Λ2 gives the inequality

(55) ρΛ(η) ≤ e−βU+
δ (η) e|η| (β(Bδ+υ0+υε)+K)

which is (28) with ξ = ξ̄eK|η|. �
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