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ON MODELS OF FUNCTION TYPE FOR A SPECIAL CLASS OF
NORMAL OPERATORS IN KREIN SPACES AND THEIR POLAR

REPRESENTATION

VLADIMIR STRAUSS

Abstract. The paper is devoted to a function model representation of a normal
operator N acting in a Krein space. We assume that N and its adjoint operator N#

have a common invariant subspace L+ which is a maximal nonnegative subspace and
has a representation as a sum of a finite-dimensional neutral subspace and a uniformly
positive subspace. For N we construct a model representation as the multiplication
operator by a scalar function acting in a suitable function space. This representation
is applied to the problem of existence of a polar representation for normal operators
of D+

κ -class.

0. Introduction

This work has a direct connection with the papers [20], [3], [4] and [19]. It is assumed
the reader is familiar with the elements of Krein space geometry and operator theory
(see [7], [1], [13], [15]). In this paper the terminology introduced in [2] will be used. In
Section 1 one can find terminology, including the notion of normal operators of D+

κ -class
(Definition 1.5), and known results that are used in the next sections. In particular,
Theorem 1.8 describes a spectral decomposition of a J-normal operator of D+

κ -class that
will play a key role in the course of the work. In Section 2 there are some results on model
representation for J-unitary, J-self-adjoint and J-normal operators (Theorems 2.6, 2.7,
2.8 and 2.9).

In Section 3 these results are applied to the problem of polar representation for
J-normal operators (Theorems 3.6, 3.8 and 3.11, Examples 3.3, 3.9, 3.10 and 3.12).

1. Preliminaries

1.1. Basic definitions. Let H be a Krein space with an indefinite sesquilinear form
[·, ·]. Everywhere below [·, ·] is assumed to be fixed and is called the Krein form. At
the same time let us note that in the problem we consider the concrete choice of the
Hilbert scalar product on H is not really essential. One needs only to fix the topology
(defined by the above mentioned scalar product) and the structure of the Gram operator
J : [x, y] = (Jx, y). According to the tradition, we employ the term “canonical scalar
product” for any scalar product (·, ·)1 if it generates on H the same input topology and
if the corresponding Gram operator J1 is of the Krein form (i.e., [x, y] = (J1x, y)1) is
unitary with respect to (·, ·)1. The Gram operator of the Krein form in the case of the
canonical scalar product is called a canonical symmetry.

We use the terms “positive vector”, “neutral vector”, “non-negative subspace”, “max-
imal non-negative subspace”, etc., in the usual way; they are defined with respect to
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the sign of the Krein form (see [2]). Analogously by the symbol [⊥] we denote the
orthogonality of vectors or sets with respect to the Krein form.

The following definition was introduced in [10].

Definition 1.1. A subspace L is called pseudo-regular if

(1) L = L̂++̇L1,

where L̂+ is a regular (=projectionally complete) subspace and L1 is a neutral subspace
(i.e. L1 is an isotropic part of L).

Below we shall use the following result concerning some special choice of canonical
scalar products.

Proposition 1.2. ([3]). Let:
• L+ be a pseudo-regular maximal nonnegative subspace;
• L1 be an isotropic subspace of L+;
• (·, ·)′ be a scalar product on L1, such that the norm

√
(x, x)′ is equivalent to the

original one;
• L− = L[⊥]

+ ;
and let

(2) L+ = L̂++̇L1, L− = L̂−+̇L1,

where L̂+ and L̂− are uniformly definite subspaces. Then one can define on H a canonical
scalar product (·, ·) such that:

(3)


a) on L1 : (·, ·) ≡ (·, ·)′,

b) L1 ⊥ L̂+, L1 ⊥ L̂−,

c) on L̂+ : (·, ·) = [·, ·],

d) on L̂− : (·, ·) = −[·, ·].

Definition 1.3. If a canonical scalar product of a Krein space H has the properties (3),
it is said to be compatible with Decomposition (2) and the choice of the scalar product
(·, ·)′ on L1.

Let A be an operator. Then A# means the operator adjoint in the sense of the
Krein form (briefly J-adjoint) to A. If Y is an operator family, the symbol Alg Y means
the minimal closed (in the weak topology) algebra which contains Y and the identity
operator.

Definition 1.4. An operator N is called J-normal (=J-n.) if NN# = N#N .

By definition the real part of an operator C is the operator (C + C#)/2 and the
imaginary part is the operator (C − C#)/2i. It is clear that the real part and the
imaginary part of an arbitrary bounded operator are J-self-adjoint (=J-s.a.).

Definition 1.5. Let N be a J-n. operator and let A and B be its real part and its
imaginary part respectively. The operator N belongs to the class D+

κ if in there is a
subspace L+ ⊂ H such that

• L+ is A-invariant and B-invariant,
• L+ is a maximal non-negative subspace,
• L+ is a pseudo regular subspace,
• dim(L+ ∩ L[⊥]

+ ) = κ.

Proposition 1.6. ([3]) . Let N be a J-n. operator and let N ∈ D+
κ . Then there exists

a J-orthogonal projection P ∈ Alg{N,N#} such that
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• the subspace (I − P )H has finite dimension;
• if N = A+ iB, A = A#, B = B#, then σ(A|PH) ⊂ R and σ(B|PH) ⊂ R.

In view of Proposition 1.6 in what follows we shall consider J-n. operators whose real
and imaginary parts have real spectra.

1.2. Some function spaces. Let us pass to some notation related to direct integrals
of Hilbert spaces and corresponding model descriptions of self-adjoint operators (see
[17], §41; [6], Chapter 7; [8], Chapter 4.4; [18], Chapter VII). Assume that σ(t) is a
non-decreasing function defined on the segment [−1; 1], continuous in the points −1;
0; 1, continuous (at least) from the left in all other points of the segment and having
an infinite number of growth points, where zero is one of these points. The mentioned
function generates on [−1; 1] the Lebesgue–Stieltjes measure µσ and spaces (L2

σ, L
∞
σ ,

etc.) of complex-valued functions. We shall consider also some spaces of vector-valued
functions so from time to time we shall note after a symbol of a space a symbol of a
range for the functions forming this space, for instance, L2

σ(C). Let E be some separable
Hilbert space (E can be finite-dimensional) Consider a mapping t 7→ Et, t ∈ [−1; 1],
where Et ⊂ E , dim(Et) is a µσ-measurable (but not necessarily finite a.e.) function, and
if dim(Et1) = dim(Et2), then Et1 = Et2 . Denote by M~σ(E) the space of the vector-valued
functions f(t) : t 7→ Et µσ-measurable in the weak sense, defined a.e. and finite a.e. on
the segment [−1; 1]. Next, the symbol L2

~σ(E) means here a Hilbert space of functions
f(t) ∈M~σ(E), such that

∫ 1

−1
‖f(t)‖2E dσ(t) <∞.

We introduce also some notation related to multiplication operators by scalar func-
tions. Everywhere below we assume a scalar function ϕ(t) to be defined a.e. on [−1; 1],
µσ-measurable and a.e. bounded. For f(t) ∈M~σ(E) set

(4) (Φf)(t) = ϕ(t)f(t).

It is clear that (Φf)(t) ∈M~σ(E), so equality (4) defines onM~σ(E) the continuous operator
Φ (= the multiplication operator by the function ϕ(t)). If ϕ(t) satisfies some additional
conditions one can consider the operator Φ as acting simultaneously on different spaces.
If, for instance, ϕ(t) is continuous then the operator Φ is well defined on every space
Mσ(E) independently of ~σ(t) and E . If ϕ(t) ∈ L∞σ (C) then L2

~σ(E) can also be taken as
a domain of Φ. So, if necessary, we shall mention simultaneously the operator Φ and its
domain using the notation {Φ,D(Φ)}, say, {Φ, L2

~σ(E)}.
Let us introduce an analog of L2

~σ(E) that can be used for a model representation of
Krein spaces. Assume that the scalar functions σ+(t) and σ−(t) are such that

σ+(t) =
∫ t

−1

ρ+(λ) dσ(λ), σ−(t) =
∫ t

−1

ρ−(λ) dσ(λ), ρ2
+(λ) = ρ+(λ),

ρ2
−(λ) = ρ−(λ), σ(t) =

∫ t

−1

(
ρ+(λ) + ρ−(λ)− ρ+(λ)ρ−(λ)

)
dσ(λ),

where σ(λ) is the same as in the previous subsection, and set

J -L2
~σ(E) := L2

~σ+
(E+)⊕ L2

~σ−
(E−), [f(t), g(t)] : = (f+(t), g+(t))− (f−(t), g−(t)),

where f(t) = f+(t)+ f−(t), g(t) = g+(t)+ g−(t), f+(t), g+(t)) ∈ L2
~σ+

(E+), f−(t), g−(t) ∈
L2
~σ−

(E−). The space J -L2
~σ(E) is said to be a standard Krein space. As a slight abuse of

the previous notation put also M~σ(E) : = M~σ+(E+)⊕M~σ−(E−).

1.3. Spectral functions with peculiarities. Let Λ={λk}n1 be a finite set of real num-
bers and let RΛ be the family {X} of all Borel subsets of R such that ∂X ∩ Λ = ∅,
where ∂X is the boundary of X in R. Let E : X 7→ E(X) be a countably additive
(with respect to weak topology) function, that maps RΛ to a commutative algebra of
projections in a Hilbert space H, E(R) = I. E(X) is called a spectral function (on R)
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with the peculiar spectral set Λ, the mention of Λ can be omitted. The symbol Supp(E)
means the minimal closed subset S ⊂ R, such that E(X) = 0 for every X: X ⊂ R\S and
X ∈ RΛ. Besides the symbol E we shall use also as notation for a spectral function the
symbol Eλ, λ ∈ R, where Eλ= E((−∞, λ)). Note that the notion of peculiar set has no
any direct connection with the behavior of the spectral function and it means only that
some points on R are distinguished. See below Definition 1.7 for some explanations. A
spectral function E that acts in a Krein space, is said to be J-orthogonal (J-orth.sp.f.)
if E(X) is a J-ortho-projection for every X ∈ RΛ.

Let us recall that an operator A with real spectrum in a Hilbert space is said to be
a scalar spectral operator ([9]) if there exists a spectral function E with empty peculiar
spectral set Λ, such that for every X ∈ RΛ : E(X)A = AE(X), σ(A|E(X)H) ⊂ X̄ and
AE(X) =

∫
X
ξE(dξ) in the weak sense.

Definition 1.7. Let E be a J-orth.sp.f. with a peculiar spectral set Λ. Let λ be a
peculiarity (i.e. λ ∈ Λ). Fix a set X ∈ RΛ: X ∩ Λ = {λ}. The peculiarity λ is called
regular if the operator family {E(X∩Y )}Y ∈RΛ is bounded, otherwise it is called singular.

The notion of regular and singular peculiarities is correctly defined since the bound-
edness of the family {E(X ∩ Y )}Y ∈RΛ does not depend on X.

Let E be a spectral function with peculiar spectral set Λ. A scalar function f(ξ)
is said to be defined almost everywhere (with respect to E), to have finite value almost
everywhere, etc., if the corresponding property holds almost everywhere in the weak sense
for every X ∈ RΛ, X ∩ Λ = ∅. We’ll assume that the function f(ξ) is not defined at Λ.
The following theorem follows directly from results announced in [20] and proved in [4].

Theorem 1.8. Let N be a J-n. operator, let N ∈ D+
κ and let N = A + iB, where

A = A#, B = B#, σ(A) ⊂ R and σ(B) ⊂ R. Then there exists a J-orthogonal spectral
function Eλ with a finite number of spectral peculiarities Λ (Λ may be the empty set),
such that the following conditions hold (CLin =closed linear span)

(5)



a) Eλ ∈ Alg{N, N#} for all λ ∈ R\Λ;

b) there is a non-negative subspace L+, corresponding to
Definition 1.5, for which the decomposition E(∆)H =
E(∆)L+[+̇]E(∆)L− holds, ∆ being any closed segment
∆ ⊂ R satisfying ∆ ∈ RΛ and ∆ ∩ Λ=∅;

c) there exist a defined almost everywhere (uniformly)
bounded functions φ(λ) and ψ(λ) such that for every in-
terval ∆ ⊂ R, ∆ ∈ RΛ, ∆ ∩ Λ=∅, the decompositions
AE(∆) =

∫
∆
φ(λ)E(dλ) and BE(∆) =

∫
∆
ψ(λ)E(dλ)

hold;

d) the subspace H̃ = CLin
∆∈RΛ, ∆∩Λ=∅

{E(∆)H} is pseudo-regular

and its isotropic part has finite dimension;

e) if λ0 ∈ Λ and Hλ0 : =
⋂

λ0∈∆

E(∆)H, then the sets σ(A|Hλ0
)

and σ(B|Hλ0
) are singletons {µA} and {µB}, respectively,

and there are positive integers mA and mA, such that
(A− µAI)mA |Hλ0

= 0 and (B − µBI)mB |Hλ0
= 0;

f) if λ0 ∈ Λ, then lim sup
λ→λ0

‖Eλ‖ = ∞ or at least one of the

operators A|Hλ0
and B|Hλ0

is not a scalar spectral opera-
tor.

A spectral function E with a peculiar spectral set Λ satisfying Conditions (5) are
called a rectified eigen spectral function (r.e.s.f.) of the operator N .
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Remark 1.9. The notion of a r.e.s.f. differs from the notion of the eigen spectral function
defined in [3]. Note also that a r.e.s.f. is not uniquely determined by the J-n. operator N .

1.4. On a model representation for J-orthogonal spectral functions without
peculiarities. A standard Krein space will be used for a model representation of a
J-orth.sp.f. Eλ without peculiarities. For simplicity, everywhere below we’ll assume that

(6) E−1 = 0, E+1 = I, E−1 = E−1+0.

Definition 1.10. Let Eλ be a J-orth.sp.f. and let its set of peculiarities be empty. A
space J -L2

~σ(E) is said to be a model space for Eλ if for some canonical scalar product
on H there is an isometric J-isometric operator W : J -L2

~σ(E) 7→ H, such that for every
λ ∈ [−1; 1]: Eλ = WXλW

−1. Here Xλ = {Xλ, J -L2
~σ(E)} is the multiplication operator

by the indicator χ[−1,λ)(t) of the interval [−1, λ). The operator W is said to be an
operator of similarity.

1.5. Unbounded elements in Banach spaces. Assume that H is a Hilbert space, Pt
is a resolution of the identity (= an orthogonal spectral function with the empty set of
peculiar points) defined on the segment [−1; 1], continuous in zero (with respect to the
w-topology) and

(7)


a) P−1 = 0, P1 = I;
b) for every t ∈ [−1; 1] the unilateral limits w − lim

µ→t−0
Pµ and

w − lim
µ→t+0

Pµ exist, where for definiteness Pt−0 = Pt.

Set Pλ,µ = I + Pλ − Pµ+0, where λ ∈ [−1; 0), µ ∈ (0; 1].
Next, let xλ,µ be a mapping of the numerical set [−1; 0) × (0; 1] into H (λ ∈ [−1; 0),

µ ∈ (0; 1]). The function xλ,µ is said to be conformed with Pt if the following condition is
fulfilled: for every λ, α ∈ [−1; 0), µ, β ∈ (0; 1] the equality Pλ,µxα,β = xγ,δ holds, where
γ = min{λ, α}, δ = max{µ, β}.

Note that xλ,µ has the following property

(8)


if sup

λ∈[−1; 0)
µ∈(0;1]

{‖xλ,µ‖} < ∞ then there is an element x ∈ H

such that for every λ ∈ [−1; 0), µ ∈ (0; 1] the equality
xλ,µ = Pλ,µx holds.

It is clear that the element x from (8) is uniquely defined by xλ,µ and can be found by
the formula x = w − lim

λ→−0
µ→+0

xλ,µ.

Definition 1.11. A function xλ,µ conformed with Pλ is said to be an unbounded element
conformed with Pλ (or, if it cannot produce a misunderstanding, an unbounded element)
if sup

λ∈[−1; 0)
µ∈(0;1]

{‖xλ,µ‖} = ∞.

Note that unbounded elements conformed with Pt exist if and only if zero is a point
of growth for Pt, i.e. P+ε − P−ε 6= 0 for every ε > 0. Everywhere below in this Section
this condition for Pt is assumed to be fulfilled.

For brevity in what follows unbounded elements will be denoted by symbols x̃, ỹ, etc.
For λ ∈ [−1; 0), µ ∈ (0; 1] we set xλ,µ : = Pλ,µx̃.

Definition 1.12. Unbounded elements x̃1, x̃2, . . . , x̃k, conformed with a (common) reso-
lution of the identity Pλ are said to be linearly independent modulo H if every non-trivial
linear combination of them is an unbounded element from H.

Although the inner product (x̃, f) is not defined for an unbounded element x̃ and an
arbitrary vector f ∈ H, at least for some f there is a natural way to define (x̃, f). Let
Hλ,µ : = Pλ,µH, where λ ∈ [−1; 0) and µ ∈ (0; 1]. Let M be the linear span of the
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subspaces Hλ,µ. If f ∈ Hλ,µ, then we put (x̃, f) : = (Pλ,µx̃, f) = (xλ,µ, f). Thus, for
every vector f ∈ M and an unbounded element x̃ the value (x̃, f) is well defined. In
what follows {x̃}⊥ means the set of all vectors f ∈ M such that (x̃, f) = 0.

Lemma 1.13. Let unbounded elements x̃, x̃1, x̃2, . . . , x̃m be linearly independent modulo
H. Then

sup
f∈

Tm
j=1{ eXj}⊥, ‖f‖=1

{|fx̃|} = ∞.

Lemma 1.14. Assume that H is a separable Hilbert space, x̃1, x̃2, . . . , x̃k are a collec-
tion of unbounded elements conformed with Pλ and linearly independent modulo H, and
that {Cλ,µ}λ∈[−1;0), µ∈(0;1] is a family of vector subspaces of H possessing the following
properties

(9)


a) Pλ,µCλ,µ ⊂ Cλ,µ;
b) if 0 ∈ (λ2, µ2) ⊂ (λ1, µ1), then Cλ1,µ1 ⊂ Cλ2,µ2 ;
c) for every vector f ∈ Hλ,µ there is a sequence {fm}∞1 ⊂

Cλ,µ with properties w − lim
m→∞

fm = f , lim
m→∞

‖fm‖ = ‖f‖,
where w − lim is the limit considered in the w-topology.

Then for every vector f ∈ H and an arbitrary collection of numbers {αj}kj=1 there is a
sequence {gm}∞1 ⊂ ∪λ,µCλ,µ, such that{

a) w − lim
m→∞

gm = f ;

b) w − lim
m→∞

gmx̃j = αj .

We give an additional notation. Let {x̃j}k1 be a fixed family of unbounded elements
conformed with Pt and linearly independent modulo H. The linear span of vectors from
H and unbounded elements from {x̃j}k1 consistently taken as functions on [−1; 0)× (0; 1]
is denoted H̃. H̃ will be considered as a Hilbert space, where H is a subspace with the the
same scalar product that was given on H initially and unbounded elements from {x̃j}k1
are mutually orthogonal and orthogonal to H. The space H̃ is said to be the expansion
of H (generated by {x̃j}k1).

2. Models for a J-orth.sp.f. with a singular peculiarity and J-n.
operators

By virtue of Theorem 1.8 it is clear that the general situation of N ∈ D+
κ can be

reduced to the case where its J-orth.sp.f. Eλ has a unique spectral peculiarity in zero.
Furthermore, the case of a regular peculiarity is trivial because under this conditions the
operator N is spectral in the sense of Dunford and has a finite-dimensional nilpotent
part. Thus, we can assume Eλ satisfies:

(10)


a) E−1 = E−1+0 =0, E+1 = I;
b) Λ = {0};
c) sup

λ∈[−1;1]\{0}
{‖Eλ‖} = ∞.

Introduce some notation. Let

(11)

 H1 = H̃ ∩ H̃[⊥], H2 = H⊥
1 ∩ H̃, H0 = JH1, Pj be an

orthoprojection (in the sense of Hilbert spaces) onto Hj ,
j = 0, 1, 2, Ẽλ : = Eλ| eH.

Note that by Condition (10c) the inequality H1 6= {0} holds.
In addition to (11) set

(12) H̃↑ = H0 ⊕H2, Ẽλ = Eλ| eH , Ẽ↑λ = (P0 + P2)Eλ| eH↑ .
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It is necessary to take into account that, generally speaking, the subspace H2 is indef-
inite. Since J-orth.sp.f. Eλ belongs to the class D+

κ , there is an Eλ-invariant pair of
J-orthogonal maximal semi-definite pseudo-regular subspaces L+ and L− with finite-
dimensional isotropic part, moreover by Condition (5b) we can assume that for every
closed interval ∆ ⊂ [−1; 1]\{0} the subspace (E(∆)H)∩L+ is positive and the subspace
(E(∆)H) ∩ L− is negative. Thanks to the last hypothesis the following subspaces are
well defined

(13) H̃+ = CLin
∆⊂[−1;1]\{0}

{E(∆)L+}, H̃− = CLin
∆⊂[−1;1]\{0}

{E(∆)L−}.

Set

(14) H+
2 = H2 ∩ H̃+, H−

2 = H2 ∩ H̃−, H3 =
(
H̃ ⊕ H0

)[⊥]
,

and assume that a canonical scalar product on H is such that, first, H[⊥]
3 = H⊥

3 , second,
it is also canonical for the subspace H̃⊕H0 and, third, on the last space it is compatible
(see Definition 1.3) with the given decompositions of the corresponding subspaces

(15) H̃+ = H1+̇H+
2 and H̃− = H1+̇H−

2 .

Thus, with respect to the decomposition H = H0+̇H1+̇H2+̇H3

(16) J =


0 V −1 0 0
V 0 0 0
0 0 J2 0
0 0 0 J3

 ,

where the operator V : H0 7→ H1 is isometric, J2 and J3 are canonical symmetries of the
form [·, ·] on H2 and H3 respectively.

Let J -L2
~σ(E) be a standard Krein space (see Subsection 1.2). Let {g̃j(t)}kj=1 ⊂M~σ(E)

be a system of unbounded elements conformed with the operator-valued function Xτ and
linearly independent modulo J -L2

~σ(E). Denote by J -L̃2
~σ(E) the linear span generated

by the space J -L2
~σ(E) and the system {g̃j(t)}kj=1. Define on J -L̃2

~σ(E) structures of
Hilbert and Krein spaces in the following way: on J -L2

~σ(E) both structures coincide
with the original structures, functions of the system {g̃j(t)}kj=1 are by definition positive
(as elements of the Krein space), mutually orthogonal and J-orthogonal, normalized and
J-normalized, orthogonal and J-orthogonal to J -L2

~σ(E). The space J -L̃2
~σ(E) is said to

be the expansion of J -L2
~σ(E) (generated by the collection {g̃j(t)}kj=1).

If a function γ(t) is such that γ(t)f(t) ∈ J -L̃2
~σ(E) for every f(t) ∈ J -L̃2

~σ(E), then the
multiplication operator Γ = {Γ, J -L̃2

~σ(E)} by the function γ(t) is well defined. Let us
analyze some properties of the operator Γ. First, we note the following evident fact.

Proposition 2.1. The relation

(17) ΓJ -L̃2
~σ(E) ⊂ J -L2

~σ(E)

holds if and only if

(18) EssSup{|γ(t)|} <∞ and γ(t)g̃j(t) ∈ J -L2
~σ(E), j = 1, 2, . . . , k.

For future reference we need to re-formulate Proposition 2.1. For this aim we introduce
an additional function space. Let G(t) be a µσ-measurable function defined a.e. on [−1; 1]
and such that

• a.e. G(t) ≥ 1,
•
∫ −τ
−1

G(t)dσ(t) <∞,
∫ 1

τ
G(t)dσ(t) <∞ for every τ ∈ (0; 1],

•
∫ 1

−1
G(t)dσ(t) = ∞.
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Set

(19) ν(τ) : =


∫ τ
−1
G(t)dσ(t), if τ ∈ [−1; 0);

−
∫ 1

τ
G(t)dσ(t), if τ ∈ (0; 1].

The function ν(t) is non-decreasing in both segments [−1; 0) and (0; 1] but it is unbounded
in neighborhoods of zero. Define for it a corresponding function space. Let f(t) and
g(t) be arbitrary functions continuous in [−1; 1] and vanishing in some neighborhoods
(different in the general case for f(t) and g(t)) of zero. Then the integral

∫ 1

−1
f(t)g(t)dν(t)

is well defined and generates a structure of pre-Hilbert space on the set of all such
functions. The completion of the space will be denote L2

ν (or L2
ν(C)).

Note that by (19) the spaces L∞σ and L2
ν forms a compatible pair or a Banach pair

(for details see [5] or [12]). Thus, the space L∞σ ∩ L2
ν is well defined.

Proposition 2.2. The relation (17) holds if and only if

(20) γ(t) ∈ L∞σ ∩ L2
ν ,

where (see (19)) G(t) = 1 +
∑k
j=1 ‖g̃j(t)‖2.

Now we consider the general case, i.e.

(21) ΓJ -L̃2
~σ(E) ⊂ J -L̃2

~σ(E).

By (21) every element of the system {Γg̃j(t)}k1 can be uniquely (modulo J -L2
~σ(E))

represented as a linear combination of the elements of the system {g̃j(t)}k1 , i.e.

(22) Γg̃j(t) =
k∑

m=1

τjmg̃m(t)(modJ -L2
~σ(E)), j = 1, 2, . . . , k

So, the operator Γ defines the matrix

(23) Tγ = (τjm)kj,m=1 ,

Now we consider a relation between γ(t) and eigenvalues of the matrix (23).

Proposition 2.3. Let {g̃j(t)}k1 be a system of unbounded elements generating together
with J -L2

~σ(E)) the space J -L̃2
~σ(E)), let a function γ(t) satisfy Condition (21) and let A

be the set of partial limits of γ(t) for t→ 0. Then all eigenvalues of the matrix (23) are
in A.

Proof. Let us suppose the contrary, i.e. that the matrix (23) has an eigenvalue β 6∈ A.
Then there is a non trivial linear combination g̃(t) =

∑k
j=1 ξj g̃j(t), such that Γg̃(t) =

βg̃(t)(modJ -L2
~σ(E)). This implies

(24) sup
λ∈[−1;0), µ∈(0;1]

{(∫ λ

−1

+
∫ 1

µ

)
|γ(t)− β|2‖g̃(t)‖2E dσ(t)

}
<∞.

Since for a sufficiently small ε > 0 the inequality 0 < |t| < ε implies |γ(t) − β| ≥ δ > 0,
by (24) we have ∫ ε

−ε
‖g̃(t)‖2Edσ(t) <∞

(the integral is treated as improper with a singularity in zero) and, thus, g̃(t) ∈ J -L2
~σ(E).

This is a contradiction! �
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Theorem 2.4. If a J-orth.sp.f. Eλ satisfies Condition (10) and a scalar product on
H is compatible with (15), then there are, first, a subspace J -L2

~σ(E) and a system of
unbounded elements {g̃j(t)}kj=1 of this space forming together the space J -L̃2

~σ(E) and,
second, an isometric J-isometric operator W : J -L̃2

~σ(E) 7→ H̃, WL2
~σ(E) = H2, such that

for every λ ∈ [−1; 1]

(25) Ẽλ = W ·X#
λ · (W )−1, W ↑ = (I2 ⊕ V )W, Ẽ↑λ = W ↑ ·Xλ · (W ↑)−1,

where k = dimH0 = dimH1 and Xλ = {Xλ, J -L̃2
~σ(E)} is the multiplication operator by

the indicator χ[−1,λ)(t) of the interval [−1, λ).

Definition 2.5. If for the subspaces (11) and (14) a relation between a J-orth.sp.f. Eλ
satisfying Condition (10) and a space J -L̃2

~σ(E) is given by Formulae (25), then J -L̃2
~σ(E) is

said to be a basic model space for Eλ (compatible with (11), (12), (15)) and the operator
W is said to be an operator of similarity corresponding to this space.

Theorem 2.6. Assume that a J-orth.sp.f. Eλ satisfies Condition (10), a scalar product
on H is compatible with (15) and J -L̃2

~σ(E) is a basic model space for Eλ. If a (bounded)
operator C and a function γ(t) are such that

(26) CE(∆) =
∫

∆

γ(t)E(dt)

for every interval ∆ ∈ R{0}, 0 6∈ ∆, then

(27)

 a) CH̃ ⊂ H̃ ;
b) for γ(t) Condition (21) holds ;
c) C̃ = W · Γ# ·W−1,

where C̃ = C|H and W is the operator of similarity from (25).

Proof. First, Condition (27a) follows directly from (26).
Second, let g̃j(t), j = 1, 2, . . . , k be the unbounded elements generating the expansion

J -L̃2
~σ(E) of J -L2

~σ(E). If x ∈ H2 and according to (25) f(t) = W−1x, then

(28) W−1E(∆)x = χ∆(t)f(t) +
k∑
j=1

∫
∆

[f(τ), g̃j(τ)] dτ · g̃j(t)

and

(29) W−1CE(∆)x = χ∆(t)γ(t)f(t) +
k∑
j=1

∫
∆

[γ(τ)f(τ), g̃j(τ)] dτ · g̃j(t).

We need to show that {γ(t)g̃j(t)}kJ=1 ⊂ J -L̃2
~σ(E). Let us suppose the contrary i.e. that

the maximal number m of functions linearly independent modulo J -L2
~σ(E) in the system

{g̃j(t), γ(t)g̃j(t)}kj=1 is greater than k. With no loss of generality we can suppose that
the system {g̃j(t)}kj=1 ∪ {γ(t)g̃j(t)}

m−k
j=1 is linearly independent modulo J -L2

~σ(E), so

(30) γ(t)g̃l(t) =
k∑
j=1

α
(l)
j g̃j(t) +

m−k∑
j=1

β
(l)
j γ(t)g̃j(t), l = m− k + 1, . . . , k.

By Lemma 1.14 there exists a sequence {xp}∞1 ⊂ H2 such that
• for every function fp(t)=W−1xp there is a neighborhood of zero, where fp(t) ≡ 0,
• limp→∞ ‖fp(t)‖L2

~σ
(E) = 0,

• limp→∞
∫

R[fp(τ), g̃j(τ)]dτ = 0, j = 1, 2, . . . , k,
• limp→∞

∫
R[fp(τ), γ(τ)g̃1(τ)]dτ = 1,

• limp→∞
∫

R[fp(τ), γ(τ)g̃j(τ)]dτ = 0, j = 2, . . . ,m− k.
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Let ej = Wg̃j(t), j = 1, 2, . . . , k. Then by (28), (29) and (30) we have

lim
p→∞

(
xp +

k∑
j=1

∫
R
[fp(τ), g̃j(τ)] dτ · ej

)
= 0,

but

lim
p→∞

C
(
xp +

k∑
j=1

∫
R
[fp(τ), g̃j(τ)] dτ · ej

)
= e1 +

k∑
l=m−k+1

β
(l)
1 el.

Thus, the operator C is not closable. This is a contradiction.
Third, Condition (27c) follows directly from (27b), (28) and (29). �

Theorem 2.7. Assume that a J-orth.sp.f. Eλ satisfies Condition (10), a scalar product
on H is compatible with (15) and J -L̃2

~σ(E) is a basic model space for Eλ. If a J-unitary
operator U and a function υ(t) are such that

(31) UE(∆) =
∫

∆

υ(t)E(dt)

for every interval ∆ ∈ R{0}, 0 6∈ ∆, then

(32)


a) a.e. |υ(t)| = 1;
b) UH̃ = H̃, U#H̃ = H̃ ;
c) for υ(t) and υ(t) Condition (21) holds;
d) Ũ = W ·Υ# ·W−1, Ũ↑ = W ↑ ·Υ · (W ↑)−1,

where Ũ = U |H, Ũ↑ = (P0 + P2)U | eH↑ , operators W and W ↑ are from (25), Υ =
{Υ, J -L̃2

~σ(E)} and Υ = {Υ, J -L̃2
~σ(E)} are the multiplication operators by the functions

υ(t) and υ(t) respectively.

Proof. First, J-unitary property of U implies (32a). Second, the relations UH̃ ⊂ H̃
and ΥJ -L̃2

~σ(E) ⊂ J -L̃2
~σ(E) follow from (27a) and (27b) respectively. Third, let g̃j(t),

j = 1, 2, . . . , k be the unbounded elements generating the expansion J -L̃2
~σ(E) of J -L2

~σ(E).
In this case Condition (32a) means that the elements υ(t) · g̃j(t), j = 1, 2, . . . , k are also
the unbounded elements linearly independent modulo J -L2

~σ(E). Thus, ΥJ -L̃2
~σ(E) =

J -L̃2
~σ(E) = ΥJ -L̃2

~σ(E) and by (27c) ŨH̃ = H̃. Since U is a J-unitary operator, the last
equality implies U(H̃[⊥]) ⊂ H̃[⊥].

Thus, with respect to the decomposition H = H0+̇H1+̇H2+̇H3 (e.g. (16)),

(33) U =


U00 0 0 0
U10 U11 U12 U13

U20 0 U22 0
U30 0 0 U33

 ,

and

(34) U# =


V −1U∗11V 0 0 0
V U∗10V V U∗00V

−1 V U∗20J2 V U∗30J3

J2U
∗
12V 0 J2U

∗
22J2 0

J3U
∗
13V 0 0 J3U

∗
33J3

 .

Next, (31) and (32a) imply U
(
E(∆)H

)
= E(∆)H. Since U is J-unitary, the latter

gives U
(
I − E(∆)

)
H =

(
I − E(∆)

)
H, so E(∆)U

(
I − E(∆)

)
= 0. The latter implies

UE(∆) = E(∆)U . Taking into account (31) one has U#E(∆) =
∫
∆
υ(t)E(dt). Now

(32d) follows from Theorem 2.6 and a comparison between (33) and (34). �

In the same way one can prove the following theorem.
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Theorem 2.8. Assume that a J-orth.sp.f. Eλ satisfies Condition (10), a scalar product
on H is compatible with (15) and J -L̃2

~σ(E) is a basic model space for Eλ. If a J-s.a.
operator C and a function γ(t) are such that CE(∆) =

∫
∆
γ(t)E(dt)for every interval

∆ ∈ R{0}, 0 6∈ ∆, then (e.g. with (27))

a) a.e. γ(t) = γ(t);
b) CH̃ ⊂ H̃;
c) for γ(t) Condition (21) holds;
d) C̃ = W · Γ# ·W−1, C̃↑ = W ↑ · Γ · (W ↑)−1,

where C̃ = C|H, C̃↑ = (P0 + P2)C| eH↑ , operators W and W ↑ are from (25).

Applying Theorem 2.8 to J-n. operators one can obtain the following result.

Theorem 2.9. Assume that N ∈ D+
κ is a J-n. operator, whose r.e.s.f. Eλ satisfies Con-

dition (10), that a canonical scalar product on H is compatible with (15), that J -L̃2
~σ(E)

is a basic model space for Eλ, and W is a corresponding operator of similarity. Then

(35) Ñ↑ = W ↑ · (Φ + iΨ) · (W ↑)−1, Ñ = W ·
(
Φ# + iΨ#

)
·W−1

where Ñ↑ : = (P0 ⊕ P2)N | eH↑ , the space H̃↑ and the operator W ↑ are defined via (12),
(25), Φ = {Φ,J -L̃2

~σ(E)} and Ψ = {Ψ,J -L̃2
~σ(E)}, the functions φ(λ) and ψ(λ) are defined

by (5c).

Corollary 2.10. Assume that N ∈ D+
κ is a J-n. operator, whose r.e.s.f. Eλ satis-

fies Condition (10), that a canonical scalar product on H is compatible with (15), that
J -L̃2

~σ(E) is a basic model space for Eλ, and W is a corresponding operator of similarity.
Then

(36)
(
Ñ#Ñ

)↑
= W ↑ ·

(
Φ2 + Ψ2

)
· (W ↑)−1,

(
Ñ#Ñ

)
= W ·

(
(Φ#)2 + (Ψ#)2

)
·W−1

where
(
Ñ#Ñ

)↑
:= (P0 ⊕ P2)

(
N#N

)
| eH↑ and the rest of elements in (36) are the same

as in (35).

3. On a polar representation for J-n. operator

3.1. Preliminary remarks. In this Section we consider the problem of a polar rep-
resentation for a J-n. operator N from the D+

κ -class. This problem has been actively
studied during the past few years. The present state of investigations in this direction
can be found in [16]. As to other operator classes, a J-polar decomposition for so-called
strict plus-operators was considered in [14]. For additional references on the subject and
some related topics see [1], Subsection II.1.13, and also [11]. Taking into account Propo-
sition 1.6 and Theorem 1.8 we concentrate our study on the J-n. operator whose real
and imaginary parts have real spectra and whose spectral peculiarities are reduced to a
unique spectral peculiarity in zero. Thus, everywhere below we assume that (10) holds
and (see (5))

(37) σ(A|H1) = σ(B|H1) = {0}.

Note that (5a) and (37) imply

(38) µσ({t : φ2(t) + ψ2(t) = 0}) = 0,

where σ(t) is the same as in Theorem 2.9 and in Corollary 2.10.

3.2. Quasi-roots.

Definition 3.1. Assume that N ∈ D+
κ is a J-n. operator with r.e.s.f. Eλ. A J-s.a.

operator C is called a (square) quasi-root of N#N conformed with Eλ if there is a scalar
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function γ(t) such that for every X ∈ R{0}, 0 6∈ X the equalities CE(X) = E(X)C =∫
X
γ(λ)E(dλ) and C2E(X) = N#NE(X) hold.

Remark 3.2. Note that spectrum of a quasi-root C of N can contain both positive and
negative elements. This approach to the definition of a quasi-root is justified by the
fact that even for a J-s.a. operator N a quasi-root C with non-negative spectrum can
be nonexistent. Everywhere below the symbol L̂ means the linear span of subspaces
E(X)H, X ∈ R{0}, 0 6∈ X.

Example 3.3. Let a space H be spanned by orthonormal vectors g1, g2, h1, h2 and
{ek}∞k=1. Let Jg1 : = h1, Jg2 : = h2, Jh1 : = g1, Jh2 : = g2, Ag1 : = 0, Ag2 : =
g1, Ah1 : = h2, Ah2 : =

∑∞
k=1

(−1)k

k ek, Jek : = ek, Aek : = (−1)k

k ek + 1
kg2, where

k = 1, 2, . . . . Then (−1)k

k is an eigenvalue of A, that corresponds to an eigenvector
ek + (−1)kg2 + kg1, where k = 1, 2, . . . . Spectrum of A2 is simple, so, if there exists a
(bounded!) J-s.a. operator C with non-negative spectrum such that C2 = A2, then the
same vector is an eigenvector for C that corresponds to an eigenvalue 1

k . Let

xm =
2m∑
k=1

(ek + (−1)kg2 + kg1)−
2m+ 1
6m+ 1

4m∑
k=2m+1

(ek + (−1)kg2 + kg1)

=
2m∑
k=1

ek −
2m+ 1
6m+ 1

4m∑
k=2m+1

ek.

Then xm ∈ H̃ and

Cxm =
2m∑
k=1

1
k

(ek + (−1)kg2 + kg1)−
2m+ 1
6m+ 1

4m∑
k=2m+1

1
k

(ek + (−1)kg2 + kg1)

=
8m2

6m+ 1
g1 +

(
2m∑
k=1

(−1)k

k
− 2m+ 1

6m+ 1

4m∑
k=2m+1

(−1)k

k

)
g2

+

(
2m∑
k=1

1
k
ek −

2m+ 1
6m+ 1

4m∑
k=2m+1

1
k
ek

)
.

These formulae imply that 6m+1
8m2 xm → 0 and 6m+1

8m2 Cxm → g1 by m → ∞. Thus, the
operator C| bL is nonclosable in L̂.

Remark 3.4. Example 3.3 is related to the idea expressed by Lemma 1.14 and Theorem
2.8. In particular, here the fact that the sequences {k}∞k=1, {(−1)k}∞k=1 and {1}∞k=1 are
linearly independent modulo ll2 is used.

Proposition 3.5. Assume that N ∈ D+
κ is a J-n. operator with r.e.s.f. Eλ. If for all

X ∈ R{0} with 0 6∈ X the operator N#N |E(X)H has simple spectrum, then every J-s.a.
operator C, such that C2 = N#N , is a quasi-root of N#N conformed with Eλ.

Proof. We need only to show that Eλ commutes with C. Let D : = N#N and Θ(λ) =
φ2(λ) + ψ2(λ). Since CD = C3 = DC, the eigen spectral function E(D)

µ of D commutes
with C. Next, the non-zero spectrum of D is simple, so the function Θ(λ) is a one-to-
one (up to a set of E-measure equal to zero) mapping Supp(E) 7→ Supp(E(D)). Let
X ∈ R{0} and 0 6∈ X. Set Y = Θ(X). If 0 6∈ Ȳ , then E(X) = E(D)(Y ), if 0 ∈ Ȳ , then
E(X) = s− lim µ→+0(I − E

(D)
µ + E

(D)
−µ )E(D)(Y ). The rest is evident. �

Theorem 3.6. Assume that N ∈ D+
κ is a J-n. operator with r.e.s.f. Eλ. If (see (11))

(39) dim(H1) = 1,
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then for every µσ-measurable real function ω(t) with |ω(t)| ≡ 1 there exists a quasi-root
C satisfies the condition

CE(X) =
∫
X

ω(λ)
√
φ2(λ) + ψ2(λ)dEλ, X ∈ R{0}, 0 6∈ X.

Proof. Let us fix a basic model space J -L̃2
~σ(E) for N , where a system of unbounded

elements is reduced to a singleton {g̃1(t)}. Conditions (37) and (39) imply (see Formulae
(21), (22) and Theorem 2.9) Condition (17), where Γ is replaced by Φ and Ψ, so by
Proposition 2.1

∫ 1

−1
|φ(t)|2‖g̃1(t)‖2Edσ(t) < ∞ and

∫ 1

−1
|ψ(t)|2‖g̃1(t)‖2Edσ(t) < ∞. Then

for θ(t) : =
√
φ2(λ) + ψ2(λ) these two inequalities yield

∫ 1

−1
|θ(t)|2‖g̃1(t)‖2Edσ(t) < ∞.

Let us set (see (11))

(40) C̃↑ : = W ↑Θ(W ↑)−1, C̃ : = WΘW−1, P1CP0 = 0, C| eH[⊥] = 0,

where C̃↑ : = (P0 ⊕ P2)C| eH↑ , Θ = {Θ, J -L̃2
~σ(E)} is the multiplication operator by θ(t),

and the rest of elements in (40) are the same as in (35). The direct verification shows
that C is desired. �

In the same way the following theorem can be proved.

Theorem 3.7. Assume that N ∈ D+
κ is a J-n. operator with r.e.s.f. Eλ. If (cf. (37))

(41) A|H1 = B|H1 = 0,

then for every µσ-measurable real function ω(t) with |ω(t)| ≡ 1 there exists a quasi-root
C satisfies the condition

CE(X) =
∫
X

ω(λ)
√
φ2(λ) + ψ2(λ)dEλ, X ∈ R{0}, 0 6∈ X.

Example 3.3 shows that if k > 1, then Condition 41 in Theorem 3.7 cannot be omitted.

Theorem 3.8. Assume that N ∈ D+
κ is a J-n. operator with r.e.s.f. Eλ. If

(42) dim(H1) = 2

and A| eH 6= 0, then for

(43) ω(t) : =


|φ(t)|/φ(t), if φ(t) 6= 0;

1, if φ(t) = 0

there exists a quasi-root C satisfying the condition

CE(X) =
∫
X

ω(λ)
√
φ2(λ) + ψ2(λ)dEλ, X ∈ R{0}, 0 6∈ X.

Proof. Let J -L̃2
~σ(E) be a basic model space for N . Conditions (37) and (42) imply the

following representations for the matrices Tφ and Tψ defined in concordance with (22)
and (23)

Tφ = α ·
(
ξ −ξ2
1 −ξ

)
, Tψ = β ·

(
ξ −ξ2
1 −ξ

)
,

where α 6= 0. The last equalities yield the relation (Φ − β
αΨ)J -L̃2

~σ(E) ⊂ J -L2
~σ(E). By

Proposition 2.2 we have

(44) ζ(t) : = (ψ(t)− β

α
φ(t)) ∈ L∞σ ∩ L2

ν .

Our next aim is to show that (see (43))

(45) θ(t) : = ω(t)
√
φ2(t) + ψ2(t) = φ(t)

√
1 +

(
β

α

)2 (
modL∞σ ∩ L2

ν

)
.
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Let X = {t : |φ(t)| ≤ |ζ(t)|}, Y = [−1; 1]\(X ∪ {0}), and let χ(X)(t) and χ(Y )(t) be the
indicators of sets X and Y respectively. Then

(46) χ(X)(t)|θ(t)− φ(t)| ≤ χ(X)(t)|ζ(t)|

√1 +
(

1 + |β
α
|
)2

+

√
1 +

(
β

α

)2
 .

On the other hand, χ(Y )(t)θ(t) =

√
1 +

(
ζ(t)
φ(t) + (βα )

)2

· φ(t) · χ(Y )(t), so

χ(Y )(t)|θ(t)− φ(t)| =
| 2 · βαζ(t) + ζ(t) · ζ(t)φ(t) |√

1 +
(
ζ(t)
φ(t) + (βα )

)2

+

√
1 +

(
β
α

)2
· χ(Y )(t).

Thus,

(47) χ(Y )(t) · | θ(t)− φ(t)| ≤ χ(Y )(t) · |ζ(t)| ·
2 · |βα |+ 1

1 +

√
1 +

(
β
α

)2
.

Now Equality (45) follows from (44), (46) and (47). Since (45) means that the multi-
plication operator Θ by the function θ(t) is well defined on J -L̃2

~σ(E), one can set (cf.
with (40))

(48) C̃↑ : = W ↑Θ(W ↑)−1, C̃ : = WΘW−1, P1CP0 = 0, C(P0 + P1 + P2) = C.

The rest is trivial. �

Let us show that Condition (42) cannot be omitted.

Example 3.9. Let a spaceH be spanned by orthonormal vectors g1, g2, g3, h1, h2, h3 and
{ek}∞k=1. Let Jgj : = hj , Jhj : = gj , j = 1, 2, 3, Ng1 : = 0, Ng2 : = ig1, Ng3 : = g1,
Nh1 : = ih2 + h3, Nh2 : =

∑∞
n=1(n

−4/5 + in−3/5)en, Nh3 : =
∑∞
n=1(n

−1 + n−4/5)en,
Jen : = en, Aen : = (n−1+in−4/5)en+(n−4/5+in−3/5)g2+(n−1+in−4/5)g3, where n =
1, 2, . . . . Then (n−1 + in−4/5) is an eigenvalue of N , that corresponds to an eigenvector
(en + g3 + n1/5g2 + ng1), where n = 1, 2, . . . . The spectrum of N#N is simple, so, if
there exists a (bounded!) J-s.a. operator C such that C2 = N#N , then the same vector
is an eigenvector for C that corresponds to an eigenvalue ωn ·

√
n−8/5 + n−2, where

ωn = ±1. A basic model space l̃l2 for N can be formed as the linear span of ll2 and
three sequences {n}, {n1/5} and {1}. Then C has the following model representation
{αn} 7→ {ωn ·

√
n−8/5 + n−2 · αn}. At the same time it is easy to check that {ωn ·√

n−8/5 + n−2 · n} 6∈ l̃l2 and by Theorem 2.8 the operator C does not exist.

3.3. Polar representation. Here we shall discuss the existence of a representation

(49) N = UC,

for a J-n. operator N ∈ D+
κ , where C is a J-s.a. operator and U is a J-unitary operator.

(49) implies that N#N = C2. We assume additionally that C in (49) is a quasi-root
conformed with r.e.s.f. Eλ. Note that it is not a restriction if for all X ∈ R{0} with
0 6∈ X the operator N#N |E(X)H has simple spectrum.

If C is a quasi-root, we have

(50)
∫
X

(φ(λ) + iψ(λ))E(dλ) = U

∫
X

γ(λ)E(dλ)

with γ2(λ) = (φ2(λ) + ψ2(λ)) and X ∈ R{0}, 0 6∈ X, so

(51) UE(X) =
∫
X

(φ(λ) + iψ(λ))
γ(λ)

E(dλ).
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Formula (51) uniquely defined U | bL. On the other hand the operator (maybe unbounded)
Û : L̂ 7→ L̂,

Ûx =
∫ 1

−1

(φ(λ) + iψ(λ))
γ(λ)

E(dλ)x,

where x ∈ L̂, is well defined (see (38)) independently of the existence of the operators
U and C themselves. If the (bounded!) operator U exists, then the operator Û is also
bounded and, thus, closable. Let us give an example of nonclosable Û .

Example 3.10. Let a space H be spanned by orthonormal vectors g1, h1, and {ek}∞k=1.
Let Jg1 : = h1, Jh1 : = g1, Ng1 : = 0, Nh1 : =

∑∞
n=1 i

nn−1en, Jen : = en,
Nen : = inn−1en+ inn−1g1, where n = 1, 2, . . . . Then inn−1 is an eigenvalue of N , that
corresponds to an eigenvector en + g1, where n = 1, 2, . . . . The spectrum of N#N is
simple, so, if there exists a (bounded!) J-s.a. operator C such that C2 = N#N , then
the same vector is an eigenvector for C that corresponds to an eigenvalue ωn ·n−1, where
ωn = ±1. A basic model space l̃l2 for N can be formed as the linear span of ll2 and the
sequence {1}. Then C has the following basic model representation {αn} 7→ {ωn·n−1·αn}
and L̂ is the set of the vectors in the form {αn} + (

∑∞
n=1 αn) · g1, where αn = 0 for all

essentially big n. At the same time it is easy to check that {ωn ·in} 6∈ l̃l2 and by Theorem
2.7 (see also Example 3.3) the operator Û is nonclosable.

Thus, the above reasoning gives the following result.

Theorem 3.11. Assume that N ∈ D+
κ is a J-n. operator with r.e.s.f. Eλ, such that

• functions φ(t) and ψ(t) are defined by (5c);
• J -L̃2

~σ(E) is a basic model space for Eλ;
• N has Representation (49);
• for all X ∈ R{0} with 0 6∈ X the operator N#N |E(X)H has simple spectrum.

Then there is a real scalar function γ(t) such that

(52)


a) a.e. γ2(t) = φ2(t) + ψ2(t);
c) for γ(t) Condition (21) holds;
c) for υ(t) = (φ(t)+iψ(t))

γ(t) the condition

ΥJ -L̃2
~σ(E) = J -L̃2

~σ(E) holds;

Let us show that Conditions (52) are not sufficient for existence of (49).

Example 3.12. Let a space H be spanned by orthonormal vectors g1, h1, and {en}∞n=1.
Let Jg1 : = h1, Jh1 : = g1, Ng1 : = 0, Nh1 : = ig1 +

∑∞
n=1 n

−1en, Jen : = en,
Nen : = n−1(en + g1), where n = 1, 2, . . . . Then n−1 is an eigenvalue of N , that
corresponds to an eigenvector en + g1, where n = 1, 2, . . . . The spectrum of N#N is
simple and for every (bounded!) J-s.a. operator C, such that C2 = N#N , the same
vector is also an eigenvector that corresponds to an eigenvalue ωn ·n−1, where ωn = ±1.
A basic model space l̃l2 for N can be formed as the linear span of ll2 and the sequence
{1}. Then C has the following basic model representation {αn} 7→ {ωn · n−1 · αn}.
Let us suppose that U from (49) exists. Then {ωn · αn} ∈ l̃l2 for every {αn} ∈ l̃l2,
therefore {ωn} = ω · {1} + {ζn}, where {ζn} ∈ ll2. The latter implies limn→∞ ωn = w.
Since ωn = ±1, ω = ±1 too. With no loss of generality one can assume ω = 1. In
this case Ug1 = g1 and there is no more than finite number of ωn = −1. By Theorem
2.8 Ch1 = δ · g1 +

∑∞
n=1 ωn · n−1en, where δ = [Ch1, h1] ∈ R. On the other hand

by Theorem 2.7 (or by direct calculations) one has Uen = ωn · en + (ωn − 1) · g1, so
UCh1 =

(
δ+
∑∞
n=1(ωn−1)n−1

)
g1+

∑∞
n=1 ωn ·n−1en. Since

(
δ+
∑∞
n=1(ωn−1)n−1

)
∈ R,

Nh1 6= UCh1. This is a contradiction.
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