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ON THE GAUSS-MANIN CONNECTION IN CYCLIC HOMOLOGY

BORIS TSYGAN

In memory of Yu. L. Daletsky.

Abstract. Getzler constructed a flat connection in the periodic cyclic homology,
called the Gauss-Manin connection. In this paper we define this connection, and its
monodromy, at the level of the periodic cyclic complex.

The construction does not depend on an associator, and provides an explicit
structure of a DG module over an auxiliary DG algebra. This paper is, to a large
extent, an effort to clarify and streamline our work [4] with Yu. L. Daletsky.

1. Introduction

For an algebraic variety S over a commutative field k of characteristic zero, let A be a
locally free OS-module which is an associative OS-algebra. In [6], Getzler constructed a
flat connection in the OS-module HCper

• (A), the periodic cyclic homology of A over the
ring of scalars OS . This connection is called the Gauss-Manin connection. In this paper
we define this connection, and its monodromy, at the level of the periodic cyclic complex
CCper

• (A).
Recall that for an associative algebra over a commutative unital ring K one can

define the Hochschild chain complex C•(A), the negative cyclic complex CC−• (A), and
the periodic cyclic complex CCper

• (A), as well as the Hochschild cochain complex C•(A)
([13], [18], [5]). The latter is a differential graded Lie algebra, or a DGLA, if one shifts the
degree by one: g•A = C•+1(A). Recall that CC−• (A) = (C•(A)[[u]], b + uB) is a complex
of K[[u]]-modules. Here u is a formal variable of degree −2. We can view CC−• (A) as a
cochain complex if we reverse the grading. In particular, the cohomological degree of u
is 2. The complex CC−• (A) is known to be a DG module over the DGLA g•A, the action
of a cochain D given by the standard operator LD (cf. [18] or 1.3.2 below).

Consider another formal variable, ε, of degree 1. Now consider the DGLA

(1.0.1)
(

g•A[u, ε], δ + u
∂

∂ε

)
.

Theorem 1. On CC−• (A), there is a natural structure of an L∞ module over (g•A[u, ε], δ+
u ∂

∂ε ). This structure is K[[u]]-linear and (u)-adically continuous. The induced structure
of an L∞ module over g•A is the standard one.

We recall that an L∞ module structure, or, which is the same, an L∞ morphism
g•A[u, ε] → EndK[[u]](CC−• (A)), can be defined in two equivalent ways. One definition
expresses it as a sequence of DGLA morphisms

(1.0.2) g•A[u, ε]← L → EndK[[u]](CC−• (A))
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where the morphism on the left is a quasi-isomorphism. Alternatively, one can define
this L∞ morphism as a collection of K[[u]]-linear maps

(1.0.3) φn : Sn(g•A[u, ε][1])→ EndK[[u]](CC−• (A))[1]

satisfying certain quadratic equations. Using that, one can define Getzler’s Gauss-Manin
connection at the level of chains as a morphism

Ω•(S, CCper
• (A))→ Ω•(S, CCper

• (A))

of total degree one such that

ω 7→ dω +
∞∑

n=1

u−n

n!
φn(θ, . . . , θ)

where θ is the g•A[u, ε]-valued one-form on S given by

θ(X)(s) = LXmsε.

Here s ∈ S, ms is the multiplication on the fiber As of A at the point s, and X is a
tangent vector to S at s.

A few words about the proof of the main theorem. We define the L∞ morphism by
explicit formulas (Theorem 12 and Lemma 19), but the proof that they do satisfy L∞
axioms is somewhat roundabout. Recall that the Hochschild cochain complex C•(A),
with the cup product, is a differential graded algebra (DGA). One can consider the
negative cyclic complex CC−• (C•(A)) of this DGA. In [20] and [18], an A∞ structure
on this complex is constructed. The negative cyclic complex CC−• (A) is an A∞ module
over this A∞ algebra. From this, we deduce that CC−• (A) is a DG module over some
DGA which is related to the universal enveloping algebra U(gA[u, ε]) by a simple chain
of quasi-isomorphisms.

A statement close to Theorem 1 was proven in [4]. Our proof substantially simplifies
the proof given there. Note that a much stronger statement can be proven. Namely,
C•(A) is in fact a G∞ algebra in the sense of Getzler-Jones [8] whose underlying L∞
algebra is g•A, ([19], [9]); moreover, the pair (C•(A), C•(A)) is a homotopy calculus, or a
Calc∞ algebra ([11], [20], [18]). The underlying L∞ module structure on CC−• (A) is the
standard one. From this, Theorem 1 follows immediately. (The interpretation of the A∞
algebra CC−• (C•(A)) in terms of the Calc∞ structure is given in [20]). However, theorems
from [11], [20], [18] are extremely inexplicit and the constructions are not canonical, i.e.
dependent on a choice of a Drinfeld associator. Our construction here is much more
canonical and explicit, though still not perfect in that regard. It does not depend on an
associator; it provides an explicit structure of a DG module over an auxiliary DG algebra
(denoted in this paper by Btw(g•A[u, ε])). Unfortunately, this auxiliary DGA is related
to our DGLA somewhat inexplicitly.

Theorem 1 implies the existence on CC−• (A) of a structure of an A∞ module over
U(g•A[u, ε]); the induced A∞ module structure over U(g•A) is defined by the standard
operators LD. An explicit linear map

U(g•A[u, ε])⊗U(g•A) CC−• (A)→ CC−• (A)

was defined in [15]. It is likely to coincide with the first term of the above A∞ module
structure.

This paper is, to a large extent, an effort to clarify and streamline our work [4] with
Yu. L. Daletsky. I greatly benefited from conversations with P. Bressler, K. Costello,
V. Dolgushev, E. Getzler, M. Kontsevich, Y. Soibelman, and D. Tamarkin.

1.1. The Hochschild cochain complex. Let A be a graded algebra with unit over a
commutative unital ring K of characteristic zero. A Hochschild d-cochain is a linear map
A⊗d → A. Put, for d ≥ 0,

Cd(A) = Cd(A,A) = HomK(A
⊗d

, A)
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where A = A/K · 1. Put

|D| = (degree of the linear map D) + d .

Put for cochains D and E from C•(A,A)

(D ^ E)(a1, . . . , ad+e) = (−1)|E|
P

i≤d(|ai|+1)D(a1, . . . , ad)E(ad+1, . . . , ad+e);

(D ◦ E)(a1, . . . , ad+e−1)

=
∑
j≥0

(−1)(|E|+1)
Pj

i=1(|ai|+1)D(a1, . . . , aj , E(aj+1, . . . , aj+e), . . . );

[D, E] = D ◦ E − (−1)(|D|+1)(|E|+1)E ◦D .

These operations define the graded associative algebra (C•(A,A) ,^) and the graded
Lie algebra (C•+1(A,A), [ , ]) (cf. [2], [6]). Let

m(a1, a2) = (−1)deg a1 a1a2;

this is a 2-cochain of A (not in C2). Put

δD = [m,D];

(δD)(a1, . . . , ad+1) = (−1)|a1||D|+|D|+1a1D(a2, . . . , ad+1)

+
d∑

j=1

(−1)|D|+1+
Pj

i=1(|ai|+1)D(a1, . . . , ajaj+1, . . . , ad+1)

+ (−1)|D|
Pd

i=1(|ai|+1)D(a1, . . . , ad)ad+1.

One has
δ2 = 0; δ(D ^ E) = δD ^ E + (−1)| deg D|D ^ δE ;

δ[D,E] = [δD,E] + (−1)|D|+1 [D, δE]
(δ2 = 0 follows from [m,m] = 0).

Thus C•(A,A) becomes a complex; we will denote it also by C•(A). The cohomo-
logy of this complex is H•(A,A) or the Hochschild cohomology. We denote it also by
H•(A). The ^ product induces the Yoneda product on H•(A,A) = Ext•A⊗A0(A,A).
The operation [ , ] is the Gerstenhaber bracket [5].

If (A, ∂) is a differential graded algebra then one can define the differential ∂ acting
on A by

∂D = [∂, D]

Theorem 2. [5]. The cup product and the Gerstenhaber bracket induce a Gerstenhaber
algebra structure on H•(A).

For cochains D and Di define a new Hochschild cochain by the following formula of
Gerstenhaber ([5]) and Getzler ([6]):

D0{D1, . . . , Dm}(a1, . . . , an)

=
∑

(−1)
P

k≤ip
(|ak|+1)(|Dp|+1)

D0(a1, . . . , ai1 , D1(ai1+1, . . .), . . . , Dm(aim+1, . . .), . . .).

Proposition 3. One has

(D{E1, . . . , Ek}){F1, . . . , Fl}

=
∑

(−1)
P

q≤ip
(|Ep|+1)(|Fq|+1)

D{F1, . . . , E1{Fi1+1, . . . , }, . . . , Ek{Fik+1, . . . , }, . . . , }.

The above proposition can be restated as follows. For a cochain D let D(k) be the
following k-cochain of the DGA C•(A):

D(k)(D1, . . . , Dk) = D{D1, . . . , Dk}.
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Proposition 4. The map
D 7→

∑
k≥0

D(k)

is a morphism of differential graded algebras

C•(A)→ C•(C•(A)).

1.2. Hochschild chains. Let A be an associative unital dg algebra over a ground ring
K. The differential on A is denoted by δ. Recall that by definition

A = A/K · 1 .

Set
Cp(A,A) = Cp(A) = A⊗A

⊗p
.

Define the differentials δ : C•(A)→ C•(A), b : C•(A)→ C•−1(A), B : C•(A)→ C•+1(A)
as follows:

δ(a0 ⊗ · · · ⊗ ap) =
p∑

i=1

(−1)
P

k<i (|ak|+1)+1(a0 ⊗ · · · ⊗ δai ⊗ · · · ⊗ ap);

(1.2.1)
b(a0 ⊗ . . .⊗ ap) =

p−1∑
k=0

(−1)
Pk

i=0 (|ai|+1)+1a0 . . .⊗ akak+1 ⊗ . . . ap

+ (−1)|ap|+(|ap|+1)
Pp−1

i=0 (|ai|+1)apa0 ⊗ . . .⊗ ap−1;

(1.2.2)

B(a0 ⊗ . . .⊗ ap)

=
p∑

k=0

(−1)
P

i≤k(|ai|+1)
P

i≥k(|ai|+1)1⊗ ak+1 ⊗ . . . ap ⊗ a0 ⊗ . . .⊗ ak .

The complex C•(A) is the total complex of the double complex with the differential b+δ.
Let u be a formal variable of degree two. The complex (C•(A)[[u]], b + δ + uB) is

called the negative cyclic complex of A.
One can define explicitly a product

(1.2.3) sh : C•(A)⊗ C•(A)→ C•(A)

and its extension

(1.2.4) sh+u sh′ : C•(A)[[u]]⊗ C•(A)[[u]]→ C•(A)[[u]]

[13]. When A is commutative, these are morphisms of complexes.

1.3. Pairings between chains and cochains. For a graded algebra A, for D ∈
Cd(A,A), define

(1.3.1) iD(a0 ⊗ . . .⊗ an) = (−1)|D||a0|a0D(a1, . . . , ad)⊗ ad+1 ⊗ . . .⊗ an .

Proposition 5.
[b, iD] = iδD; iDiE = (−1)|D||E|iE^D.

Now, put

(1.3.2)

LD(a0 ⊗ . . .⊗ an) =
n−d∑
k=1

εka0 ⊗ . . .⊗D(ak+1, . . . , ak+d)⊗ . . .⊗ an

+
n∑

k=n+1−d

ηkD(ak+1, . . . , an, a0, . . .)⊗ . . .⊗ ak .

(The second sum in the above formula is taken over all cyclic permutations such that a0

is inside D). The signs are given by

εk = (|D|+ 1)(|a0|+
k∑

i=1

(|ai|+ 1))
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and
ηk = |D|+

∑
i≤k

(|ai|+ 1)
∑
i≥k

(|ai|+ 1).

Proposition 6.

[LD, LE ] = L[D,E]; [b, LD] + LδD = 0; [LD, B] = 0 .

Now let us extend the above operations to the cyclic complex. Define

SD(a0 ⊗ . . .⊗ an) =
∑

j≥0; k≥j+d

εjk1⊗ ak+1 ⊗ . . . a0 ⊗ . . .⊗D(aj+1, . . . , aj+d)⊗ . . .⊗ ak .

(The sum is taken over all cyclic permutations for which a0 appears to the left of D).
The signs are as follows:

εjk = (|D|+ 1)(
n∑

i=k+1

(|ai|+ 1) + |a0|+
j∑

i=1

(|ai|+ 1)).

As we will see later, all the above operations are partial cases of a unified algebraic
structure for chains and cochains, cf. 3.1; the sign rule for this unified construction was
explained in 3.

Proposition 7. [16].

[b + uB, iD + uSD]− iδD − uSδD = LD.

The following statement implies that the differential graded Lie algebra H•+1(A)[u, ε]
with the differential u ∂

∂ε acts on the negative cyclic homology HC−• (A). The extension
of this action to the level of cochains will me the main result of this paper.

Proposition 8. [3]. There exists a linear transformation T (D,E) of the Hochschild
chain complex, bilinear in D, E ∈ C•(A,A), such that

[b + uB, T (D,E)]− T (δD,E)− (−1)|D|T (D, δE)

= [LD, iE + uSE ]− (−1)|D|+1(i[D,E] + uS[D,E]).

2. The module structure on the negative cyclic complex

2.1. Definitions. For a monomial Y = D1 . . . Dn in U(g•A), set

(2.1.1) Y = (. . . ((D1 ◦D2) ◦D3) . . . ◦Dn) ∈ C•(A).

By linearity, extend this to a map U(g•A)→ C•(A). It is easy to see, using induction on
n and Proposition 3, that this map is well-defined [4].

Identify S(g•A) with U(g•A) as coalgebras via the Poincaré-Birkhoff-Witt map. The
augmentation ideals S(g•A)+ and U(g•A)+ also get identified. By

(2.1.2) Y 7→
∑

Y +
1 ⊗ . . .⊗ Y +

n

denote the map

(2.1.3) S(g•A)+ → (S(g•A)+)⊗n

defined as the n-fold coproduct, followed by the nth power of the projection from S(g•A)
to S(g•A)+ along K · 1. Similarly for U(g•A).

Definition 9. For Y ∈ S(g•A)+, define

iY (a0 ⊗ . . .⊗ an) = (−1)|a0||Y |a0Y (a1, . . . , ak)⊗ ak+1 ⊗ . . .⊗ an;

SY (a0 ⊗ . . .⊗ an) =
∑
n≥1

∑
i,j1,...,jn

±1⊗ ak+1 ⊗ . . .⊗ an ⊗ a0 ⊗ . . .

⊗ Y
+

1 (aj1 , . . .)⊗ . . .⊗ Y
+

m(ajm , . . .)⊗ . . .⊗ ak



88 BORIS TSYGAN

where the sign is
m∑

p=1

(|Y +
p |+ 1)

( n∑
i=k+1

(|ai|+ 1) + |a0|+
jp−1∑
i=1

(|ai|+ 1)
)

.

For Y ∈ S(g•A)+ and D ∈ g•A, define

T (D,Y )(a0 ⊗ . . .⊗ an)

=
∑

n≥1,k,j1,...,jn

±D(ak+1, . . . , a0, . . . , Y
+

1 (aj1 , . . .), . . . , Y
+

m(ajm , . . .), . . . , aj)⊗ aj+1

⊗ . . .⊗ ak

where the sign is

(|D|+ 1)
( m∑

p=1

(|Y +
p |+ 1

)
+

m∑
p=1

(|Y +
p |+ 1)

( n∑
i=k+1

(|ai|+ 1) + |a0|+
jp−1∑
i=1

(|ai|+ 1)
)

.

Now introduce the following differential graded algebras. Let C(g•A[u, ε]) be the stan-
dard Chevalley-Eilenberg chain complex of the DGLA g•A[u, ε] over the ring of scalars
K[u]. It carries the Chevalley-Eilenberg differential ∂ and the differentials δ and ∂ε

induced bu the corresponding differentials on g•A[u, ε]. Let C+(g•A[u, ε]) be the augmen-
tation co-ideal, i.e. the sum of all positive exterior powers of our DGLA. As in (2.1.3)
above, the comultiplication defines maps

C+(g•A[u, ε]) 7→ C+(g•A[u, ε])⊗n;

c 7→
∑

c+
1 ⊗ . . .⊗ c+

n .

Definition 10. Define the associative DGLA B(g•A[u, ε]) over K[[u]] as the tensor algebra
of C+(g•A[u, ε]) with the differential d determined by

dc = (δ + ∂)c− 1
2

∑
(−1)|c

+
1 |c+

1 c+
2 + u∂εc.

Definition 11. Let the associative DGA Btw(g•A[u, ε]) over K[[u]] be the tensor algebra
of C+(g•A[u, ε]) with the differential d determined by

dc = (δ + ∂)c− 1
2

∑
(−1)|c

+
1 |c+

1 c+
2 + u

∞∑
n=1

∂εc
+
1 . . . ∂εc

+
n .

Theorem 12. (cf . [4]). The following formulas define an action of the DGA Btw(g•A[u, ε])
on CC−• (A):

D 7→ LD;
εE1 ∧ . . . ∧ εEn 7→ iY + uSY for n ≥ 1;

εE1 ∧ . . . ∧ εEn ∧D 7→ T (D,Y ) for n ≥ 1;
εE1 ∧ . . . ∧ εEn ∧D1 ∧ . . . ∧Dk 7→ 0 for k > 1 .

Here D, Di, Ej ∈ g•A and Y = E1 . . . En ∈ S(g•A)+.

We will start the proof in section 3 below by recalling the A∞ structure from [18],
[20]. Then, in section 4, we will re-write the definitions in term of this A∞ structure.
The proof will follow from the definition of an A∞ module.

3. The A∞ algebra C•(C•(A))

In this section we will construct an A∞ algebra structure on the negative cyclic com-
plex of the DGA of Hochschild cochains of any algebra A. The negative cyclic complex
of A itself will be a right A∞ module over the above A∞ algebra. Our construction is
a direct generalization of the construction of Getzler and Jones [7] who constructed an A∞
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structure on the negative cyclic complex of any commutative algebra C. We adapt their
definition to the case when C is a brace algebra, in particular the Hochschild cochain
complex.

Note that all our constructions can be carried out for a unital A∞ algebra A. The
Hochschild and cyclic complexes of A∞ algebras are introduced in [7]; as shown in [6], the
Hochschild cochain complex becomes an A∞ algebra; all the formulas in this section are
good for the more general case. In fact they are easier to write using the A∞ language,
even if A is a usual algebra.

Recall [14], [17] that an A∞ algebra is a graded vector space C together with a
Hochschild cochain m of total degree 1,

m =
∞∑

n=1

mn

where mn ∈ Cn(C) and
[m,m] = 0.

Consider the Hochschild cochain complex of a graded algebra A as a differential graded
associative algebra (C•(A), ^, δ). Consider the Hochschild chain complex of this dif-
ferential graded algebra. The total differential in this complex is b + δ; the degree of a
chain is given by

|D0 ⊗ . . .⊗Dn| = |D0|+
n∑

i=1

(|Di|+ 1)

where Di are Hochschild cochains.
The complex C•(C•(A)) contains the Hochschild cochain complex C•(A) as a sub-

complex (of zero-chains) and has the Hochschild chain complex C•(A) as a quotient
complex

C•(A) i−→ C•(C•(A)) π−→ C•(A)

(this sequence is not by any means exact). The projection on the right splits if A is
commutative. If not, C•(A) is naturally a graded subspace but not a subcomplex.

Theorem 13. There is an A∞ structure m on C•(C•(A))[[u]] such that:
• All mn are k[[u]]-linear, (u)-adically continuous.
• m1 = b + δ + uB.

For x, y ∈ C•(A):
• (−1)|x|m2(x, y) = (sh+u sh′)(x, y).

For D, E ∈ C•(A):
• (−1)|D|m2(D,E) = D ^ E,
• m2(1⊗D, 1⊗ E) + (−1)|D||E|m2(1⊗ E, 1⊗D) = (−1)|D|1⊗ [D, E],
• m2(D, 1⊗ E) + (−1)(|D|+1)|E|m2(1⊗ E, D) = (−1)|D|+1[D, E].

Here is an explicit description of the above A∞ structure. We define for n ≥ 2

mn = m(1)
n + um(2)

n

where, for
a(k) = D

(k)
0 ⊗ . . .⊗D

(k)
Nk

,

m(1)
n (a(1), . . . , a(n)) =

∑
±mk{. . ., D(0)

0 {. . .}, . . ., D
(n)
0 {. . .}. . .} ⊗ . . .

The space designated by is filled with D
(j)
i , i > 0, in such a way that:

• the cyclic order of each group D
(k)
0 , . . . , D

(k)
Nk

is preserved;
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• any cochain D
(i)
j may contain some of its neighbors on the right inside the braces,

provided that all of these neighbors are of the form D
(p)
q with p < i. The sign

convention: any permutation contributes to the sign; the parity of D
(i)
j is always

|D(i)
j |+ 1

m(2)
n (a(1), . . . , a(n)) =

∑
±1⊗ . . .⊗D

(0)
0 {. . .} ⊗ . . .⊗D

(n)
0 {. . .} ⊗ . . .

The space designated by is filled with D
(j)
i , i > 0, in such a way that:

• the cyclic order of each group D
(k)
0 , . . . , D

(k)
Nk

is preserved;

• any cochain D
(i)
j may contain some of its neighbors on the right inside the braces,

provided that all of these neighbors are of the form D
(p)
q with p < i. The sign

convention: any permutation contributes to the sign; the parity of D
(i)
j is always

|D(i)
j |+ 1.

Remark 14. Let A be a commutative algebra. Then C•(A)[[u]] is not only a subcomplex
but an A∞ subalgebra of C•(C•(A))[[u]]. The A∞ structure on C•(A)[[u]] is the one
from [7].

Proof of the Theorem. First let us prove that m(1) is an A∞ structure on
C•(C•(A)). Decompose it into the sum δ + m̃(1) where δ is the differential induced
by the differential on C•(A). We want to prove that [δ, m̃(1)] + 1

2 [m̃(1), m̃(1)] = 0. We
first compute 1

2 [m̃(1), m̃(1)]. It consists of the following terms:
(1) m{. . . D(1)

0 . . .m{. . . D(i+1)
0 . . . D

(j)
0 . . .} . . . D

(n)
0 . . .} ⊗ . . .

where the only elements allowed inside the inner m{. . .} are D
(q)
p with i + 1 ≤ q ≤ j;

(2) m{. . . D(1)
0 . . .m{. . .} . . . D

(n)
0 . . .} ⊗ . . .

where the only elements allowed inside the inner m{. . .} are D
(q)
p for one and only q

(these are the contributions of the term m̃(1)(a(1), . . . , ba(q), . . . , a(n));
(3) m{. . . D(1)

0 . . . D
(n)
0 . . .} ⊗ . . .⊗m{. . .} ⊗ . . .

with the only requirement that the second m{. . .} should contain elements D
(q)
p and

D
(q′)
p′ with q 6= q′.(The terms in which the second m{. . .} contains D

(q)
p where all q’s are

the same cancel out: they enter twice, as contributions from bm̃(1)(a(1), . . . , a(q), . . . , a(n)

and from m̃(1)(a(1), . . . , ba(1), . . . , a(n)).
The collections of terms (1) and (2) differ from
(0) 1

2 [m,m]{. . . D(1)
0 . . . . . . D

(n)
0 . . .} ⊗ . . .

by the sum of all the following terms:
(1′) terms as in (1), but with a requirement that in the inside m{. . .} an element D

(q)
p

must me present such that q ≤ i or q > j;
(2′) terms as in (1), but with a requirement that the inside m{. . .} must contain

elements D
(q)
p and D

(q′)
p′ with q 6= q′.

Assume for a moment that D
(q)
p are elements of a commutative algebra (or, more

generally, of a C∞ algebra, i.e. a homotopy commutative algebra). Then there is no
δ and m̃(1) = m(1). But the terms (1′) and (2′) all cancel out, as well as (3). Indeed,
they all involve m{. . .} with some shuffles inside, and m is zero on all shuffles. (the last
statement is obvious for a commutative algebra, and is exactly the definition of a C∞
algebra).

Now, we are in a more complex situation where D
(q)
p are Hochschild cochains (or,

more generally, elements of a brace algebra). Recall that all the formulas above assume
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that cochains D
(q)
p may contain their neighbors on the right inside the braces. We claim

that
(A) the terms (1′), (2′) and (3), together with (0), cancel out with the terms consti-

tuting [δ, m̃(1)].
To see this, recall from [12] the following description of brace operations. To any

rooted planar tree with marked vertices one can associate an operation on Hochschild
cochains. The operation

D{. . . E1{. . . {Z1,1, . . . , Z1,k1}, . . .} . . . En{. . . {Zn,1, . . . , Zn,kn} . . .} . . .}
corresponds to a tree where D is at the root, Ei are connected to D by edges, and so
on, with Zij being external vertices. The edge connecting D to Ei is to the left from
the edge connecting D to Ej for i < j, etc. Furthermore, one is allowed to replace some
of the cochains D, Ei, etc. by the cochain m defining the A∞ structure. In this case
we leave the vertex unmarked, and regard the result as an operation whose input are
cochains marking the remaining vertices (at least one vertex should remain marked).

For a planar rooted tree T with marked vertices, denote the corresponding operation
by OT . The following corollary from Proposition 3 was proven in [12]:

[δ,OT ] =
∑
T ′

±OT ′

where T ′ are all the trees from which T can be obtained by contracting an edge. One of
the vertices of this new edge of T ′ inherits the marking from the vertex to which it gets
contracted; the other vertex of that edge remains unmarked. There is one restriction: the
unmarked vertex of T ′ must have more than one outgoing edge. Using this description,
it is easy to see that the claim (A) is true.

Now let us prove that

[δ, m̃(2)] + m̃(1) ◦m(2) + m(2) ◦ m̃(1) = 0.

The summand m(2) ◦ m̃(1) contributes both terms
(1) D

(1)
0 ⊗ · · · ⊗D

(2)
0 ⊗ · · · ⊗D

(n)
0 ⊗ . . .

(2) D
(n)
0 ⊗ · · · ⊗D

(1)
0 ⊗ · · · ⊗D

(n−1)
0 ⊗ . . .

twice, causing them to cancel out. Indeed, bm(2)(a(1), . . . , a(1)) contributes both (1) and
(2); m̃(1)(a(1),m(2)(a(2), . . . , a(n))) contributes (1), and m̃(1)(m(2)(a(1), . . . , a(n−1)), a(n))
contributes (2).

(3) 1⊗ . . . D
(1)
0 ⊗ · · · ⊗m{D(i+1)

0 . . . D
(j)
0 } ⊗ . . .⊗D

(n)
0 ⊗ . . .

where j ≥ i. The summand m̃(1) ◦m(2) consists of terms.
(4) Same as (3), but with the only elements allowed inside the m{. . .} being D

(q)
p with

i + 1 ≤ q ≤ j.
(5) 1⊗ . . . D

(1)
0 ⊗ · · · ⊗m{. . .} ⊗ . . .⊗D

(n)
0 ⊗ . . .

where the only elements allowed inside the m{. . .} are D
(q)
p for one and only q. The sum

of the terms (3), (4), (5) is equal to zero by the same reasoning as in the end of the proof
of [m̃(1), m̃(1)] = 0.

3.1. The A∞ module structure on Hochschild chains. Recall the definition of A∞
modules over A∞ algebras. First, note that for a graded space M, the Gerstenhaber
bracket [ , ] can be extended to the space

Hom(C⊗•, C)⊕Hom(M⊗C⊗•,M).

For a graded k-moduleM, a structure of an A∞ module over an A∞ algebra C onM
is a cochain

µ =
∞∑

n=1

µn, µn ∈ Hom(M⊗C⊗n−1
,M)

such that
[m + µ,m + µ] = 0.
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Theorem 15. On C•(A)[[u]], there exists a structure of an A∞ module over the A∞
algebra C•(C•(A))[[u]] such that:

• All µn are k[[u]]-linear, (u)-adically continuous.
• µ1 = b + uB on C•(A)[[u]].

For a ∈ C•(A)[[u]]:
• µ2(a,D) = (−1)|a||D|+|a|(iD + uSD)a,
• µ2(a, 1⊗D) = (−1)|a||D|LDa.

For a, x ∈ C•(A)[[u]]: (−1)|a|µ2(a, x) = (sh+u sh′)(a, x).

To obtain formulas for the structure of an A∞ module from Theorem 15, one has
to assume that, in the formulas for the A∞ structure from Theorem 13, all D

(1)
j are

elements of A; then one has to replace braces { } by the usual parentheses ( ) symbolizing
evaluation of a multi-linear map at elements of A. The proof is identical to the one for
the A∞ algebra case.

4. Proof of Theorem 12

We start with two key properties of the A∞ structures from section 3.

Proposition 16. Both mk(c1, . . . , ck) and µk(c1, . . . , ck) are equal to zero if one of the
arguments ci, i < k, is of the form 1⊗ . . .

Proposition 17. For Di ∈ g•A, 1 ≤ i ≥ N , let Y = D1 . . . DN ∈ U(g•A). For the A∞
algebra from Theorem 13, put

x • y = (−1)|x|m2(x, y).

Then
(1⊗D1) • . . . • (1⊗DN ) =

∑
n≥1

1⊗ Y
+

1 ⊗ . . .⊗ Y
+

n .

By virtue of Proposition 16, the order of parentheses in the left hand side of the above
formula is irrelevant.

Proposition 16 follows immediately from the definitions, Proposition 17 can be easily
obtained by induction on N .

Now let us rewrite the operators from Theorem 12 in terms of the A∞ structures. We
replace the left module by a right module by the usual rule x · a = (−1)|a||x|a · x.

For n ≥ 1,

x · (εE1 ∧ . . . ∧ εEn) =
∑
n≥1

(−1)|x|µn+1(x, Y
+

1 , . . . , Y
+

n );

for n ≥ 0,

x · (εE1 ∧ . . . ∧ εEn ∧D) =
∑
n≥1

(−1)|x|µn+2(x, Y
+

1 , . . . , Y
+

n , 1⊗D);

for k > 1,
x · (εE1 ∧ . . . ∧ εEn ∧D1 ∧ . . . ∧Dk) = 0.

Here D, Di, Ej ∈ g•A and Y = E1 . . . En ∈ S(g•A)+.

Lemma 18. For Y ∈ S(g•A)+ and D ∈ g•A,

(adDY ) =
∑

D{Y +

1 , Y
+

2 , . . . , Y
+

n } − (−1)(|D|+1)(|Y |+1)Y {D}.

In particular, for Y ∈ S(g•A)+,

(δY ) = δY +
∑

m2{Y
+

1 , Y
+

2 } = δY +
∑

(−1)|Y
+
1 |+1(Y

+

1 ^ Y
+

2 ).

Indeed, let Y = E1 . . . En. For n = 2, the lemma follows from Proposition 3; it general,
it is obtained from the same proposition by induction on n.
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To prove the theorem, we have to show that

(4.0.1)
− (b + uB)(x · c) + ((b + uB)x) · c) + (−1)|x|x · ∂c + (−1)|x|x · δc

+
∑

(−1)|x|+|c
+
1 |+1x · c+

1 · c
+
2 + (−1)|x|u

∑ 1
n!

x · ∂εc1 · . . . · ∂εcn = 0.

Let us start by applying the A∞ identity∑ ∑
0≤i≤n

±µ1(µn+3(x, Y
+

1 , . . . , Y
+

i , 1⊗D,Y
+

i+1, . . . , Y
+

n , T ))) + . . . = 0

where T = 1⊗ F1 ⊗ . . .⊗ Fm is a cycle with respect to b (and, automatically, to B). By
virtue of Proposition 16, all the terms containing 1⊗D in the middle vanish. The only
surviving terms produce the identity∑

±µn−i+1(µi+2(x, Y
+

1 , . . . , Y
+

i , 1⊗D), Y
+

i+1, . . . , Y
+

n , T ))

+
∑
±µn+1(x, Y

+

1 , . . . , Y
+

i {D}, . . . , Y
+

n , T )

+
∑
±µn+2−j(x, Y

+

1 , . . . , D{Y +

i+1, . . . , Y
+

i+j}, . . . , Y
+

n , T ) = 0.

When T = 1 ⊗ F , F ∈ g•A, we obtain, using the first part of Lemma 18, the identity
(4.0.1) for c = εE1 ∧ . . . ∧ εEn ∧ D ∧ F . An identical computation without a T at the
end yields (4.0.1) for c = εE1 ∧ . . . ∧ εEn ∧D. Now apply the A∞ identity∑

±µ1(µn+1(x, Y
+

1 , . . . , Y
+

n )) + . . . = 0.

We obtain ∑
±µ1(µn+1(x, Y

+

1 , . . . , Y
+

n )) +
∑
±µn+1(µ1(x), Y

+

1 , . . . , Y
+

n )

+
∑
±µn+1(x, Y

+

1 , . . . ,m1(Y
+

i ), . . . , Y
+

n )

+
∑
±µn+1(x, Y

+

1 , . . . ,m2{Y
+

i , Y
+

i+1}, . . . , Y
+

n )

+
∑
±µn−i+1(µi+1(x, Y

+

1 , . . . , Y
+

i ), Y
+

i+1, . . . , Y
+

n )

+
∑
±µi+2(x, Y

+

1 , . . . , Y
+

i , 1⊗ Y
+

i+1 ⊗ . . .⊗ Y
+

n )+ = 0.

The first two sums in the above formula correspond to the first two terms in (4.0.1);
the second two sums, by virtue of the second part of Lemma 18, corresponds to the
third term of (4.0.1);the fourth term of (4.0.1) is in our case equal to zero. The fifth
sum corresponds to the fifth term of (4.0.1). Now, consider the last sum in the above
formula. Use Proposition 17, and apply the computation right after (4.0.1) in the case
when T =

∑
1⊗ Y

+

i+2 ⊗ . . .⊗ Y
+

n and D = 1⊗ Y
+

i+1. Then proceed by induction on i.
We see that the sixth sum in the formula corresponds to the sixth term of (4.0.1).

4.1. End of the proof. It remains to pass from Btw(g•A[ε, u]) to U(g•A[ε, u]).

Lemma 19. The formulas

D → D;

εE1 ∧ . . . ∧ εEn 7→
1
n!

∑
σ∈Sn

1
n!

(εEσ1)Eσ2 . . . Eσn ;

D1 ∧ . . . Dk ∧ εE1 ∧ . . . ∧ εEn 7→ 0

for k > 1 or k = 1, n ≥ 1 define a quasi-isomorphism of DGAs

Btw(g•A[ε, u])→ U(g•A[ε, u]).

Proof. The fact that the above map is a morphism of DGAs follows from an easy
direct computation. To show that this is a quasi-isomorphism, consider the increasing
filtration by powers of ε. At the level of graduate quotients, Btw(g•A[ε, u]) becomes the
standard free resolution of (U(g•A[ε, u]), δ), and the morphism is the standard map from
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the resolution to the algebra, therefore a quasi-isomorphism. The statement now follows
from the comparison argument for spectral sequences.

To summarize, we have constructed explicitly a DGA Btw(g•A[ε, u]) and the morphisms
of DGAs

U(g•A[ε, u])← Btw(g•A[ε, u])→ EndK[[u]](CC−• (A))
where the morphism on the left is a quasi-isomorphism. This yields an A∞ morphism

U(g•A[ε, u])→ EndK[[u]](CC−• (A))

and therefore an L∞ morphism

g•A[ε, u]→ EndK[[u]](CC−• (A)).
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