ON WHITNEY CONSTANTS FOR DIFFERENTIABLE FUNCTIONS

T. TUNC

Abstract

Some estimates of the constants in Whitney inequality for the differentiable functions are obtained.

1. Introduction

Let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}, \mathbb{P}_{n}$ be the space of algebraic polynomials of total degree at most $n \in \mathbb{N}_{0}, C[a, b]$ the space of the real valued continuous functions on the closed interval $[a, b]$ equipped with the uniform norm,

$$
\|f\|_{C[a, b]}:=\max _{x \in[a, b]}|f(x)|,
$$

and $C^{r}[a, b], r \in \mathbb{N}_{0}$, be the set all r-times continuously differentiable functions $f \in$ $C[a, b], C^{0}[a, b]:=C[a, b]$. The deviation of $f \in C[a, b]$ from \mathbb{P}_{n} is defined by

$$
E_{n}(f,[a, b]):=\inf _{P_{n} \in \mathbb{P}_{n}}\left\|f-P_{n}\right\|_{C[a, b]} .
$$

The purpose of the paper is to estimate the constants $W(k, r), k \in \mathbb{N}$, in the well known Whitney Inequality: if $f \in C^{r}[a, b]$, then

$$
E_{k+r-1}(f,[a, b]) \leqslant W(k, r)\left(\frac{b-a}{k}\right)^{r} \omega_{k}\left(\frac{b-a}{k}, f^{(r)},[a, b]\right)
$$

where

$$
\omega_{k}(t, g,[a, b])=\sup _{0<h \leqslant t x \in[a, b-k h]} \sup _{h}\left|\Delta_{h}^{k} g(x)\right|
$$

is the k-th modulus of smoothness of the function g, and

$$
\Delta_{h}^{k} g(x)=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} g(x+j h)
$$

is an m-th finite difference of g.
Many mathematicians have tried to estimate the Whitney constants: see, say, [1-8] for the references. Burkill [1] obtained the only known precise result: $W(2,0)=1 / 2$. Whitney [2] proved that $W(k, 0)<\infty$ for each k and gave numerical estimates for $W(k, 0)$ when $k \leqslant 5$. In 1982, Sendov [3] conjectured that $W(k, 0) \leqslant 1$ for all k. However, this conjecture has been proved only for "small" k 's: Whitney [2] for $k=3$, Kryakin [4] for $k=4$ and Zhelnov [5,6] for $k=5,6,7,8$. In general case, the most recent result is due to Gilewicz, Kryakin and Shevchuk [7] who proved that

$$
W(k, 0) \leqslant 2+\frac{1}{e^{2}}, \quad k \in \mathbb{N}
$$

It follows from Lemma 1, below, which belongs to Zhuk and Natanson [8] that

$$
W(k, 1) \leqslant \frac{1}{e \sigma_{k}}, \quad k \in \mathbb{N}
$$

where $\sigma_{k}=1+1 / 2+\cdots+1 / k$. For $r \geqslant 2$ the estimates of $W(k, r)$ are not known, except those, that readily follow from the estimates $W(k, 0)$ and $W(k, 1)$.

The main results of the paper are the following.
Theorem 1. We have

$$
W(k, 2) \leqslant\left(\frac{2}{e \sigma_{k+1}}\right)^{2}, \quad k \in \mathbb{N}
$$

Theorem 1 follows from Theorem 2.
Theorem 2. For any $f \in C^{2}[-1,1]$, there is a polynomial $P_{k+1} \in \mathbb{P}_{k+1}$ such that

$$
\left|f(x)-P_{k+1}(x)\right| \leqslant \frac{k^{k}}{2^{k+1} k!}\left(\left(1-x^{2}\right)|\Pi(x)|+\frac{1}{2^{k+1}}\right) \omega_{k}\left(\frac{2}{k}, f^{\prime \prime},[-1,1]\right)
$$

$$
x \in[-1,1]
$$

where $\Pi(x):=\prod_{j=0}^{k}(x+1-2 j / k)$.
Remark 1. The method of proof of Theorem 1 carries over to the case $r=3$ and $r=4$, so that one can obtain the inequality:

$$
W(k, r) \leqslant\left(\frac{r}{e \sigma_{k+r-1}}\right)^{r}, \quad k \in \mathbb{N} .
$$

Theorem 3. For $r \in \mathbb{N}$, we have

$$
W(1, r) \leq \frac{1}{r!2^{2 r+1} \cos \frac{\pi}{2(r+1)}}
$$

Remark 2. Similar arguments in the proof of Theorem 3 provide

$$
W(2, r) \leq \frac{1}{r!2^{r^{*}} \cos ^{2} \frac{\pi}{2 r^{*}}}
$$

where $r^{*}=2[(r+1) / 2]+1$, where $[a]$ stands for the integral part of a.
We prove Theorems 1-3 in section 3.

2. Auxiliary Results

In this section we shall give some auxiliary facts and notations which we will need in the proofs of the theorems. First let us give the following lemma which we will generalize in the end of this section.
Lemma 1. [8, Lemma 3]. Let f be an absolutely continuous function on $[a, b]$ and $x_{j}=a+j h, j=0,1,2, \ldots, k, h=\frac{b-a}{k}$. Then

$$
f(x)-L\left(x ; f ; x_{0}, x_{1}, \ldots, x_{k}\right)=\frac{\prod_{j=0}^{k}\left(x-x_{j}\right)}{h^{k} k!} \int_{0}^{1} \Delta_{u h}^{k} f^{\prime}(a u+x(1-u)) d u
$$

Let $k \in \mathbb{N}$ and $\left\{y_{j}\right\}_{j=0}^{k}$ be a collection of distinct points $y_{j} \in[a, b]$. Recall, the divided difference of a function $g:[a, b] \rightarrow \mathbb{R}$ is defined by

$$
\left[y_{0}, y_{1}, \ldots, y_{k} ; g\right]=\sum_{j=0}^{k} \frac{g\left(y_{j}\right)}{\prod_{i=0, i \neq j}^{k}\left(y_{j}-y_{i}\right)}
$$

Denote by $L\left(x ; g ; y_{0}, y_{1}, \ldots, y_{k}\right)$ the Lagrange polynomial of degree $\leqslant k$, that interpolates the function g at the points y_{j}. Then, as well known

$$
g(x)-L\left(x ; g ; y_{0}, y_{1}, \ldots, y_{k}\right)=\left[x, y_{0}, y_{1}, \ldots, y_{k} ; g\right] \prod_{j=0}^{k}\left(x-y_{j}\right), \quad x \neq y_{j}, \quad j=\overline{0, k}
$$

Now, let $n \in \mathbb{N}$ and $\left\{x_{i}\right\}_{i=0}^{n}$ be a collection of points $x_{i} \in[a, b]$ that may coincide. Let $\left\{y_{j}\right\}_{j=0}^{k}$ be a collection of distinct points $y_{j} \in[a, b]$ such that each of $n+1$ points x_{i} coincides with one of the points y_{j}. Let a point y_{j} coincides exactly with s_{j} points x_{i}, then the number $p_{j}=s_{j}-1$ is called "multiplicity" of the point y_{j}. Clearly, $\sum_{j=0}^{k} s_{j}=n+1$, that is $\sum_{j=0}^{k} p_{j}=n-k$. Let a function $g \in C[a, b]$ have p_{j} first derivatives at a neighborhood of each point y_{j}. The Lagrange-Hermite divided difference of order n of the function g at the points $x_{i}, i=0,1, \ldots, n$, is defined by

$$
\left[x_{0}, x_{1}, \ldots, x_{n} ; g\right]:=\left(\prod_{j=0}^{k} \frac{1}{p_{j}!}\right) \frac{\partial^{n-k}}{\partial y_{0}^{p_{0}} \partial y_{1}^{p_{1}} \cdots \partial y_{k}^{p_{k}}}\left[y_{0}, y_{1}, \ldots, y_{k} ; g\right]
$$

For $n=0$ set $\left[x_{0} ; g\right]=g\left(x_{0}\right)$. The Lagrange-Hermite divided differences possess the same properties as the ordinary divided differences. Say, if $x_{0} \neq x_{n}$, then

$$
\begin{equation*}
\left[x_{0}, x_{1}, \ldots, x_{n} ; g\right]=\frac{\left[x_{1}, x_{2}, \ldots, x_{n} ; g\right]-\left[x_{0}, x_{1}, \ldots, x_{n-1} ; g\right]}{\left(x_{n}-x_{0}\right)} \tag{1}
\end{equation*}
$$

if c is a constant and $g(x)=(x-c) f(x)$ then

$$
\begin{equation*}
\left[x_{0}, x_{1}, \ldots, x_{n} ; g\right]=\left[x_{1}, x_{2}, \ldots, x_{n} ; f\right]+\left(x_{0}-c\right)\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right] \tag{2}
\end{equation*}
$$

and then, let $L\left(x ; g ; x_{0}, x_{1}, \ldots, x_{n}\right)$ be the Lagrange-Hermite polynomial of degree $\leqslant n$, that interpolates the function g at the points $y_{0}, y_{1}, \ldots, y_{k}$ and interpolates all first p_{j} derivatives of g at the each point y_{j}. Then

$$
\begin{align*}
& g(x)-L\left(x ; g ; x_{0}, x_{1}, \ldots, x_{k}\right)=\left[x, x_{0}, x_{1}, \ldots, x_{k} ; g\right] \prod_{j=0}^{k}\left(x-x_{j}\right) \tag{3}\\
& x \neq x_{j}, \quad j=\overline{0, n}
\end{align*}
$$

Lemma 2. Let $r \in \mathbb{N}_{0}, n \in \mathbb{N}, r \leq n$ and $\left\{x_{i}\right\}_{i=0}^{n}$ be an arbitrary collection of points $x_{i} \in[a, b]$. If, a function $f \in C[a, b]$ has the the $r-1$-st absolutely continuous derivative on $[a, b]$, then

$$
\begin{equation*}
\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right]=\left[x_{r}, x_{r+1}, \ldots, x_{n} ; f_{r}\right] \tag{4}
\end{equation*}
$$

where $f_{0}(x):=f(x), \quad f_{1}(x):=\int_{0}^{1} f^{\prime}\left(x t+(1-t) x_{0}\right) d t$ and, for $r>1$,

$$
\begin{aligned}
f_{r}(x):=\int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{r-1}} f^{(r)}\left(x t_{r}+\left(t_{r-1}-t_{r}\right) x_{r-1}+\cdots+\left(t_{1}-t_{2}\right) x_{1}\right. & \left.+\left(1-t_{1}\right) x_{0}\right) \\
& \times d t_{r} \cdots d t_{2} d t_{1}
\end{aligned}
$$

Proof. The proof is by the induction on r. If $r=0$, then the equality (4) is trivial. We assume that it has been established for a number $r-1$, that is

$$
\begin{equation*}
\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right]=\left[x_{r-1}, x_{r}, \ldots, x_{n} ; f_{r-1}\right] \tag{5}
\end{equation*}
$$

Since

$$
f_{r-1}(x)=(x-c) f_{r}(x)+c_{1}
$$

where $c=x_{r-1}$ and $c_{1}=f_{r-1}\left(x_{r-1}\right)$, then for the number r, (4) follows from (2) and (5).

The same arguments provide
Lemma 3. Let $r_{0} \in \mathbb{N}, n \in \mathbb{N}, r_{0} \leq n$, and $\left\{x_{i}\right\}_{i=0}^{n}$ be a collection of points $x_{i} \in[a, b]$ such that at most $r_{0}+1$ points x_{i} may coincide. If a function $f \in C[a, b]$ has the $r-1$-st absolutely continuous derivative on $[a, b]$, then (4) holds for each $r=0,1, \ldots, r_{0}$.

The following lemma generalizes Lemma 1 (which is for $r=1$) and follows immediately from previous lemma and equality (3).

Lemma 4. Let $r \in \mathbb{N}, n \in \mathbb{N}, r \leq n$ and $\left\{x_{i}\right\}_{i=1}^{n}$ be a collection of points $x_{i} \in[a, b]$ such that for $j=r, r+1, \ldots, n$

$$
x_{j}:=x_{r}+h(j-r),
$$

where $h=2 /(n-r)$. If $f \in C^{r}[a, b]$, then

$$
f(x)-L\left(x ; f ; x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\prod_{j=1}^{n}\left(x-x_{j}\right)}{h^{n-r}(n-r)!} \int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{r-1}} \Delta_{h t_{r}}^{k} g\left(x_{r}\right) d t_{r} \cdots d t_{2} d t_{1}
$$

where $g(u)=f^{(r)}\left(u t_{r}+\left(t_{r-1}-t_{r}\right) x_{r-1}+\cdots+\left(t_{1}-t_{2}\right) x_{1}+\left(1-t_{1}\right) x\right)$.

3. Proofs of Theorems

From now on $[a, b]:=[-1,1]$. For simplicity of notations, we write $\|g\|$ and $\omega_{k}(g)$ instead of $\|g\|_{C[-1,1]}$ and $\omega_{k}(2 / k, g,[-1,1])$, respectively.

Proof of Theorem 2. Let $x_{j}=-1+2 j / k$ and L_{k+2} be the Hermite-Lagrange interpolation polynomial of degree $\leqslant k+2$, which interpolates f at the points $x_{0}, x_{0}, x_{1}, x_{2}, \ldots$, $x_{k-2}, x_{k-1}, x_{k}, x_{k}$, that is $L_{k+2}\left(x_{j}\right)=f\left(x_{j}\right)$ for $j=0,1, \ldots, k, L_{k+2}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$ and $L_{k+2}^{\prime}\left(x_{k}\right)=f^{\prime}\left(x_{k}\right)$. By Newton's formula, the coefficient A_{k+2} of x^{k+2} in the polynomial L_{k+2} is

$$
\begin{equation*}
A_{k+2}=\left[x_{0}, x_{0}, x_{1}, x_{2}, \ldots, x_{k+2}, x_{k-1}, x_{k}, x_{k} ; f\right] \tag{6}
\end{equation*}
$$

Consider the polynomial

$$
P_{k+1}(x)=L_{k+2}(x)-\frac{A_{k+2}}{2^{k+1}} T_{k+2}(x)
$$

of degree $\leqslant k+1$, where $T_{k+2}(x)=\cos ((k+2) \arccos x)$ is Chebyshev polynomial. The polynomial P_{k+1} is the desired one in Theorem 2. Indeed, since $\left\|T_{k+2}\right\|=1$, we conclude that

$$
\begin{equation*}
\left|f(x)-P_{k+1}(x)\right| \leqslant\left|f(x)-L_{k+2}(x)\right|+\frac{\left|A_{k+2}\right|}{2^{k+1}}:=i_{1}+i_{2} \tag{7}
\end{equation*}
$$

First we estimate i_{2}. Using (6) and Lemma 3, we obtain

$$
A_{k+2}=\int_{0}^{1} \int_{0}^{t_{1}}\left[x_{0}, x_{1}, \ldots, x_{k} ; g\right] d t_{2} d t_{1}
$$

where $g(u)=f^{\prime \prime}\left(u t_{2}+\left(t_{1}-t_{2}\right) x_{k}+\left(1-t_{1}\right) x_{0}\right)$. Since

$$
\begin{aligned}
\left|\left[x_{0}, x_{1}, \ldots, x_{k} ; g\right]\right| & =\left|\frac{k^{k}}{2^{k} k!} \Delta_{2 / k}^{k} g\left(x_{0}\right)\right| \leqslant \frac{k^{k}}{2^{k} k!} \omega_{k}\left(\frac{2}{k}, g,[-1,1]\right) \\
& =\frac{k^{k}}{2^{k} k!} \omega_{k}\left(\frac{2}{k} t_{2}, f^{\prime \prime},[-1,1]\right) \leqslant \frac{k^{k}}{2^{k} k!} \omega_{k}\left(f^{\prime \prime}\right)
\end{aligned}
$$

then

$$
\begin{equation*}
i_{2}=\frac{\left|A_{k+2}\right|}{2^{k+1}} \leqslant \frac{k^{k}}{2^{2 k+1} k!} \int_{0}^{1} \int_{0}^{t_{1}} \omega_{k}\left(f^{\prime \prime}\right) d t_{2} d t_{1}=\frac{k^{k}}{4^{k+1} k!} \omega_{k}\left(f^{\prime \prime}\right) \tag{8}
\end{equation*}
$$

Let us now estimate i_{1}. By (1), (3) and the Lemma 3, we obtain

$$
\begin{aligned}
f & (x)-L_{k+2}(x)=\left(x^{2}-1\right) \Pi(x)\left[x_{0}, x_{0}, x_{1}, \ldots, x_{k-1}, x_{k}, x_{k}, x ; f\right] \\
& =\frac{\left(x^{2}-1\right) \Pi(x)}{2} \\
& \times\left(\left[x_{0}, x_{1}, \ldots, x_{k-1}, x_{k}, x_{k}, x ; f\right]-\left[x_{0}, x_{0}, x_{1}, \ldots, x_{k-1}, x_{k}, x ; f\right]\right) \\
& =\frac{\left(x^{2}-1\right) \Pi(x)}{2} \\
& \times\left(\int_{0}^{1} \int_{0}^{t_{1}}\left[x_{0}, x_{1}, \ldots, x_{k} ; g_{1}\right] d t_{2} d t_{1}-\int_{0}^{1} \int_{0}^{t_{1}}\left[x_{0}, x_{1}, \ldots, x_{k} ; g_{-1}\right] d t_{2} d t_{1}\right)
\end{aligned}
$$

where $g_{l}(u)=f^{\prime \prime}\left(u t_{2}+\left(t_{1}-t_{2}\right) x+\left(1-t_{1}\right) l\right), l=-1,1$. Hence

$$
\left|f(x)-L_{k+2}(x)\right|
$$

$$
\begin{equation*}
\leq \frac{\left(1-x^{2}\right)|\Pi(x)|}{2} \int_{0}^{1} \int_{0}^{t_{1}}\left(\left|\left[x_{0}, x_{1}, \ldots, x_{k} ; g_{1}\right]\right|+\left|\left[x_{0}, x_{1}, \ldots, x_{k} ; g_{-1}\right]\right|\right) d t_{2} d t_{1} \tag{9}
\end{equation*}
$$

As in the estimation of i_{2}, the inequality (9) gives

$$
i_{1}=\left|f(x)-L_{k+2}(f, x)\right| \leqslant \frac{k^{k}\left(1-x^{2}\right)|\Pi(x)|}{2^{k+1} k!} \omega_{k}\left(f^{\prime \prime}\right)
$$

After adding this inequality to (8), by (7), we obtain the desired assertion.

Proof of Theorem 1. In order to prove Theorem 1 it is enough to check the inequality

$$
\begin{equation*}
\frac{k^{k}}{2^{k+1} k!}\left(\left(1-x^{2}\right)|\Pi(x)|+\frac{1}{2^{k+1}}\right) \leqslant\left(\frac{4}{e k \sigma_{k+1}}\right)^{2}, \quad x \in[-1,1] \tag{10}
\end{equation*}
$$

We first prove the estimate

$$
\begin{equation*}
\frac{k^{k}\left|\left(x^{2}-1\right) \Pi(x)\right|}{2^{k+1} k!} \leqslant\left(\frac{4}{e\left(k \sigma_{k}+1\right)}\right)^{2}, \quad x \in[-1,1] \tag{11}
\end{equation*}
$$

Indeed, put $h=2 / k$. Since, for $-1+h \leq y \leq-h / 2$ and $k \geq 4$,

$$
\left|\frac{\left.\left((y+h)^{2}-1\right)\right) \Pi(y+h)}{\left.\left(y^{2}-1\right)\right) \Pi(y)}\right|=\frac{(y+h+1)\left(1-(y+h)^{2}\right)}{(1-y)\left(1-y^{2}\right)} \leq 1
$$

then

$$
\left.\left.\max _{x \in[-1,1]} \mid\left(x^{2}-1\right)\right) \Pi(x)\left|=\max _{x \in[-1,-1+2 h]}\right|\left(x^{2}-1\right)\right) \Pi(x) \mid .
$$

If $-1<x<-1+2 / k$ and $u=k(x+1) / 2$ then $0<u<1$ and

$$
\begin{aligned}
\frac{k^{k}}{2^{k+1} k!}\left|\left(x^{2}-1\right) \Pi(x)\right| & =\frac{4 u^{2}\left(1-\frac{u}{1}\right)\left(1-\frac{u}{2}\right) \cdots\left(1-\frac{u}{k-1}\right)\left(1-\frac{u}{k}\right)^{2}}{k^{2}} \\
& \leqslant \frac{4 u^{2}\left[1-\frac{\left(\sigma_{k}+1 / k\right) u}{k+1}\right]^{k+1}}{k^{2}} \leqslant \frac{4 u^{2} e^{-\left(\sigma_{k}+1 / k\right) u}}{k^{2}} \\
& \leqslant\left(\frac{4}{\left(k \sigma_{k}+1\right) e}\right)^{2}
\end{aligned}
$$

On the other hand, applying similar arguments to the case $-1+h<x<-1+2 h$, we obtain (11). Now, taking into account (11) and the inequality $k!\geqslant k^{k} e^{-k} \sqrt{2 \pi k}$ which follows from Stirling's formula, we get

$$
W(k, 2) \leqslant\left(\frac{2}{e\left(\sigma_{k}+1 / k\right)}\right)^{2}+\frac{\sqrt{k} e^{k}}{4^{k+2} \sqrt{2 \pi}}
$$

It is easy to check that

$$
\left(\frac{2}{e\left(\sigma_{k}+1 / k\right)}\right)^{2}+\frac{\sqrt{k} e^{k}}{4^{k+2} \sqrt{2 \pi}} \leqslant\left(\frac{2}{e \sigma_{k+1}}\right)^{2}
$$

say, for $k \geqslant 33$. Thus, (10) is proved for $k \geqslant 33$. For $1 \leq k \leq 4$ and $10 \leq k<33$ we check (10) by the direct calculations. For $4<k<10$ we also use the direct calculations, replacing " $1 / 2^{k+1} "$ by $"\left(1 / 2^{k+1}\right)\left|T_{k+2}(x)\right| "$ in (10).

Proof of Theorem 3. Denote by $y_{j}=\cos \frac{(2 j+1) \pi}{2(r+1)}, j=0,1, \ldots, r$, the zeros of the Chebyshev polynomial T_{r-1}. Let L_{r} be the Lagrange interpolation polynomial of f at the points y_{j}. Then it follows from (3) and Lemma 3, that

$$
\begin{aligned}
\left|f(x)-L_{r}(x)\right| & =\left|\frac{T_{r+1}(x)}{2^{r}}\left[x, x_{0}, x_{1}, \ldots, x_{r} ; f\right]\right| \\
& \leq \frac{1}{2^{r}}\left|\left[x_{0}, x_{r} ; f_{r}\right]\right|=\frac{1}{2^{r}\left(x_{0}-x_{r}\right)}\left|f_{r}\left(x_{0}\right)-f_{r}\left(x_{r}\right)\right| \\
& \leq \frac{1}{2^{r+1} \cos \frac{\pi}{2(r+1)}}\left|\int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{r-1}} \omega\left(\left(x_{0}-x_{r}\right) t_{r}, f^{(r)},[-1,1]\right) d t_{r} \cdots d t_{2} d t_{1}\right| \\
& \leq \frac{1}{r!2^{r+1}} \cos \frac{\pi}{2(r+1)} \omega\left(f^{(r)}\right)
\end{aligned}
$$

where

$$
\begin{array}{r}
f_{r}(u):=\int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{r-1}} f^{(r)}\left(u t_{r}+\left(t_{r-1}-t_{r}\right) x_{r-1}+\cdots+\left(t_{1}-t_{2}\right) x_{1}+\left(1-t_{1}\right) x\right) \\
\times d t_{r} \cdots d t_{2} d t_{1}
\end{array}
$$

Acknowledgments. The author thanks Prof. I. A. Shevchuk for the formulation of the problem and fruitful discussions on this paper.

References

1. H. Burkill, Cesaro-Perron almost periodic functions, Proc. London Math. Soc. 3 (1952), 150174.
2. H. Whitney, On the functions with bounded n-differences, J. Math. Pures Appl. 36 (1957), 67-95.
3. Bl. Sendov, On the constants of H. Whitney, C. R. Acad. Bulgare Sci. 35 (1982), 1-11.
4. Yu. V. Kryakin, On functions with a bounded n-th difference, Izv. Ross. Akad. Nauk, Ser. Mat. 61 (1997), no. 2, 95-100. (Russian); English transl.: Izv. Math. 61 (1997), no. 2, 609-611.
5. O. D. Zhelnov, Whitney constants are bounded by 1 for $k=5,6,7$, East J. Approx. 8 (2002), no. 1, 1-14.
6. O. D. Zhelnov, Whitney inequality and its generalization, Dissertation, Inst. Math. Ukrain. Acad. Sci., Kyiv, 2004.
7. J. Gilewicz, Yu. V. Kryakin, and I. A. Shevchuk, Boundedness by 3 of the Whitney interpolation constants, J. Approx. Theory 119 (2002), 271-290.
8. V. V. Zhuk, G. I. Natanson, On the theory of cubic splines with equidistant nodes, Vestnik Leningrad Univ. 1 (1984), 5-11.

Mersin University, Turkey; Kyiv National Taras Shevchenko University, Ukraine
E-mail address: ttunc@mersin.edu.tr

