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ON WHITNEY CONSTANTS FOR DIFFERENTIABLE FUNCTIONS

T. TUNC

Abstract. Some estimates of the constants in Whitney inequality for the differen-
tiable functions are obtained.

1. Introduction

Let N0 := N ∪ {0}, Pn be the space of algebraic polynomials of total degree at most
n ∈ N0, C [a, b] the space of the real valued continuous functions on the closed interval
[a, b] equipped with the uniform norm,

‖f‖C[a,b] := max
x∈[a,b]

|f (x)| ,

and Cr [a, b], r ∈ N0, be the set all r-times continuously differentiable functions f ∈
C [a, b], C0 [a, b] := C [a, b]. The deviation of f ∈ C [a, b] from Pn is defined by

En (f, [a, b]) := inf
Pn∈Pn

‖f − Pn‖C[a,b] .

The purpose of the paper is to estimate the constants W (k, r), k ∈ N, in the well
known Whitney Inequality: if f ∈ Cr [a, b], then

Ek+r−1 (f, [a, b]) 6 W (k, r)
(

b− a

k

)r

ωk

(
b− a

k
, f (r), [a, b]

)
,

where
ωk (t, g, [a, b]) = sup

0<h6t
sup

x∈[a,b−kh]

∣∣∆k
hg (x)

∣∣
is the k-th modulus of smoothness of the function g, and

∆k
hg (x) =

k∑
j=0

(−1)k−j

(
k
j

)
g (x + jh)

is an m-th finite difference of g.
Many mathematicians have tried to estimate the Whitney constants: see, say, [1–8]

for the references. Burkill [1] obtained the only known precise result: W (2, 0) = 1/2.
Whitney [2] proved that W (k, 0) < ∞ for each k and gave numerical estimates for
W (k, 0) when k 6 5. In 1982, Sendov [3] conjectured that W (k, 0) 6 1 for all k.
However, this conjecture has been proved only for ”small” k’s: Whitney [2] for k = 3,
Kryakin [4] for k = 4 and Zhelnov [5,6] for k = 5, 6, 7, 8. In general case, the most recent
result is due to Gilewicz, Kryakin and Shevchuk [7] who proved that

W (k, 0) 6 2 +
1
e2

, k ∈ N.

It follows from Lemma 1, below, which belongs to Zhuk and Natanson [8] that

W (k, 1) 6
1

eσk
, k ∈ N,
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where σk = 1+1/2+ · · ·+1/k. For r > 2 the estimates of W (k, r) are not known, except
those, that readily follow from the estimates W (k, 0) and W (k, 1).

The main results of the paper are the following.

Theorem 1. We have

W (k, 2) 6

(
2

eσk+1

)2

, k ∈ N.

Theorem 1 follows from Theorem 2.

Theorem 2. For any f ∈ C2 [−1, 1], there is a polynomial Pk+1 ∈ Pk+1 such that

|f (x)− Pk+1 (x)| 6 kk

2k+1k!

((
1− x2

)
|Π (x) |+ 1

2k+1

)
ωk

(
2
k

, f ′′, [−1, 1]
)

,

x ∈ [−1, 1] ,

where Π (x) :=
∏k

j=0 (x + 1− 2j/k).

Remark 1. The method of proof of Theorem 1 carries over to the case r = 3 and r = 4,
so that one can obtain the inequality:

W (k, r) 6

(
r

eσk+r−1

)r

, k ∈ N.

Theorem 3. For r ∈ N, we have

W (1, r) ≤ 1
r!22r+1 cos π

2(r+1)

.

Remark 2. Similar arguments in the proof of Theorem 3 provide

W (2, r) ≤ 1
r!2r∗ cos2 π

2r∗
,

where r∗ = 2 [(r + 1)/2] + 1, where [a] stands for the integral part of a.

We prove Theorems 1–3 in section 3.

2. Auxiliary Results

In this section we shall give some auxiliary facts and notations which we will need in
the proofs of the theorems. First let us give the following lemma which we will generalize
in the end of this section.

Lemma 1. [8, Lemma 3]. Let f be an absolutely continuous function on [a, b] and
xj = a + jh, j = 0, 1, 2, . . . , k, h = b−a

k . Then

f (x)− L (x; f ;x0, x1, . . . , xk) =

k∏
j=0

(x− xj)

hkk!

1∫
0

∆k
uhf ′ (au + x (1− u)) du.

Let k ∈ N and {yj}k
j=0 be a collection of distinct points yj ∈ [a, b]. Recall, the divided

difference of a function g : [a, b] → R is defined by

[y0, y1, . . . , yk; g] =
k∑

j=0

g (yj)∏k
i=0,i 6=j (yj − yi)

.

Denote by L (x; g; y0, y1, . . . , yk) the Lagrange polynomial of degree 6 k, that interpolates
the function g at the points yj . Then, as well known

g (x)− L (x; g; y0, y1, . . . , yk) = [x, y0, y1, . . . , yk; g]
k∏

j=0

(x− yj), x 6= yj , j = 0, k.
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Now, let n ∈ N and {xi}n
i=0 be a collection of points xi ∈ [a, b] that may coincide. Let

{yj}k
j=0 be a collection of distinct points yj ∈ [a, b] such that each of n + 1 points xi

coincides with one of the points yj . Let a point yj coincides exactly with sj points xi, then
the number pj = sj − 1 is called “multiplicity” of the point yj . Clearly,

∑k
j=0 sj = n+1,

that is
∑k

j=0 pj = n − k. Let a function g ∈ C [a, b] have pj first derivatives at a
neighborhood of each point yj . The Lagrange–Hermite divided difference of order n of
the function g at the points xi, i = 0, 1, . . . , n, is defined by

[x0, x1, . . . , xn; g] :=
( k∏

j=0

1
pj !

)
∂n−k

∂yp0
0 ∂yp1

1 · · · ∂ypk

k

[y0, y1, . . . , yk; g] .

For n = 0 set [x0; g] = g (x0). The Lagrange–Hermite divided differences possess the
same properties as the ordinary divided differences. Say, if x0 6= xn, then

(1) [x0, x1, . . . , xn; g] =
[x1, x2, . . . , xn; g]− [x0, x1, . . . , xn−1; g]

(xn − x0)
,

if c is a constant and g(x) = (x− c)f(x) then

(2) [x0, x1, . . . , xn; g] = [x1, x2, . . . , xn; f ] + (x0 − c)[x0, x1, . . . , xn; f ],

and then, let L (x; g;x0, x1, . . . , xn) be the Lagrange–Hermite polynomial of degree 6 n,
that interpolates the function g at the points y0, y1, . . . , yk and interpolates all first pj

derivatives of g at the each point yj . Then

(3) g (x)− L (x; g;x0, x1, . . . , xk) = [x, x0, x1, . . . , xk; g]
k∏

j=0

(x− xj),

x 6= xj , j = 0, n.

Lemma 2. Let r ∈ N0, n ∈ N, r ≤ n and {xi}n
i=0 be an arbitrary collection of points

xi ∈ [a, b]. If, a function f ∈ C [a, b] has the the r− 1-st absolutely continuous derivative
on [a, b], then

(4) [x0, x1, . . . , xn; f ] = [xr, xr+1, . . . , xn; fr],

where f0(x) := f(x), f1(x) :=
1∫
0

f ′(xt + (1− t)x0)dt and, for r > 1,

fr(x) :=

1∫
0

t1∫
0

· · ·
tr−1∫
0

f (r)(xtr + (tr−1 − tr)xr−1 + · · ·+ (t1 − t2)x1 + (1− t1)x0)

× dtr · · · dt2dt1.

Proof. The proof is by the induction on r. If r = 0, then the equality (4) is trivial. We
assume that it has been established for a number r − 1, that is

(5) [x0, x1, . . . , xn; f ] = [xr−1, xr, . . . , xn; fr−1].

Since
fr−1(x) = (x− c)fr(x) + c1

where c = xr−1 and c1 = fr−1(xr−1), then for the number r, (4) follows from (2)
and (5). �

The same arguments provide

Lemma 3. Let r0 ∈ N, n ∈ N, r0 ≤ n, and {xi}n
i=0 be a collection of points xi ∈ [a, b]

such that at most r0 +1 points xi may coincide. If a function f ∈ C [a, b] has the r−1-st
absolutely continuous derivative on [a, b], then (4) holds for each r = 0, 1, . . . , r0.
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The following lemma generalizes Lemma 1 (which is for r = 1) and follows immediately
from previous lemma and equality (3).

Lemma 4. Let r ∈ N, n ∈ N, r ≤ n and {xi}n
i=1 be a collection of points xi ∈ [a, b] such

that for j = r, r + 1, . . . , n

xj := xr + h(j − r),

where h = 2/(n− r). If f ∈ Cr[a, b], then

f (x)− L (x; f ;x1, x2, . . . , xn) =

n∏
j=1

(x− xj)

hn−r(n− r)!

1∫
0

t1∫
0

· · ·
tr−1∫
0

∆k
htr

g(xr)dtr · · · dt2dt1,

where g(u) = f (r) (utr + (tr−1 − tr) xr−1 + · · ·+ (t1 − t2) x1 + (1− t1) x).

3. Proofs of Theorems

From now on [a, b] := [−1, 1]. For simplicity of notations, we write ‖g‖ and ωk (g)
instead of ‖g‖C[−1,1] and ωk (2/k, g, [−1, 1]), respectively.

Proof of Theorem 2. Let xj = −1 + 2j/k and Lk+2 be the Hermite–Lagrange interpola-
tion polynomial of degree 6 k + 2, which interpolates f at the points x0, x0, x1, x2, . . . ,
xk−2, xk−1, xk, xk, that is Lk+2(xj) = f (xj) for j = 0, 1, . . . , k, L′

k+2 (x0) = f ′ (x0) and
L′

k+2 (xk) = f ′ (xk). By Newton’s formula, the coefficient Ak+2 of xk+2 in the polynomial
Lk+2 is

(6) Ak+2 = [x0, x0, x1, x2, . . . , xk+2, xk−1, xk, xk; f ] .

Consider the polynomial

Pk+1 (x) = Lk+2 (x)− Ak+2

2k+1
Tk+2 (x)

of degree 6 k + 1, where Tk+2(x) = cos ((k + 2) arccos x) is Chebyshev polynomial. The
polynomial Pk+1 is the desired one in Theorem 2. Indeed, since ‖Tk+2‖ = 1, we conclude
that

(7) |f (x)− Pk+1 (x)| 6 |f (x)− Lk+2 (x)|+ |Ak+2|
2k+1

:= i1 + i2.

First we estimate i2. Using (6) and Lemma 3, we obtain

Ak+2 =

1∫
0

t1∫
0

[x0, x1, . . . , xk; g] dt2dt1,

where g (u) = f ′′ (ut2 + (t1 − t2)xk + (1− t1)x0). Since

|[x0, x1, . . . , xk; g]| =
∣∣∣∣ kk

2kk!
∆k

2/k
g (x0)

∣∣∣∣ 6
kk

2kk!
ωk

(
2
k

, g, [−1, 1]
)

=
kk

2kk!
ωk

(
2
k

t2, f
′′, [−1, 1]

)
6

kk

2kk!
ωk (f ′′) ,

then

(8) i2 =
|Ak+2 |
2k+1

6
kk

22k+1k!

1∫
0

t1∫
0

ωk (f ′′) dt2dt1 =
kk

4k+1k!
ωk (f ′′) .
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Let us now estimate i1. By (1), (3) and the Lemma 3, we obtain

f (x)− Lk+2 (x) =
(
x2 − 1

)
Π (x) [x0, x0, x1, . . . , xk−1, xk, xk, x; f ]

=

(
x2 − 1

)
Π (x)

2
× ([x0, x1, . . . , xk−1, xk, xk, x; f ]− [x0, x0, x1, . . . , xk−1, xk, x; f ])

=

(
x2 − 1

)
Π (x)

2

×
( 1∫

0

t1∫
0

[x0, x1, . . . , xk; g1] dt2dt1 −
1∫

0

t1∫
0

[x0, x1, . . . , xk; g−1] dt2dt1

)
,

where gl (u) = f ′′ (ut2 + (t1 − t2)x + (1− t1)l), l = −1, 1. Hence

(9)

|f (x)− Lk+2 (x)|

≤
(
1− x2

)
|Π (x)|

2

1∫
0

t1∫
0

(|[x0, x1, . . . , xk; g1]|+ |[x0, x1, . . . , xk; g−1]|) dt2dt1.

As in the estimation of i2, the inequality (9) gives

i1 = |f (x)− Lk+2 (f, x)| 6
kk

(
1− x2

)
|Π (x)|

2k+1k!
ωk (f ′′) .

After adding this inequality to (8), by (7), we obtain the desired assertion. �

Proof of Theorem 1. In order to prove Theorem 1 it is enough to check the inequality

(10)
kk

2k+1k!

((
1− x2

)
|Π (x)|+ 1

2k+1

)
6

(
4

ekσk+1

)2

, x ∈ [−1, 1] .

We first prove the estimate

(11)
kk

∣∣(x2 − 1
)
Π (x)

∣∣
2k+1k!

6

(
4

e (kσk + 1)

)2

, x ∈ [−1, 1].

Indeed, put h = 2/k. Since, for −1 + h ≤ y ≤ −h/2 and k ≥ 4,∣∣∣∣∣
(
(y + h)2 − 1)

)
Π(y + h)

(y2 − 1))Π(y)

∣∣∣∣∣ =
(y + h + 1)

(
1− (y + h)2

)
(1− y) (1− y2)

≤ 1,

then
max

x∈[−1,1]
|
(
x2 − 1)

)
Π(x)| = max

x∈[−1,−1+2h]
|
(
x2 − 1)

)
Π(x)|.

If −1 < x < −1 + 2/k and u = k(x + 1)/2 then 0 < u < 1 and

kk

2k+1k!

∣∣(x2 − 1
)
Π(x)

∣∣ =
4u2

(
1− u

1

) (
1− u

2

)
· · ·

(
1− u

k−1

) (
1− u

k

)2

k2

6
4u2

[
1− (σk+1/k)u

k+1

]k+1

k2
6

4u2e−(σk+1/k)u

k2

6

(
4

(kσk + 1) e

)2

.

On the other hand, applying similar arguments to the case −1 + h < x < −1 + 2h, we
obtain (11). Now, taking into account (11) and the inequality k! > kke−k

√
2πk which

follows from Stirling’s formula , we get

W (k, 2) 6

(
2

e (σk + 1/k)

)2

+

√
kek

4k+2
√

2π
.
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It is easy to check that(
2

e (σk + 1/k)

)2

+

√
kek

4k+2
√

2π
6

(
2

eσk+1

)2

,

say, for k > 33. Thus, (10) is proved for k > 33. For 1 ≤ k ≤ 4 and 10 ≤ k < 33 we
check (10) by the direct calculations. For 4 < k < 10 we also use the direct calculations,
replacing ”1/2k+1” by ”

(
1/2k+1

)
|Tk+2(x)|” in (10). �

Proof of Theorem 3. Denote by yj = cos (2j+1)π
2(r+1) , j = 0, 1, . . . , r, the zeros of the Cheby-

shev polynomial Tr−1. Let Lr be the Lagrange interpolation polynomial of f at the
points yj . Then it follows from (3) and Lemma 3, that

|f(x)− Lr(x)| =
∣∣∣∣Tr+1(x)

2r
[x, x0, x1, . . . , xr; f ]

∣∣∣∣
≤ 1

2r
|[x0, xr; fr]| =

1
2r(x0 − xr)

|fr(x0)− fr(xr)|

≤ 1
2r+1 cos π

2(r+1)

∣∣∣∣
1∫

0

t1∫
0

· · ·
tr−1∫
0

ω
(
(x0 − xr)tr, f (r), [−1, 1]

)
dtr · · · dt2dt1

∣∣∣∣
≤ 1

r!2r+1
cos

π

2(r + 1)
ω

(
f (r)

)
,

where

fr(u) :=

1∫
0

t1∫
0

· · ·
tr−1∫
0

f (r)
(
utr + (tr−1 − tr)xr−1 + · · ·+ (t1 − t2)x1 + (1− t1)x

)
× dtr · · · dt2dt1.

�
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