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NON-NEGATIVE PERTURBATIONS OF NON-NEGATIVE
SELF-ADJOINT OPERATORS

VADYM ADAMYAN

In memory of my great teacher Mark Krein.

Abstract. Let A be a non-negative self-adjoint operator in a Hilbert space H and
A0 be some densely defined closed restriction of A0, A0 ⊆ A 6= A0. It is of interest
to know whether A is the unique non-negative self-adjoint extensions of A0 in H. We
give a natural criterion that this is the case and if it fails, we describe all non-negative
extensions of A0. The obtained results are applied to investigation of non-negative
singular point perturbations of the Laplace and poly-harmonic operators in L2(Rn).

1. Introduction

In this paper we deal with a non-negative self-adjoint operator A in a Hilbert spaceH,
some densely defined not essentially self-adjoint restriction A0 of A and again with self-
adjoint extensions of A0 in H, which following [1] we call here singular perturbations
of A. For quick getting onto the matter of the main problem let us compare the point
perturbations of self-adjoint Laplace operators −∆ in three and two dimensions acting in
L2(R3) and L2(R2), respectively, that is let us consider the restriction −∆0 of −∆ onto
the Sobolev subspaces H2

2 (Ri \ {0}) , i = 3, 2, and self-adjoint extensions −∆α, α ∈ R,
of −∆0 in L2(Ri) with domains

(1.1)
D(3)

α :=
{
f : f ∈ H2

2 (R3) , lim
|x|↓0

[
d

d|x| (|x|f(x))− α|x|f(x)
]

= 0
}
,

D(2)
α :=

{
f : f ∈ H2

2 (R2) , lim
|x|↓0

[(
2πα
ln |x| + 1

)
f(x)− lim

|x′|↓0
ln |x|
ln |x′|f(x′)

]
= 0

}
.

The self-adjoint operators −∆α are just mentioned above singular perturbations of −∆.
The resolvents (−∆α − z)−1

, z ∈ ρ(−∆α), of the operators−∆α act in the corresponding
spaces L2 as integral operators with kernels (Green functions) [1],

(1.2) G3
α,z(x,x

′) =

{
G

(0)
z (x,x′) + (α− i

√
z/4π)−1G

(0)
z (x, 0)G(0)

z (0,x′),
G

(0)
z (x,x′) = exp i

√
z|x−x′|

4π|x−x′| (three dimension);

(1.3)

G2
α,z(x,x

′) =

{
G

(0)
z (x,x′) + 2π(2πα− ψ(1) + ln

√
z/2i)−1G

(0)
z (x, 0)G(0)

z (0,x′),
G

(0)
z (x,x′) = ( i

4 )H(1)
0 (i

√
z|x− x′|) (two dimension).

By (1.2) the Green function Gα,z(x,x′) of the self-adjoint operator −∆α in L2(R3) is
holomorphic on the half-axis (−∞, 0) for α ≥ 0 and has on this half-axis a simple pole
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for α < 0. Hence in the case of three dimensions self-adjoint extensions −∆α are non-
negative for all (α ≥ 0) and non-positive for α < 0.

Contrary to this by (1.3) in the case of two dimensions for any α ∈ R the Green
function Gα,z has a simple pole on the half-axis (−∞, 0). Hence all singular perturbations
−∆α of the two-dimensional Laplace operators have one negative eigenvalue. In other
words the Laplace operator −∆ defined in a standard way is a unique non-negative
self-adjoint extension in L2(R2) of the symmetric operator −∆0 in L2(R2).1

In this note we try to reveal the underlying cause of such discrepancy. Recall that
each densely defined non-negative symmetric operator has at least one non-negative
canonical self-adjoint extension (Friedrichs extension). In a more general setting we try
to understand here why in some cases the non-negative extension appears to be unique.
Actually this questions is embedded into the framework of the general extension theory
for semi-bounded symmetric operators developed in the famous paper of M. G. Krein
[2]. Naturally, there is a criterion of uniqueness of non-negative extension in [2]. In
the next Section, using only approaches of [2] we find another form of this criterion,
directly facilitating the investigation of singular perturbations and, for cases where the
conditions of these criteria fail, describe all non-negative singular perturbations of a given
non-negative self-adjoint operator A associated with some its densely defined non-self-
adjoint restriction A0. In fact we give here a parametrization of the operator interval
[Aµ, AM ] of all canonical non-negative self-adjoint extensions of a given densely defined
non-negative operator. The third Section illustrates the obtained results by an example
of singular perturbations of the Laplace and poly-harmonic operators in L2(Rn).

Note that very close results were obtained recently in a somewhat different way in [3]
where, in terms of this note, the authors have described singular perturbations of the
Friedrichs extension of a given densely defined non-negative operator and also gave an
illustration with an example of singular perturbations of the Laplace operator in L2(R3).

2. Uniqueness criterion and parametrization of non-negative singular
perturbations

Let A be a non-negative self-adjoint operator acting in the Hilbert space H and A0 be
a densely defined closed operator, which is a restriction of A onto a subset D(A0) of the
domain D(A) of A. Let us consider the subspaces M := (I+A0D(A0) and N := H	M.
We will assume that

(2.1) 1) M 6= H, 2) N ∩D(A) = {0}.
We call all self-adjoint extensions of A0 inH other than the given A singular perturbations
of A. It is of interest to know whether there are non-negative operators among singular
perturbations of A. In this section we try to find a convenient criterion that such singular
perturbations of A do not exist. In other words we look for a criterion that A is the
only one non-negative operator among all self-adjoint extensions of A0. Following the
approach developed in the renowned paper of M. G. Krein [2] let us consider the operator
from K0 : M→H defined by the relations

(2.2) f = (I +A0)x, K0f = A0x, x ∈ D(A0).

It is easy to see that K0 is a non-negative contraction,

(2.3) (K0f, f) ≥ 0, ‖K0f‖2 ≤ ‖f‖2, f ∈M.

Let A1 be any non-negative self-adjoint extension of A0 in H. Then K1 := A1 (A1 + I)−1

is a non-negative operator, which is a contractive extension of K0 from the domain M
onto the whole H, K1f = K0f, f ∈M.

1The attention of the author to this phenomenon was drawn by Sergey Gredeskul.
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On the other hand, for any contractive extension K1 from M onto H such that the
unity is not its eigenvalue the non-negative self-adjoint operator A1 = K1 (I −K1)

−1 is
a self-adjoint extension of A0 in H. Therefore, A0 has a unique non-negative self-adjoint
extension in H if and only if K0 admits only one non-negative contractive extension
onto the whole H, no eigenvalue of which equals 1, that is, K = A(I + A)−1. So the
uniqueness of A as a non-negative extension of A0 is equivalent to uniqueness of K0 as
a non-negative contractive extension of K0.

From now on we will denote by G the set consisting of A and all its singular perturba-
tions and by C the set of non-negative contractions obtained from G by the transforma-
tion A1 → A1 (A1 + I)−1

, A1 ∈ G. Let us denote by PM the orthogonal projector onto
M in H and let PN = I − PM. With respect to representation of H as the orthogonal
sum M⊕N we can represent each operator from C as 2× 2 block operator matrix

(2.4) KX =
(
T Γ∗

Γ X

)
.

Here
T = PMK0|M, Γ = PMK0|M

and X is some non-negative contraction in N , which distinguishes different elements
from C. Since each KX ∈ C is non-negative and contractive, we have

(2.5) T ≥ 0, T 2 + Γ∗Γ ≤ I .

Note further that KX ∈ C is equivalent to

(2.6) KX + εI ≥ 0, (1 + ε)I −KX ≥ 0

for any ε > 0.
The block matrix representation of KX and the Schur-Frobenius factorization formula

transform (2.6) into the following block matrix inequalities:

(2.7)

(
I 0

Γ(T + ε)−1 I

) (
T + ε 0

0 X + ε− Γ(T + ε)−1Γ∗

)
×

(
I (T + ε)−1Γ∗

0 I

)
≥ 0,

(2.8)

(
I 0

−Γ(I + ε− T )−1 I

) (
1 + ε− T 0

0 1 + ε−X − Γ(1 + ε− T )−1Γ∗

)
×

(
I −(1 + ε− T )−1Γ∗

0 I

)
≥ 0.

By our assumptions T ≥ 0 and I − T ≥ 0. Therefore block matrix inequalities (2.7) and
(2.8) are reduced to

(2.9)
{

X + εI − Γ(T + εI)−1Γ∗ ≥ 0,
(1 + ε)I −X − Γ[(1 + ε)I − T ]−1Γ∗ ≥ 0, ε > 0.

Observe that the operator functions of ε in the left-hand sides of inequalities (2.9) are
monotone. Setting

Y := X − lim
ε↓0

Γ(T + εI)−1Γ∗

we conclude from (2.9) that KX ∈ C if and only if

(2.10) 0 ≤ Y ≤ I − lim
ε↓0

{
Γ(T + εI)−1Γ∗ + Γ[(1 + ε)I − T ]−1Γ∗

}
.

Hence the equality

(2.11) I − lim
ε↓0

{
Γ(T + εI)−1Γ∗ + Γ[(1 + ε)I − T ]−1Γ∗

}
= 0
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is a criterion that there are no contractive non-negative extensions of K0 in H other than
K.

Let us express now (2.10) and (2.11) in terms of given K and A. To this end we use
the following proposition.

Proposition 2.1. Let L be a bounded invertible operator in the Hilbert space H = M⊕N
given as 2×@ block operator matrix

L =
(
R U
V S

)
,

where R and S are invertible operators in M and N , respectively, and U, V act between
M and N . If R is an invertible operator in M, then

(2.12)
(
R−1 0

0 0

)
= L−1 − L−1PNΛ−1PNL

−1, Λ = PNL
−1|N .

Setting

(2.13) Λ1,ε = PN (K + εI)−1|N , Λ2,ε = PN [(1 + ε)I −K]−1|N
and applying (2.12) with L = K + εI and

R = T + εI, U = Γ∗ = PMK|N = PM[K + εI]|N ,
V = Γ = PNK|M = PN [K + εI]|M, S = PNK|N + εI,

yields
Γ(T + εI)−1Γ∗ = PNK|N + εI − Λ−1

1,ε.

In the same fashion we get

Γ[(1 + ε)I − T ]−1Γ∗ = PN [I −K]|N + εI − Λ−1
2,ε.

Hence

(2.14) I − lim
ε↓0

(
Γ(T + εI)−1Γ∗ + Γ[(1 + ε)I − T ]−1Γ∗

)
= lim

ε↓0
Λ−1

1,ε + lim
ε↓0

Λ−1
2,ε.

Combining (2.10), (2.11) and (2.14) results in the following theorem.

Theorem 2.2. Let K be a non-negative contraction in the Hilbert space H = M⊕N ,
K0 is the restriction of K onto the subspace M(= M⊕{0}) and

G1 = lim
ε↓0

(PN [K + εI]|N )−1
, G2 = lim

ε↓0
(PN [I −K + εI]|N )−1

.

Then the set C of all non-negative contractive extensions KX of K0 in H is described by
the expression

(2.15) KX =
(
PMK|M PMK|N
PMK|N X

)
,

where X runs over the set of all non-negative contractions in N satisfying the inequalities

(2.16) PNK|N −G1 ≤ X ≤ PNK|N +G2.

In particular, K is a unique non-negative contractive extension of K0 if and only if
G1 = G2 = 0.

Remark 2.3. The set C of non-negative contractions of K0 contains a minimal extension
KXµ with Xµ = PNK|N − G1 in (2.15) and a maximal extension KXM

with XM =
PNK|N +G2 in (2.15). If G1 = 0 (G2 = 0), then K is a minimal (maximal) element of
C.

Theorem 2.2 can be formulated in terms of a non-negative self-adjoint operator A and
its non-negative singular perturbations.
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Theorem 2.4. Let A be a non-negative self-adjoint operator in a Hilbert space H, A0

is a densely defined closed symmetric operator, which is a restriction of A onto a linear
subset D(A0) ⊂ D(A) such that N = (I +A)D(A0) 6= {0} and let

G1 = lim
ε↓0

(PN [I +A][A+ εI]|N )−1
, G2 = lim

ε↓0
(PN [I +A][I + εA]|N )−1

.

Then the set of all non-negative singular perturbations AY of A is described by the formula

(2.17)
{

f = g − Y (I +A)g,
AY f = Ag + Y (I +A)g,

where g ∈ D(A) and Y runs over the set of non-negative contractions in N satisfying
the inequalities

(2.18) −G1 ≤ Y ≤ G2.

A has no singular non-negative perturbations if and only if G1 = G2 = 0.

Remark 2.5. The set of all non-negative singular perturbations of A contains a mini-
mal perturbation Aµ with and a maximal perturbation AM such that any non-negative
perturbation AX satisfies the inequalities

(I +AM )−1 ≤ AY ≤ (I +Aµ)−1
.

The corresponding values of the parameters Y in Theorem 2.4 are

(2.19)
Yµ = −G1,
YM = G2.

If G1 = 0 (G2 = 0), then the minimal (maximal) perturbation coincides with A.

By simple calculation we get from (2.17) the following version of the M. G. Krein
resolvent formula.

Proposition 2.6. The set of resolvents of all non-negative singular perturbations AY of
A is described by the M. G. Krein formula
(2.20)

(AY − zI)−1 = (A− zI)−1

− (1 + z)(A+ I)(A− zI)−1Y
[
I + (1 + z)PN (A+ I)(A− zI)−1Y

]−1

× PN (A+ I)(A− zI)−1,

where Y runs over the contractions in N satisfying inequalities −G1 ≤ Y ≤ G2.

3. Application to some differential operators

Let us consider the multiplication operator A in L2(Rn) by a continuous function
ϕ(k), k2 = k2

1 + · · ·+ k2
n, such that ϕ(k) > 0 almost everywhere and

(3.1)
∫ ∞

0

1
(1 + ϕ(k))2

kn−1 dk <∞.

A is a non-negative self-adjoint operator,

D(A) =
{
f :

∫
Rn

|1 + ϕ(k)|2|f(k|2dk <∞, f ∈ L2(Rn)
}
.

In the sequel δ̂ stands for the unbounded linear functional in L2(Rn), formally defined
as follows:

δ̂(f) =
∫

Rn

f(k)dk.
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Note that the domain of δ̂ contains D(A). Let us denote by A0 the restriction of A onto
the linear set

(3.2) D0(A) :=
{
f : f ∈ D(A), δ̂(f) = 0

}
.

The closure of A0 6= A and

N = (L2(Rn)	 (I +A)D0(A)) =
{
ξ · 1

1 + ϕ(k)
, ξ ∈ C

}
.

Applying Theorem 2.4 yields

Proposition 3.1. A is a unique non-negative self-adjoint extension of A0, that is, A
has no non-negative singular perturbations if and only if

(3.3)
∫ ∞

0

1
ϕ(k)(1 + ϕ(k))

kn−1 dk = ∞ and
∫ ∞

0

1
(1 + ϕ(k))

kn−1 dk = ∞.

Put ϕ(k) = k2 and let n = 2. Then the both integrals in Proposition 3.1 are divergent.
Hence the restriction A0 of the operator A of multiplication by k2 in L2(R2) onto the
linear set (3.2) has a unique non-negative self-adjoint extension in L2. Note that the
multiplication operator by k2 in L2(Rn) is isomorphic to the self-adjoint Laplace operator
−∆ in L2(Rn) and its considered here restriction A0 is isomorphic to the restriction of
−∆ onto the Sobolev subspace H2

2 (Rn \ {0}). It follows that the self-adjoint Laplace
operator in L2(R2) has no non-negative singular perturbations with support at one point
of R2.

However, the non-negative singular perturbations of −∆ in L2(R2) with support at
two or more points do already exist. For example, let us consider there the restriction A0

of the multiplication operator by k2, for which the defect subspace N is one-dimensional
and consists of functions collinear to

e0(k) =
1− exp(−i(k · x0))

1 + k2
, x0 ∈ R2.

In this case,

‖e0‖2 =
∫
R2

4 sin2 1
2 (k · x0)

(1 + k2)2
· dk <∞,

(
(I +A)A−1e0, e0

)
=

∫
R2

4 sin2 1
2 (k · x0)

k2(1 + k2)
· dk <∞,

((I +A)e0, e0) =
∫
R2

4 sin2 1
2 (k · x0)

1 + k2
· dk = ∞.

Hence G1 = ‖e0‖2 · ((I +A)e0, e0)
−1

> 0, but G2 = 0. Hence, the considered restriction
A0 of the multiplication operator A by k2 has non-negative self-adjoint extensions in
L2(R2) other than A, and A is a maximal element in the set of these extensions. It
remains to note that A is isomorphic to the self-adjoint Laplace operator −∆ in L2(R2),
and A0 is isomorphic to the restriction of this −∆ to the subset of functions f(x) from
D(−∆) satisfying the conditions

lim
|x|→0

(ln |x|)−1f(x)− lim
|x−x0|→0

(ln |x− x0|)−1f(x) = 0,

lim
|x|→0

[
f(x)− ln |x| lim

|x′|→0
(ln |x′|)−1f(x′)

]
− lim
|x−x0|→0

[
f(x)− ln |x− x0| lim

|x′−x0|→0
(ln |x′ − x0|)−1f(x′)

]
= 0.

Put now as above ϕ(k) = k2 and let n = 3. Then the first integral in Proposition 3.1 is
convergent while the second one, as before, is divergent. Hence the restriction A0 of the
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operator A of multiplication by k2 in L2(R3) onto the linear set (3.2) has infinitely many
non-negative self-adjoint extension in L2(R3). Hence, the self-adjoint Laplace operator
in L2(R3) has infinitely many non-negative singular perturbations with support at one
point of R3 and the standard Laplace operator is a maximal element in the set of these
perturbations.

As the next example we consider the multiplication operator A by k2l in L2(Rn)
assuming that 4l ≤ n + 1. A is isomorphic to the polyharmonic operator (−∆)l in
L2(Rn). Let us consider the restriction A0 of A with the domain (3.2) that is non-
negative symmetric operator which is isomorphic to the restriction of the polyharmonic
operator (−∆)l onto the Sobolev subspace H2

2l (Rn \ {0}). Applying Theorem 2.4 and
Proposition 3.1 results in the following proposition.

Proposition 3.2. If n < 2l then there are infinitely many non-negative singular pertur-
bations of (−∆)l associated with the one-point symmetric restriction A0 and (−∆)l is a
minimal element in the set of non-negative extensions of A0 in H2

2l (Rn \ {0}).
If n = 2l then (−∆)l has no such perturbations in H2

2l (Rn \ {0}) .
If n > 2l then there is an infinite set of non-negative singular perturbations of (−∆)l

associated with A0 and, for them considered as non-negative extensions of A0 in the set
H2

2l (Rn \ {0}), the operator (−∆)l is a maximal element.
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