INVERSE SPECTRAL PROBLEMS FOR COUPLED OSCILLATING SYSTEMS: RECONSTRUCTION FROM THREE SPECTRA

S. ALBEVERIO, R. HRYNIV, AND YA. MYKYTYUK

Dedicated to M. G. Krein, with admiration.

ABSTRACT. We study an inverse spectral problem for a compound oscillating system consisting of a singular string and N masses joined by springs. The operator \mathcal{A} corresponding to this system acts in $L_2(0,1) \times \mathbb{C}^N$ and is composed of a Sturm–Liouville operator in $L_2(0,1)$ with a distributional potential and a Jacobi matrix in \mathbb{C}^N that are coupled in a special way. We solve the problem of reconstructing the system from three spectra—namely, from the spectrum of \mathcal{A} and the spectra of its decoupled parts. A complete description of possible spectra is given.

1. Introduction

The main aim of the present paper is to solve an inverse spectral problem for a class of oscillating systems composed of a singular string and N masses joined by springs. Mathematically such a system is described by a Sturm-Liouville operator S coupled in a special way to a Jacobi operator J.

Namely, assume that q is a real-valued distribution from $W_2^{-1}(0,1)$ and denote by S a Sturm-Liouville operator in $L_2(0,1)$ that is formally given by the differential expression

$$l := -\frac{d^2}{dx^2} + q$$

and the Robin or the Dirichlet boundary condition at the point x = 0. The precise definition of S is based on regularisation of l by quasi-derivatives [19, 20] and goes as follows. We fix a real-valued distributional primitive $\sigma \in L_2(0,1)$ of q and rewrite ly as

$$l_{\sigma}y := -(y' - \sigma y)' - \sigma y'$$

on the natural domain

$$\mathcal{D}(l_{\sigma}) = \{ y \in W_1^1(0,1) \mid y' - \sigma y \in W_1^1(0,1), \ l_{\sigma}y \in L_2(0,1) \}.$$

In what follows, we shall abbreviate the *quasi-derivative* $y' - \sigma y$ to $y_{\sigma}^{[1]}$ or simply to $y_{\sigma}^{[1]}$ when σ is fixed by the context. We define now the operator S by $Sy = l_{\sigma}y$ on the domain

$$\mathcal{D}(S) = \{ y \in \mathcal{D}(l_{\sigma}) \mid y^{[1]}(0) = hy(0) \}$$

for some $h \in \mathbb{R} \cup \{\infty\}$, $h = \infty$ corresponding to the Dirichlet boundary condition y(0) = 0. Assume that J is a Jacobi matrix in \mathbb{C}^N , $N \in \mathbb{N}$, i. e., that J in the standard basis e_1, \ldots, e_N of \mathbb{C}^N is a symmetric matrix with real entries b_1, \ldots, b_N on the main diagonal and positive entries a_1, \ldots, a_{N-1} on the main sub- and super-diagonals.

Denote also by B the intertwining operator between $L_2(0,1)$ and \mathbb{C}^N given on $\mathcal{D}(S)$ by $By = a_0y^{[1]}(1)e_1$ for some $a_0 > 0$.

Finally, we consider the operator

$$\mathcal{A} := \begin{pmatrix} S & 0 \\ B & J \end{pmatrix}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 34A55; Secondary 34B24, 47A56, 47E05.

Key words and phrases. Inverse spectral problem, Sturm-Liouville equation, Jacobi matrix, three spectra.

that acts in the product space $\mathcal{H} := L_2(0,1) \times \mathbb{C}^N$ on the domain

$$\mathcal{D}(\mathcal{A}) := \{ (y, d)^{\mathsf{t}} \in \mathcal{H} \mid y \in \mathcal{D}(S), \ d = (d(1), \dots, d(N)), \ y(1) = a_0 d(1) \}.$$

It is known [1] that \mathcal{A} is self-adjoint and bounded below in \mathcal{H} and has a simple discrete spectrum. Adding if necessary a sufficiently large constant to the potential q and to the numbers b_1, \ldots, b_N , we can make the operator \mathcal{A} positive and shall assume this without loss of generality.

Remark 1.1. We observe that although the Sturm-Liouville differential expression l_{σ} is independent of the particular choice of the primitive σ , the quasi-derivative $y^{[1]}$ in the interface condition and in the boundary condition for S if h is finite, and thus the whole operator \mathcal{A} , do depend on σ . We notice, however, that \mathcal{A} is invariant under the simultaneous change $\sigma \mapsto \sigma + C$, $h \mapsto h + C$, and $b_1 \mapsto b_1 + a_0 C$ for any real C. This invariance will be used in Section 4.

Along with \mathcal{A} we consider two operators, $\mathcal{A}_0 := S_N \oplus J$ and $\mathcal{A}_\infty := S_D \oplus J_{(1)}$, where S_N and S_D are the restrictions of S by the "Neumann" boundary condition $y^{[1]}(1) = 0$ and the Dirichlet boundary condition y(1) = 0 respectively, and $J_{(1)}$ is the Jacobi matrix obtained by removing the top row and the most-left column of J. The operators \mathcal{A}_0 and \mathcal{A}_∞ formally correspond to two extreme cases of the coupling not allowed in \mathcal{A} : first with no coupling at all, and the second with infinite, i.e., rigid coupling. It is easily seen that \mathcal{A} and \mathcal{A}_0 are self-adjoint extensions of the same symmetric operator with deficiency indices (1,1) specifying the interface condition at the point x=1, and the same holds for \mathcal{A} and \mathcal{A}_∞ . Therefore, as in the papers [8, 13, 16, 17], it is natural to study the question, to which extent \mathcal{A} is determined by the spectra of \mathcal{A} and \mathcal{A}_0 , or those of \mathcal{A} and \mathcal{A}_∞ . As in the purely continuous case of a Sturm-Liouville operator [8, 13, 17] or of a purely discrete case of a Jacobi matrix [16], one has to know the spectra of S_N and J or those of S_D and $J_{(1)}$ separately—and not just their union—in order to reconstruct \mathcal{A} .

Thus the **inverse spectral problem** we are going to solve is that of the reconstruction of the operator \mathcal{A} from the spectra of \mathcal{A} , $S_{\rm N}$, and J or from those of \mathcal{A} , $S_{\rm D}$, and $J_{(1)}$. It generalizes the inverse spectral problems by three spectra for the standard Sturm–Liouville operators or for Jacobi matrices treated in the above-cited papers and is related to the inverse spectral problem for Sturm–Liouville operators with rationally dependent boundary conditions, see [1, 3, 4, 5, 6].

We shall solve the above inverse problem by reducing it to that of reconstructing \mathcal{A} from its spectrum and the sequence of the corresponding norming constants. The latter problem was studied in detail in [1] (see also [3, 4, 5] for the related inverse problem for a Sturm–Liouville operator with rationally dependent boundary conditions), and this allows a complete description of the spectra for the operators involved. We shall prove that the operator \mathcal{A} is recovered uniquely if and only if the three spectra do not intersect. This establishes in this special case the conjecture raised in [8] for Sturm–Liouville operators, which was later proved in [13]; the case of finite Jacobi matrices was studied in [16].

The treatments of the Dirichlet boundary condition $(h = \infty)$ and the Robin boundary condition $(h \in \mathbb{R})$ at the point x = 0 are completely analogous, and we shall consider in detail only the Dirichlet case. In the next section we shall derive some useful formulae (e.g., for the resolvent of \mathcal{A} and the norming constants) that will be used in the subsequent analysis. In Sections 3 and 4 we reconstruct the operator \mathcal{A} from the spectra of \mathcal{A} , $S_{\rm D}$, and $J_{(1)}$ and from the spectra of \mathcal{A} , $S_{\rm N}$, and J respectively.

Notations. Throughout the paper, the prime will denote the derivative in $x \in [0, 1]$, and the overdot will stand for differentiation in the complex variable λ or z. Given two strictly increasing (finite or infinite) sequences (a_n) and (b_n) , we shall denote by $(c_n) := (a_n) \coprod (b_n)$ the non-decreasing sequence obtained by amalgamating the sequences

 (a_n) and (b_n) and listing the common elements twice. We shall write $\sigma(T)$ for the spectrum of a linear operator T acting in a Hilbert space.

2. Preliminaries

It is known [1] that the operator \mathcal{A} of (1.1) is self-adjoint, lower semi-bounded, and has discrete spectrum $\lambda_1 < \lambda_2 < \dots$; we recall our standing and nonrestrictive assumption that $\lambda_1 > 0$.

For every nonzero $\lambda \in \mathbb{C}$, we define the "fundamental system of solutions" $Y_{-}(\cdot, \lambda)$ and $Y_{+}(\cdot, \lambda)$ corresponding to the eigenvalue problem $\mathcal{A}Y = \lambda Y$. Namely, the element $Y_{-}(\cdot, \lambda) := (y_{-}(\cdot, \lambda), d_{-}(\cdot, \lambda))^{\mathrm{t}}$ belongs to $\mathcal{D}(\mathcal{A})$, is normalised by the initial conditions $y_{-}(0, \lambda) = 0$, $y_{-}^{[1]}(0, \lambda) = \sqrt{\lambda}$, and satisfies the relation $\mathcal{A}Y = \lambda Y$ in the $L_{2}(0, 1)$ -component and in the first N-1 components of \mathbb{C}^{N} . In other words, there is a unique $c = c(\lambda) \in \mathbb{C}$ such that

$$(\mathcal{A} - \lambda)Y_{-}(\cdot, \lambda) = \begin{pmatrix} 0 \\ ce_{N} \end{pmatrix};$$

in particular, $c(\lambda) = 0$ if and only if λ is in the spectrum of \mathcal{A} , in which case $Y_{-}(\cdot, \lambda)$ is a corresponding eigenelement. The element $Y_{+}(\cdot, \lambda) := (y_{+}(\cdot, \lambda), d_{+}(\cdot, \lambda))^{t}$ is normalized by the terminal condition $d_{+}(N, \lambda) = 1$, satisfies the system

$$ly_{+} - \lambda y_{+} = 0,$$

$$a_{0}y_{+}^{[1]}(1)e_{1} + (J - \lambda)d_{+} = 0,$$

and the interface condition $y_+(1,\lambda) = a_0 d_+(1,\lambda)$, but needn't satisfy the initial condition $y_+(0,\lambda) = 0$. Moreover, $y_+(0,\lambda) = 0$ holds if and only if λ is in the spectrum of \mathcal{A} , in which case $Y_+(\cdot,\lambda)$ is a corresponding eigenelement.

Using the elements $Y_{\pm}(\cdot, \lambda)$, it is possible to construct the Green function of the operator \mathcal{A} and to find the explicit form of its resolvent, similarly to such constructions for a Sturm–Liouville equation.

Lemma 2.1. Assume that $\lambda \in \mathbb{C}$ belongs to the resolvent set of the operators J and A and that $(g, v)^t$ is an arbitrary element of \mathcal{H} . Then the element

$$\begin{pmatrix} y \\ d \end{pmatrix} := (\mathcal{A} - \lambda)^{-1} \begin{pmatrix} g \\ v \end{pmatrix}$$

is given by

$$y(x) = \frac{y_{-}(x,\lambda)}{W(\lambda)} \left[\int_{x}^{1} y_{+}g + (v,d_{+}(\cdot,\overline{\lambda}))_{\mathbb{C}^{N}} \right] + \frac{y_{+}(x,\lambda)}{W(\lambda)} \int_{0}^{x} y_{-}g,$$

$$d(k) = (J-\lambda)^{-1}v(k) + \frac{d_{+}(k,\lambda)}{W(\lambda)} \left[\int_{0}^{1} y_{-}g + \frac{y_{-}^{[1]}(1,\lambda)}{y_{+}^{[1]}(1,\lambda)} (v,d_{+}(\cdot,\overline{\lambda}))_{\mathbb{C}^{N}} \right],$$

where $W(\lambda) := y_+(x,\lambda)y_-^{[1]}(x,\lambda) - y_+^{[1]}(x,\lambda)y_-(x,\lambda)$ is the Wronskian of the solutions y_+ and y_- .

Proof. The function y solves the equation $Sy = \lambda y + g$ and thus is equal to $y_0 + \alpha y_-$, with

$$y_0(x) := \frac{y_-(x,\lambda)}{W(\lambda)} \int_x^1 y_+ g + \frac{y_+(x,\lambda)}{W(\lambda)} \int_0^x y_- g$$

being a particular solution to the above non-homogeneous problem and α some complex number. Since $d_+(\cdot,\lambda)=-a_0y_+^{[1]}(1,\lambda)(J-\lambda)^{-1}e_1$, the relation

(2.1)
$$a_0 y^{[1]}(1)e_1 + (J - \lambda)d = v$$

implies that $d = d_0 + \beta d_+(\cdot, \lambda)$ with $d_0 := (J - \lambda)^{-1}v$ and some $\beta \in \mathbb{C}$.

The constants α and β must be such that the interface condition $y(1) = a_0 d(1)$ and relation (2.1) hold. By virtue of the relation

$$d_0(1) = ((J - \lambda)^{-1}v, e_1) = -\frac{(v, d_+(\cdot, \overline{\lambda}))_{\mathbb{C}^N}}{a_0 y_+^{[1]}(1, \lambda)}$$

the interface condition transforms into

$$\alpha y_{-}(1,\lambda) - \beta y_{+}(1,\lambda) = -\frac{y_{+}(1,\lambda)}{W(\lambda)} \int_{0}^{1} y_{-}g - \frac{\left(v, d_{+}(\cdot, \overline{\lambda})\right)_{\mathbb{C}^{N}}}{y_{\perp}^{[1]}(1,\lambda)}.$$

Similarly, equation (2.1) can be recast as

$$\alpha y_{-}^{[1]}(1,\lambda) - \beta y_{+}^{[1]}(1,\lambda) = -\frac{y_{+}^{[1]}(1,\lambda)}{W(\lambda)} \int_{0}^{1} y_{-}g.$$

The above two equations form a linear system for α and β , solving which we find that

$$\alpha = \frac{\left(v, d_+(\cdot, \overline{\lambda})\right)_{\mathbb{C}^N}}{W(\lambda)}, \quad \beta = \frac{\int_0^1 y_- g}{W(\lambda)} + \frac{y_-^{[1]}(1, \lambda)}{y_-^{[1]}(1, \lambda)} \frac{\left(v, d_+(\cdot, \overline{\lambda})\right)_{\mathbb{C}^N}}{W(\lambda)},$$

and the required formula for $(y, d)^{t}$ follows.

The sequence $(Y_{-}(\cdot, \lambda_n))_{n \in \mathbb{N}}$ forms an orthogonal basis of the space \mathcal{H} . We denote by $\alpha_n := ||Y_{-}(\cdot, \lambda_n)||^{-2}$ the *norming constant* corresponding to the eigenvalue λ_n . A useful formula for the norming constants is given by the following lemma.

Lemma 2.2. Assume that $\lambda_n \in \sigma(A)$ is not in the spectrum of J. Then the corresponding norming constant $\alpha_n := ||Y_-(\cdot, \lambda_n)||^{-2}$ satisfies the equalities

(2.2)
$$\alpha_n = -\frac{y_+^{[1]}(1, \lambda_n)}{\sqrt{\lambda_n} y_-^{[1]}(1, \lambda_n) \dot{y}_+(0, \lambda_n)}.$$

Similarly, if $\lambda_n \in \sigma(A)$ is not in the spectrum of $J_{(1)}$, then

(2.3)
$$\alpha_n = -\frac{y_+(1,\lambda_n)}{\sqrt{\lambda_n}y_-(1,\lambda_n)\dot{y}_+(0,\lambda_n)}.$$

Proof. We take an arbitrary function $g \in L_2(0,1)$, put $G := (g,0)^t$, and calculate the L_2 -component \hat{g} of the element $(\mathcal{A} - \lambda)^{-1}G$ in two ways. On the one hand, the resolution of identity of the operator \mathcal{A} gives

$$\hat{g}(x) = \sum_{k=1}^{\infty} \frac{\alpha_k (g, y_-(\cdot, \lambda_k))_{\mathbb{C}^N} y_-(x, \lambda_k)}{\lambda_k - \lambda}.$$

On the other hand, using Lemma 2.1, we find that

$$\hat{g}(x) = \frac{y_{-}(x,\lambda)}{W(\lambda)} \int_{x}^{1} y_{+}g + \frac{y_{+}(x,\lambda)}{W(\lambda)} \int_{0}^{x} y_{-}g.$$

Equating the residues at the point $\lambda = \lambda_n$ and noting that the functions $y_-(\cdot, \lambda_n)$ and $y_+(\cdot, \lambda_n)$ are collinear and that λ_n is a simple zero of W, we conclude that

$$\alpha_n y_-(x,\lambda_n) \big(g, y_-(\cdot,\lambda_n) \big)_{\mathbb{C}^N} = -\frac{y_+(x,\lambda_n)}{\dot{W}(\lambda_n)} \big(g, y_-(\cdot,\lambda_n) \big)_{\mathbb{C}^N},$$

or, on account of the relation $W(\lambda) \equiv \sqrt{\lambda} y_{+}(0, \lambda)$,

$$\alpha_n = -\frac{y_+(x, \lambda_n)}{\sqrt{\lambda_n} y_-(x, \lambda_n)} \frac{1}{\dot{y}_+(0, \lambda_n)}.$$

Finally, the ratio $y_{+}(x,\lambda_n)/y_{-}(x,\lambda_n)$ does not depend on x, and, moreover,

$$\frac{y_+(x,\lambda_n)}{y_-(x,\lambda_n)} = \frac{y_+(1,\lambda_n)}{y_-(1,\lambda_n)}$$

if $y_{-}(1,\lambda_n)\neq 0$ and

$$\frac{y_{+}(x,\lambda_{n})}{y_{-}(x,\lambda_{n})} = \frac{y_{+}^{[1]}(1,\lambda_{n})}{y_{-}^{[1]}(1,\lambda_{n})},$$

if $y_{-}^{[1]}(1,\lambda_n)\neq 0$, and the required formulae follow. It remains to recall [1] that, for λ_n in the spectrum of \mathcal{A} , the equality $y_{-}(1,\lambda_n)=0$ holds if and only if λ_n is an eigenvalue of J and that $y_{-}^{[1]}(1,\lambda_n)=0$ if and only if λ_n is an eigenvalue of $J_{(1)}$.

It is known (see [6] for the case $q \in L_1(0,1)$ and [1] for the case $q \in W_2^{-1}(0,1)$ that the eigenvalues (λ_n) and the corresponding norming constants (α_n) determine the operator \mathcal{A} uniquely. Moreover, the cited papers give the algorithm of reconstruction of \mathcal{A} from these spectral data. The next proposition gives also the complete description of the spectral data, cf. [1, 6].

Proposition 2.3. The eigenvalues (λ_n) of \mathcal{A} and the corresponding norming constants (α_n) obey the asymptotics

$$\lambda_n = [\pi(n-N) + \tilde{\lambda}_n]^2, \quad \alpha_n = 2 + \tilde{\alpha}_n,$$

where the sequences $(\tilde{\lambda}_n)$ and $(\tilde{\alpha}_n)$ belong to ℓ_2 .

Conversely, any sequences (λ_n) and (α_n) of real numbers such that

- (a) the λ_n strictly increase and have the representation $\lambda_n = [\pi(n-N) + \tilde{\lambda}_n]^2$ for some $N \in \mathbb{N}$ and an ℓ_2 -sequence $(\tilde{\lambda}_n)$;
- (b) the α_n are positive and equal $2 + \tilde{\alpha}_n$ for some ℓ_2 -sequence $(\tilde{\alpha}_n)$

are the sequences of eigenvalues and the norming constants for a unique operator A of the form (1.1).

In the following, we denote by $\mu_{n,D}$ (resp. $\mu_{n,N}$) the eigenvalues of the operator S_D (resp. of the operator S_N), and by $\nu_{1,J}, \ldots, \nu_{N,J}$ (resp. $\nu_1^1, \ldots, \nu_{N-1}^1$) the eigenvalues of J(resp. of $J_{(1)}$), all labeled in increasing order. It is well known that the operators $S_{\rm D}$ and S_N and the Jacobi matrices J and $J_{(1)}$ have simple discrete spectra. We recall and derive next some properties of these spectra.

Proposition 2.4. ([10, 19, 20]). There exist sequences $(\tilde{\mu}_{n,D})$ and $(\tilde{\mu}_{n,N})$ belonging to $\ell_2(\mathbb{N})$ such that

- (a) $\mu_{n,D} = [\pi n + \tilde{\mu}_{n,D}]^2;$ (b) $\mu_{n,N} = [\pi (n \frac{1}{2}) + \tilde{\mu}_{n,N}]^2.$

We observe that the numbers $\mu_{n,D}$ are zeros of the function $y_{-}(1,\lambda)$ and $\mu_{n,N}$ —those of $y_{-}^{[1]}(1,\lambda)$. Since both functions are exponential in λ of order $\frac{1}{2}$, they can be reconstructed from their zeros in the following way.

Proposition 2.5. ([11]). The following equalities hold:

$$y_{-}(1,\lambda) = \sqrt{\lambda} \prod_{k=1}^{\infty} \frac{\mu_{k,\mathrm{D}} - \lambda}{\pi^2 k^2}, \quad y_{-}^{[1]}(1,\lambda) = \sqrt{\lambda} \prod_{k=1}^{\infty} \frac{\mu_{k,\mathrm{N}} - \lambda}{\pi^2 (k - \frac{1}{2})^2}.$$

Simple considerations show that the functions $y_{+}(1,\lambda)$ and $y_{+}^{[1]}(1,\lambda)$ are related to the eigenvalues of J and $J_{(1)}$ as follows.

Lemma 2.6. The following equalities hold:

$$y_{+}(1,\lambda) = \frac{a_0}{a_1 \cdots a_{N-1}} \prod_{k=1}^{N-1} (\lambda - \nu_k^1), \quad y_{+}^{[1]}(1,\lambda) = \frac{1}{a_0 a_1 \cdots a_{N-1}} \prod_{k=1}^{N} (\lambda - \nu_{k,J}).$$

Proof. To find the representation for $y_{+}^{[1]}(1,\lambda)$, it suffices to establish an analogous formula for $d_+(1,\lambda)$. Using the relation $(J-\lambda)d_+(\cdot,\lambda)=-a_0y_+^{[1]}(1,\lambda)e_1$ and the normalization $d_+(N,\lambda) = 1$, we find recursively that $d_+(N-k,\lambda)$ is a polynomial in λ of degree kwith leading coefficient $(a_{N-1}\cdots a_{N-k})^{-1}$. Therefore $y_+^{[1]}(1,\lambda)$ is a polynomial in λ of degree N with leading coefficient $(a_0a_1\cdots a_{N-1})^{-1}$, and since it vanishes at the points $\nu_{1,J}, \ldots, \nu_{N,J}$, the above formula follows.

Analogously $y_+(1,\lambda) = a_0 d_+(1,\lambda)$ is a polynomial in λ of degree N-1 and with leading coefficient $a_0/(a_1 \cdots a_{N-1})$. Since $d_+(1,\lambda)$ vanishes at the points $\nu_1^1, \ldots, \nu_{N-1}^1$, the result follows.

Finally, we find below an explicit expression for $y_+(0,\lambda)$ in terms of the eigenvalues λ_n of the operator \mathcal{A} .

Lemma 2.7. The following holds:

$$y_{+}(0,\lambda) = -(a_0 a_1 \cdots a_{N-1})^{-1} \prod_{k=1}^{N} (\lambda - \lambda_k) \prod_{k=1}^{\infty} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2}.$$

Proof. In what follows, λ is an arbitrary nonzero complex number. We recall that $y_+(x,\lambda)$ is a solution of the equation $ly=\lambda y$ satisfying the terminal conditions $y(1)=y_+(1,\lambda)$ and $y^{[1]}(1)=y_+^{[1]}(1,\lambda)$, whence

$$y_{+}(x,\lambda) = y_{+}(1,\lambda)u(x,\lambda) + y_{+}^{[1]}(1,\lambda)v(x,\lambda),$$

where $u(\cdot, \lambda)$ and $v(\cdot, \lambda)$ are solutions of the problems

$$\begin{cases} l_{\sigma}u = \lambda u, \\ u(1) = 1, \\ u^{[1]}(1) = 0, \end{cases} \begin{cases} l_{\sigma}v = \lambda v, \\ v(1) = 0, \\ v^{[1]}(1) = 1. \end{cases}$$

Recalling [12] that $u(x,\lambda)$ and $v(x,\lambda)$ have the integral representations

$$u(x,\lambda) = \cos\sqrt{\lambda}(x-1) + \int_{x}^{1} k_1(x,t)\cos\sqrt{\lambda}(t-1) dt,$$

$$v(x,\lambda) = \frac{\sin\sqrt{\lambda}(x-1)}{\sqrt{\lambda}} + \int_{x}^{1} k_2(x,t)\frac{\sin\sqrt{\lambda}(t-1)}{\sqrt{\lambda}} dt$$

for some upper-diagonal kernels k_j such that $k(x,\cdot)$ belongs to $L_2(0,1)$ for every $x \in [0,1]$, and that by Lemma 2.6 $y_+^{[1]}(1,\lambda)$ and $y_+(1,\lambda)$ are polynomials in λ of degrees N and N-1 respectively, we find that

$$y_{+}(0,\lambda) = -\frac{\lambda^{N-\frac{1}{2}}\sin\sqrt{\lambda}}{a_{0}a_{1}\cdots a_{N-1}}[1+o(1)]$$

as $\lambda \to -\infty$.

Since $y_+(0,\lambda)$ is an entire function of λ of exponential type $\frac{1}{2}$ and since its zeros coincide with the eigenvalues of \mathcal{A} , we conclude that

$$y_{+}(0,\lambda) = C_1 \prod_{k \in \mathbb{N}} \left(1 - \frac{\lambda}{\lambda_n}\right)$$

for some constant $C_1 \in \mathbb{C}$. Now we find that

$$-1 = \lim_{\lambda \to -\infty} \frac{a_0 a_1 \cdots a_{N-1} y_+(0, \lambda)}{\lambda^{N-\frac{1}{2}} \sin \sqrt{\lambda}}$$

$$= \lim_{\lambda \to -\infty} \frac{C_1 a_0 a_1 \cdots a_{N-1}}{\lambda^N} \prod_{k \in \mathbb{N}} \left(1 - \frac{\lambda}{\lambda_k}\right) / \prod_{k \in \mathbb{N}} \left(1 - \frac{\lambda}{\pi^2 k^2}\right)$$

$$= \lim_{\lambda \to -\infty} \frac{C_1 a_0 a_1 \cdots a_{N-1}}{\lambda^N} \prod_{k=1}^N \left(1 - \frac{\lambda}{\lambda_k}\right) \prod_{k \in \mathbb{N}} \frac{\lambda_{k+N} - \lambda}{\lambda_{k+N}} \frac{\pi^2 k^2}{\pi^2 k^2 - \lambda}$$

$$= (-1)^N \frac{C_1 a_0 a_1 \cdots a_{N-1}}{\lambda_1 \cdots \lambda_N} \prod_{k \in \mathbb{N}} \frac{\pi^2 k^2}{\lambda_{k+N}},$$

since the above products converge uniformly on \mathbb{C} , whence

$$y_{+}(0,\lambda) = -\frac{(-1)^{N} \lambda_{1} \cdots \lambda_{N}}{a_{0} a_{1} \cdots a_{N-1}} \prod_{k=1}^{N} \left(1 - \frac{\lambda}{\lambda_{k}}\right) \prod_{k=1}^{\infty} \frac{\lambda_{k+N} - \lambda}{\pi^{2} k^{2}}$$
$$= -(a_{0} a_{1} \cdots a_{N-1})^{-1} \prod_{k=1}^{N} (\lambda - \lambda_{k}) \prod_{k=1}^{\infty} \frac{\lambda_{k+N} - \lambda}{\pi^{2} k^{2}}.$$

The lemma is proved.

We shall use several times the following statement about integral representations of some entire functions, cf. [15, Lemma 3.4.2].

Proposition 2.8. ([11]). Assume that the numbers a_n and b_n are such that $a_n = \pi n + \tilde{a}_n$ and $b_n = \pi(n - \frac{1}{2}) + \tilde{b}_n$ with some ℓ_2 -sequences (\tilde{a}_n) and (\tilde{b}_n) . Put

$$\phi(z) := \sqrt{z} \prod_{n \in \mathbb{N}} \frac{a_n^2 - z}{\pi^2 n^2}, \quad \psi(z) := \prod_{n \in \mathbb{N}} \frac{b_n^2 - z}{\pi^2 (n - \frac{1}{2})^2};$$

then there exist functions $\tilde{\phi}$ and $\tilde{\psi}$ in $L_2(0,1)$ such that

$$\phi(z) = \sin \sqrt{z} + \int_0^1 \tilde{\phi}(t) \sin \sqrt{z} t \, dt, \quad \psi(z) = \cos \sqrt{z} + \int_0^1 \tilde{\psi}(t) \cos \sqrt{z} t \, dt.$$

3. Reconstruction from A, S_D , and $J_{(1)}$

Given an arbitrary operator matrix \mathcal{A} of the form (1.1), we denote by $(\lambda_n)_{n\in\mathbb{N}}$, $(\mu_{n,D})_{n\in\mathbb{N}}$, and $(\nu_n^1)_{n=1}^{N-1}$ the eigenvalue sequences of \mathcal{A} , the operator S_D , and the Jacobi matrix $J_{(1)}$ respectively. Put also $(\lambda'_n)_{n\in\mathbb{N}} := (\mu_{n,D}) \coprod (\nu_n^1)_{n=1}^{N-1}$, where the amalgamation operation Π was defined in the Introduction. An interesting property of the spectra involved is that every multiple element of (λ'_n) is an eigenvalue of \mathcal{A} and any eigenvalue of \mathcal{A} that belongs also to (λ'_n) occurs therein twice. In other words, the following statement holds true.

Proposition 3.1. ([1]).
$$\sigma(A) \cap \sigma(S_D) = \sigma(A) \cap \sigma(J_{(1)}) = \sigma(S_D) \cap \sigma(J_{(1)})$$
.

This allows us to establish the weak interlacing property of the sequences (λ_n) and (λ'_n) in the following sense.

Lemma 3.2. The sequences (λ_n) and (λ'_n) weakly interlace, i.e., $\lambda_1 < \lambda'_1$ and for every $n \in \mathbb{N}$ either $\lambda'_n < \lambda_{n+1} < \lambda'_{n+1}$ or $\lambda'_n = \lambda_{n+1} = \lambda'_{n+1}$.

Proof. Denote by δ_1 the Dirac delta-function at the point x=1 and put $D_1:=(\delta_1,0)^t$. It is known that the domain of the Sturm-Liouville operator S is contained in $W_2^1(0,1)$; in particular, the functions $y_{\pm}(\cdot,\lambda)$ belong to $W_2^1(0,1)$. The explicit formula for the resolvent of the operator \mathcal{A} derived in Lemma 2.1 shows that the expression

$$f(\lambda) := \langle (\mathcal{A} - \lambda)^{-1} D_1, D_1 \rangle$$

makes sense for any λ not in the spectrum of \mathcal{A} and, moreover, that

$$f(\lambda) = \frac{y_+(1,\lambda)y_-(1,\lambda)}{W(\lambda)}.$$

Since $f(\lambda)$ is a Nevanlinna function, its zeros and poles interlace. On the other hand, the zeros of f coincide with λ'_k and the poles with those λ_k which do not appear in (λ'_n) . In view of Proposition 3.1 and the known asymptotics of λ_n and $\mu_{n,D}$ this justifies the claim.

The asymptotics of λ_n and $\mu_{n,D}$ shows that $\lambda_{n+N} - \mu_{n,D} = o(n)$ as $n \to \infty$. In fact, this result can be improved, cf. [5] for the case $q \in L_1(0,1)$.

Lemma 3.3. There exists an ℓ_2 -sequence (b_n) such that

$$\lambda_{n+N} - \mu_{n,D} = 2a_0^2(1+b_n).$$

Proof. It suffices to consider only large enough n such that λ_{n+N} is not in the spectrum of $J_{(1)}$ and thus formula (2.3) for the norming constant α_{n+N} holds. Using the representation of the functions $y_+(0,\lambda)$ and $y_+(1,\lambda)$, we find that

(3.1)
$$\alpha_{n+N} = \frac{a_0^2 \prod_{k=1}^{N-1} (\lambda_{n+N} - \nu_k^1)}{y_-(1, \lambda_{n+N}) \prod_{k=1}^{N} (\lambda_{n+N} - \lambda_k)} / \frac{d}{d\lambda} \left(\sqrt{\lambda} \prod_{k \in \mathbb{N}} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2} \right) \Big|_{\lambda = \lambda_{n+N}}.$$

Due to the asymptotics of λ_n and Proposition 2.8 the function

$$\phi(\lambda) := \sqrt{\lambda} \prod_{k \in \mathbb{N}} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2}$$

can be represented in the form

$$\phi(\lambda) = \sin\sqrt{\lambda} + \int_0^1 f(t)\sin\sqrt{\lambda}t \, dt$$

for some $f \in L_2(0,1)$, whence

$$\dot{\phi}(\lambda_{n+N}) = \frac{1}{2\sqrt{\lambda_{n+N}}} \Big(\cos\sqrt{\lambda_{n+N}} + \int_0^1 t f(t) \cos\sqrt{\lambda_{n+N}} t \, dt\Big).$$

By Propositions 2.5 and 2.8, there is also $g \in L_2(0,1)$ such that

$$\psi(\lambda) := y_{-}(1,\lambda) = \sin\sqrt{\lambda} + \int_{0}^{1} g(t)\sin\sqrt{\lambda}t \,dt.$$

In view of the mean value theorem there are numbers ξ_n between $\mu_{n,D}$ and λ_{n+N} such that

$$\psi(\lambda_{n+N}) = (\lambda_{n+N} - \mu_{n,D})\dot{\psi}(\xi_n)$$
$$= \frac{\lambda_{n+N} - \mu_{n,D}}{2\sqrt{\xi_n}} \left(\cos\sqrt{\xi_n} + \int_0^1 tg(t)\cos\sqrt{\xi_n}t \,dt\right).$$

Due to the asymptotics of λ_n and ξ_n the sequences $(\cos \sqrt{\lambda_{n+N}}t)_{n\in\mathbb{N}}$ and $(\cos \sqrt{\xi_n}t)_{n\in\mathbb{N}}$ form Riesz bases of $L_2(0,1)$ [9] and hence

$$\cos\sqrt{\lambda_{n+N}} + \int_0^1 t f(t) \cos\sqrt{\lambda_{n+N}} t \, dt = (-1)^{n+N} (1+c_n),$$
$$\cos\sqrt{\xi_n} + \int_0^1 t g(t) \cos\sqrt{\xi_n} t \, dt = (-1)^{n+N} (1+d_n)$$

with square summable sequences $(c_n)_{n\in\mathbb{N}}$ and $(d_n)_{n\in\mathbb{N}}$. Therefore (3.1) can be recast as

$$\alpha_{n+N}(1+c_n)(1+d_n) = \frac{4a_0^2}{\lambda_{n+N} - \mu_{n,D}} \frac{\sqrt{\lambda_{n+N}\xi_n}}{\lambda_{n+N} - \lambda_N} \prod_{k=1}^{N-1} \frac{\lambda_{n+N} - \nu_k^1}{\lambda_{n+N} - \lambda_k},$$

which, on account of the asymptotics of α_n of Proposition 2.3, implies that

$$\frac{2a_0^2}{\lambda_{n+N} - \mu_{n,D}} = 1 + \hat{\alpha}_n, \quad (\hat{\alpha}_n) \in \ell_2,$$

and the result follows.

Definition 3.4. We denote by \mathfrak{L}_N the set of all triples $\Lambda := ((\lambda_n)_{n=1}^{\infty}, (\mu_n)_{n=1}^{\infty}, (\nu_n)_{n=1}^{N-1})$ of strictly monotone sequences such that the following holds:

- (1) there is an ℓ_2 -sequence (λ_n) such that $\lambda_n = [\pi(n-N) + \lambda_n]^2$;
- (2) the sequences (λ_n) and $(\lambda'_n) := (\mu_n) \coprod (\nu_n)$ weakly interlace in the sense of Lemma 3.2;
- (3) there exist $\gamma_0 > 0$ and a sequence $(\gamma_n) \in \ell_2$ such that $\lambda_{k+N} \mu_k = \gamma_0 + \gamma_k$. or a given $\Lambda \in \mathfrak{L}_N$, we denote by A_{Λ} the set of $n \in \mathbb{N}$ such that $\lambda_n = \lambda'_n$ and

For a given $\Lambda \in \mathfrak{L}_N$, we denote by A_{Λ} the set of $n \in \mathbb{N}$ such that $\lambda_n = \lambda'_n$ and put $B_{\Lambda} := \mathbb{N} \setminus A_{\Lambda}$.

The results of this and the previous sections show that, for any operator \mathcal{A} of the form (1.1), the corresponding spectral triple $((\lambda_n), (\mu_{n,D}), (\nu_n^1))$ forms an element of \mathfrak{L}_N . In the reverse direction, we shall prove that any element of \mathfrak{L}_N is the spectral triple of the above form.

Theorem 3.5. For any $\Lambda := ((\lambda_n), (\mu_n), (\nu_n)) \in \mathfrak{L}_N$ there exists an operator \mathcal{A} of the form (1.1) such that (λ_n) , (μ_n) , and (ν_n) are the eigenvalues of the operators \mathcal{A} , S_D , and $J_{(1)}$ respectively. Such an operator \mathcal{A} is unique if and only if the set A_{Λ} is empty.

Proof. We start with constructing the functions

$$\phi(z) := \sqrt{z} \prod_{n \in \mathbb{N}} \frac{\lambda_{n+N} - z}{\pi^2 n^2}, \qquad \psi(z) := \sqrt{z} \prod_{n \in \mathbb{N}} \frac{\mu_n - z}{\pi^2 n^2},$$

and for $n \in B_{\Lambda}$ put (cf. (3.1))

$$\beta_n := \frac{\gamma_0 \prod_{k=1}^{N-1} (\lambda_n - \nu_k)}{2\psi(\lambda_n)} / \frac{d}{d\lambda} \left(\phi(\lambda) \prod_{k=1}^{N} (\lambda - \lambda_k) \right) \Big|_{\lambda = \lambda_n}.$$

Due to the weak interlacing property of Λ the numbers β_n are positive and the proof of Lemma 3.3 shows that $\beta_n = 2 + \tilde{\beta}_n$ for a sequence $(\tilde{\beta}_n)$ belonging to $\ell_2(B_{\Lambda})$.

Now we define the sequence (α_n) with $\alpha_n = \beta_n$ if $n \in B_{\Lambda}$ and take α_n to be an arbitrary positive number if $n \in A_{\Lambda}$. The sequences (λ_n) and (α_n) satisfy all the requirements of Proposition 2.3 and thus there exists an operator \mathcal{A} of the form (1.1) whose eigenvalues and norming constants coincide respectively with (λ_n) and (α_n) .

eigenvalues and norming constants coincide respectively with (λ_n) and (α_n) . It remains to prove that the sequences $(\mu_n)_{n\in\mathbb{N}}$ and $(\nu_n)_{n=1}^{N-1}$ we have started with coincide with the eigenvalues $(\mu_{n,D})_{n\in\mathbb{N}}$ and $(\nu_n)_{n=1}^{N-1}$ of the related operator S_D and Jacobi matrix $J_{(1)}$ respectively. Since for the norming constants α_n with $n\in B_\Lambda$ formula (2.3) holds, we conclude that, for such n,

$$\frac{a_0^2 \prod_{k=1}^{N-1} (\lambda_n - \nu_k^1)}{\nu_-(1, \lambda_n)} = \frac{\gamma_0 \prod_{k=1}^{N-1} (\lambda_n - \nu_k)}{2\psi(\lambda_n)},$$

i.e., that

(3.2)
$$\frac{2a_0^2\psi(\lambda_n)}{\sqrt{\lambda_n}} \prod_{k=1}^{N-1} (\lambda_n - \nu_k^1) - \frac{\gamma_0 y_-(1, \lambda_n)}{\sqrt{\lambda_n}} \prod_{k=1}^{N-1} (\lambda_n - \nu_k) = 0.$$

Recalling that $\psi(\lambda_n) = 0 = \prod_{k=1}^{N-1} (\lambda_n - \nu_k)$ for $n \in A_{\Lambda}$, we conclude that equality (3.2) holds for all $n \in \mathbb{N}$. We observe that (3.2) takes the form $\Phi(\lambda_n) = 0$, where the function Φ satisfies the relation

(3.3)
$$\Phi(z) = O(|z|^{N-3/2} e^{|\operatorname{Im}\sqrt{z}|})$$

as $|z| \to \infty$. We shall prove that $\Phi \equiv 0$.

Assume not, and observe that Φ has then no zeros other than λ_n , $n \in \mathbb{N}$. Indeed, in view of (3.3) Jensen's formula gives

(3.4)
$$\int_{1}^{r} \frac{n(t)}{t} dt \leq \frac{1}{2\pi} \int_{0}^{2\pi} \log |\Phi(re^{i\theta})| d\theta + C_{1}$$
$$\leq (N - \frac{3}{2}) \log r + \frac{\sqrt{r}}{2\pi} \int_{0}^{2\pi} |\sin \theta/2| d\theta + C_{2}$$
$$= (N - \frac{3}{2}) \log r + \frac{2\sqrt{r}}{\pi} + C_{2},$$

where n(t) denotes the number of zeros of Φ in the closed circle of radius t centered at the origin and C_1 and C_2 are some positive constants. On the other hand, if Φ had at least one additional zero, then for any $\varepsilon > 0$ and all sufficiently large t we would have

$$n(t) \ge \left\lceil \frac{\sqrt{t}}{\pi} - \varepsilon \right\rceil + N + 1 \ge \frac{\sqrt{t}}{\pi} + N - \varepsilon,$$

which contradicts (3.4). Now Φ , being of exponential type $\frac{1}{2}$, equals

$$\Phi(z) = C_3 \prod_{n=1}^{\infty} \left(1 - \frac{z}{\lambda_n}\right)$$

for some constant C_3 . Using the canonical product for $\sin \sqrt{z}$ and the asymptotics of λ_k , we conclude that

$$\lim_{z \to -\infty} \frac{\Phi(z)}{z^{N-\frac{1}{2}} \sin \sqrt{z}} =: C_4 \neq 0,$$

which contradicts (3.3).

Thus we have proved that $\Phi \equiv 0$, i.e., that

$$2a_0^2 \prod_{k \in \mathbb{N}} \frac{\mu_k - z}{\pi^2 k^2} \prod_{k=1}^{N-1} (z - \nu_k^1) \equiv \gamma_0 \prod_{k=1}^{\infty} \frac{\mu_{k,D} - z}{\pi^2 k^2} \prod_{k=1}^{N-1} (z - \nu_k).$$

It follows that every ν_n that does not occur in (μ_k) is an eigenvalue of $J_{(1)}$ and, similarly, every μ_n that does not occur in (ν_k) is an eigenvalue of S_D . Since the sequences (λ_n) and $(\mu_{n,D}) \coprod (\nu_n^1)$ weakly interlace in the sense of Lemma 3.2, and since the same is true of (λ_n) and (λ'_n) , simple considerations show that every multiple element of (λ'_n) belongs to the spectra of both S_D and $J_{(1)}$, cf. [13, Sect. 6]. Thus all μ_n are eigenvalues of S_D and all ν_n —those of $J_{(1)}$. Since neither $J_{(1)}$ nor S_D can have other eigenvalues due to the size and asymptotics limitations respectively, Λ is the spectral triple for the operator \mathcal{A} found.

If the set A_{Λ} is empty, then the norming constants α_n are uniquely determined by Λ , so that \mathcal{A} is unique in view of Proposition 2.3. If A_{Λ} is non-empty, then different choices of α_n for $n \in A_{\Lambda}$ lead to different operators \mathcal{A} . The proof is complete.

Remark 3.6. It follows from the proof of Theorem 3.5 that the set of Λ -isospectral operators \mathcal{A} of the form (1.1) (i.e., the set of operators \mathcal{A} such that the spectra of \mathcal{A} , S_{D} , and $J_{(1)}$ form the prescribed triple $\Lambda \in \mathcal{L}_N$) is a manifold of dimension equal to the cardinality of the set A_{Λ} .

4. Reconstruction from the spectra of A, $S_{\rm N}$, and J

Treatment of the inverse problem of reconstructing the operator \mathcal{A} from the spectra of the operators \mathcal{A} , S_N , and the Jacobi matrix J parallels in general that of the inverse problem of Section 3. One essential difference is that the invariance of \mathcal{A} with respect to changing the primitive σ to $\sigma + C$ and b_1 to $b_1 + a_0 C$ (mentioned in Remark 1.1) is important here as it changes the spectra of both the operator S_N and the Jacobi matrix J. Thus the more correct inverse problem should be not only to reconstruct the operator \mathcal{A} per se, but also to fix the appropriate quasi-derivative σ of the potential q and the corresponding Jacobi matrix J.

Given an arbitrary operator matrix \mathcal{A} of the form (1.1) (with fixed σ), we denote by $(\lambda_n)_{n\in\mathbb{N}}$, $(\mu_{n,\mathbb{N}})_{n\in\mathbb{N}}$, and $(\nu_{n,\mathbb{J}})_{n=1}^N$ the eigenvalue sequences of \mathcal{A} , $S_{\mathbb{N}}$, and J respectively. Put also $(\lambda'_n)_{n\in\mathbb{N}} := (\mu_{n,\mathbb{D}}) \coprod (\nu_{n,\mathbb{J}})_{n=1}^N$. The above three spectra have the same intersection property as those of Section 3, namely

Proposition 4.1. ([1]). $\sigma(A) \cap \sigma(S_N) = \sigma(A) \cap \sigma(J) = \sigma(S_N) \cap \sigma(J)$.

Lemma 4.2. The sequences (λ'_n) and (λ_n) weakly interlace, i.e., for every $n \in \mathbb{N}$ either $\lambda'_n < \lambda_n < \lambda'_{n+1}$ or $\lambda'_n = \lambda_n = \lambda'_{n+1}$.

Proof. We observe that (λ'_n) is the sequence of eigenvalues of the operator $\mathcal{A}_0 = S_N \oplus J$ counting multiplicities and that \mathcal{A} and \mathcal{A}_0 are self-adjoint extensions of the symmetric operator \mathcal{A}' , which is the restriction of \mathcal{A} onto the domain

$$\mathcal{D}(\mathcal{A}') := \{ (y, d)^{t} \in \mathcal{D}(\mathcal{A}) \mid y^{[1]}(1) = 0 \}$$

and has deficiency indices (1,1). We denote by \mathcal{H}' a maximal subspace of $\mathcal{D}(\mathcal{A}')$ that is invariant with respect to \mathcal{A}' and put $\mathcal{H}'' := \mathcal{H} \ominus \mathcal{H}'$. The restrictions of the operators \mathcal{A} and \mathcal{A}_0 onto \mathcal{H}' coincide (with \mathcal{A}') and dim $\mathcal{H}' \leq N$ since if $Y = (y, d)^{\mathsf{t}}$ is an eigenvector of A that belongs to \mathcal{H}' , then d is an eigenvector of J. It follows from [7] (see also [2, Ch. 1.2) that the spectra of the restrictions of \mathcal{A} and \mathcal{A}_0 onto the subspace \mathcal{H}'' strictly interlace. Combining the two parts together, we see that either $\lambda'_n \leq \lambda_n$ for all $n \in \mathbb{N}$ or $\lambda_n \leq \lambda'_n$ for all $n \in \mathbb{N}$; however, the inequality $\lambda_n \leq \lambda'_n$ is ruled out for all n sufficiently large by the asymptotics of λ_n and $\mu_{n,N}$, see Propositions 2.3 and 2.4. Taking into account the intersection property of Proposition 4.1, we conclude that the spectra weakly interlace in the specified sense.

Definition 4.3. We denote by \mathfrak{L}'_N the set of all triples of strictly monotone sequences $\Lambda := ((\lambda_n)_{n \in \mathbb{N}}, (\mu_n)_{n \in \mathbb{N}}, (\nu_n)_{n=1}^N)$ satisfying the following properties:

- (1) there is an ℓ_2 -sequence $(\tilde{\lambda}_n)$ such that $\lambda_n = [\pi(n-N) + \tilde{\lambda}_n]^2$; (2) there is an ℓ_2 -sequence $(\tilde{\mu}_n)$ such that $\mu_n = [\pi(n-\frac{1}{2}) + \tilde{\mu}_n]^2$;
- (3) the sequences (λ_n) and $(\lambda'_n) := (\mu_n) \coprod (\nu_n)$ weakly interlace in the sense of Lemma 4.2.

We denote by A_{Λ} the set of $n \in \mathbb{N}$ such that $\lambda_n = \lambda'_n$ and put $B_{\Lambda} := \mathbb{N} \setminus A_{\Lambda}$.

The results obtained so far show that, for any operator A of the form (1.1), the corresponding spectral triple $((\lambda_n), (\mu_{n,N}), (\nu_{n,J}))$ form an element of \mathfrak{L}'_N . In the reverse direction, we shall prove that any element of \mathfrak{L}'_N is the spectral triple of the above form. The approach lies in reducing the problem to that of reconstruction of \mathcal{A} from the eigenvalues and the norming constants. Lemmas 2.2, 2.6, and 2.7 imply that the three spectra determine uniquely the norming constants α_n for $n \in B_{\Lambda}$. Hence, if a given triple $\Lambda \in \mathcal{L}'_N$ is composed of the spectra of some \mathcal{A} and its two parts, then the corresponding norming constants must be related to Λ via the formulae established in Section 2. As a preliminary, we show that any triple in \mathfrak{L}'_N produces in this way the numbers with correct asymptotics.

Lemma 4.4. Assume that $\Lambda = ((\lambda_n), (\mu_n), (\nu_n)) \in \mathfrak{L}'_N$ and define the functions ϕ, ψ , and χ by the formulae

$$\phi(\lambda) = \prod_{k=1}^{N} (\lambda - \lambda_k) \prod_{k=1}^{\infty} \frac{\lambda_{k+N} - \lambda}{\pi^2 k^2},$$

$$\psi(\lambda) = \sqrt{\lambda} \prod_{k=1}^{\infty} \frac{\mu_k - \lambda}{\pi^2 (k - \frac{1}{2})^2},$$

$$\chi(\lambda) = \prod_{k=1}^{N} (\lambda - \nu_k).$$

Then the numbers

(4.1)
$$\beta_n := \frac{\chi(\lambda_n)}{\sqrt{\lambda_n} \dot{\phi}(\lambda_n) \psi(\lambda_n)}, \quad n \in B_{\Lambda},$$

have the asymptotics

$$\beta_n = 2 + \tilde{\beta}_n$$

where the sequence $(\tilde{\beta}_n)$ belongs to $\ell_2(B_{\Lambda})$.

Proof. It clearly suffices to prove that

$$\frac{1}{\beta_n} = \frac{\sqrt{\lambda_n} \dot{\phi}(\lambda_n) \psi(\lambda_n)}{\chi(\lambda_n)} = \frac{1}{2} + \hat{\beta}_n$$

for some sequence $(\hat{\beta}_n) \in \ell_2$. In view of the asymptotics of (λ_k) and Proposition 2.8, there exists a function $f \in L_2(0,1)$ such that

$$\phi(\lambda) = \left(\frac{\sin\sqrt{\lambda}}{\sqrt{\lambda}} + \int_0^1 f(t) \frac{\sin\sqrt{\lambda}t}{\sqrt{\lambda}} dt\right) \prod_{k=1}^N (\lambda - \lambda_k)$$

and thus, for n > N,

$$\dot{\phi}(\lambda_n) = \frac{\cos\sqrt{\lambda_n} + \int_0^1 t f(t) \cos\sqrt{\lambda_n} t \, dt}{2\lambda_n} \prod_{k=1}^N (\lambda - \lambda_k).$$

Similarly, for some $g \in L_2(0,1)$ it holds

$$\psi(\lambda) = \sqrt{\lambda}\cos\sqrt{\lambda} + \sqrt{\lambda}\int_0^1 g(t)\cos\sqrt{\lambda}t\,dt.$$

Since the system $\{\sin \sqrt{\lambda_n} t\}_{n>N}$ forms a Riesz basis of $L_2(0,1)$ [9], for any $h \in L_2(0,1)$ the sequence

$$\int_{0}^{1} h(t) \cos \sqrt{\lambda_n} t \, dt, \quad n > N,$$

is square summable. The asymptotics of λ_n implies that $\cos \sqrt{\lambda_n} = (-1)^{n+N} (1+b_n)$, where the sequence (b_n) is in ℓ_2 . Combining these relations, we arrive at the representation

$$\frac{\sqrt{\lambda_n}\dot{\phi}(\lambda_n)\psi(\lambda_n)}{\chi(\lambda_n)} = \frac{1}{2}(1+d_n)\prod_{k=1}^N \frac{\lambda_n - \lambda_k}{\lambda_n - \nu_k}$$

with $(d_n) \in \ell_2$, which yields the result.

Theorem 4.5. For any $\Lambda := ((\lambda_n), (\mu_n), (\nu_n)) \in \mathfrak{L}'_N$ there exist $a_0 > 0$, a function $\sigma \in L_2(0,1)$ and a Jacobi matrix J of size N such that (λ_n) is the spectrum of the corresponding operator \mathcal{A} in $L_2(0,1) \times \mathbb{C}^N$ of the form (1.1), (μ_n) is the spectrum of the operator S_N , and (ν_k) is the spectrum of the Jacobi matrix J. The operator \mathcal{A} is unique if and only if the set A_{Λ} is empty.

Proof. We start with constructing the functions ϕ, ψ , and χ of Lemma 4.4 and defining the numbers β_n as in (4.1). Next, we put $\alpha_n = \beta_n$ for $n \in B_{\Lambda}$, and take α_n arbitrary positive for $n \in A_{\Lambda}$. According to Lemma 4.4, α_n obey the asymptotics $\alpha_n = 2 + \tilde{\alpha}_n$ with some $(\tilde{\alpha}_n) \in \ell_2$.

By Proposition 2.3, there exists an operator \mathcal{A} of the form (1.1), whose eigenvalues are λ_n and the corresponding norming constants are α_n . We claim that one can fix a primitive of the potential q of the operator S and a Jacobi matrix J in the representation of \mathcal{A} in such a way that μ_n are the eigenvalues of the operator S_N and ν_n are the eigenvalues of J.

We take k^* such that μ_{k^*} is not an eigenvalue of \mathcal{A} just found, fix the unique primitive σ of the potential q of the Sturm-Liouville operator S such that the relation $(y'_{-} - \sigma y_{-})(1, \mu_{k^*}) = 0$ holds, and determine the corresponding Jacobi matrix J giving the representation (1.1) of \mathcal{A} . We denote by $\mu_{n,N}$ and $\nu_{n,J}$ the eigenvalues of S_N and J and observe that the above choice of σ makes μ_{k^*} an eigenvalue of S_N . Due to the construction of β_n and formula (2.2) for α_n , we have the equality

$$\frac{\psi(\lambda_n)}{\chi(\lambda_n)} = \sqrt{\lambda_n} \prod_{k=1}^{\infty} \frac{\mu_{k,N} - \lambda_n}{\pi^2 (k - \frac{1}{2})^2} / \prod_{k=1}^{N} (\lambda_n - \nu_{k,J})$$

for all $n \in B_{\Lambda}$. Recalling that $\psi(\lambda_n) = \chi(\lambda_n) = 0$ for $n \in A_{\Lambda}$, we see that

$$\psi(\lambda_n) \prod_{k=1}^{N} (\lambda_n - \nu_{k,J}) = \sqrt{\lambda_n} \chi(\lambda_n) \prod_{k=1}^{\infty} \frac{\mu_{k,N} - \lambda_n}{\pi^2 (k - \frac{1}{2})^2}$$

for all $n \in \mathbb{N}$.

Put

$$\Phi_1(z) := \frac{\psi(z)}{\sqrt{z}} \prod_{k=1}^N (z - \nu_{k,J}), \quad \Phi_2(z) := \chi(z) \prod_{k=1}^\infty \frac{\mu_{k,N} - z}{\pi^2 (k - \frac{1}{2})^2};$$

then $\Phi_1(\lambda_n) = \Phi_2(\lambda_n)$ for all $n \in \mathbb{N}$, and also $\Phi_1(\mu_{k^*}) = \Phi_2(\mu_{k^*}) = 0$ (the latter relation follows from the fact that μ_{k^*} is among $\mu_{n,N}$ by the construction of S_N). In view of Proposition 2.8 the functions Φ_i have the form

$$\Phi_j(z) = p_j(z) \left(\cos\sqrt{z} + \int_0^1 g_j(t)\cos\sqrt{z}t \, dt\right)$$

for some monic polynomials p_j of degree N and some functions $g_j \in L_2(0,1)$, j=1,2. It follows that $\Phi := \Phi_1 - \Phi_2$ is an entire function of exponential type $\frac{1}{2}$ with zeros $\{\lambda_n\}_{n\in\mathbb{N}} \cup \{\mu_{k^*}\}$ such that

(4.2)
$$\Phi(z) = o(z^N e^{|\operatorname{Im} \sqrt{z}|})$$

as $|z| \to \infty$. Next we show as in the proof of Theorem 3.5 that $\Phi \equiv 0$ by noticing that otherwise Φ would have no zeros other than λ_n , $n \in \mathbb{N}$, and μ_{k^*} , and that the canonical product for Φ then would contradict the estimate (4.2).

Thus $\Phi_1 \equiv \Phi_2$, which together with the weak interlacing property of (λ_n) and (λ'_n) as well as of (λ_n) and $(\mu_{n,N}) \coprod (\nu_{n,J})$ shows that $\mu_n = \mu_{n,N}$ for all $n \in \mathbb{N}$ and that $\nu_k = \nu_{k,J}$ for $k = 1, \ldots, N$. Uniqueness statement follows from Proposition 2.3, and the proof is complete.

We remark that the set of Λ -isospectral operators \mathcal{A} is again a manifold of dimension equal to the cardinality of the set A_{Λ} .

Acknowledgments. The authors express their gratitude to DFG for financial support of the project 436 UKR 113/84. The research of R. Hryniv was partially supported by the Alexander von Humboldt Foundation.

References

- S. Albeverio, P. Binding, R. Hryniv, and Ya. Mykytyuk, Inverse spectral problems for coupled oscillating systems, Preprint no. 217, SFB 611, Bonn, 2005.
- S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators, Cambridge University Press, Cambridge, 2000.
- 3. P. A. Binding, P. J. Browne, and B. A. Watson, Recovery of the m-function from spectral data for generalized Sturm-Liouville problems, J. Comput. Appl. Math. 171 (2004), no. 1–2, 73–91.
- P. A. Binding, P. J. Browne, and B. A. Watson, Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl. 291 (2004), no. 1, 246–261.
- P. A. Binding, P. J. Browne, and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter. I, Proc. Edinb. Math. Soc. (2) 45 (2002), no. 3, 631-645.
- P. A. Binding, P. J. Browne, and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter. II, J. Comput. Appl. Math. 148 (2002), no. 1, 147–168.
- 7. W. F. Donoghue, On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965), 559-579.
- 8. F. Gesztesy and B. Simon, On the determination of a potential from three spectra, in Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 189, Amer. Math. Soc., Providence, RI, 1999, pp. 85–92.
- X. He and H. Volkmer, Riesz bases of solutions of Sturm-Liouville equations, J. Fourier Anal. Appl. 7 (2001), no. 3, 297–307.
- R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems 19 (2003), 665-684.
- R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials, II. Reconstruction by two spectra, in Functional Analysis and its Applications, V. Kadets and W. Żelazko, eds., North-Holland Mathematics Studies, Vol. 197, North-Holland Publishing Co., Amsterdam, 2004, pp. 97-114.

- R. O. Hryniv and Ya. V. Mykytyuk, Transformation operators for Sturm-Liouville operators with singular potentials, Math. Phys. Anal. Geom. 7 (2004), 119–149.
- R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. III. Reconstruction by three spectra, J. Math. Anal. Appl. 284 (2003), no. 2, 626-646.
- B. M. Levitan, Inverse Sturm-Liouville Problems, Nauka, Moscow, 1984 (Russian); English transl.: VNU Science Press, Utrecht, 1987.
- V. A. Marchenko, Sturm-Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977 (Russian); English transl.: Birkhäuser Verlag, Basel, 1986.
- J. Michor and G. Teschl, Reconstructing Jacobi matrices from three spectra, in Spectral Methods for Operators of Mathematical Physics, Oper. Theory Adv. Appl., Vol. 154, Birkhäuser, Basel, 2004, pp. 151–154.
- 17. V. N. Pivovarchik, An inverse Sturm-Liouville problem by three spectra, Integr. Equ. Oper. Theory **34** (1999), no. 2, 234–243.
- J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic Press, Orlando, Florida, 1987.
 (Pure and Applied Mathematics, Vol. 130, Academic Press, Massachusetts, 1987).
- A. M. Savchuk and A. A. Shkalikov, Sturm-Liouville operators with singular potentials, Mat. Zametki 66 (1999), no. 6, 897–912. (Russian); English transl.: Math. Notes 66 (1999), no. 5–6, 741–753.
- A. M. Savchuk and A. A. Shkalikov, Sturm-Liouville operators with distributional potentials, Trudy Moskov. Mat. Obshch. 64 (2003), 159–212. (Russian); English transl.: Trans. Moscow Math. Soc. 66 (2003), 143–192.

Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D–53115, Bonn, Germany; SFB 611, Bonn, Germany; BiBoS, Bielefeld, Germany; IZKS; CERFIM, Locarno, Switzerland; and Accademia di Architettura, Mendrisio, Switzerland

E-mail address: albeverio@uni-bonn.de

Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova, Lviv, 79601, Ukraine

 $E\text{-}mail\ address{:}\ \mathtt{rhryniv@iapmm.lviv.ua}$

Lviv National University, 1 Universytetska, Lviv, 79602, Ukraine

 $E ext{-}mail\ address: yamykytyuk@yahoo.com}$

Received 10/11/2005