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INVERSE SPECTRAL PROBLEMS FOR COUPLED OSCILLATING
SYSTEMS: RECONSTRUCTION FROM THREE SPECTRA

S. ALBEVERIO, R. HRYNIV, AND YA. MYKYTYUK

Dedicated to M. G. Krein, with admiration.

Abstract. We study an inverse spectral problem for a compound oscillating system
consisting of a singular string and N masses joined by springs. The operator A
corresponding to this system acts in L2(0, 1) × CN and is composed of a Sturm–
Liouville operator in L2(0, 1) with a distributional potential and a Jacobi matrix
in CN that are coupled in a special way. We solve the problem of reconstructing the
system from three spectra—namely, from the spectrum of A and the spectra of its
decoupled parts. A complete description of possible spectra is given.

1. Introduction

The main aim of the present paper is to solve an inverse spectral problem for a class
of oscillating systems composed of a singular string and N masses joined by springs.
Mathematically such a system is described by a Sturm–Liouville operator S coupled in
a special way to a Jacobi operator J .

Namely, assume that q is a real-valued distribution from W−1
2 (0, 1) and denote by S a

Sturm–Liouville operator in L2(0, 1) that is formally given by the differential expression

l := − d2

dx2
+ q

and the Robin or the Dirichlet boundary condition at the point x = 0. The precise
definition of S is based on regularisation of l by quasi-derivatives [19, 20] and goes as
follows. We fix a real-valued distributional primitive σ ∈ L2(0, 1) of q and rewrite ly as

lσy := −(y′ − σy)′ − σy′

on the natural domain

D(lσ) = {y ∈W 1
1 (0, 1) | y′ − σy ∈W 1

1 (0, 1), lσy ∈ L2(0, 1)}.

In what follows, we shall abbreviate the quasi-derivative y′ − σy to y[1]
σ or simply to y[1]

when σ is fixed by the context. We define now the operator S by Sy = lσy on the domain

D(S) = {y ∈ D(lσ) | y[1](0) = hy(0)}
for some h ∈ R∪{∞}, h = ∞ corresponding to the Dirichlet boundary condition y(0) = 0.

Assume that J is a Jacobi matrix in CN , N ∈ N, i. e., that J in the standard basis
e1, . . . , eN of CN is a symmetric matrix with real entries b1, . . . , bN on the main diagonal
and positive entries a1, . . . , aN−1 on the main sub- and super-diagonals.

Denote also by B the intertwining operator between L2(0, 1) and CN given on D(S)
by By = a0y

[1](1)e1 for some a0 > 0.
Finally, we consider the operator

(1.1) A :=
(
S 0
B J

)
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that acts in the product space H := L2(0, 1)× CN on the domain

D(A) := {(y, d)t ∈ H | y ∈ D(S), d = (d(1), . . . , d(N)), y(1) = a0d(1)}.
It is known [1] that A is self-adjoint and bounded below in H and has a simple discrete

spectrum. Adding if necessary a sufficiently large constant to the potential q and to the
numbers b1, . . . , bN , we can make the operator A positive and shall assume this without
loss of generality.

Remark 1.1. We observe that although the Sturm–Liouville differential expression lσ
is independent of the particular choice of the primitive σ, the quasi-derivative y[1] in
the interface condition and in the boundary condition for S if h is finite, and thus the
whole operator A, do depend on σ. We notice, however, that A is invariant under the
simultaneous change σ 7→ σ + C, h 7→ h + C, and b1 7→ b1 + a0C for any real C. This
invariance will be used in Section 4.

Along with A we consider two operators, A0 := SN ⊕ J and A∞ := SD ⊕ J(1), where
SN and SD are the restrictions of S by the “Neumann” boundary condition y[1](1) = 0
and the Dirichlet boundary condition y(1) = 0 respectively, and J(1) is the Jacobi matrix
obtained by removing the top row and the most-left column of J . The operators A0 and
A∞ formally correspond to two extreme cases of the coupling not allowed in A: first
with no coupling at all, and the second with infinite, i.e., rigid coupling. It is easily seen
that A and A0 are self-adjoint extensions of the same symmetric operator with deficiency
indices (1, 1) specifying the interface condition at the point x = 1, and the same holds
for A and A∞. Therefore, as in the papers [8, 13, 16, 17], it is natural to study the
question, to which extent A is determined by the spectra of A and A0, or those of A and
A∞. As in the purely continuous case of a Sturm–Liouville operator [8, 13, 17] or of a
purely discrete case of a Jacobi matrix [16], one has to know the spectra of SN and J or
those of SD and J(1) separately—and not just their union—in order to reconstruct A.

Thus the inverse spectral problem we are going to solve is that of the reconstruction
of the operator A from the spectra of A, SN, and J or from those of A, SD, and J(1).
It generalizes the inverse spectral problems by three spectra for the standard Sturm–
Liouville operators or for Jacobi matrices treated in the above-cited papers and is related
to the inverse spectral problem for Sturm–Liouville operators with rationally dependent
boundary conditions, see [1, 3, 4, 5, 6].

We shall solve the above inverse problem by reducing it to that of reconstructing A
from its spectrum and the sequence of the corresponding norming constants. The latter
problem was studied in detail in [1] (see also [3, 4, 5] for the related inverse problem
for a Sturm–Liouville operator with rationally dependent boundary conditions), and
this allows a complete description of the spectra for the operators involved. We shall
prove that the operator A is recovered uniquely if and only if the three spectra do not
intersect. This establishes in this special case the conjecture raised in [8] for Sturm–
Liouville operators, which was later proved in [13]; the case of finite Jacobi matrices was
studied in [16].

The treatments of the Dirichlet boundary condition (h = ∞) and the Robin boundary
condition (h ∈ R) at the point x = 0 are completely analogous, and we shall consider in
detail only the Dirichlet case. In the next section we shall derive some useful formulae
(e.g., for the resolvent ofA and the norming constants) that will be used in the subsequent
analysis. In Sections 3 and 4 we reconstruct the operator A from the spectra of A, SD,
and J(1) and from the spectra of A, SN, and J respectively.

Notations. Throughout the paper, the prime will denote the derivative in x ∈ [0, 1],
and the overdot will stand for differentiation in the complex variable λ or z. Given
two strictly increasing (finite or infinite) sequences (an) and (bn), we shall denote by
(cn) := (an)q(bn) the non-decreasing sequence obtained by amalgamating the sequences
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(an) and (bn) and listing the common elements twice. We shall write σ(T ) for the
spectrum of a linear operator T acting in a Hilbert space.

2. Preliminaries

It is known [1] that the operator A of (1.1) is self-adjoint, lower semi-bounded, and has
discrete spectrum λ1 < λ2 < . . . ; we recall our standing and nonrestrictive assumption
that λ1 > 0.

For every nonzero λ ∈ C, we define the “fundamental system of solutions” Y−(·, λ)
and Y+(·, λ) corresponding to the eigenvalue problem AY = λY . Namely, the element
Y−(·, λ) := (y−(·, λ), d−(·, λ))t belongs to D(A), is normalised by the initial conditions
y−(0, λ) = 0, y[1]

− (0, λ) =
√
λ, and satisfies the relation AY = λY in the L2(0, 1)-

component and in the first N − 1 components of CN . In other words, there is a unique
c = c(λ) ∈ C such that

(A− λ)Y−(·, λ) =
(

0
ceN

)
;

in particular, c(λ) = 0 if and only if λ is in the spectrum of A, in which case Y−(·, λ) is
a corresponding eigenelement. The element Y+(·, λ) := (y+(·, λ), d+(·, λ))t is normalized
by the terminal condition d+(N,λ) = 1, satisfies the system

ly+ − λy+ = 0,

a0y
[1]
+ (1)e1 + (J − λ)d+ = 0,

and the interface condition y+(1, λ) = a0d+(1, λ), but needn’t satisfy the initial condition
y+(0, λ) = 0. Moreover, y+(0, λ) = 0 holds if and only if λ is in the spectrum of A, in
which case Y+(·, λ) is a corresponding eigenelement.

Using the elements Y±(·, λ), it is possible to construct the Green function of the
operator A and to find the explicit form of its resolvent, similarly to such constructions
for a Sturm–Liouville equation.

Lemma 2.1. Assume that λ ∈ C belongs to the resolvent set of the operators J and A
and that (g, v)t is an arbitrary element of H. Then the element(

y

d

)
:= (A− λ)−1

(
g

v

)
is given by

y(x) =
y−(x, λ)
W (λ)

[∫ 1

x

y+g +
(
v, d+(·, λ)

)
CN

]
+
y+(x, λ)
W (λ)

∫ x

0

y−g,

d(k) = (J − λ)−1v(k) +
d+(k, λ)
W (λ)

[∫ 1

0

y−g +
y
[1]
− (1, λ)

y
[1]
+ (1, λ)

(
v, d+(·, λ)

)
CN

]
,

where W (λ) := y+(x, λ)y[1]
− (x, λ) − y

[1]
+ (x, λ)y−(x, λ) is the Wronskian of the solutions

y+ and y−.

Proof. The function y solves the equation Sy = λy + g and thus is equal to y0 + αy−,
with

y0(x) :=
y−(x, λ)
W (λ)

∫ 1

x

y+g +
y+(x, λ)
W (λ)

∫ x

0

y−g

being a particular solution to the above non-homogeneous problem and α some complex
number. Since d+(·, λ) = −a0y

[1]
+ (1, λ)(J − λ)−1e1, the relation

(2.1) a0y
[1](1)e1 + (J − λ)d = v

implies that d = d0 + βd+(·, λ) with d0 := (J − λ)−1v and some β ∈ C.



INVERSE PROBLEMS 113

The constants α and β must be such that the interface condition y(1) = a0d(1) and
relation (2.1) hold. By virtue of the relation

d0(1) =
(
(J − λ)−1v, e1

)
= −

(
v, d+(·, λ)

)
CN

a0y
[1]
+ (1, λ)

the interface condition transforms into

αy−(1, λ)− βy+(1, λ) = −y+(1, λ)
W (λ)

∫ 1

0

y−g −
(
v, d+(·, λ)

)
CN

y
[1]
+ (1, λ)

.

Similarly, equation (2.1) can be recast as

αy
[1]
− (1, λ)− βy

[1]
+ (1, λ) = −

y
[1]
+ (1, λ)
W (λ)

∫ 1

0

y−g.

The above two equations form a linear system for α and β, solving which we find that

α =

(
v, d+(·, λ)

)
CN

W (λ)
, β =

∫ 1

0
y−g

W (λ)
+
y
[1]
− (1, λ)

y
[1]
+ (1, λ)

(
v, d+(·, λ)

)
CN

W (λ)
,

and the required formula for (y, d)t follows. �

The sequence
(
Y−(·, λn)

)
n∈N forms an orthogonal basis of the space H. We denote by

αn := ‖Y−(·, λn)‖−2 the norming constant corresponding to the eigenvalue λn. A useful
formula for the norming constants is given by the following lemma.

Lemma 2.2. Assume that λn ∈ σ(A) is not in the spectrum of J . Then the corresponding
norming constant αn := ‖Y−(·, λn)‖−2 satisfies the equalities

(2.2) αn = −
y
[1]
+ (1, λn)

√
λny

[1]
− (1, λn)ẏ+(0, λn)

.

Similarly, if λn ∈ σ(A) is not in the spectrum of J(1), then

(2.3) αn = − y+(1, λn)√
λny−(1, λn)ẏ+(0, λn)

.

Proof. We take an arbitrary function g ∈ L2(0, 1), put G := (g, 0)t, and calculate the
L2-component ĝ of the element (A−λ)−1G in two ways. On the one hand, the resolution
of identity of the operator A gives

ĝ(x) =
∞∑

k=1

αk

(
g, y−(·, λk)

)
CN y−(x, λk)

λk − λ
.

On the other hand, using Lemma 2.1, we find that

ĝ(x) =
y−(x, λ)
W (λ)

∫ 1

x

y+g +
y+(x, λ)
W (λ)

∫ x

0

y−g.

Equating the residues at the point λ = λn and noting that the functions y−(·, λn) and
y+(·, λn) are collinear and that λn is a simple zero of W , we conclude that

αny−(x, λn)
(
g, y−(·, λn)

)
CN = −y+(x, λn)

Ẇ (λn)

(
g, y−(·, λn)

)
CN ,

or, on account of the relation W (λ) ≡
√
λy+(0, λ),

αn = − y+(x, λn)√
λny−(x, λn)

1
ẏ+(0, λn)

.

Finally, the ratio y+(x, λn)/y−(x, λn) does not depend on x, and, moreover,
y+(x, λn)
y−(x, λn)

=
y+(1, λn)
y−(1, λn)

if y−(1, λn) 6= 0 and
y+(x, λn)
y−(x, λn)

=
y
[1]
+ (1, λn)

y
[1]
− (1, λn)

,
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if y[1]
− (1, λn) 6= 0, and the required formulae follow. It remains to recall [1] that, for λn

in the spectrum of A, the equality y−(1, λn) = 0 holds if and only if λn is an eigenvalue
of J and that y[1]

− (1, λn) = 0 if and only if λn is an eigenvalue of J(1). �

It is known (see [6] for the case q ∈ L1(0, 1) and [1] for the case q ∈ W−1
2 (0, 1))

that the eigenvalues (λn) and the corresponding norming constants (αn) determine the
operator A uniquely. Moreover, the cited papers give the algorithm of reconstruction of
A from these spectral data. The next proposition gives also the complete description of
the spectral data, cf. [1, 6].

Proposition 2.3. The eigenvalues (λn) of A and the corresponding norming constants
(αn) obey the asymptotics

λn = [π(n−N) + λ̃n]2, αn = 2 + α̃n,

where the sequences (λ̃n) and (α̃n) belong to `2.
Conversely, any sequences (λn) and (αn) of real numbers such that
(a) the λn strictly increase and have the representation λn = [π(n − N) + λ̃n]2 for

some N ∈ N and an `2-sequence (λ̃n);
(b) the αn are positive and equal 2 + α̃n for some `2-sequence (α̃n)

are the sequences of eigenvalues and the norming constants for a unique operator A of
the form (1.1).

In the following, we denote by µn,D (resp. µn,N) the eigenvalues of the operator SD

(resp. of the operator SN), and by ν1,J, . . . , νN,J (resp. ν1
1 , . . . , ν

1
N−1) the eigenvalues of J

(resp. of J(1)), all labeled in increasing order. It is well known that the operators SD

and SN and the Jacobi matrices J and J(1) have simple discrete spectra. We recall and
derive next some properties of these spectra.

Proposition 2.4. ([10, 19, 20]). There exist sequences (µ̃n,D) and (µ̃n,N) belonging to
`2(N) such that

(a) µn,D = [πn+ µ̃n,D]2;
(b) µn,N = [π(n− 1

2 ) + µ̃n,N]2.

We observe that the numbers µn,D are zeros of the function y−(1, λ) and µn,N—those of
y
[1]
− (1, λ). Since both functions are exponential in λ of order 1

2 , they can be reconstructed
from their zeros in the following way.

Proposition 2.5. ([11]). The following equalities hold:

y−(1, λ) =
√
λ

∞∏
k=1

µk,D − λ

π2k2
, y

[1]
− (1, λ) =

√
λ

∞∏
k=1

µk,N − λ

π2(k − 1
2 )2

.

Simple considerations show that the functions y+(1, λ) and y[1]
+ (1, λ) are related to the

eigenvalues of J and J(1) as follows.

Lemma 2.6. The following equalities hold:

y+(1, λ) =
a0

a1 · · · aN−1

N−1∏
k=1

(λ− ν1
k), y

[1]
+ (1, λ) =

1
a0a1 · · · aN−1

N∏
k=1

(λ− νk,J).

Proof. To find the representation for y[1]
+ (1, λ), it suffices to establish an analogous for-

mula for d+(1, λ). Using the relation (J−λ)d+(·, λ) = −a0y
[1]
+ (1, λ)e1 and the normaliza-

tion d+(N,λ) = 1, we find recursively that d+(N − k, λ) is a polynomial in λ of degree k
with leading coefficient (aN−1 · · · aN−k)−1. Therefore y[1]

+ (1, λ) is a polynomial in λ of
degree N with leading coefficient (a0a1 · · · aN−1)−1, and since it vanishes at the points
ν1,J, . . . , νN,J, the above formula follows.
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Analogously y+(1, λ) = a0d+(1, λ) is a polynomial in λ of degree N − 1 and with
leading coefficient a0/(a1 · · · aN−1). Since d+(1, λ) vanishes at the points ν1

1 , . . . , ν
1
N−1,

the result follows. �

Finally, we find below an explicit expression for y+(0, λ) in terms of the eigenvalues
λn of the operator A.

Lemma 2.7. The following holds:

y+(0, λ) = −(a0a1 · · · aN−1)−1
N∏

k=1

(λ− λk)
∞∏

k=1

λk+N − λ

π2k2
.

Proof. In what follows, λ is an arbitrary nonzero complex number. We recall that
y+(x, λ) is a solution of the equation ly = λy satisfying the terminal conditions y(1) =
y+(1, λ) and y[1](1) = y

[1]
+ (1, λ), whence

y+(x, λ) = y+(1, λ)u(x, λ) + y
[1]
+ (1, λ)v(x, λ),

where u(·, λ) and v(·, λ) are solutions of the problems
lσu = λu,

u(1) = 1,

u[1](1) = 0,


lσv = λv,

v(1) = 0,

v[1](1) = 1.

Recalling [12] that u(x, λ) and v(x, λ) have the integral representations

u(x, λ) = cos
√
λ(x− 1) +

∫ 1

x

k1(x, t) cos
√
λ(t− 1) dt,

v(x, λ) =
sin

√
λ(x− 1)√
λ

+
∫ 1

x

k2(x, t)
sin

√
λ(t− 1)√
λ

dt

for some upper-diagonal kernels kj such that k(x, ·) belongs to L2(0, 1) for every x ∈ [0, 1],
and that by Lemma 2.6 y

[1]
+ (1, λ) and y+(1, λ) are polynomials in λ of degrees N and

N − 1 respectively, we find that

y+(0, λ) = − λN− 1
2 sin

√
λ

a0a1 · · · aN−1
[1 + o(1)]

as λ→ −∞.
Since y+(0, λ) is an entire function of λ of exponential type 1

2 and since its zeros
coincide with the eigenvalues of A, we conclude that

y+(0, λ) = C1

∏
k∈N

(
1− λ

λn

)
for some constant C1 ∈ C. Now we find that

−1 = lim
λ→−∞

a0a1 · · · aN−1 y+(0, λ)

λN− 1
2 sin

√
λ

= lim
λ→−∞

C1a0a1 · · · aN−1

λN

∏
k∈N

(
1− λ

λk

)/∏
k∈N

(
1− λ

π2k2

)

= lim
λ→−∞

C1a0a1 · · · aN−1

λN

N∏
k=1

(
1− λ

λk

) ∏
k∈N

λk+N − λ

λk+N

π2k2

π2k2 − λ

= (−1)N C1a0a1 · · · aN−1

λ1 · · ·λN

∏
k∈N

π2k2

λk+N
,
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since the above products converge uniformly on C, whence

y+(0, λ) = − (−1)Nλ1 · · ·λN

a0a1 · · · aN−1

N∏
k=1

(
1− λ

λk

) ∞∏
k=1

λk+N − λ

π2k2

= −(a0a1 · · · aN−1)−1
N∏

k=1

(λ− λk)
∞∏

k=1

λk+N − λ

π2k2
.

The lemma is proved. �

We shall use several times the following statement about integral representations of
some entire functions, cf. [15, Lemma 3.4.2].

Proposition 2.8. ([11]). Assume that the numbers an and bn are such that an = πn+ãn

and bn = π(n− 1
2 ) + b̃n with some `2-sequences (ãn) and (b̃n). Put

φ(z) :=
√
z

∏
n∈N

a2
n − z

π2n2
, ψ(z) :=

∏
n∈N

b2n − z

π2(n− 1
2 )2

;

then there exist functions φ̃ and ψ̃ in L2(0, 1) such that

φ(z) = sin
√
z +

∫ 1

0

φ̃(t) sin
√
zt dt, ψ(z) = cos

√
z +

∫ 1

0

ψ̃(t) cos
√
zt dt.

3. Reconstruction from A, SD, and J(1)

Given an arbitrary operator matrix A of the form (1.1), we denote by (λn)n∈N,
(µn,D)n∈N, and (ν1

n)N−1
n=1 the eigenvalue sequences of A, the operator SD, and the Jacobi

matrix J(1) respectively. Put also (λ′n)n∈N := (µn,D)q(ν1
n)N−1

n=1 , where the amalgamation
operation q was defined in the Introduction. An interesting property of the spectra in-
volved is that every multiple element of (λ′n) is an eigenvalue of A and any eigenvalue of A
that belongs also to (λ′n) occurs therein twice. In other words, the following statement
holds true.

Proposition 3.1. ([1]). σ(A) ∩ σ(SD) = σ(A) ∩ σ(J(1)) = σ(SD) ∩ σ(J(1)).

This allows us to establish the weak interlacing property of the sequences (λn) and
(λ′n) in the following sense.

Lemma 3.2. The sequences (λn) and (λ′n) weakly interlace, i.e., λ1 < λ′1 and for every
n ∈ N either λ′n < λn+1 < λ′n+1 or λ′n = λn+1 = λ′n+1.

Proof. Denote by δ1 the Dirac delta-function at the point x = 1 and put D1 := (δ1, 0)t.
It is known that the domain of the Sturm–Liouville operator S is contained in W 1

2 (0, 1);
in particular, the functions y±(·, λ) belong to W 1

2 (0, 1). The explicit formula for the
resolvent of the operator A derived in Lemma 2.1 shows that the expression

f(λ) := 〈(A− λ)−1D1, D1〉

makes sense for any λ not in the spectrum of A and, moreover, that

f(λ) =
y+(1, λ)y−(1, λ)

W (λ)
.

Since f(λ) is a Nevanlinna function, its zeros and poles interlace. On the other hand,
the zeros of f coincide with λ′k and the poles with those λk which do not appear in (λ′n).
In view of Proposition 3.1 and the known asymptotics of λn and µn,D this justifies the
claim. �

The asymptotics of λn and µn,D shows that λn+N − µn,D = o(n) as n→∞. In fact,
this result can be improved, cf. [5] for the case q ∈ L1(0, 1).
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Lemma 3.3. There exists an `2-sequence (bn) such that

λn+N − µn,D = 2a2
0(1 + bn).

Proof. It suffices to consider only large enough n such that λn+N is not in the spec-
trum of J(1) and thus formula (2.3) for the norming constant αn+N holds. Using the
representation of the functions y+(0, λ) and y+(1, λ), we find that

(3.1) αn+N =
a2
0

∏N−1
k=1 (λn+N − ν1

k)

y−(1, λn+N )
∏N

k=1(λn+N − λk)

/
d

dλ

(√
λ

∏
k∈N

λk+N − λ

π2k2

)∣∣∣
λ=λn+N

.

Due to the asymptotics of λn and Proposition 2.8 the function

φ(λ) :=
√
λ

∏
k∈N

λk+N − λ

π2k2

can be represented in the form

φ(λ) = sin
√
λ+

∫ 1

0

f(t) sin
√
λt dt

for some f ∈ L2(0, 1), whence

φ̇(λn+N ) =
1

2
√
λn+N

(
cos

√
λn+N +

∫ 1

0

tf(t) cos
√
λn+N t dt

)
.

By Propositions 2.5 and 2.8, there is also g ∈ L2(0, 1) such that

ψ(λ) := y−(1, λ) = sin
√
λ+

∫ 1

0

g(t) sin
√
λt dt.

In view of the mean value theorem there are numbers ξn between µn,D and λn+N such
that

ψ(λn+N ) = (λn+N − µn,D)ψ̇(ξn)

=
λn+N − µn,D

2
√
ξn

(
cos

√
ξn +

∫ 1

0

tg(t) cos
√
ξnt dt

)
.

Due to the asymptotics of λn and ξn the sequences (cos
√
λn+N t)n∈N and (cos

√
ξnt)n∈N

form Riesz bases of L2(0, 1) [9] and hence

cos
√
λn+N +

∫ 1

0

tf(t) cos
√
λn+N t dt = (−1)n+N (1 + cn),

cos
√
ξn +

∫ 1

0

tg(t) cos
√
ξnt dt = (−1)n+N (1 + dn)

with square summable sequences (cn)n∈N and (dn)n∈N. Therefore (3.1) can be recast as

αn+N (1 + cn)(1 + dn) =
4a2

0

λn+N − µn,D

√
λn+Nξn

λn+N − λN

N−1∏
k=1

λn+N − ν1
k

λn+N − λk
,

which, on account of the asymptotics of αn of Proposition 2.3, implies that

2a2
0

λn+N − µn,D
= 1 + α̂n, (α̂n) ∈ `2,

and the result follows. �

Definition 3.4. We denote by LN the set of all triples Λ :=
(
(λn)∞n=1, (µn)∞n=1, (νn)N−1

n=1

)
of strictly monotone sequences such that the following holds:

(1) there is an `2-sequence (λ̃n) such that λn = [π(n−N) + λ̃n]2;
(2) the sequences (λn) and (λ′n) := (µn) q (νn) weakly interlace in the sense of

Lemma 3.2;
(3) there exist γ0 > 0 and a sequence (γn) ∈ `2 such that λk+N − µk = γ0 + γk.

For a given Λ ∈ LN , we denote by AΛ the set of n ∈ N such that λn = λ′n and put
BΛ := N \AΛ.
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The results of this and the previous sections show that, for any operator A of the
form (1.1), the corresponding spectral triple

(
(λn), (µn,D), (ν1

n)
)

forms an element of LN .
In the reverse direction, we shall prove that any element of LN is the spectral triple of
the above form.

Theorem 3.5. For any Λ :=
(
(λn), (µn), (νn)

)
∈ LN there exists an operator A of the

form (1.1) such that (λn), (µn), and (νn) are the eigenvalues of the operators A, SD,
and J(1) respectively. Such an operator A is unique if and only if the set AΛ is empty.

Proof. We start with constructing the functions

φ(z) :=
√
z

∏
n∈N

λn+N − z

π2n2
, ψ(z) :=

√
z

∏
n∈N

µn − z

π2n2
,

and for n ∈ BΛ put (cf. (3.1))

βn :=
γ0

∏N−1
k=1 (λn − νk)
2ψ(λn)

/
d

dλ

(
φ(λ)

N∏
k=1

(λ− λk)
)∣∣∣

λ=λn

.

Due to the weak interlacing property of Λ the numbers βn are positive and the proof of
Lemma 3.3 shows that βn = 2 + β̃n for a sequence (β̃n) belonging to `2(BΛ).

Now we define the sequence (αn) with αn = βn if n ∈ BΛ and take αn to be an
arbitrary positive number if n ∈ AΛ. The sequences (λn) and (αn) satisfy all the require-
ments of Proposition 2.3 and thus there exists an operator A of the form (1.1) whose
eigenvalues and norming constants coincide respectively with (λn) and (αn).

It remains to prove that the sequences (µn)n∈N and (νn)N−1
n=1 we have started with co-

incide with the eigenvalues (µn,D)n∈N and (ν1
n)N−1

n=1 of the related operator SD and Jacobi
matrix J(1) respectively. Since for the norming constants αn with n ∈ BΛ formula (2.3)
holds, we conclude that, for such n,

a2
0

∏N−1
k=1 (λn − ν1

k)
y−(1, λn)

=
γ0

∏N−1
k=1 (λn − νk)
2ψ(λn)

,

i.e., that

(3.2)
2a2

0ψ(λn)√
λn

N−1∏
k=1

(λn − ν1
k)− γ0y−(1, λn)√

λn

N−1∏
k=1

(λn − νk) = 0.

Recalling that ψ(λn) = 0 =
∏N−1

k=1 (λn − νk) for n ∈ AΛ, we conclude that equality (3.2)
holds for all n ∈ N. We observe that (3.2) takes the form Φ(λn) = 0, where the function
Φ satisfies the relation

(3.3) Φ(z) = O(|z|N−3/2e| Im
√

z|)

as |z| → ∞. We shall prove that Φ ≡ 0.
Assume not, and observe that Φ has then no zeros other than λn, n ∈ N. Indeed, in

view of (3.3) Jensen’s formula gives

(3.4)

∫ r

1

n(t)
t
dt ≤ 1

2π

∫ 2π

0

log |Φ(reiθ)| dθ + C1

≤ (N − 3
2 ) log r +

√
r

2π

∫ 2π

0

| sin θ/2| dθ + C2

= (N − 3
2 ) log r +

2
√
r

π
+ C2,

where n(t) denotes the number of zeros of Φ in the closed circle of radius t centered at
the origin and C1 and C2 are some positive constants. On the other hand, if Φ had at
least one additional zero, then for any ε > 0 and all sufficiently large t we would have

n(t) ≥
[√t
π
− ε

]
+N + 1 ≥

√
t

π
+N − ε,



INVERSE PROBLEMS 119

which contradicts (3.4). Now Φ, being of exponential type 1
2 , equals

Φ(z) = C3

∞∏
n=1

(
1− z

λn

)
for some constant C3. Using the canonical product for sin

√
z and the asymptotics of λk,

we conclude that

lim
z→−∞

Φ(z)

zN− 1
2 sin

√
z

=: C4 6= 0,

which contradicts (3.3).
Thus we have proved that Φ ≡ 0, i.e., that

2a2
0

∏
k∈N

µk − z

π2k2

N−1∏
k=1

(z − ν1
k) ≡ γ0

∞∏
k=1

µk,D − z

π2k2

N−1∏
k=1

(z − νk).

It follows that every νn that does not occur in (µk) is an eigenvalue of J(1) and, similarly,
every µn that does not occur in (νk) is an eigenvalue of SD. Since the sequences (λn)
and (µn,D)q (ν1

n) weakly interlace in the sense of Lemma 3.2, and since the same is true
of (λn) and (λ′n), simple considerations show that every multiple element of (λ′n) belongs
to the spectra of both SD and J(1), cf. [13, Sect. 6]. Thus all µn are eigenvalues of SD

and all νn—those of J(1). Since neither J(1) nor SD can have other eigenvalues due to the
size and asymptotics limitations respectively, Λ is the spectral triple for the operator A
found.

If the set AΛ is empty, then the norming constants αn are uniquely determined by Λ,
so that A is unique in view of Proposition 2.3. If AΛ is non-empty, then different choices
of αn for n ∈ AΛ lead to different operators A. The proof is complete. �

Remark 3.6. It follows from the proof of Theorem 3.5 that the set of Λ-isospectral
operators A of the form (1.1) (i.e., the set of operators A such that the spectra of A,
SD, and J(1) form the prescribed triple Λ ∈ LN ) is a manifold of dimension equal to the
cardinality of the set AΛ.

4. Reconstruction from the spectra of A, SN, and J

Treatment of the inverse problem of reconstructing the operator A from the spectra
of the operators A, SN, and the Jacobi matrix J parallels in general that of the inverse
problem of Section 3. One essential difference is that the invariance of A with respect
to changing the primitive σ to σ + C and b1 to b1 + a0C (mentioned in Remark 1.1) is
important here as it changes the spectra of both the operator SN and the Jacobi matrix
J . Thus the more correct inverse problem should be not only to reconstruct the operator
A per se, but also to fix the appropriate quasi-derivative σ of the potential q and the
corresponding Jacobi matrix J .

Given an arbitrary operator matrix A of the form (1.1) (with fixed σ), we denote
by (λn)n∈N, (µn,N)n∈N, and (νn,J)N

n=1 the eigenvalue sequences of A, SN, and J respec-
tively. Put also (λ′n)n∈N := (µn,D) q (νn,J)N

n=1. The above three spectra have the same
intersection property as those of Section 3, namely

Proposition 4.1. ([1]). σ(A) ∩ σ(SN) = σ(A) ∩ σ(J) = σ(SN) ∩ σ(J).

Lemma 4.2. The sequences (λ′n) and (λn) weakly interlace, i.e., for every n ∈ N either
λ′n < λn < λ′n+1 or λ′n = λn = λ′n+1.

Proof. We observe that (λ′n) is the sequence of eigenvalues of the operator A0 = SN ⊕ J
counting multiplicities and that A and A0 are self-adjoint extensions of the symmetric
operator A′, which is the restriction of A onto the domain

D(A′) := {(y, d)t ∈ D(A) | y[1](1) = 0}
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and has deficiency indices (1, 1). We denote by H′ a maximal subspace of D(A′) that is
invariant with respect to A′ and put H′′ := H	H′. The restrictions of the operators A
and A0 onto H′ coincide (with A′) and dimH′ ≤ N since if Y = (y, d)t is an eigenvector
of A that belongs to H′, then d is an eigenvector of J . It follows from [7] (see also [2,
Ch. 1.2]) that the spectra of the restrictions of A and A0 onto the subspace H′′ strictly
interlace. Combining the two parts together, we see that either λ′n ≤ λn for all n ∈ N or
λn ≤ λ′n for all n ∈ N; however, the inequality λn ≤ λ′n is ruled out for all n sufficiently
large by the asymptotics of λn and µn,N, see Propositions 2.3 and 2.4. Taking into account
the intersection property of Proposition 4.1, we conclude that the spectra weakly interlace
in the specified sense. �

Definition 4.3. We denote by L′N the set of all triples of strictly monotone sequences
Λ :=

(
(λn)n∈N, (µn)n∈N, (νn)N

n=1

)
satisfying the following properties:

(1) there is an `2-sequence (λ̃n) such that λn = [π(n−N) + λ̃n]2;
(2) there is an `2-sequence (µ̃n) such that µn = [π(n− 1

2 ) + µ̃n]2;
(3) the sequences (λn) and (λ′n) := (µn) q (νn) weakly interlace in the sense of

Lemma 4.2.
We denote by AΛ the set of n ∈ N such that λn = λ′n and put BΛ := N \AΛ.

The results obtained so far show that, for any operator A of the form (1.1), the
corresponding spectral triple

(
(λn), (µn,N), (νn,J)

)
form an element of L′N . In the reverse

direction, we shall prove that any element of L′N is the spectral triple of the above
form. The approach lies in reducing the problem to that of reconstruction of A from the
eigenvalues and the norming constants. Lemmas 2.2, 2.6, and 2.7 imply that the three
spectra determine uniquely the norming constants αn for n ∈ BΛ. Hence, if a given triple
Λ ∈ L′N is composed of the spectra of some A and its two parts, then the corresponding
norming constants must be related to Λ via the formulae established in Section 2. As
a preliminary, we show that any triple in L′N produces in this way the numbers with
correct asymptotics.

Lemma 4.4. Assume that Λ =
(
(λn), (µn), (νn)

)
∈ L′N and define the functions φ, ψ,

and χ by the formulae

φ(λ) =
N∏

k=1

(λ− λk)
∞∏

k=1

λk+N − λ

π2k2
,

ψ(λ) =
√
λ

∞∏
k=1

µk − λ

π2(k − 1
2 )2

,

χ(λ) =
N∏

k=1

(λ− νk).

Then the numbers

(4.1) βn :=
χ(λn)

√
λnφ̇(λn)ψ(λn)

, n ∈ BΛ,

have the asymptotics
βn = 2 + β̃n

where the sequence (β̃n) belongs to `2(BΛ).

Proof. It clearly suffices to prove that

1
βn

=
√
λnφ̇(λn)ψ(λn)

χ(λn)
=

1
2

+ β̂n
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for some sequence (β̂n) ∈ `2. In view of the asymptotics of (λk) and Proposition 2.8,
there exists a function f ∈ L2(0, 1) such that

φ(λ) =
( sin

√
λ√

λ
+

∫ 1

0

f(t)
sin

√
λt√
λ

dt
) N∏

k=1

(λ− λk)

and thus, for n > N ,

φ̇(λn) =
cos

√
λn +

∫ 1

0
tf(t) cos

√
λnt dt

2λn

N∏
k=1

(λ− λk).

Similarly, for some g ∈ L2(0, 1) it holds

ψ(λ) =
√
λ cos

√
λ+

√
λ

∫ 1

0

g(t) cos
√
λt dt.

Since the system {sin
√
λnt}n>N forms a Riesz basis of L2(0, 1) [9], for any h ∈ L2(0, 1)

the sequence ∫ 1

0

h(t) cos
√
λnt dt, n > N,

is square summable. The asymptotics of λn implies that cos
√
λn = (−1)n+N (1 + bn),

where the sequence (bn) is in `2. Combining these relations, we arrive at the representa-
tion √

λnφ̇(λn)ψ(λn)
χ(λn)

=
1
2
(
1 + dn

) N∏
k=1

λn − λk

λn − νk

with (dn) ∈ `2, which yields the result. �

Theorem 4.5. For any Λ :=
(
(λn), (µn), (νn)

)
∈ L′N there exist a0 > 0, a function

σ ∈ L2(0, 1) and a Jacobi matrix J of size N such that (λn) is the spectrum of the
corresponding operator A in L2(0, 1)×CN of the form (1.1), (µn) is the spectrum of the
operator SN, and (νk) is the spectrum of the Jacobi matrix J . The operator A is unique
if and only if the set AΛ is empty.

Proof. We start with constructing the functions φ, ψ, and χ of Lemma 4.4 and defining
the numbers βn as in (4.1). Next, we put αn = βn for n ∈ BΛ, and take αn arbitrary
positive for n ∈ AΛ. According to Lemma 4.4, αn obey the asymptotics αn = 2 + α̃n

with some (α̃n) ∈ `2.
By Proposition 2.3, there exists an operator A of the form (1.1), whose eigenvalues are

λn and the corresponding norming constants are αn. We claim that one can fix a primitive
of the potential q of the operator S and a Jacobi matrix J in the representation of A in
such a way that µn are the eigenvalues of the operator SN and νn are the eigenvalues
of J .

We take k∗ such that µk∗ is not an eigenvalue of A just found, fix the unique prim-
itive σ of the potential q of the Sturm–Liouville operator S such that the relation
(y′− − σy−)(1, µk∗) = 0 holds, and determine the corresponding Jacobi matrix J giv-
ing the representation (1.1) of A. We denote by µn,N and νn,J the eigenvalues of SN

and J and observe that the above choice of σ makes µk∗ an eigenvalue of SN. Due to the
construction of βn and formula (2.2) for αn, we have the equality

ψ(λn)
χ(λn)

=
√
λn

∞∏
k=1

µk,N − λn

π2(k − 1
2 )2

/ N∏
k=1

(λn − νk,J)

for all n ∈ BΛ. Recalling that ψ(λn) = χ(λn) = 0 for n ∈ AΛ, we see that

ψ(λn)
N∏

k=1

(λn − νk,J) =
√
λnχ(λn)

∞∏
k=1

µk,N − λn

π2(k − 1
2 )2

for all n ∈ N.
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Put

Φ1(z) :=
ψ(z)√
z

N∏
k=1

(z − νk,J), Φ2(z) := χ(z)
∞∏

k=1

µk,N − z

π2(k − 1
2 )2

;

then Φ1(λn) = Φ2(λn) for all n ∈ N, and also Φ1(µk∗) = Φ2(µk∗) = 0 (the latter relation
follows from the fact that µk∗ is among µn,N by the construction of SN). In view of
Proposition 2.8 the functions Φj have the form

Φj(z) = pj(z)
(
cos

√
z +

∫ 1

0

gj(t) cos
√
zt dt

)
for some monic polynomials pj of degree N and some functions gj ∈ L2(0, 1), j = 1, 2.
It follows that Φ := Φ1 − Φ2 is an entire function of exponential type 1

2 with zeros
{λn}n∈N ∪ {µk∗} such that

(4.2) Φ(z) = o
(
zN e| Im

√
z|)

as |z| → ∞. Next we show as in the proof of Theorem 3.5 that Φ ≡ 0 by noticing that
otherwise Φ would have no zeros other than λn, n ∈ N, and µk∗ , and that the canonical
product for Φ then would contradict the estimate (4.2).

Thus Φ1 ≡ Φ2, which together with the weak interlacing property of (λn) and (λ′n) as
well as of (λn) and (µn,N)q (νn,J) shows that µn = µn,N for all n ∈ N and that νk = νk,J

for k = 1, . . . , N . Uniqueness statement follows from Proposition 2.3, and the proof is
complete. �

We remark that the set of Λ-isospectral operators A is again a manifold of dimension
equal to the cardinality of the set AΛ.
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