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THE INVESTIGATION OF A GENERALIZED MOMENT PROBLEM
ASSOCIATED WITH CORRELATION MEASURES

YU. M. BEREZANSKY AND D. A. MIERZEJEWSKI

This paper is dedicated to great mathematicians M. Krein and I. Gel’fand whose papers have made it
possible for this article to be written.

Abstract. The classical power moment problem can be viewed as a theory of spec-
tral representations of a positive functional on some classical commutative algebra
with involution. We generalize this approach to the case where the algebra is a special
commutative algebra of functions on the space of multiple finite configurations.

If the above-mentioned functional is generated by a measure on the space of usual
finite configurations then this measure is a correlation measure for a probability spec-
tral measure on the space of infinite configurations. The latter measure is practically
arbitrary, so that we have a connection between this complicated measure and its
correlation measure defined on more simple objects that are finite configurations.
The paper gives an answer to the following question: when this latter measure is
a correlation measure for a complicated measure on infinite configurations? (Such
measures are essential objects of statistical mechanics).

0. Introduction

A vast number of works was devoted to studying and developing the classical moment
problem, starting from pioneer works of T. Stieltjes (the end of XIX century). Recall
that the classical moment problem deals with a possibility to represent a given sequence
r = (rn)∞n=0 of real numbers rn in the following form:

(0.1) rn =
∫
R

λndµ(λ), n ∈ N0 := {0, 1, . . .},

where µ is a Borel measure on the axis R. The answer is very simple: the representation
for given r = (rn)∞n=0 takes place iff the following positivity condition holds:

(0.2)
∞∑

j,k=0

rj+kξjξk ≥ 0

for an arbitrary finite sequence of complex numbers (ξn)∞n=0.
A number amount of works was devoted to the question about possibility to replace

the index n in (0.1) with a multi-index n = (n1, . . . , np), λn with λn1
1 . . . λ

np
p , and R

with Rp, where p ≤ ∞, which would make this a multidimensional moment problem;
to replace rn with rn,m, n,m ∈ N0, R with C, and λn with znzm to obtain a complex
moment problem, in particular, a trigonometric moment problem, etc. For us it will
be essential to generalize the problem where one replaces λn in (0.1) with eigenvectors
ϕn(λ) of some differential, difference, or a more general operator A, or with a commuting
family of such type operators (note that ϕ(λ) = (1, λ, λ2, . . .) is a generalized eigenvector
of a trivial shift operator).
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On the other hand, the spectral theory of classical Jacobi matrices and the theory of
orthogonal polynomials are deeply connected with the classical moment problem. Dif-
ferent generalizations of Jacobi matrices and orthogonal polynomials are connected with
the above-mentioned generalizations of the moment problem.

This part of the spectral theory is described, for example, in [1, 4, 21, 12, 8, 7, 45, 10,
11] and the references cited there.

This paper is also connected, on the one hand, with the moment problem (0.1) and, on
the other hand, with some tasks of mathematical statistical physics. Formally speaking,
we construct a representation of type (0.1) but for a commuting family A of selfadjoint
operators acting in a Hilbert space constructed by using a positive functional r (instead
of a sequence (rn)∞n=0). These operators are generated by the standard creation and
neutral operators from the Fock space theory.

In the simplest (and the most essential) case this functional r has the form

(0.3) r(f) =
∫

ΓX,0

f(ξ) dρ(ξ),

where ΓX,0 is the space of all usual finite configurations ξ = (x1, . . . , xn) (n ∈ N is
arbitrary) consisting of from distinct points xj belonging to a Riemann manifoldX. If the
functional r from (0.3) is positive definite in the sense of type (0.2) (but connected with a
so-called Yu. G. Kondratiev–T. Kuna convolution [28, 29, 33]) and the measure ρ on ΓX,0

has a certain growth behavior for xj → ∞, j ∈ N, then there exists a representation of
type (0.1) with some joint generalized eigenvectors of the family A and a Borel probability
measure µ on the space ΓX .

It is possible to count these eigenvectors. But it is very interesting and unexpected that
the corresponding unitary Fourier transform I, acting from the linear space of functions
on the space ΓX,0 of finite configurations onto the linear space of functions on the space
ΓX of infinite configurations γ = (x1, x2, . . .) (xj ∈ X are distinct), has a very simple
and well-known form, I = K, where K is the classical A. Lenard transform introduced
very easily [34, 35, 36].

So, the Parseval equality (i. e., the generalization of representation (0.1)) has now the
following form: for a sufficiently broad space Fun(ΓX,0) of functions f(ξ), ξ ∈ ΓX,0,

(0.4)
∫

ΓX,0

f(ξ) dρ(ξ) = r(f) =
∫

ΓX

(Kf)(η) dµ(η).

Equality (0.4) shows the following. Introduce the pairing between functions and mea-
sures in the usual manner via integration, and denote by ∗ the corresponding operation
of adjointness. Then (0.4) means

(0.5) ρ = K∗µ .

Summarizing we can assert that for a measure µ on the space ΓX of infinite configura-
tions we can construct a measure ρ on the more simple space ΓX,0 of finite configurations
by applying to µ the operator adjoint to the Lenard operator K. Vice versa, every mea-
sure µ on ΓX can be constructed from a measure ρ on ΓX,0 by taking µ = Kρ (recall
that the operator I = K is invertible, moreover, it is unitary if regarded as an operator
between the corresponding Hilbert spaces).

The above reasoning and the conditions on ρ given by representation (0.4) (the corre-
sponding positiveness of ρ of type (0.2) given by (0.3) and the behavior of ρ at infinity)
have some relation to statistical mechanics. Namely, the time behavior of a statistical
system is described by a complicated differential equation

(0.6) (LM)(γ) = F (γ)

satisfied by functions M(γ) on the space ΓX of infinite configurations with a standard
and fixed measure dγ. Introducing the measure dµ(γ) = M(γ) dγ we can describe the
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behavior of the statistical system by a corresponding variant of equation (0.6) for the
measure µ.

But in statistical mechanics, as a rule (see, e. g., [22, 44, 42]), it is acceptable to pass
from (0.6) to corresponding equations for correlation functions R(ξ) for M(γ). These
functions are defined on the more simple space ΓX,0 of ordinary finite configurations;
so, these functions have a more simple structure, it is possible to understand every such
function as an infinite sequence of functions fn(x1, . . . , xn), n ∈ N0 (f0 ∈ C).

The equation of type (0.6) for R(ξ) (more exactly, the infinite system of equations for
fn) is more simple, and in some cases it is possible to find the corresponding solution (or
to investigate it to a sufficient extend).

But here there is the following problem. If we introduce the measure dρ(ξ) = R(ξ)dξ,
where dξ is the Lebesgue (or Riemann) measure with ξ = (x1, . . . , xn), then the measures
ρ and µ are connected by equality (0.5) being the definition of correlation functions. In
reality, physically interesting is the solution M(γ) of equation (0.6) rather than the
solution R(ξ) of the auxiliary equation for the correlation function. So, for this solution
R(ξ) or for the measure ρ it is necessary to check additionally that representation (0.4)
holds, i. e., the required positive definiteness and behavior at infinity take place.

We stress once more what this situation means in the simplest case of the classical
moment problem (0.1). We have an equation for the measure µ in (0.1) and we have to
find its solution µ0. We can rewrite this equation in terms of the corresponding moments
r = (rn)∞n=0 (assuming that this is possible), and we can find a solution r0 = (r0n)∞n=0 of
the last equation for the moments. But it is not evident that the latter sequence r0 is a
moment sequence: to claim this it is necessary to check its positivity (0.2). Therefore,
generally speaking, the question about finding a solution of the equation for measure µ
is open.

This paper is organized in the following manner. In Section 1 we introduce basic
spaces Γ̈X,0 (ΓX,0) of multiple (usual) configurations. These spaces, as well as probability
measures on them, appear naturally in several topics of mathematics and physics. Let
us only mention the theory of point processes [27, 26]; a modern account of these objects
can be found in [33, 41]. The notion of Yu. G. Kondratiev–T. Kuna convolution [28, 29,
33], which is essential for us, is also introduced in this section.

The main mathematical instruments yielding the results of this paper are given in
Sections 2 and 3. They consist in using the spectral theory of selfadjoint operators and
commuting families of them, together with the theory of their generalized eigenfunc-
tions for integral representations of moments, positive definite functions and kernels, etc.
Here we only note that this method goes back to old works of M. G. Krein [31, 32].
Later, in 1956, Yu. M. Berezansky [3] has developed these works, by using the results
about generalized eigenvectors of I. M. Gelfand and A. G. Kostyuchenko [24] and of
Yu. M. Berezansky [2], to a representation of positively definite kernels. The correspond-
ing theory and its different generalizations can be found in many works, see the books
[4, 25, 38, 39, 23, 12] containing references to corresponding articles; see also [14, 15, 16,
37]. Note that the measure µ in representations of type (0.4) is the spectral measure of
a corresponding family A of operators.

Section 4 is devoted to a calculation of the Fourier transform in a sufficiently general
case, where the functional r is generated by a measure ρ on Γ̈X,0, i. e., is of type (0.3) but
with integration over the space Γ̈X,0 of multiple configurations (recall that Γ̈X,0 ⊃ ΓX,0).
Here we have used some results from [4, 30, 33, 41] and the theory of generalized functions
of infinitely many variables related to generalized translation operators, developed by
Yu. M. Berezansky, Yu. G. Kondratiev, and V. A. Tesko ; refs. [19, 20] give a survey
of these results. Note that in this section the following question is also investigated: in
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the general case of a positive functional r, the spectral measure µ in a representation
of type (0.3) is given on the space D′ of generalized functions generated by the classical
space D = D(X) of test functions. But for the case of integration over Γ̈X,0, the spectral
measure µ is concentrated on charges on the space X (of course, these charges belong to
the space D′). Some converse results also hold.

Section 5 is devoted to introducing and investigating a so-called K-transform being
a very simple and natural linear operator mapping functions on the space ΓX,0 of the
usual configurations onto the space ΓX of infinite configurations. This K-transform was
introduced by A. Lenard [34, 35, 36] and investigated in these papers and in [28, 29, 33,
41].

In the last Section 6 we prove that under some restriction on the growth of the measure
ρ in the integral (0.1) at infinity, the essential representation (0.4) holds. Namely, in this
case one can talk about a connection between the initial measure µ and its correlation
measure ρ (see above).

Note that the first results about representation of type (0.4) were described in [28,
29, 33] by using the R. Minlos theorem concerning positive definite functions of infinite
many variables [40]. A general approach to this and the above mentioned problems,
using generalized eigenvector expansion, was given in [13, 9]. This approach has reduced
to more general and precise results.

This paper is a complete exposition, with proofs and more precise formulations, of the
short article of Yu. M. Berezansky [9] devoted to the 90th birthday of I. M. Gelfand.

1. Initial spaces. The Kondratiev–Kuna convolution

Let X be a connected oriented C∞ (non-compact) Riemann manifold. We denote by
D the classic space C∞fin(X) of all functions which are real, infinitely differentiable on
X, and finite (i. e., with a compact support); a corresponding topology turns D into a
nuclear space (see, e. g., [18, 30, 17]). We will always denote the complexification of a
real space with the subscript c. So, Dc is the complexification of D.

Let F0(D) := C and Fn(D) := Db⊗n
c , n ∈ N, where ⊗̂ denotes the symmetric tensor

product; Db⊗n
c is equal to the space of all complex, symmetric, finite, C∞-functions on

Xn. Then we construct a Fock-type space. Namely, let

(1.1) Ffin(D) :=
∞⊕

n=0

Fn(D)

be the topological direct sum of the spaces Fn(D), where every element f ∈ Ffin(D) is a
finite sequence f = (fn)∞n=0, where fn ∈ Fn(D). The topology of Ffin(D) is given by the
following convergence: Ffin(D) 3 f (m) = (f (m)

n )∞n=0 → f = (fn)∞n=0 ∈ Ffin(D), m→∞,
where f (m) are uniformly finite with respect to (w. r. t.) n (i. e., there exists k ∈ N such
that f (m)

n = 0 if n > k, m ∈ N) and, for every n ∈ Z+, f
(m)
n → fn in the topology

of the space Fn(D). Note that the linear topological space Ffin(D) is nuclear, being a
topological direct sum of nuclear spaces (see, e. g., [12, 18]).

It will be convenient for us to interpret elements of the space (1.1) as functions on a
certain set: the set of multiple configurations. Namely, a multiple configuration of order
n ∈ N is, by definition, a (non-ordered) set ξn = [x1, . . . , xn] of points x1, . . . , xn ∈ X

(equal points can be among them). In other words, the set Γ̈(n)
X of such configurations

is equal to the factor space Xn/Sn, where Sn is the group of all permutations of the set
{1, . . . , n} which acts, in a natural way, on points (x1, . . . , xn) ∈ Xn. The topology of
Γ̈(n)

X is generated by that of Xn as the factor topology.
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Put Γ̈(0)
X := {∅} and construct the following set:

(1.2) Γ̈X,0 :=
∞⊔

n=0

Γ̈(n)
X .

So, every element of Γ̈X,0 is a multiple configuration in any natural order or the empty
set (a “configuration” of zero points).

Let Λ ∈ X be a subset of X, and let the topology of Λ be induced by that of X.
Replacing above X with Λ we get the spaces Γ̈(n)

Λ and Γ̈Λ,0 of multiple configurations.
Below we will also need the space ΓX,0 of usual configurations. It is defined similarly

to (1.2) as

(1.3) ΓX,0 :=
∞⊔

n=0

Γ(n)
X ,

where, for every n ∈ N, Γ(n)
X is a set of all ξn = [x1, . . . , xn] ∈ Γ̈(n)

X such that all xj are
distinct, Γ(0)

X := {∅}. So, ΓX,0 ⊂ Γ̈X,0. The spaces Γ(n)
Λ and ΓΛ,0 are introduced in a

similar way.
Now it is easy to understand that elements of the space (1.1) can be treated as functions

on the space Γ̈X,0, i. e., one can embed Ffin(D) into the space Fun(Γ̈X,0) of all complex-
valued functions on Γ̈X,0. Namely, let f = (fn)∞n=0 ∈ Ffin(D). Every fn is a symmetric,
smooth, finite, complex-valued function on Xn, fn(x1, . . . , xn). Its symmetry allows us
to treat it as a function of a point [x1, . . . , xn], fn(x1, . . . , xn) = fn([x1, . . . , xn]). Then
one can embed Ffin(D) into Fun(Γ̈X,0) due to (1.1) and (1.2).

Of course, from this point of view, Ffin(D) is only a part of Fun(Γ̈X,0); we will not
need an explicit description of this part (although one can get it). Note also that some
vectors from Ffin(D) can be also treated as a function on ΓX,0 ⊂ Γ̈X,0. This vector has
to be such that fn(x1, . . . , xn) = 0 if, for at least one pair of numbers j and k, xj = xk.
Then one can consider that f is a function on ΓX,0 which was extended to all Γ̈X,0 by
setting zero on Γ̈X,0 \ ΓX,0.

Let us pass to a definition of the main notion of this paper, namely, a convolution
introduced by Yu. G. Kondratiev and T. Kuna [28, 29, 33], see also [13, 41]. This
convolution ? acts in the space Ffin(D) and turns it into a commutative topological
nuclear algebra, but it is convenient to define ? treating Ffin(D) as a part of Fun(Γ̈X,0).

Everywhere below we will use the same letter for an element from Ffin(D) and for its
interpretation as a function on Γ̈X,0. So,

(1.4) Ffin(D) 3 f = (fn)∞n=0 = f(ξ), ξ ∈ Γ̈X,0, fn = f � Γ̈(n)
X .

For every f, g ∈ Ffin(D) we define the convolution ? by the formula

(1.5) ∀ξ ∈ Γ̈X,0 (f ? g)(ξ) =
∑

ξ′∪ξ′′∪ξ′′′=ξ

f(ξ′ ∪ ξ′′)g(ξ′′ ∪ ξ′′′),

where the sum is taken over all representations of the configuration ξ (belonging to the
space Γ̈(n)

X ) as a set sum of three disjoint configurations ξ′, ξ′′, ξ′′′ (∅ can be present
among them).

The sum in (1.5) is finite. It is known that f ? g is also belongs to Ffin(D); the convo-
lution ? is commutative, associative, additive, homogeneous, and continuous w. r. t. both
variables (see [28, 29, 33] and also [13, 41]). So, Ffin(D) with ? is a commutative topo-
logical nuclear algebra A. This algebra has a unit e, e(ξ) = 1 if ξ = ∅ and e(ξ) = 0 if
Γ̈X,0 3 ξ 6= ∅.
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2. Positive functionals and a construction of a family of commutative
selfadjoint operators

In the algebra A = Ffin(D) one introduces a natural involution, A 3 f = f(ξ) 7→ f :=
f(ξ) ∈ A. Note that, obviously, due to (1.5), ∀f, g ∈ A f ? g = f ? g. A continuous
linear functional r ∈ A′ = F ′fin(D) is called positive if

(2.1) ∀f ∈ A r(f ? f) ≥ 0.

Any positive functional r generates the following quasi-scalar product (·, ·)Ar in A:

(2.2) ∀f, g ∈ A (f, g)Ar
:= r(f ? g).

Identifying every f ∈ A such that r(f ?f) = 0 with zero, considering the corresponding
classes of f ∈ A, and completing the space of these classes, we construct a Hilbert space
Hr. Let {f} be the class containing f ∈ A, and let {A} be the space of all such classes.
Then {A} ⊂ Hr and {A} is dense in Hr.

An important example of a positive functional r is the one generated by a σ-finite
Borel measure ρ on the space Γ̈X,0 (note that a σ-finite measure is a measure which is
finite on every compact subset of Γ̈(n)

X , n ∈ N0 := {0} ∪ N)

(2.3) ∀f ∈ A r(f) =
∫

Γ̈X,0

f(ξ) dρ(ξ) =
∞∑

n=0

∫
Γ̈

(n)
X

f(ξ) dρ(ξ).

Convergence in A = Ffin(D) is such that this functional is continuous. Since it is positive,
the following inequality holds:

(2.4) ∀f ∈ A r(f ? f) =
∫

Γ̈X,0

(f ? f)(ξ) dρ(ξ) ≥ 0.

Remark 2.1. It is useful to consider positive functionals r of kind (2.3), where ρ is a finite,
complex-valued Borel measure on Γ̈X,0 (a charge). We will refer to such functionals as
ones generated by charges.

The main aim of this paper is to construct an integral representation of the positive
functional r using joint generalized eigenfunctions of a family of selfadjoint commut-
ing operators acting in the Hilbert space Hr and generated by the convolution ? ; see
Theorem 3.1 and (3.17), (3.18).

Operators of this family are introduced as follows. One can consider a function ϕ ∈
D ⊂ F1(D) as a (real-valued) function of a point ξ ∈ Γ̈(1)

X ⊂ Γ̈X,0, belonging to the algebra
A. The operation A 3 f 7→ ϕ ? f ∈ A is Hermitian in the quasi-scalar product (2.2),

∀f, g ∈ A (ϕ ? f, g)Ar = r(ϕ ? f ? g) = r(f ? (ϕ ? g)) = (f, ϕ ? g)Ar .

Therefore (see, e. g., [4, 12]) this operation can be considered as acting in the set of the
corresponding classes, {A} 3 {f} 7→ {ϕ? f} ∈ {A}. So, we have introduced a Hermitian
operator A(ϕ) defined densely in Hr,

(2.5) ∀f ∈ A Dom(A(ϕ)) = {A} 3 {f} 7→ A(ϕ){f} := {ϕ ? f} ∈ {A}.
Any two such operators A(ϕ), A(ψ) (ϕ,ψ ∈ D) commute formally, A(ϕ){A} ⊂ {A} =

Dom(A(ψ)), A(ψ){A} ⊂ {A} = Dom(A(ϕ)), and for every {f} ∈ {A}, according to
(2.5),

A(ϕ)A(ψ){f} = A(ϕ){ψ ? f} = {ϕ ? ψ ? f} = {ψ ? ϕ ? f} = A(ψ)A(ϕ){f}.

Then how to check whether the set of all closures Ã(ϕ) of A(ϕ) is a family of selfadjoint
(strongly) commuting operators? Now a sufficient condition for this fact is the following
(see [12], Ch. 5, Theorem 1.15, [5, 18]): there exists z ∈ C\R such that for each ϕ,ψ ∈ D
there exists a total set of vectors which are quasi-analytic for the operators A(ϕ), A(ψ),
A(ϕ) � (A(ψ)− z1){A}. (Recall that, for an operator A acting in a Hilbert space H, a
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vector f ∈ H is called quasi-analytic if f ∈
∞⋂

n=1
Dom(An) and the class C{mn} with

mn = ‖Anf‖H is quasi-analytic.)

According to (2.5), for every ϕ ∈ D, {A} =
∞⋂

n=1
Dom((A(ϕ))n). In what follows we

demand the following condition to hold:
(i) There exists a linear set D ⊂ {A} such that: 1) D is invariant w. r. t. every

operator A(ϕ) (ϕ ∈ D); 2) D is total in Hr; 3) every vector {f} ∈ D is quasi-analytic
for every operator A(ϕ) (ϕ ∈ D), i. e., the class

(2.6) C{‖(A(ϕ))n{f}‖Hr}

is quasi-analytic.
It follows from condition (i) that (Ã(ϕ))ϕ∈D is a family of selfadjoint commuting

operators. Indeed, due to the fact that D is invariant for A(ψ) (ψ ∈ D) we have
(A(ψ) − z1)D ⊂ D for Im z 6= 0, and thus the condition (2.6) provides the conditions
of the above mentioned theorem from [12].

For some positive functionals r it is possible to formulate more explicit conditions that
imply condition (i). We will consider only the most important case where the functional
r is generated by a measure ρ according to (2.3).

Theorem 2.1. Let for a measure ρ from (2.3) the following condition hold: for every
compact Λ ⊂ X and for every k ∈ N, the class C{mn}, where

(2.7) ∀n ∈ N0 mn =
( 2k∑

`=0

(
(`+ 2n)!

`!

2n∑
j=0

ρ
(
Γ̈(`+j)

Λ

))) 1
2

,

is quasi-analytic. Then (i) is true and (Ã(ϕ))ϕ∈D is a family of selfadjoint commuting
operators in the space Hr.

Proof. Note at first that the convolution (1.5) is well defined for all complex-valued

functions f(ξ), g(ξ), ξ ∈ Γ̈X,0, vanishing for ξ ∈
∞⊔

k=`

Γ̈(k)
X for a sufficiently large ` ∈ N

and is Borel, bounded, and finite on every Γ̈(k)
X , k ∈ {0, . . . , `} (i. e., the corresponding

fk(x1, . . . , xk), gk(x1, . . . , xk) are finite on Xk in the usual sense).
Considering such functions as elements of a Fock space of type (1.1) we pass to its

extension, the space of finite sequences f = (fn)∞n=0, where fn = fn(x1, . . . , xn) is a
complex-valued Borel, bounded, finite, symmetric function on Xn. The functional r ge-
nerated by a given measure ρ according to (2.3) is well defined on this space. Now we
introduce again a quasi-scalar product using (2.2); it is easy to check that the correspond-
ing Hilbert space coincides with Hr introduced above (for the proof it is necessary to note

that convergence in L2

(
m⊔

n=0
Γ(n)

X , dρ(ξ)
)

, where m <∞ is fixed, implies convergence in

Hr).
In what follows, κα always denotes the characteristic function of the set α.
Then let us consider the function

(2.8) (κ?n
Λ ? κ

Γ̈
(k)
Λ

)(ξ), ξ ∈ Γ̈X,0,

where Λ is a compact subset of X, n, k ∈ N. Note that Λ = Γ̈(1)
Λ .

Put at first n = 1. According to (1.5),

(2.9) (κΛ ? κΓ̈
(k)
Λ

)(ξ) =
∑

ξ′∪ξ′′∪ξ′′′=ξ

κ
Γ̈

(k)
Λ

(ξ′ ∪ ξ′′)κ
Γ̈

(1)
Λ

(ξ′′ ∪ ξ′′′).

Since κΛ is a function on Γ̈(1)
X , i. e., it depends on a configuration [x] of order 1, ξ′′ and

ξ′′′ in (2.9) can be of kind ∅ or [xj ] only. Since κ
Γ̈

(k)
Λ

depends on [x1, . . . , xk], ξ in (2.9)

can be from Γ̈(k)
X or Γ̈(k+1)

X only, and ξ′′ is of kind [xj ] or ∅, respectively. As a result, we
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have

(2.10)
(κΛ ? κΓ̈

(k)
Λ

)(ξ) = kκ
Γ̈

(k)
Λ

(ξ), ξ ∈ Γ̈(k)
X ;

(κΛ ? κΓ̈
(k)
Λ

)(ξ) = (k + 1)κ
Γ̈

(k+1)
Λ

(ξ), ξ ∈ Γ̈(k+1)
X .

Let k ∈ N be fixed. Then we use (2.10) for performing subsequent convolutions with
κΛ obtaining (2.8) at the n-th step. It is clear that (κ?n

Λ ? κ
Γ̈

(k)
Λ

)(ξ) is a function on
n⊔

j=0

Γ̈(k+j)
X and on every Γ̈(k+j)

X it is equal to (Ck,n,jκΓ̈
(k+j)
Λ

)(ξ) with a certain positive

coefficient Ck,n,j . It follows from (2.10) that these coefficients can be found by the
following recurrence formulas:

(2.11)

∀n ∈ N, ∀j ∈ {0, . . . , n+ 1}
Ck,n+1,j = (k + j)(Ck,n,j−1 + Ck,n,j), Ck,n+1,n+1 = (k + n+ 1)Ck,n,n,

Ck,1,0 = k, Ck,1,1 = k + 1, Ck,n,−1 = 0.

Using (2.11) one obtains the following estimate:

Ck,n+1,j ≤ 2(k + n+ 1) max
λ∈{0,...,n}

Ck,n,λ.

Then, taking also into account that, for j ∈ {0, 1}, Ck,1,j ≤ k + 1 and moving step by
step, one can write

∀n ∈ N, ∀j ∈ {0, . . . , n} Ck,n,j ≤
2n−1(k + n)!

k!
.

So, we can write for every ξ ∈ Γ̈X,0, n, k ∈ N,

(2.12) (κ?n
Λ ? κ

Γ̈
(k)
Λ

)(ξ) ≤ 2n−1(k + n)!
k!

.

We have estimated the expression (2.8).
Then let us estimate the norm of (2.8), i. e., ‖κ?n

Λ ? κ
Γ̈

(k)
Λ
‖Hr . To this end, we note

at first something about the following function: (κ
Γ̈

(k)
Λ
? κ

Γ̈
(k)
Λ

)(ξ). According to (1.5), it

does not equal 0 on
2k⊔

`=k

Γ̈(`)
X only, and on each Γ̈(`)

X it is equal to Mk,`κΓ̈
(`)
Λ

(ξ) with some

non-negative constants Mk,`. Let Mk := max
`∈{k,...,2k}

Mk,`. According to (2.2), (2.3), and

(2.12) we have the following estimate:

(2.13)

‖κ?n
Λ ? κ

Γ̈
(k)
Λ
‖2Hr

=
∫

Γ̈X,0

(κ?2n
Λ ? κ

Γ̈
(k)
Λ
? κ

Γ̈
(k)
Λ

)(ξ) dρ(ξ)

=
2k∑

`=k

(
Mk,`

∫
Γ̈X,0

(κ?2n
Λ ? κ

Γ̈
(`)
Λ

)(ξ) dρ(ξ)
)

≤
2k∑

`=k

(
Mk,` · 22n−1(`+ 2n)!

`!

2n∑
j=0

∫
Γ̈

(`+j)
Λ

dρ(ξ)
)

≤ 22n−1Mk

2k∑
`=0

(
(`+ 2n)!

`!

2n∑
j=0

ρ
(
Γ̈(`+j)

Λ

))
=: R2

Λ,k,n.

For any bounded function f on Γ̈X,0, it is obvious that

(2.14) ∀ξ ∈ Γ̈X,0 |f(ξ)| ≤ sup
ξ∈Γ̈X,0

|f(ξ)|κsupp f (ξ).
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Take any functions f1, . . . , fm from Ffin(D). Using (2.14) and (1.5) and taking into
account that supp(f1 ? · · · ? fm) can be defined completely by supp f1, . . . , supp fm, it is
easy to understand that

(2.15)

∀ξ ∈ Γ̈X,0

|(f1 ? · · · ? fm)(ξ)| ≤ (|f1| ? · · · ? |fm|)(ξ)
≤ sup

ξ∈Γ̈X,0

|f1(ξ)| · · · sup
ξ∈Γ̈X,0

|fm(ξ)|(κsupp f1 ? · · · ? κsupp fm)(ξ).

Moreover, now we will need the following fact: let f and g be functions from Ffin(D),
and let ∀ξ ∈ Γ̈X,0 g(ξ) ≥ 0; then

(2.16) |f(ξ)| ≤ g(ξ) =⇒ ‖f‖Hr ≤ ‖g‖Hr .

Indeed, taking into account (1.5), (2.2), and (2.4), we can write

‖f‖2Hr
=
∫

Γ̈X,0

(f ? f)(ξ) dρ(ξ) ≤
∫

Γ̈X,0

(|f | ? |f |)(ξ) dρ(ξ) ≤
∫

Γ̈X,0

(g ? g)(ξ) dρ(ξ) = ‖g‖2Hr
.

Let ϕ ∈ D and f ∈ Fk(D). Choose a compact set Λ ⊂ X such that Λ ⊃ suppϕ and
Γ̈(k)

Λ ⊃ supp f . Then using (2.16), (2.15), and (2.13) we obtain for each k, n ∈ N that

‖ϕ?n ? f‖Hr ≤ ‖ |ϕ|?n ? |f | ‖Hr ≤ (sup
x∈Λ

|ϕ(x)|)n( sup
ξ∈Γ̈

(k)
Λ

|f(ξ)|)‖κ?n
Λ ? κ

Γ̈
(k)
Λ
‖Hr

≤ (K(ϕ, f))n+1RΛ,k,n

with a constant K(ϕ, f) depending on ϕ and f . In other words, for each k, n ∈ N,

(2.17) ‖(A(ϕ))n{f}‖Hr ≤ (K(ϕ, f))n+1RΛ,k,n.

The inequalities (2.13) and (2.17) hold also for k = 0 because it is not difficult to conclude
that all the constructions from (2.8) until (2.17) are correct for k = 0.

Now the proof can be finished in a simple way. Let D = {A}, then D has the first
property from (i) (concerning the invariance). Let {f} ∈ D, then f ∈ Ffin(D), and so
f =

∑k
j=0 fj , {f} =

∑k
j=0{fj}, where fj is a function on Γ̈(j)

X . Choose a compact set

Λ ⊂ X such that Λ ⊃ suppϕ and ∀j ∈ {0, . . . , k}, Γ̈(j)
Λ ⊃ supp fj . Then we conclude

from (2.17) (using also the fact that, evidently, RΛ,j,n are not decreasing w. r. t. j) that

‖(A(ϕ))n{f}‖Hr ≤
k∑

j=0

‖(A(ϕ))n{fj}‖Hr ≤
k∑

j=0

(K(ϕ, f))n+1RΛ,j,n

≤ (k + 1)(K(ϕ, f))n+1RΛ,k,n.

Now it is sufficient to note that the class C{mn}, where mn is given by (2.7), is quasi-
analytic if and only if C{(k + 1)(K(ϕ, f))n+1RΛ,k,n} is a quasi-analytic class (see (2.7)
and (2.13)). �

Remark 2.2. It is easy to see that, by making more accurate estimations, one can replace
the right-hand side of (2.7) with

(2.18) max
λ∈{0,...,k}

( 2λ∑
`=λ

(
(`+ 2n)!

`!

2n∑
j=0

ρ
(
Γ̈(`+j)

Λ

))) 1
2

.

Since formulas (2.7) and (2.18) are so complicated, we will formulate now a simpler
sufficient condition for (i).

Corollary 2.1. Let, for the measure ρ from (2.3), the following condition hold: for every
compact Λ ⊂ X there exists a constant CΛ such that

(2.19) ∀n ∈ N ρ(Γ̈(n)
Λ ) ≤ Cn

Λ.

Then (i) is true and (Ã(ϕ))ϕ∈D is a family of selfadjoint commuting operators in the
space Hr.
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Proof. It is clear that for the proof one can take CΛ ≥ 2 without losing the generality.
We will assume this inequality to hold throughout proof.

According to Theorem 2.1, it is sufficient to check that the class C{mn} is quasi-
analytic, where C{mn} is given by (2.7). To do this, we will make at first some estima-
tions of (2.7) using (2.19),

mn =
( 2k∑

`=0

(
(`+ 2n)!

`!

2n∑
j=0

ρ
(
Γ̈(`+j)

Λ

))) 1
2

≤
( 2k∑

`=0

(
(`+ 2n)!

`!

2n∑
j=0

C`+j
Λ

)) 1
2

=
( 2k∑

`=0

(`+ 2n)!
`!

·
C`+2n+1

Λ − C`
Λ

CΛ − 1

) 1
2

≤
( 2k∑

`=0

C`+2n+1
Λ (`+ 2n)!

) 1
2

= C
n+ 1

2
Λ

( 2k∑
`=0

C`
Λ(`+ 2n)!

) 1
2

≤ C
n+ 1

2
Λ

(
(2k + 1)C2k

Λ (2k + 2n)!
) 1

2

≤ C2n
Λ

√
2k + 1Ck

Λ

√
(2n+ 2k)! =: C2n

Λ bn.

Now it is sufficient to prove that the class C{bn} is quasi-analytic. In order to do this,
we will use the following known fact (see, e. g., [4]): if

(2.20)
∞∑

n=1

1

b
1
n
n

= ∞,

then the class C{bn} is quasi-analytic.
So, we will show that the series from (2.20) is divergent. For a simplification of the

calculations below, we introduce the following notations:

an :=
1

b
1
n
n

, N :=
√

2k + 1Ck
Λ.

Thus bn = N
√

(2n+ 2k)!, N does not depend on n, and the series from (2.20) can be
written as

∞∑
n=1

an =
∞∑

n=1

1
N

1
n ((2n+ 2k)!)

1
2n

.

Let us use the Raabe rule. It is sufficient to prove that

(2.21) lim
n→∞

n

(
1− an+1

an

)
> 1.

For this aim we will make the following calculations:

n

(
1− an+1

an

)
= n

(
1− N

1
n ((2n+ 2k)!)

1
2n

N
1

n+1 ((2n+ 2k + 2)!)
1
2n

)

= n

(
1− N

1
n(n+1)

((2n+ 2k + 1)(2n+ 2k + 2))
1
2n

)
= n · ((2n+ 2k + 1)(2n+ 2k + 2))

1
2n −N

1
n(n+1)

((2n+ 2k + 1)(2n+ 2k + 2))
1
2n

= n · N
− 1

n(n+1) ((2n+ 2k + 1)(2n+ 2k + 2))
1
2n − 1

N− 1
n(n+1) ((2n+ 2k + 1)(2n+ 2k + 2))

1
2n

= n · e
1
n log

„
N
− 1

n+1
√

(2n+2k+1)(2n+2k+2)

«
− 1

N− 1
n(n+1) ((2n+ 2k + 1)(2n+ 2k + 2))

1
2n

.
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It is easy to calculate (e. g., using logarithm) that the denominator of the last fraction
tends to 1 if n → ∞. Therefore it is sufficient to calculate the limit of the following
expression:

n

(
e

1
n log

„
N
− 1

n+1
√

(2n+2k+1)(2n+2k+2)

«
− 1
)

=
e

1
n log

„
N
− 1

n+1
√

(2n+2k+1)(2n+2k+2)

«
− 1

1
n

=
e

1
n log

„
N
− 1

n+1
√

(2n+2k+1)(2n+2k+2)

«
− 1

1
n log

(
N− 1

n+1
√

(2n+ 2k + 1)(2n+ 2k + 2)
)

× log
(
N− 1

n+1
√

(2n+ 2k + 1)(2n+ 2k + 2)
)
.

Using a known fact that lim
x→0

ex−1
x = 1, we conclude that the left-hand side of (2.21)

equals

lim
n→∞

log
(
N− 1

n+1
√

(2n+ 2k + 1)(2n+ 2k + 2)
)

= ∞ > 1,

so that the corollary is proved. �

Remark 2.3. Since the proof of Corollary 2.1 is based on information about divergence
of a series, it is easy to see that in (2.19) one can write ∀n ∈ Nq := {q, q+ 1, . . .} instead
of ∀n ∈ N with any non-negative integer q.

3. The decomposition in generalized joint eigenvectors and the integral
representation of a positive functional

So, we will investigated the family (Ã(ϕ))ϕ∈D of selfadjoint commuting operators in
the space Hr, introduced in Section 2. Below we will construct a decomposition in their
generalized joint eigenvectors.

At first it is necessary to recall some results concerning weighted Fock spaces con-
structed similarly to (1.1) (see, e. g., [18, 12, 16]). It is known that D is the projective
limit of real Sobolev spaces, Hτ = W τ1

2,Re(X, τ2(x) dm(x)), where τ = (τ1, τ2(x)), τ1 ∈ N0,
τ2(x) ≥ 1 is a C∞ weight, m is a Riemann measure on X. The projective limit (un-
countable) is taken over the set T of all such τ . Note that for every τ ∈ T there exists
τ ′ = (τ ′1, τ

′
2(x)) ∈ T , τ ′1 > τ1, ∀x ∈ X τ ′2(x) ≥ τ2(x) (we will write τ ′ > τ) such that

the embedding Hτ ′ ⊂ Hτ is quasi-nuclear (i. e., a Hilbert–Schmidt one).
Let p = (pn)∞n=0, where ∀n ∈ N0 pn > 0, be a number weight. Let F(Hτ , p) be the

weighted Fock space consisting of sequences f = (fn)∞n=0, where fn ∈ H b⊗n
τ,c =: Fn(Hτ ),

such that

(3.1)

∀f, g ∈ F(Hτ , p) ‖f‖2F(Hτ ,p) =
∞∑

n=0

‖fn‖2Fn(Hτ )pn <∞,

(f, g)F(Hτ ,p) =
∞∑

n=0

(fn, gn)Fn(Hτ )pn.

It is known [4, 15] that for every τ ∈ T and a number weight p ≥ 1 (i. e., each pn ≥ 1)
there exists τ ′ ∈ T and a weight p′ = (p′n)∞n=0, p

′
n ≥ pn, such that the embedding

F(Hτ ′ , p
′) ⊂ F(Hτ , p) is quasi-nuclear (moreover, τ ′ is the same as was denoted by this

symbol above). Let us also stress that the space (1.1) Ffin(D) is a projective limit of the
spaces F(Hτ , p) with arbitrary τ ∈ T and p ≥ 1.
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Due to the above, it is necessary to construct a chain (rigging) of the usual Fock spaces,
F(H) := F(H, p), where H = L2

Re(X, dm(x)) and p = (1, 1, . . .) [12, 16]. Namely,

(3.2)
ind lim

τ∈T, p≥1
F(H−τ , p

−1) = (Ffin(D))′ ⊃ F(H−τ , p
−1) ⊃ F(H)

⊃ F(Hτ , p) ⊃ Ffin(D) = pr lim
τ∈T, p≥1

F(Hτ , p).

Here H−τ is the negative space w. r. t. the zero space H and the positive space Hτ ;
p−1 = (p−1

n )∞n=0; F(H−τ , p
−1) is the negative space w. r. t. F(Hτ , p) and F(H). Note

that if we talk about a functional, it is always a linear one (rather than anti-linear).
Let us consider the general positive functional r introduced at the beginning of Sec-

tion 2. This functional is continuous on the space Ffin(D), which coincides with a projec-
tive limit of the weighted Fock spaces introduced above, Ffin(D) = pr lim

τ∈T, p≥1
F(Hτ , p).

Therefore ,it is continuous on some Fock space F(Hτ , p), i. e., r ∈ F(H−τ , p
−1) with

some τ and p (see, e. g., [18]). It is easy to understand that the continuity of ? in the
space Ffin(D) (being the projective limit of F(Hτ , p)) gives a possibility, for any τ ′ ∈ T
and any p′ ≥ 1, to find sufficiently large τ ′′ and p′′ ≥ p′ (i. e., ∀n ∈ N0 p′′n ≥ p′n)
such that ∀f, g ∈ F(Hτ ′′ , p

′′) , f ? g exists, belongs to the space F(Hτ ′ , p
′), and depends

continuously on f , g,

(3.3) ∃C > 0 ∀f, g ∈ F(Hτ ′′ , p
′′) ‖f ? g‖F(Hτ′ ,p

′) ≤ C‖f‖F(Hτ′′ ,p
′′)‖g‖F(Hτ′′ ,p

′′)

(for the proof it is necessary to use the definition of the topology of the projective limit.)
Let again τ ′′′ and p′′′ ≥ p′′ be so “large” that the embedding F(Hτ ′′′ , p

′′′) ⊂ F(Hτ ′′ , p
′′)

is quasi-nuclear. We fix these τ ′′′ and p′′′ and will denote them by τ0 and p0.
Let us now consider the Hilbert space Hr introduced at the beginning of Section 2.

For simplicity, we will assume that the scalar product (2.2) is non-degenerated, every
class {f} consists of one vector f , f ∈ A = Ffin(D). Note that it is possible to consider
the general case using results from [4], Ch. 8, Section 1, and [12], Ch. 5, Section 5.

The continuity of r on the space Ffin(D) means that there exists C1 > 0 for which
∀f ∈ Ffin(D) |r(f)| ≤ C1‖f‖F(Hτ′ ,p

′) with some τ ′ ∈ T and p′ ≥ 1. Using (2.2),
this inequality, (3.3), and the choice of τ ′′, p′′, τ0, p0 described above, we conclude the
following: ∃C2 > 0 ∀f ∈ F(Hτ0 , p0)

(3.4) ‖{f}‖2Hr
= r(f ? f) ≤ C1‖f ? f‖F(Hτ′ ,p

′) ≤ C1C‖f‖2F(Hτ′′ ,p
′′) ≤ C2‖f‖2F(Hτ0 ,p0).

This estimate means that there exists the following dense and continuous embedding:

Hr ⊃ F(Hτ ′′ , p
′′) ⊃ F(Hτ0 , p0).

The last embedding is quasi-nuclear due to the choice of τ0 and p0; therefore the embed-
ding F(Hτ0 , p0) ⊂ Hr is also quasi-nuclear.

Using the possibility to pass to the spaces consisting of classes {f}, we can assert that
the following chain of spaces is constructed:

(3.5) {F(Hτ0 , p0)}− ⊃ Hr ⊃ {F(Hτ0 , p0)} ⊃ {A} = {Ffin(D)}.
Here {F(Hτ0 , p0)} is a positive space consisting of classes {f}, where f ∈ F(Hτ0 , p0);
it belongs to Hr because the convolution ? of vectors from F(Hτ0 , p0) is defined and
belongs to the space F(Hτ ′ , p

′) on which the functional r is defined.
The embedding {F(Hτ0 , p0)} ⊂ Hr is quasi-nuclear because the embedding F(Hτ0 , p0)

⊂ F(Hτ ′′ , p
′′) is quasi-nuclear. Passing to the corresponding classes is not an essential

operation for this (we also stress that Hr is a completion of F(Hτ ′′ , p
′′) w. r. t. (·, ·)Ar

).
So, we have constructed the chain (3.5) required for applying the projective spectral

theorem to the family (Ã(ϕ))ϕ∈D [12, 4, 16, 43].
It is difficult to describe the negative space from (3.5) because the space Hr is com-

plicated. Thus we will apply a simple procedure that was already used repeatedly in
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analogous situations [4]. Namely, as well as (3.5) we construct another chain: the follow-
ing chain of Fock spaces:

(3.6)
ind lim

τ∈T,τ≥τ0,p≥p0
F(H−τ , p

−1) = (Ffin(D))′ ⊃ F(H−τ0 , (p0)−1) ⊃ F(H)

⊃F(Hτ0 , p0) ⊃ Ffin(D) = pr lim
τ∈T,τ≥τ0,p≥p0

F(Hτ , p).

There is the same positive space F(Hτ0 , p0) in the chains (3.5) and (3.6) (the only
difference is that there are classes {f} instead of f in (3.5)), and therefore (see [8],
Lemma 2.2) the corresponding negative spaces {F(Hτ0 , p0)}− and F(H−τ0 , (p0)−1) are
unitary isomorphic. More exactly, there exists a unitary operator U : {F(Hτ0 , p0)}− →
F(H−τ0 , (p0)−1) such that

(3.7) ∀α ∈ {F(Hτ0 , p0)}−, ∀f ∈ F(H−τ0 , (p0)−1) (Uα, f)F(H) = (α, {f})Hr .

We will use this remark for calculating generalized eigenvectors for the family (Ã(ϕ))ϕ∈D.
So, let us pass to the operators A(ϕ) defined by (2.5), where ϕ ∈ D is a real-valued

function of a point ξ ∈ Γ̈(1)
X ⊂ Γ̈X,0. At first we will consider these operators acting in

Ffin(D) = A. Using the equalities A(ϕ)f = ϕ ? f , (1.5) and reasoning as in the proof of
Theorem 2.1 (in particular, taking into account the formulas of type (2.10) for ϕ instead
of κΛ), one can write

(3.8) ∀ϕ ∈ D A(ϕ) = A+(ϕ) +A0(ϕ).

Here A+(ϕ) and A0(ϕ) are respectively the standard creation and neutral operators
acting by

(3.9) ∀n ∈ N0 A+(ϕ)ψ⊗n = (n+ 1)ϕ⊗̂ψ⊗n, A0(ϕ)ψ⊗n = n(ϕψ)⊗̂ψ⊗(n−1).

Here ψ ∈ Dc and thus ψ⊗n ∈ Db⊗n
c = Fn(D), (ϕψ)(x) = ϕ(x)ψ(x), ψ⊗(−1) := 0.

The operators A+(ϕ) and A0(ϕ) depend linearly on ϕ ∈ D because of (3.9). Therefore,
A(ϕ) also depends linearly on ϕ ∈ D. Moreover (3.8) and (3.9) imply that ∀n ∈ N0,
Ran(A(ϕ) � Fn(H)) ⊂ Fn(H)⊕Fn+1(H), and the mappingD 3 ϕ 7→ (A(ϕ) � Fn(H))f ∈
F(H) is continuous with each f ∈ Db⊗n

c (we use the natural notation Fn(H) := H b⊗n
c ).

Passing to the action of the operators A(ϕ) on the classes {f} we get again that
they depend on ϕ ∈ D linearly. So, the operators of the family (A(ϕ))ϕ∈D are invariant
w. r. t. their domain A ⊂ Hr and depend on ϕ ∈ D linearly. We will assume that
the condition (i) is true; then the operators Ã(ϕ), ϕ ∈ D, are selfadjoint in Hr and
commuting.

So, we consider the operators of the family (Ã(ϕ))ϕ∈D on the space Hr from the chain
of spaces (3.4). This chain is a standard one connected with the operators Ã(ϕ): these
operators act continuously on the space {A} and the embedding {{F(Hτ0 , p0)}} ⊂ Hr

is quasi-nuclear. Note at first that the family (Ã(ϕ))ϕ∈D has a strong cyclic vector.

Lemma 3.1. There exists a vector {Ω} ∈ {A} such that the set of vectors

{Am1(ϕ1) . . . Amp(ϕp)Ω | ϕ1, . . . , ϕp ∈ D, m1, . . . ,mp ∈ N0, p ∈ N0}
(for p = 0 we put Am1(ϕ1) . . . Amp(ϕp)Ω := Ω) is total in F(Hτ0 , p0) (such a vector is
called cyclic).

Proof. In fact this proof is reduced to Lemma 2.1 from [6] about the vector Ω =
(1, 0, 0, . . .) which is cyclic for a Jacobi field in a Fock space. Note at first that the
proof of this lemma remains to hold if, in the matrices of a Jacobi field (2.2) from the
above-mentioned paper [6], the elements cj(ϕ) from the upper diagonal are replaced with
zeros (i. e., A−(ϕ) = 0 in (2.8) from [6]). Applying such a modification of this lemma to
our case we conclude that the set

{Am1(ϕ1) . . . Amp(ϕp)Ω | ϕ1, . . . , ϕp ∈ D, m1, . . . ,mp ∈ N0, p ∈ N0}
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is total in F(Hτ0 , p0) (now A(ϕ) is the operator (3.8) acting in F(Hτ0 , p0)). The to-
tality of this set in the space Hr follows from density and continuity of the embedding
F(Hτ0 , p0) ⊂ Hr. �

Now we pass to applying the projective spectral theorem formulated as Theorem 1.6
in Ch. 4 of [12] (see also Theorem 1.1 in [6] or Theorem 1.1 in [16] and [8]).

Note at first that the operators Ã(ϕ) depend on ϕ ∈ D linearly. Thus their generalized
joint eigenvectors α(ω) are indexed with generalized functions ω ∈ D′ and

(3.10) ∀ϕ ∈ D, ∀f ∈ F(Hτ0 , p0) (α(ω), A(ϕ){f})Hr = 〈ω, ϕ〉 (α(ω), {f})Hr ,

where 〈ω, ϕ〉 = 〈ϕ, ω〉 is the result of acting ω on ϕ; also note that, in particular, one can
take f ∈ A. Then using (3.7) we put

(3.11) P (ω) = U(α(ω)) ∈ F(H−τ0 , (p0)−1) ⊂ (Ffin(D))′.

So, P (ω) is a generalized joint eigenvector in the sense of the chain (3.6). According
to (3.7) and (3.11), the equality (3.10) turns into the following:

(3.12)
∀ω ∈ D′, ∀ϕ ∈ D, ∀f ∈ A = Ffin(D)

(P (ω), A(ϕ)f)F(H) = 〈ω, ϕ〉 (P (ω), f)F(H).

Since P (ω) ∈ (Ffin(D))′, we can write

(3.13)

P (ω) = (Pn(ω))∞n=0, Pn(ω) ∈ (Db⊗n)′ =: (D′)b⊗n;

∀ω ∈ D′, ∀f ∈ Ffin(D) (P (ω), f)F(H) =
∞∑

n=0

(Pn(ω), fn)Fn(H)

(due to the fact that the operators A(ϕ) are real, P (ω), Pn(ω) are also real). Note also
that in (3.13) one can take f from the wider space F(Hτ0 , p0) ⊃ Ffin(D). Multiplying
P (ω) by a required function of ω it is always possible to achieve the equality P0(ω) = 1
for every ω ∈ D. Of course, Pn(ω) are analogues of the first type polynomials in the
theory of Jacobi matrices and fields.

So, due to the above mentioned projective spectral theorem and (3.13) we can claim
the following.

Theorem 3.1. Let the assumption (i) for the family (Ã(ϕ))ϕ∈D be fulfilled. Then the
family (Ã(ϕ))ϕ∈D generates a Fourier transform I given by

(3.14)

Ffin(D) 3 f = (fn)∞n=0

7→ (If)(ω) =: f̂(ω) = (f, P (ω))F(H) =
∞∑

n=0

(fn, Pn(ω))Fn(H) ∈ L2(D′, dµ(ω)).

Here µ is the spectral measure of the family being a probability Borel measure on the space
D′. The closure of the operator I by continuity is a unitary operator between the spaces
Hr and L2(D′, dµ(ω)), it turns each operator Ã(ϕ) into the operator of multiplication by
the function 〈ω, ϕ〉.

Remark 3.1. In (3.14) one can take f ∈ F(Hτ0 , p0) ⊃ Ffin(D) and the series will converge;
it is clear from the above that Pn(ω) ∈ (H−τ0 , (p0)−1)b⊗n and P (ω) ∈ F(H−τ0 , (p0)−1).
Moreover, the measure µ is concentrated on the space H−τ0 ⊂ D′ from the chain (see
[12], Ch. 4, Theorem 1.6, [8], Section 1, Theorem 1.1),

(3.15) D′ ⊃ H−τ0 ⊃ H = L2(X, dm(x1)) ⊃ Hτ0 ⊃ D.

For every n ∈ N and every ϕ1, . . . , ϕn ∈ D, the moment 〈ω, ϕ1〉 . . . 〈ω, ϕn〉 belongs to
L2(D′, dµ(ω)).
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The Parseval equality, connected with Theorem 3.1, is the following:

(3.16) ({f}, {g})Hr = r(f ? g) =
∫
D′

f̂(ω)ĝ(ω) dµ(ω).

Let us take g = (1, 0, 0, . . .) = Ω in this Parseval equality. Then, according to (3.13),
ĝ(ω) = 1. In the sense of functions on Γ̈X,0, g is an identity in the algebra A. Thus
(3.16) implies

(3.17) r(f) =
∫
D′

f̂(ω) dµ(ω) =
∫
D′

( ∞∑
n=0

(fn, Pn(ω))Fn(H)

)
dµ(ω).

So, we have obtained an integral representation of the functional r.
If f = fn ∈ Fn(D) ⊂ F(D) in (3.17), with a fixed n ∈ N0, then every term of the sum

from (3.17), except for (fn, Pn(ω))Fn(H), vanishes and thus

(3.18) ∀n ∈ N0 r(fn) =
∫
D′

(fn, Pn(ω))Fn(H)dµ(ω).

4. Calculation of the Fourier transform

Let us calculate the “polynomials” Pn(ω) from the definition (3.14) of the Fourier
transform.

We will use the notations standard in the theory of Jacobi matrices and fields [4, 6,
7],

(4.1) A(ϕ) = A+(ϕ) +A0(ϕ) =


b0(ϕ) 0 0 0 . . .
a0(ϕ) b1(ϕ) 0 0 . . .

0 a1(ϕ) b2(ϕ) 0 . . .
...

...
...

...
. . .

 ,

where an(ϕ) : Fn(H) → Fn+1(H) and bn(ϕ) : Fn(H) → Fn(H) (it is selfadjoint) are
real creation and neutral operators defined in accordance with (3.9); ∗ and + are used,
respectively, for the adjoint operator in F(H) and for the adjoint operator w. r. t. the
zero space of the corresponding chain. It is known that the annihilation operator a∗n(ϕ) :
Fn+1(H) → Fn(H) acts as follows:

(4.2) a∗n(ϕ)ψ⊗(n+1) = (n+ 1)(ϕ,ψ)Hψ
⊗n.

Taking into account (3.12) and (3.13) we get

(4.3)

∀ϕ ∈ D, ∀f ∈ Ffin(D)

(P (ω), A(ϕ)f)F(H) =
∞∑

n=0

(Pn(ω), an−1(ϕ)fn−1 + bn(ϕ)fn)Fn(H)

=
∞∑

n=0

((a∗n(ϕ))+Pn+1(ω) + (bn(ϕ))+Pn(ω), fn)Fn(H)

= 〈ω, ϕ〉 (P (ω), f)F(H) =
∞∑

n=0

(〈ω, ϕ〉Pn(ω), fn)Fn(H).

Since f in (4.3) is arbitrary, we get the following recurrence relation for Pn(ω):

(4.4)
∀ϕ ∈ D, ∀ω ∈ D′, ∀n ∈ N0

(a∗n(ϕ))+Pn+1(ω) = 〈ω, ϕ〉Pn(ω)− (bn(ϕ))+Pn(ω), P0(ω) = 1,

(here + denotes the conjugation w. r. t. the chain (3.15)).
It is possible to write (4.4) in another manner. Since Pn(ω) ∈ (D′)b⊗n (i. e., it is

symmetric and real), in order to find Pn(ω) it is sufficient to know (Pn(ω), ϕ⊗n)Fn(H)
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for every ϕ ∈ D. Let us apply (4.3) for f = (fk)∞k=0, where fn = ϕ⊗n and every other
fk = 0. Then (4.3) turns into

(4.5)
(Pn+1(ω), an(ϕ)ϕ⊗n)Fn+1(H) + (Pn(ω), bn(ϕ)ϕ⊗n)Fn(H)

= 〈ω, ϕ〉 (Pn(ω), ϕ⊗n)Fn(H).

Taking into account the formulas (3.9) for an(ϕ) and bn(ϕ) we rewrite (4.5) as follows:

(4.6)

∀ϕ ∈ D, ∀n ∈ N0

(Pn+1(ω), ϕ⊗(n+1))Fn+1(H)

=
1

n+ 1

(
(Pn(ω)⊗ ω, ϕ⊗(n+1))Fn+1(H) − (Pn(ω), nϕ2 ⊗ ϕ⊗(n−1))Fn(H)

)
,

P0(ω) = 1.

Note also that, according to (4.6), P1(ω) = ω. Formula (4.6) is just another form of (4.4)
which was mentioned at the beginning of this paragraph.

Moreover the polynomials Pn(ω) can be found as coefficients of the power decompo-
sition of a certain function. We have the following theorem.

Theorem 4.1. For any ω ∈ D′, consider the function

(4.7) e〈log(1+ϕ), ω〉,

where ϕ ∈ D and ∀x ∈ X, ϕ(x) > −1. It is analytic w. r. t. ϕ in a neighborhood U(0)
of 0 from Dc, and thus can be decomposed into a series w. r. t. tensor powers ϕ⊗n. It is
claimed that the coefficients of this decomposition are just Pn(ω), i. e.,

(4.8) e〈log(1+ϕ), ω〉 =
∞∑

n=0

〈
ϕ⊗n, Pn(ω)

〉
Fn(H)

.

Proof. We will use the decomposition of the character χ(ω, ϕ) = exp 〈log(1 + ϕ), ω〉 into
a series of the corresponding Delsarte characters χn(ω),

(4.9) exp 〈log(1 + ϕ), ω〉 = χ(ω, ϕ) =
∞∑

n=0

1
n!
〈
ϕ⊗n, χn(ω)

〉
,

used in the theory of Poisson analysis ([20], formula (3.1)). We replace here the notation
x from the negative space S−2(R1) (w. r. t. the positive Sobolev space W 2

2 (R1, (1 +
t2)2dσ(t))) to a vector ω ∈ D′, and λ ∈W 2

2,C(R1) to ϕ ∈ D. Such a replacement, as it is
easy to understand, is possible. Note that ϕ has finite norm in W 2

2,C(R1) in (3.1) from
[20] and the vector ω ∈ D′ is a generalized function on D = C∞fin(X). The function χn(ω)
is the action χn ∈ D on ω ∈ D′.

So, we can rewrite the formula, following (9.2) from [20], as follows:

(4.10)
〈
χn(ω), ϕ⊗n

〉
=

n−1∑
`=0

(−1)n−`−1 (n− 1)!
`!

〈
ϕn−`, ω

〉 〈
ϕ⊗`, χ`(ω)

〉
.

Here ϕn−` is the usual product, (ϕ(ω))n−`, ω ∈ D′;
〈
ϕn−`, ω

〉
is the action of ω ∈ D′

on this function.
To derive (4.8) from (4.9), it is necessary to prove that

(4.11)
1
n!
χn(ω) = Pn(ω), ω ∈ D′, n ∈ N0.

We will use induction. We have that (4.11) takes place for n = 0 (both expressions in
(4.11) are equal to 1). Let us assume that identity (4.10) takes place for n = 0, . . . ,m
and prove that it is correct for n = m+ 1.



140 YU. M. BEREZANSKY AND D. A. MIERZEJEWSKI

Using (4.6) and (4.11) we conclude

(4.12)

(Pm+1(ω), ϕ⊗(m+1))Fm+1(H)

=
1

m+ 1

((
1
m!
χm(ω)⊗ ω, ϕ⊗(m+1)

)
Fm+1(H)

− 1
m!

(
χm(ω), mϕ2 ⊗ ϕ⊗(m−1)

)
Fm(H)

)
− 1

(m+ 1)!

[
(χm(ω)⊗ ω, ϕ⊗(m+1))Fm+1(H)

− m(χm(ω), ϕ2 ⊗ ϕ⊗(m−1))Fm(H)

]
.

From (4.10) for n = m+ 1 and ` = m, and ` = 0, 1, . . . ,m− 1 we get

(4.13)

〈
χm+1(ω), ϕ⊗(m+1)

〉
= (−1)m+1−m−1m!

m!
〈ϕ, ω〉

〈
ϕ⊗m, χm(ω)

〉
+

m−1∑
`=0

(−1)m+1−`−1m!
`!

〈
ϕ2 ⊗ ϕ⊗(`−1), χ`(ω)

〉
=
〈
ϕ⊗(m+1), ω ⊗ χm(ω)

〉
−m

m−1∑
`=0

(−1)m−`−1 (m− 1)!
`!

〈
ϕ2 ⊗ ϕ⊗(`−1), χ`(ω)

〉
=
〈
χm(ω)⊗ ω, ϕ⊗(m+1)

〉
−m

〈
χm(ω), ϕ2 ⊗ ϕ⊗(m−1)

〉
(we used formula (4.10) for χm in the last equality). We see that the last expression is
the same as the expression in the square brackets in (4.12). Therefore (4.12) and (4.13)
give

(Pm+1(ω), ϕ⊗(m+1))Fm+1(H) =
1

(m+ 1)!

〈
χm+1(ω), ϕ⊗(m+1)

〉
, ϕ ∈ D.

�

Now let us clarify where the measure µ from (3.17) is concentrated if the positive
functional r is generated by a measure ρ on Γ̈X,0 according to (2.3). Recall that a finite
complex-valued Borel measure on a space Q is called a charge on Q.

Theorem 4.2. Let a positive functional r be generated by a measure ρ on Γ̈X,0. Then,
for the corresponding spectral measure µ, the set of ω ∈ D′ generated by charges on X is
a set of full measure µ.

On the contrary, let the above mentioned set be a set of full measure µ, where µ is
the spectral measure connected with a functional r. Then the positive functional r is
generated by a charge on Γ̈X,0.

Proof. According to Remark 3.1 it is possible to consider the negative Hilbert space H−τ0

from the chain (3.15), instead of the space D′. Let H−τ0 = α ∪ β, α ∩ β = ∅, where α is
the set of all ω generated by charges on X and β be the rest of H−τ0 . Apply (3.18) to
the case where n = 1. Since P1(ω) = ω, we have

(4.14) ∀f1 ∈ D r(f1) =
∫
D′

〈f1, ω〉 dµ(ω) =
∫
α

〈f1, ω〉 dµ(ω) +
∫
β

〈f1, ω〉 dµ(ω).

Suppose that r is generated by a measure ρ but µ(β) > 0. Denote by βS ⊂ β the support
of the restriction µ � β of the measure µ to β. So, βS is a closed set of full measure,
µ(βS) = µ(β) > 0 (for the corresponding facts about the support for a Borel measure on
H−τ0 , see [5], Ch. 2, Section 1, and [12], Ch. 3, Section 1).
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Let us fix a positive continuous function ψ(x) ≤ 1 on X integrable w. r. t. the measure
ρ � X. Since H−τ0 is a separable space, there exists a countable set {ω1, ω2, . . .}, dense
in βS , of points from βS . Consider ω1 and construct a sequence (f (1,k)

1 )∞k=1 of functions
from Hτ0 such that f (1,k)

1 (x) → 0 (k →∞) uniformly w. r. t. x ∈ X, |f (1,k)
1 (x)| ≤ ψ(x)

(for every x ∈ X) and, for a certain number ε1 > 0,

(4.15) ∀k ∈ N
〈
f

(1,k)
1 , ω1

〉
:= (f (1,k)

1 , ω1)H ≥ ε1.

Such a construction is possible; since ω1 is not a charge, there exists a sequence (g(k)
1 )∞k=1,

g
(k)
1 ∈ D, such that g(k)

1 (x) → 0 (k → ∞) uniformly, |g(k)
1 (x)| ≤ ψ(x), x ∈ X, and〈

g
(k)
1 (x), ω1

〉
does not tend to 0 (k →∞). Therefore there exist ε1 > 0 and a subsequence

(f (1,k)
1 )∞k=1 ⊂ (g(k)

1 )∞k=1 such that
∣∣∣〈f (1,k)

1 , ω1

〉∣∣∣ ≥ ε1. Changing the sign of f (1,k)
1 (x) we

obtain inequality (4.15).
Analogously, taking ω2 we construct a sequence (f (2,k)

1 )∞k=1 of functions from Hτ0 such
that f (2,k)

1 (x) → 0 (k → ∞) uniformly w. r. t. x ∈ X, |f (2,k)
1 (x)| ≤ ψ(x) (for every

x ∈ X) and, for a certain number ε2 > 0,

(4.16) ∀k ∈ N
〈
f

(2,k)
1 , ω2

〉
≥ ε2.

Do the same for the points ω3, ω4, . . . ; it is possible to assume that ε1 > ε2 > · · · and
εn → 0 (n → ∞). Now we use the diagonal procedure. Consider the diagonal sequence
(f (k,k)

1 )∞k=1. The functions f (k,k)
1 (x) are uniformly bounded (by the function ψ(x)) and

tend to 0 uniformly w. r. t. x ∈ X. Moreover for every m ∈ N there exists εm such that

(4.17) ∀k ∈ N
〈
f

(k,k)
1 , ωm

〉
≥ εm > 0.

The function H−τ0 3 ω 7→
〈
f

(k,k)
1 , ω

〉
∈ R is continuous in the topology of H−τ0 .

Therefore each point ωm has a neighborhood U(ωm) such that (4.17) implies

(4.18) ∀ω ∈ U(ωm), ∀k ∈ N
〈
f

(k,k)
1 , ω

〉
≥ εm

2
> 0.

The neighborhoods U(ωm) ⊂ βS and, therefore, have positive measure µ. Inequalities
(4.18) imply that there exists a continuous non-negative function g(ω) given on the closed
set βS such that

(4.19) ∀ω ∈ βS , ∀k ∈ N
〈
f

(k,k)
1 , ω

〉
≥ g(ω) ≥ 0

and
∀ω ∈ U(ωm), ∀m ∈ N g(ω) ≥ cm > 0.

Writing (4.14) for f1 = f
(k,k)
1 and replacing β with βS we get

(4.20)

r(f (k,k)
1 ) =

∫
X

f
(k,k)
1 (x) dρ(x) =

∫
α

〈
f

(k,k)
1 , ω

〉
dµ(ω) +

∫
βS

〈
f

(k,k)
1 , ω

〉
dµ(ω)

=
∫
α

(∫
X

f
(k,k)
1 (x) dσω(x)

)
dµ(ω) +

∫
βS

〈
f

(k,k)
1 , ω

〉
dµ(ω)

≥
∫
α

(∫
X

f
(k,k)
1 (x) dσω(x)

)
dµ(ω) +

∫
βS

g(ω) dµ(ω),

where σω is the charge on X corresponding to ω ∈ α. Formula (4.20) means that

(4.21) ∀k ∈ N
∫
X

f
(k,k)
1 (x) dρ(x) ≥

∫
α

(∫
X

f
(k,k)
1 (x) dσω(x)

)
dµ(ω) +

∫
βS

g(ω) dµ(ω).

Since f (k,k)
1 (x) tends to 0 uniformly and is majorized by the function ψ(x), which is

integrable on X, the left-hand integral in (4.21) tends to 0 too.



142 YU. M. BEREZANSKY AND D. A. MIERZEJEWSKI

Then, due to the same convergence and the fact that ψ(x) ≤ 1, we can write

(4.22) ∀ω ∈ α
∫
X

f
(k,k)
1 (x) dσω(x) → 0 (k →∞).

Our nearest aim is to show that the first integral in the right-hand side of (4.21) also
tends to 0 if k → ∞ (together with (4.22) this means that it is possible to pass to the
limit under the integral sign).

All above constructed functions f (`,k)
1 , `, k ∈ N, can be chosen in such a way that

∀`, k ∈ N ‖f (`,k)
1 ‖Hτ0 ≤ C3 with some C3 > 0. Therefore, we can consider that ∀k ∈ N

‖f (k,k)
1 ‖Hτ0 ≤ C3 in (4.22).
But, because of (3.14), (4.6) and the fact that f (k,k)

1 ∈ F1(D),

(4.23)
∫
X

f
(k,k)
1 (x) dσω(x) =

〈
f

(k,k)
1 , ω

〉
= (If (k,k)

1 )(ω) = f̂
(k,k)
1 (ω).

The operator I between Hr and L2(D′, dµ(ω)) is unitary, which is due to (3.14) and (3.4)
for each natural k,

(4.24)

∫
D′

∣∣∣∣ ∫
X

f
(k,k)
1 (x) dσω(x)

∣∣∣∣2dµ(ω) =
∫
D′

∣∣∣(f̂ (k,k)
1 )(ω)

∣∣∣2 dµ(ω) = ‖f (k,k)
1 ‖2Hr

≤ C2‖f (k,k)
1 ‖2F(Hτ0 ,p0) = C2‖f (k,k)

1 ‖2F1(Hτ0 ,p0
1)

= C2p
0
1‖f

(k,k)
1 ‖2Hτ0

≤ C2C
2
3p

0
1.

Since the integrals in (4.24) are bounded w. r. t. k ∈ N, one can proceed to the limit
under the considered integral for k →∞ and conclude that this limit is equal to 0.

As the result we get from (4.21) that∫
βS

g(ω) dµ(ω) = 0.

But this is impossible, since the inequality (4.19) shows that the last integral is more than
or equal to

∑∞
m=1 cmµ(U(ωm)) > 0 (because U(ωm) is an open subset of the support

βS and, therefore, µ(U(ωm)) > 0). The first part of the theorem is proved. So, we have
shown the following. Let D′ch be the set of all functionals ω ∈ D′ generated by charges
on D. If r is generated by a measure, then D′ch is a set of full measure w. r. t. µ.

Let us prove a proposition converse to Theorem 4.2; if D′ch is a set of full measure
w. r. t. µ, then r is generated by a charge. Now one can rewrite (3.17) and (3.18) replacing
D′ with D′ch. Applying (3.18) with n = 1 and taking into account that P1(ω) = ω we get

(4.25) ∀f1 ∈ D ⊂ Dc = F1(D) r(f1) =
∫
D′ch

(f1, ω)F1(H)dµ(ω),

where ω is generated by a charge σω. It follows from (4.25) that

(4.26) ∀f1 ∈ D |r(f1)| ≤ max
x1∈X

|f1(x1)|(Varσω)(X)

(recall that µ is a probability measure). According to (4.6)

(4.27) ∀ϕ ∈ D (P2(ω), ϕ⊗2)F2(H) =
1
2
(
(ω⊗̂ω, ϕ⊗2)F2(H) − (ω, ϕ2)Hc

)
,

where, obviously, ω⊗̂ω = ω⊗ω = ω⊗2 is also generated by a charge denoted by σω⊗2 . It
follows from (4.27) that

(4.28)

∀ϕ ∈ D∣∣(P2(ω), ϕ⊗2)F2(H)

∣∣
≤ 1

2

(
max

x1,x2∈X
|ϕ⊗2(x1, x2)|(Varσω⊗2)(X2) + max

x1∈X
|ϕ2(x1)|(Varσω)(X)

)
≤ c2 max

x1,x2∈X
|ϕ⊗2(x1, x2)|
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with a constant c2 > 0.
Taking the sum of equalities of type (4.27) we conclude that an analogous equality

holds for every sum f2 =
m∑

j=1

ϕ⊗2
j , where ϕj ∈ D, m ∈ N (i. e., for every linear combination

of functions of the kind ϕ⊗2). Using this equality we can get an inequality of type (4.28)
by replacing ϕ⊗2 with f2. Note that the constant c2 does not depend on m.

The set of all linear combinations of functions of the form ϕ⊗2(x1, x2) is dense in
the topology of Db⊗2. This topology is stronger than the uniform topology of the space
of continuous finite functions of point (x1, x2) ∈ X2. Therefore it follows by the limit
procedure from the above-mentioned generalization of (4.28) that

(4.29) ∀f2 ∈ D
b⊗2

∣∣(P2(ω), f2)F2(H)

∣∣ ≤ c2 max
x1,x2∈X

|f2(x1, x2)|.

The estimations (4.26) and (4.29) imply that P1(ω) (which is equal to ω) and P2(ω)
are generated by charges (due to the Riesz theorem).

One can continue to get similar estimations for P3(ω), P4(ω), . . ., i. e., we obtain
inequalities of type (4.29).

Indeed, suppose that Pn(ω) is generated by a charge. Then Pn(ω)⊗̂ω is generated by
a charge too, and analogously to the case n = 1 from (4.6) and (4.30) one can conclude

(4.30) ∀fn ∈ D
b⊗n

∣∣(Pn(ω), fn)Fn(H)

∣∣ ≤ cn max
x1,...,xn∈X

|fn(x1, . . . , xn)|.

There exists a finite constant cn+1 > 0 such that

(4.31)
∀fn+1 ∈ D

b⊗(n+1)∣∣(Pn+1(ω), fn+1)Fn+1(H)

∣∣ ≤ cn+1 max
x1,...,xn+1∈X

|fn+1(x1, . . . , xn+1)|.

The estimation (4.31) implies that Pn+1(ω) is generated by a charge.
So, using (3.18) and (4.31), we conclude that

(4.32)

∀n ∈ N, ∀fn ∈ D
b⊗n

|r(fn)| =
∣∣∣∣ ∫
D′ch

(fn, Pn(ω))Fn(H)dµ(ω)
∣∣∣∣

≤ cn max
x1,...,xn∈X

|fn(x1, . . . , xn)|
∫
D′ch

dµ(ω) = cn max
x1,...,xn∈X

|fn(x1, . . . , xn)|

(recall that µ is a probability measure).
The estimation (4.32) shows that the functional Db⊗n 3 fn 7→ r(fn) ∈ C is generated

by a charge, that is, because of (2.3), we can say the same about r on A. �

Corollary 4.1. Let a positive functional r on Ffin(D) be such that its restriction to
F1(D) be generated by a σ-finite Borel measure. Then the functional r is generated by a
charge.

Proof. Indeed, in the proof of the first part of Theorem 4.2 we have only used the fact
that the restriction of r to F1(D) is generated by a measure. Therefore, in the case
under consideration, µ is concentrated on elements that coincide as charges on X. Then,
according to the second part of this theorem, r is generated by a charge on Γ̈X,0. �

5. The space of infinite configurations and the Lenard transform

The space of infinite configurations ΓX over X (or the configuration space) is defined
as a set of all locally finite usual configurations in X, i. e.,

(5.1) ΓX =
{
γ ⊂ X

∣∣ |γ ∩ Λ| <∞ for every compact Λ ⊂ X
}
,
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where |α| denotes cardinality of the set α; we stress that usual finite configurations belong
to ΓX , i. e., ∀n ∈ N ΓX ⊃ Γ(n)

X . It will often be convenient to identify γ with a σ-finite
Borel measure on X of the kind

(5.2) σγ :=
∑
x∈γ

δx,

where δx is a unit measure concentrated at the point x (the δ-function concentrated in
x). From the other hand, each measure (5.2) generates a linear continuous functional ωγ

on the space D,

(5.3) D 3 ϕ 7→ ωγ(ϕ) =
∫
X

ϕ(x) dσγ(x) =
∑
x∈γ

ϕ(x) ∈ C.

Because ϕ is finite and, it follows from condition (5.1) that mapping (5.3) is, actually, a
linear continuous functional on D, i. e., ωγ ∈ D′. So, identifying γ with ωγ we get the
inclusion ΓX ⊂ D′.

Now, let us consider the space ΓX,0 of usual finite configurations (1.3). It is easy to
see that ΓX,0 is a Borel set in the space Γ̈X,0 of all multiple configurations. Therefore it
is possible to consider σ-finite Borel measures ρ on Γ̈X,0 such that

(5.4) ρ(Γ̈X,0 \ ΓX,0) = 0.

We will consider below measures ρ on Γ̈X,0 satisfying property (5.4) only. Of course, it
is possible to treat them also as σ-finite Borel measures on ΓX , and we will not introduce
any new notation for this interpretation.

According to the general rule (2.3), one constructs a functional r. We will suppose
that it is positive and thus Theorem 3.1, representations (3.17), (3.18), and Theorem 4.2
hold. Due to the last theorem, it is possible to assume that the spectral measure µ is a
Borel probability measure concentrated on elements in D′ that are generated by charges.
Therefore in (3.14), (3.17), and (3.18) one can replace D′ with D′ch ⊂ D′. Note that the
functional (5.3) is generated by charge (5.2) and thus it belongs to D′ch.

Now our aim is to show that if (5.4) and a certain additional condition imposed on ρ
hold, then the set of all functionals of the form (5.3) is a set of full measure µ on D′ch.
This fact will imply that in this case one can replace D′ch with ΓX in the above-mentioned
integrals.

The polynomials Pn(ω) can be calculated in a simple way in the case ω = γ ∈ ΓX ⊂ D′.

Lemma 5.1. The following formula holds:

(5.5) ∀γ ∈ ΓX ⊂ D′, ∀n ∈ N Pn(γ) =
∑

ξ⊂γ, |ξ|=n

⊗̂x∈ξδx, P0(γ) = 1.

Proof. For n = 1, formula (5.5) is obvious (recall that P1(γ) = γ). Let us assume that it
holds for n ∈ N and prove it for n+ 1. Let ϕ ∈ D. According to (4.6) we have

(Pn+1(γ), ϕ⊗(n+1))Fn+1(H)

=
1

n+ 1

(
(Pn(γ)⊗̂γ, ϕ⊗(n+1))Fn+1(H) − (Pn(γ), nϕ2⊗̂ϕ⊗(n−1))Fn(H)

)
=

1
n+ 1

(
(Pn(γ), ϕ⊗n)Fn(H) 〈γ, ϕ〉 − (Pn(γ), nϕ2⊗̂ϕ⊗(n−1))Fn(H)

)
=

1
n+ 1

(( ∑
ξ⊂γ, |ξ|=n

⊗̂x∈ξδx, ϕ
⊗n

)
Fn(H)

〈γ, ϕ〉

−
( ∑

ξ⊂γ, |ξ|=n

⊗̂x∈ξδx, nϕ
2⊗̂ϕ⊗(n−1)

)
Fn(H)

)
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=
1

n+ 1

(( ∑
ξ⊂γ, |ξ|=n

(∏
x∈ξ

ϕ(x)
))(∑

x∈γ

ϕ(x)
)

−
∑

ξ⊂γ, |ξ|=n

(∑
y∈ξ

(
ϕ2(y)

∏
x∈ξ\{y}

ϕ(x)
)))

=
1

n+ 1

∑
ξ⊂γ, |ξ|=n

((∏
x∈ξ

ϕ(x)
)(∑

x∈γ

ϕ(x)
)
−
∑
y∈ξ

(
ϕ2(y)

∏
x∈ξ\{y}

ϕ(x)
))

=
1

n+ 1

∑
ξ⊂γ, |ξ|=n

(∑
y∈γ

(
ϕ(y)

∏
x∈ξ

ϕ(x)
)
−
∑
y∈ξ

(
ϕ(y)

∏
x∈ξ

ϕ(x)
))

=
1

n+ 1

∑
ξ⊂γ, |ξ|=n

( ∑
y∈γ\ξ

(
ϕ(y)

∏
x∈ξ

ϕ(x)
))

=
∑

ξ⊂γ, |ξ|=n+1

(∏
x∈ξ

ϕ(x)
)

=
( ∑

ξ⊂γ, |ξ|=n+1

⊗̂x∈ξδx, ϕ⊗(n+1)

)
Fn+1(H)

.

Since here ϕ ∈ D is arbitrary, we conclude that (5.5) is true for n+ 1, and the lemma is
proved by induction. �

Now let us consider a transform that is important for our purposes, which is the
Lenard transform. It is a mapping K that acts from Ffin(D) (the vectors of this space
are treated as functions) to Fun(ΓX) according to the following formula:

(5.6) Ffin(D) 3 f 7→ (Kf)(γ) =
∑
ξ⊂γ

f(ξ) ∈ C,

where ξ are usual finite configurations contained as subsets in γ (the case ξ = γ is
also possible). The sum in (5.6) is a finite number, and has compact support as a

function, since f(ξ) = 0 for ξ ∈ Γ̈X,0 \
n⊔

j=0

Γ̈(j)
Λ if the compact set Λ ⊂ X and the

number n ∈ N0 are sufficiently large. This follows from the fact that the corresponding
vector f = (fn)∞n=0 ∈ Ffin(D) is finite and its components fn are finite functions of
(x1, . . . , xn) ∈ Xn. We stress that (5.6) includes values of f(ξ) only on the usual (not
multiple) configurations and on ξ = ∅.

We will quote two important properties of the mapping K established in [34, 35, 36,
28, 29, 33, 41].

Proposition 5.1. For every f, g ∈ Ffin(D) and every γ ∈ ΓX ,

(5.7) (K(f ? g))(γ) = (Kf)(γ)(Kg)(γ).

For f ∈ Ffin(D), (Kf)(γ) is a function on all infinite configurations γ ∈ ΓX and,
in particular, every usual configuration η ∈ Γ(n)

X ⊂ ΓX , n ∈ N, and also ∅ can be its
argument. It turns out that the function f(ξ), ξ ∈ ΓX,0, can be restored from these
values (Kf)(η). Moreover, let any function ΓX,0 3 η = [y1, . . . , yn] 7→ F (η) ∈ C,
n ∈ N, ∅ 7→ F (∅) be given, such that F (η) = F ([y1, . . . , yn]) is a symmetric infinitely
differentiable finite function of point (y1, . . . , yn) ∈ Xn. Then one can find a function
f ∈ Ffin(D) such that, for every η ∈ ΓX,0, (Kf)(η) = F (η). So, the inverse transform
K−1 exists in the just explained sense. The following proposition gives a formula for it.



146 YU. M. BEREZANSKY AND D. A. MIERZEJEWSKI

Proposition 5.2. For any above-mentioned function F (η) over ΓX,0, the following for-
mulas hold:

(5.8)
∀ξ ∈ ΓX,0 (K−1F )(ξ) =

∑
η⊂ξ

(−1)|ξ\η|F (η),

∀η ∈ ΓX,0 (K(K−1F ))(η) = F (η).

Then using (5.8) we will easily prove the following lemma.

Lemma 5.2. Let Λ ⊂ X be a compact set. Then for any above-mentioned function F (η)
the following estimate holds:

(5.9) ∀n ∈ N, ∀ξ ∈ Γ(n)
Λ |(K−1F )(ξ)| ≤ 2n max

η∈
nF

j=0
Γ

(j)
Λ

|F (η)|.

Proof. For n ∈ N, ξ ∈ Γ(n)
Λ we have, according to (5.8), that

|(K−1F )(ξ)| =
∣∣∣∣∑

η⊂ξ

(−1)|ξ\η|F (η)
∣∣∣∣

≤ max
η∈

nF
j=0

Γ
(j)
Λ

|F (η)|
∑
η⊂ξ

|(−1)|ξ\η|| ≤ 2n max
η∈

nF
j=0

Γ
(j)
Λ

|F (η)|.

We used that, for η ∈ Γ(n)
Λ , each configuration η ⊂ ξ = [x1, . . . , xn] (and also η = ∅)

belongs to
n⊔

j=0

Γ(j)
Λ and the number of these configurations equals the number of all

subsets of the set {x1, . . . , xn} (x1, . . . , xn ∈ X are distinct), i. e., 2n. �

The following fact is important.

Proposition 5.3. For the Fourier transform (If)(ω) (f ∈ Ffin(D), see (3.14)) in the
case ω = γ ∈ ΓX ⊂ D′, the following formula holds:

(5.10) ∀γ ∈ ΓX (If)(γ) = (Kf)(γ).

So, the Fourier transform (If)(ω) in points ω = γ ∈ ΓX ⊂ D′ can easily be calculated
by using formula (5.6) in the general case.

Proof. This proposition is a simple consequence of Lemma 5.1. Indeed, let f = (fn)∞n=0 ∈
Ffin(D). Then, according to (3.14) and (5.5),

(If)(γ) =
∞∑

n=0

(fn, Pn(γ))Fn(H) = f0 +
∞∑

n=1

(
fn,

∑
ξ⊂γ, |ξ|=n

⊗̂x∈ξδx

)
Fn(H)

= f(∅) +
∑

ξ⊂γ, |ξ|>0

f(ξ) = (Kf)(γ).

�

6. Representation of a positive functional generated by a measure on
the space of usual configurations

In this section we will show that in the case where a positive functional r is generated
(according to (2.3)) by a measure ρ concentrated on usual configurations (condition (5.4)),
the spectral measure µ is concentrated on ΓX ⊂ D′. Thus, in this case, the equality (5.10)
gives that I = K. To verify this, we will impose certain additional conditions on the
growth of the measure ρ � Γ(n)

X as n→∞.
At first we will establish some auxiliary facts.
Let us construct the following linear functional from the above-mentioned measure ρ:

(6.1) RanK 3 F 7→ `(F ) =
∫

ΓX,0

(K−1F )(ξ) dρ(ξ) ∈ C.
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Let Λ ⊂ X be a fixed compact set with an infinitely differentiable border. Construct
the following compact set for each fixed n ∈ N:

(6.2) ΓΛ,n :=
n⊔

j=0

Γ(j)
Λ ,

where Γ(0)
Λ := ∅. According to the results in Section 5, each function ΓΛ,n 3 η 7→

F (η) ∈ C, for which F ([y1, . . . , yj ]) is an infinitely differentiable symmetric function of
point (y1, . . . , yj) ∈ Λj , vanishing outside Λj , belongs to RanK (see a reasoning before
Proposition 5.2). Denote this class of functions by C∞fin(ΓΛ,n).

Since C∞fin(ΓΛ,n) ⊂ RanK, the functional ` (6.1) is defined on F ∈ C∞fin(ΓΛ,n). We
will get now its integral representation. According to (5.8), the values (K−1F )(ξ) for
ξ ∈ Γ(k)

X , k = 1, . . . , n, are defined by the values F (η) with η ∈ ΓΛ,k and are zero outside
Γ(k)

Λ . Therefore the estimate (5.9) gives

(6.3)

∀k = 1, . . . , n, ∀ξ ∈ Γ(k)
Λ

|(K−1F )(ξ)| ≤ 2k max
η∈ΓΛ,k

|F (η)| ≤ 2k max
η∈ΓΛ,n

|F (η)|,

∀ξ ∈ Γ(k)
X \ Γ(k)

Λ (K−1F )(ξ) = 0.

It follows from (6.1) and (6.3) that

(6.4)

∀F ∈ C∞fin(ΓΛ,n)

|`(F )| =
∣∣∣∣ n∑

k=0

∫
Γ

(k)
X

(K−1F )(ξ) dρ(ξ)
∣∣∣∣ = ∣∣∣∣ n∑

k=0

∫
Γ

(k)
Λ

(K−1F )(ξ) dρ(ξ)
∣∣∣∣

≤ max
η∈ΓΛ,n

|F (η)|
n∑

k=0

∫
Γ

(k)
Λ

2k dρ(ξ) = max
η∈ΓΛ,n

|F (η)|
n∑

k=0

2kρ(Γ(k)
Λ ).

The inequality (6.4) shows that the functional ` is continuous w. r. t. the norm of the
space C(ΓΛ,n) of continuous functions. Therefore there exists an integral representation
of this functional with a Borel charge νΛ,n on the space ΓΛ,n,

(6.5) ∀F ∈ C∞fin(ΓΛ,n) `(F ) =
∫

ΓΛ,n

F (η) dνΛ,n(η), (Var νΛ,n)(ΓΛ,n) ≤
n∑

k=0

2kρ(Γ(k)
Λ )

(in (6.5) Λ ⊂ X is an arbitrary compact set with a smooth border, n ∈ N).
Note that the charge νΛ,n is not defined uniquely by values of ` on C∞fin(ΓΛ,n), since

this class is not dense in the space C(ΓΛ,n); functions from C∞fin(ΓΛ,n) vanish with all
their derivatives on the border of the compact set Λ. But in what follows we will consider
only the charges νΛ,n, for which Var νΛ,n vanishes on the border of the compact set Λ.
Such charges will be defined by ` uniquely.

We will extend the representation (6.5) of the functional (6.1) to a more general
F ⊂ RanK.

Let m > n, m ∈ N. The class C∞fin(ΓΛ,n) embeds naturally into the class C∞fin(ΓΛ,m);

for every function from C∞fin(ΓΛ,n) it is necessary to take all its values on
m⊔

j=n+1

Γ(j)
Λ equal

to 0. Therefore, one can write

(6.6)

∀F ∈ C∞fin(ΓΛ,n) ⊂ C∞fin(ΓΛ,m)∫
ΓΛ,m

F (η) dνΛ,m(η) =
∫

ΓΛ,n

F (η) dνΛ,n(η) = `(F ).

Taking into account the fact that F is arbitrary in (6.6) and also the above-mentioned
agreement about values of νΛ,n on the border of Λ, we conclude that νΛ,m � ΓΛ,n = νΛ,n.
So, we have constructed a sequence of charges νΛ,n on ΓΛ,n, n ∈ N, such that for m > n
νΛ,m � ΓΛ,n = νΛ,n.
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Now we will assume that

(6.7)
∞∑

k=0

2kρ(Γ(k)
Λ ) <∞.

According to the estimate from (6.5) the condition (6.7) means that

(6.8) ∀m ∈ N (Var νΛ,m)(ΓΛ,m) ≤
∞∑

k=0

2kρ(Γ(k)
Λ ) <∞.

Let us define, on the space ΓΛ,0 =
∞⊔

k=0

Γ(k)
Λ ⊂ ΓX,0, a function νΛ(α) of sets, where α

is a Borel set from ΓΛ,n with some n ∈ N (n depends on α). Namely, we put

(6.9) νΛ(α) = lim
m→∞

νΛ,m(α);

if m ≥ n then νΛ,m(α) = νΛ,n(α), therefore the sequence in (6.9) is stationary. Due to
(6.8) this set function can be extended to a finite charge νΛ on all Borel sets from ΓΛ,0

(see, e. g., [18]).
The weak topology of D′ induces the corresponding topology in ΓΛ ⊂ ΓX ⊂ D′. Let

a function ΓΛ 3 γ 7→ F (γ) ∈ C be continuous in this topology. Then its restriction to
ΓΛ,n is also continuous and thus there exists the integral

∫
ΓΛ,n

F (γ)dνΛ,n(γ). Therefore,

assuming in addition that moreover F (γ) is bounded, we see that there also exists the
following integral:

(6.10)
∫
ΓΛ

F (γ) dνΛ(γ) :=
∫

ΓΛ,0

F (γ) dνΛ(γ) = lim
n→∞

∫
ΓΛ,n

F (γ) dνΛ,n(γ).

If f ∈ Ffin(D) then (5.6) implies that (Kf)(γ) = F (γ) ⊂ RanK is continuous in the
topology of ΓΛ and thus there exists the integral (6.10) for this function F (γ) (if it is
bounded). But according to (6.6) there is the constant `(F ) under the limit in (6.10),
i. e., the left integral in (6.10) is equal to `(F ).

So, let F (γ) be bounded, and let (K−1F )(ξ) = f(ξ) (and also F (γ) because of (5.6))
vanish for ξ ∈ Γ(n)

X \ Γ(n)
Λ , n ∈ N. Then according to (6.1) and (6.10) we can write

(6.11)
∫

ΓX,0

(K−1F )(ξ) dρ(ξ) = `(F ) =
∫
ΓΛ

F (γ) dνΛ(γ).

In other words, for f = (fn)∞n=0 ∈ Ffin(D), fn vanish outside Λn, and if (Kf)(γ) =
F (γ) is bounded then (6.11) gives

(6.12)
∫

ΓX,0

f(ξ) dρ(ξ) =
∫
ΓΛ

(Kf)(γ) dνΛ(γ).

Let Λ′ ⊃ Λ be a compact subset of X, larger than Λ. Then we can write an equality
of type (6.12) with Λ′ instead of Λ for f = (fn)∞n=0 ∈ Ffin(D), connected with Λ′. It is
easy to see that the charge νΛ′ is an extension of νΛ from ΓΛ to ΓΛ′ . Note also that we
can regard every charge νΛ as a Borel charge on the entire space ΓX , supported on ΓΛ.

Note also that for every f = (fn)∞n=0 ∈ Ffin(D) its coordinates fn(ξ) vanish if ξ ∈
Γ(n)

X \ Γ(n)
Λ , where Λ ⊂ X is compact.

It is easy to conclude from the above made remarks that there exists a Borel charge
ν on ΓX such that for an arbitrary f = (fn)∞n=0 ∈ Ffin(D) the following equality holds
(see also (3.17) and (5.4)):

(6.13)
∫

ΓX,0

f(ξ) dρ(ξ) =
∫

ΓX

(Kf)(γ) dν(γ) = r(f).

According to (5.10) we can get from (6.13) the following formula:

(6.14) ∀f ∈ Ffin(D) r(f) =
∫

ΓX

(If)(γ) dν(γ).

Now we can present the following essential theorem.
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Theorem 6.1. Suppose that the measure ρ from (2.3) is supported on the space of usual
configurations (that is, ρ(Γ̈X,0 \ ΓX,0) = 0, (5.4)) and satisfies the following condition:
for each compact set Λ ⊂ X the series (6.7) is convergent,

(6.15)
∞∑

k=0

2kρ(Γ(k)
Λ ) <∞.

Then the space ΓX ⊂ D′ has full spectral measure µ, the Fourier operator I (3.14)
is equal to the Lenard operator K (5.6) (i. e., more exactly, ∀f ∈ Ffin(D) (If)(ω) =
(Kf)(ω), ω = γ ∈ ΓX), and the spectral representation (3.17), (3.18) has now the
following form: ∀f ∈ Ffin(D),

(6.16)
∫

ΓX,0

f(ξ) dρ(ξ) = r(f) =
∫

ΓX

(Kf)(γ) dµ(γ),

where µ is a probability Borel measure on the space ΓX .

Proof. Using definition (2.4), condition (5.4), and equality (5.10), we obtain from (6.14)
the following equality:

(6.17)

∀f, g ∈ Ffin(D)

(f, g)Hr = r(f ? g) =
∫

ΓX

(I(f ? g))(γ) dν(γ) =
∫

ΓX

(K(f ? g))(γ) dν(γ)

=
∫

ΓX

(Kf)(γ)(Kg)(γ) dν(γ) =
∫

ΓX

(If)(γ)(Ig)(γ) dν(γ)

(here Proposition 5.1 was used).
Proposition 5.2 shows that KFfin(D) contains all infinitely differentiable finite func-

tions of an arbitrary number of different variables y1, . . . , yn, n ∈ N. Therefore the
equality

(6.18) ∀f ∈ Ffin(D)
∫

ΓX

|(Kf)(γ)|2dν(γ) = (f, f)Hr ≥ 0

obtained from (6.17) shows that the charge ν is in fact a Borel measure on ΓX . This
measure is a probability measure. Indeed, take f(ξ), ξ ∈ ΓX,0, such that f(∅) = 1 and
f(ξ) = 0 if ξ 6= ∅ (i. e., f = e). Then, according to (5.6), (Kf)(γ) = 1 and (f, f)Hr = 1.
Then it follows from (6.18) that ν(ΓX) = 1.

We conclude from (6.17) that ∀f, g ∈ Ffin(D),

(f, g)Hr =
∫

ΓX

(If)(γ)(Ig)(γ) dν(γ)

and I is the Fourier transform from (3.14). Using [4, 12, 18] it is possible to state that
ν is equal to the spectral measure of the family (Ã(ϕ))ϕ∈D, i. e., ν = µ.

Other assertions of this theorem are clear. �

So, as result, formulas (3.17), (3.18), and (6.16) are solutions of the investigated
moment problem: the first two formulas correspond to the general case, and the last one
corresponds to the case where ρ(Γ̈X,0 \ ΓX,0) = 0 and (6.15) holds.

The corresponding positivity has the form (2.4). The estimate of growth is formulated
in Theorem 2.1. To obtain representation (6.16), it is necessary to additionally demand
for condition (6.15) to hold.

Remark 6.1. Formulas (3.17) and (6.16) show that, in an evident way, r = I∗µ and r can
be treated as a “correlation functional” of the measure µ on D′ or on ΓX . Then the results
of Theorems 3.1 and 6.1 provide sufficient conditions for a functional r ∈ (Ffin(D))′ to
be the correlation functional for a measure µ on D′ or on ΓX .
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