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ON STABILITY AND INSTABILITY OF SMALL MOTIONS OF
HYDRODYNAMICAL SYSTEMS

N. D. KOPACHEVSKY

Dedicated to the 100th anniversary of Mark Krein.

Abstract. We give a short survey of an operator approach to some linear evolution
and spectral problems of hydrodynamics: small motions and normal oscillations of
a heavy or capillary fluid, a partially filled cavity in a moving or immovable ves-
sel. The main attention is given to the problem of stability and instability of these
hydromechanical systems with an infinite number of degrees of freedom.

1. Introduction

In the report, we give a short survey of an operator approach to some evolution and
spectral problems of hydrodynamics. A large contribution to investigations of continu-
ous media motions by using methods of functional analysis was made in the works of
M. G. Krein and G. Langer [1, 2], S. L. Sobolev [3], S. G. Krein and his students [4]–[6],
and others. The theories of Pontryagin spaces, M. Krein spaces, the spectral theory of
operator pencils, semigroup theory are widely used for studying these problems (see, for
instance, monographs [7]–[10]).

The paper is devoted to problems on stability and instability of small motions of some
hydromechanical system, i.e., systems with an infinite number of degrees of freedom. We
study the cases of an ideal or a viscous fluid when gravity forces and surface tension
(capillary forces) must be taken into account (low-gravity conditions).

In Section 2, we consider a classical problem on small oscillations of a pendulum
with a cavity partially filled with a heavy ideal fluid. We prove the theorem on correct
solvability of the problem (in some classes of Hilbert spaces), give a variation principle for
eigenvalues of the spectral problem and formulate conditions for stability or instability
of the hydromechanical system. Section 3 is devoted to the problem on small oscillations
of an ideal capillary fluid in an immovable vessel. We consider the same problems for the
case. Further, in Section 4, we study a two-dimensional problem for a pendulum with a
capillary ideal fluid.

The second part of the survey deals with similar problems for a viscous fluid. In
Section 5, we prove a theorem on correct solvability of the initial boundary value problem
on small motions of a capillary viscous fluid uniformly rotating in a vessel, consider
normal oscillation, prove a so-called Abel–Lidsky basis property for eigen- and associated
elements of the corresponding spectral problem and prove the assertion that is called the
inversion of the Lagrange theorem on stability.

The same problems are considered in Section 6 for the case of two-dimensional pendu-
lum with a cavity partially filled with a viscous capillary fluid. At last, in Section 7, for
problem of normal convective motions (i.e., for a spectral problem) we obtain conditions
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sufficient for stability (the first case) or instability (the second one) of normal convective
motions.

2. A pendulum with a cavity partially filled with an ideal heavy
incompressible fluid

This problem was, may be, the first one, where (after the famous paper [3]) methods
of spectral theory of linear operators acting in the space with an indefinite metric were
applied for investigating hydrodynamical problem. The first publication [11] was in 1957
(see also [12]); here we follow the work [13] (see also [14]).

2.1. Let us assume that a rigid body Ω0 ⊂ R3 (a pendulum) is fixed at a certain point
O and performs small motions relative to that point. The body has a cavity partially
filled with an ideal incompressible fluid. We assume that, in the nonperturbed state,
the fluid fills the region Ω and has a boundary ∂Ω consisting of a rigid wall S and an
equilibrium surface Γ that is orthogonal to the gravitation acceleration ~g. We introduce
the stationary coordinate system Oy1y2y3 with the axis Oy3 directed against the vector
~g, and the nonstationary system Ox1x2x3 rigidly connected to the body. We assume also
that, in the nonperturbed state, the systems Oy1y2y3 and Ox1x2x3 coincide.

Then, in the coordinate system Ox1x2x3, the problem on small motions of the investi-
gated hydrodynamical system can be formulated in the following form (see, for instance,
[13]):

(2.1) ρ
∂~u

∂t
+ ρ

(
d~ω

dt
× ~r
)

+∇p = ρ~f, div ~u = 0 (in Ω),

(2.2) un := ~u · ~n = 0 (on S),
∫

Γ

ζ dΓ = 0,

(2.3) p = ρg(ζ + (~δ × ~r) · ~e3),
∂ζ

∂t
= u3 (on Γ),

d~δ

dt
− ~ω = 0,

(2.4) ~J
d~ω

dt
+ ρ

∫
Ω

(
~r × ∂~u

∂t

)
dΩ +mgl (δ1~e1 + δ2~e2)− ρg

∫
Γ

(~e3 × ~r) ζ dΓ = ~M(t),

(2.5)
~u(0, x) = ~u0(x), x ∈ Ω; ζ(0, x1, x2) = ζ0(x1, x2), (x1, x2) ∈ Γ;

~δ(0) = ~δ0, ~ω(0) = ~ω0.

Here ρ > 0 is a constant density of the fluid, p = p(t, x) is the dynamic pressure,
~u = ~u(t, x) is the relative velocity field, ~ω = ~ω(t) is the angular velocity, ~δ = ~δ(t)
is the angular displacement of the rigid body relatively stationary coordinate system
Oy1y2y3, ~f = ~f(t, x) is a small field of external mass forces. Further, ~n is the unique
external normal to ∂Ω, ζ = ζ(t, x1, x2) is the displacement field of the moving free
surface relatively to the equilibrium surface Γ, ~J is the inertia tensor of the system in the
nonperturbed state, l > 0 is a distance between the point O and the mass center C of
the entire system, ~M(t) is the total moment (relatively to O) of small forces influencing
the system, m > 0 is the mass of the whole system.

For classic solutions to problem (2.1)–(2.5) the law of full energy balance hold,

(2.6)

1
2
d

dt

{
ρ

∫
Ω

|~u|2 dΩ + 2ρ
∫

Ω

(~ω × ~r) · ~u dΩ|+
(
~J~ω
)
· ~ω + gml(|δ1|2 + |δ2|2)

+ gρ

∫
Γ

|ζ|2 dΓ + 2gρ
∫

Γ

(~δ × ~r) · ~e3ζ dΓ
}

= ρ

∫
Ω

~f · ~u dΩ + ~M · ~ω,

where in the brackets we have the twice full energy of the system and in the right-hand
side—the capacity of the external forces.



154 N. D. KOPACHEVSKY

2.2. We will assume that the unknown functions ~u(t, x), ∇p(t, x), ζ(t, x1, x2) are func-
tions of the variable t with values in Hilbert spaces, and we will use the orthogonal
decomposition (see, for instance, [7, p. 106], or [8, p. 118]),

(2.7)

~L2(Ω)= ~J0(Ω)⊕ ~Gh,S(Ω)⊕ ~G0,Γ(Ω), ~G0,Γ(Ω):=
{
∇ϕ ∈ ~L2(Ω) : ϕ = 0 (on Γ)

}
,

~Gh,S(Ω) :=
{
∇Φ ∈ ~L2(Ω) : ∆Φ = 0 (in Ω),

∂Φ
∂n

= 0 (on S),
∫

Γ

Φ dΓ = 0
}
,

~J0(Ω) :=
{
~w ∈ ~L2(Ω) : div ~w = 0 (in Ω), ~w · ~n = 0 (on ∂Ω)

}
.

Let θ : L2(Γ) −→ L2,Γ := L2(Γ) 	 {1Γ} be the orthoprojection and G : H1/2(Γ) ∩
L2,Γ −→ ~Gh,S(Ω) be the operator of the boundary value problem

(2.8) ∆p̃ = 0 (in Ω),
∂p̃

∂n
= 0 (on S), p̃ = ψ (on Γ),

∫
Γ

ψ dΓ = 0,

i.e., ∇p̃ = Gψ. Denote also

(2.9)

z = (z1, z2)t, z1 := (~w;∇Φ; ~ω) ∈ ~J0(Ω)⊕ ~Gh,S(Ω)⊕ R3 =: H1,

z2 = (ζ;P2
~δ), P2

~δ =
2∑

k=1

δk~ek, z2 ∈ L2,Γ ⊕ R2 =: H2.

Then problem (2.1)–(2.5) can be rewritten in the form (see [13])

(2.10) A
dz

dt
+Bz = f(t), z(0) = z0, f(t) = (f1(t); 0)t, f1(t) = (ρP0

~f, ρPh,S
~f, ~M),

where

(2.11) A = diag (A1; gA2) = A∗ ∈ L(H), H = H1 ⊕H2,

is the full energy operator of the hydromechanical system,

(2.12) B = g

(
0 B12

B21 0

)
= −B∗, D(B) = D(B21)⊕D(B12),

is the operator of an exchange between kinetic and potential energies of the system.

Lemma 2.1. The following properties of the operator coefficients in (2.10)–(2.11) hold:
i) 0 � A1 ∈ L(H1) and it is an operator of kinetic energy;
ii) A2 : H2 −→ H2 is a bounded from below operator of potential energy, A2 ∈ L(H2).

If the conditions

(2.13)
∆1>0, ∆2>0, ∆1 := ml − ρα11, ∆2 := (ml − ρα11)(ml − ρα22)− 2ρα2

12,

αij :=
∫

Γ

(θxi)xj dΓ, i, j = 1, 2,

hold, then A2 � 0. If ∆2 6= 0, then A2 has a bounded inverse operator, A−1
2 ∈ L(H2),

and the rank of indefiniteness k of the operator A2 is equal to k = 1 or k = 2.

Lemma 2.2. The operator B is an unbounded closed skew-self-adjoint operator on the
domain

(2.14)

D(B) = D(B21)⊕D(B12), D(B21) = H
1/2
Γ ⊕ R2,

D(B12) = ~J0(Ω)⊕D(γn)⊕ R3,

D(γn) :=
{
∇Φ ∈ ~Gh,S(Ω) : γn∇Φ :=

∂Φ
∂n

∣∣∣
Γ
∈ L2,Γ

}
.
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2.3. We will further use the following well-known fact: if

(2.15) z0 ∈ D(B), f(t) ∈ C1([0, T ];H),

then there exists a unique strong solution to problem (2.10) in the interval [0, T ]. The
proof of this assertion is based on the property that the operator A−1B with D(A−1B) =
D(B) is skew-self-adjoint in the Pontryagin space with the scalar product (A·, ·) and
therefore it is a generator of a group of the unitary operators exp{−tA−1B}.

Definition 2.1. We say that problem (2.1)–(2.5) has a strong solution in the interval
[0, T ] if the following properties hold:

a) ~u(t, x) ∈ C1([0, T ]; ~J0,S(Ω)), ~J0,S(Ω) := ~J0(Ω)⊕ ~Gh,S(Ω),

∇p(t, x) ∈ C1([0, T ]; ~G(Ω)),

~G(Ω) := ~G0(Ω)⊕ ~Gh,S(Ω), and ~ω(t) ∈ C1([0, T ]; R3);
b) ζ(t, x1, x2) ∈ C1([0, T ];L2,Γ), and ~δ(t) ∈ C2([0, T ]; R3);
c) for any t ∈ [0, T ] the first equation (2.1) is valid and each term in it is a continuous

function in t with values in ~L2(Ω); equations (2.3) are valid, and each term in it is a
continuous function with values in C1([0, T ];H1/2

Γ ), C1([0, T ];L2,Γ) and C1([0, T ]; R3),
respectively;

d) for any t ∈ [0, T ] equation (2.4) is valid, and each term in t is a function in t with
values in C([0, T ]; R3);

e) initial conditions (2.5) hold.

On the base of the above formulated assertion, we prove the following main result
(see [13]).

Theorem 2.1. Let the conditions

(2.16)

~u0 ∈ ~J0,S(Ω), Ph,S~u
0 =: ∇Φ0 ∈ ~Gh,S(Ω) :

∂Φ
∂n

∣∣∣
Γ
∈ L2,Γ;

ζ0 ∈ H1/2
Γ , ~ω0 ∈ R3, ~δ0 ∈ R3,

~f(t) ∈ C1([0, T ]; ~L2(Ω)), ~M(t) ∈ C1([0, T ]; R3)

hold.
Then the initial boundary-value problem (2.1)–(2.5) on small motions of a pendulum

with a cavity partially filled with a heavy ideal incompressible fluid has a unique strong
solution in the interval [0, T ]. The law of full energy balance (2.6) holds for the strong
solution and each term in t is a function from C1([0, T ]).

If, instead of (2.16), the conditions

(2.17)
~u0 ∈ ~J0,S(Ω), ζ0 ∈ L2,Γ, ~ω0 ∈ R3, ~δ0 ∈ R3,

~f(t, x) ∈ C([0, T ]; ~L2(Ω)), ~M(t) ∈ C([0, T ]; R3)

hold, then problem (2.1)–(2.5) has a unique generalized solution, and the same law of full
energy balance is valid for this solution.

2.4. Consider solutions to the homogeneous problem (2.10) in the form z(t) = eiλtz,
z ∈ H, where λ is a frequency of an oscillation of the system and z is an amplitude
element. Then we have the following spectral problem:

(2.18) (iB)z = λAz, iB = (iB)∗, z ∈ H.

Lemma 2.3. Problem (2.18) has an infinitely-multiple eigenvalue λ = 0 with eigenele-
ments of the form

(2.19) z = (z1; z2)t, z1 = (~w;~0;~0), ∀~w ∈ ~J0(Ω), z2 = (ζ;P2
~δ) = (0;~0).
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Consider eigenoscillations for the case λ 6= 0 and for the situation when conditions
(2.13) of static stability in linear approximation are fulfilled.

Theorem 2.2. Under the above formulated assumptions, problem (2.18) has a discrete
spectrum {µk}∞k=1, µk = λ2

k/g, consisting of finite-multiple positive eigenvalues µk with
the limit point µ = +∞. The corresponding system of eigenelements (∇Φk; ~ωk)t form
an orthogonal basis in the space H̃1 := ~Gh,S(Ω) ⊕ R3. Eigenvalues µk are consequent
minima of the functional (variation ratio)

(2.20)
ρ
∫
Γ

∣∣∂Φ
∂n + (~ω × ~r) · ~e3

∣∣2 dΓ− ρ
∫
Γ
|(~ω × ~r) · ~e3|2 dΓ +ml(|ω1|2 + |ω2|2)

ρ
∫
Ω

∣∣∇Φ +
∑3

k=1 ωk∇ψk

∣∣2 dΩ ,

where

∆Φ = 0 (in Ω),
∂Φ
∂n

= 0 (on S),
∫

Γ

Φ dΓ = 0,

and

∆ψk = 0 (in Ω),
∂ψ

∂n
= (~ek × ~r) · ~n (on ∂Ω), k = 1, 2, 3,

(ψk are the so-called Zhukovsky potentials). The asymptotic behavior of eigenvalues µk

is the following:

(2.21) µk =
(
|Γ|
4π

)−1/2

k1/2[1 + o(1)] (k −→∞).

Theorem 2.3. (inversion of the Lagrange theorem on stability). Let the condi-
tion ∆2 6= 0 hold but not the conditions (2.13), i.e., the system be not statically stable.
Then the investigated hydrodynamical system is not dynamically stable, i.e., there exist
solutions to problem (2.1)–(2.5) that increase in t according to the law exp(λ0t) with
λ0 > 0.

3. A capillary ideal fluid partially filled a vessel

3.1. If we consider oscillations of a fluid in conditions close to low-gravity then capillary
forces should be taken into account.

Assume that an ideal incompressible fluid partially fills an arbitrary vessel and has an
equilibrium free surface Γ. We suppose that this surface is stable under action of gravity
and surface tension.

Considering small oscillations of a fluid in the vessel, we have the following initial
boundary value problem (see, for instance, [7, p. 158–160] and [8, p. 200–209]):

(3.1)
∂~u

∂t
+

1
ρ
∇p = ~f(t, x), div ~u = 0 (in Ω), un = ~u · ~n = 0 (on S),

(3.2)

∂ζ

∂t
= un, p = σLζ := σ[−∆Γζ + a(x)ζ] (on Γ),

a(x) := −(k2
1 + k2

2) + ρσ−1g cos(~̂n, x3), x ∈ Γ,

(3.3)
∂ζ

∂ν
+ χζ = 0 (on ∂Γ), χ =

kΓ cos δ − kS

sin δ
, 0 < δ < π,

∫
Γ

ζ dΓ = 0,

(3.4) ~u(0, x) = ~u0(x) (in Ω), ζ(0, x) = ζ0(x) (on Γ).

Here σ > 0 is the surface tension coefficient, ∆Γ is the Laplace-Beltrami operator, a(x)
is a known function, k1 and k2 are the principal curvatures of Γ, ∂/∂ν is the conormal
derivative, δ is a wetting angle, kΓ and kS are the corresponding curvatures calculated
on ∂Γ of the cross-sections by a plane orthogonal to ∂Γ. Other functions are the same
as in (2.1)–(2.5).
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Introduce the operator B : L2,Γ −→ L2,Γ by

(3.5) Bζ := θLζ, ζ = θζ ∈ D(B) :=
{
ζ ∈ L2,Γ : Lζ ∈ L2,Γ,

∂ζ

∂ν
+ χζ = 0 (on ∂Γ)

}
.

Lemma 3.1. If the functions a(x) and χ(x) are continuous then the operator B is self-
adjoint and bounded from below. It has a discrete spectrum with a limit point at +∞.
Its quadratic form

(3.6) (Bζ, ζ) =
∫

Γ

[|∇Γζ|2 + a|ζ|2] dΓ +
∮

∂Γ

χ|ζ|2 ds

is proportional to the potential energy of the system.

3.2. With using the method of orthogonal projecting on subspaces (2.7), problem (3.1)–
(3.4) can be transformed to the following Cauchy problem in the Hilbert space L2,Γ:

(3.7) ρ
d2

dt2
(Aζ) + σBζ = F (t), ζ(0) = ζ0, ζ ′(0) = ζ1,

where 0 < A < S∞, ∇F (t) = Ph,S
~f (in Ω).

Theorem 3.1. Let an equilibrium state of the fluid in the vessel be statically stable
in linear approximation, i.e., λmin(B) of the operator B is positive. Then, under the
assumptions

(3.8)
ζ0 ∈ H5/2(Γ) ∩ D(B), ~u0 ∈ ~J0,S(Ω),

[
(Ph,S~u

0) · ~n
]
Γ
∈ H1(Γ) ∩ L2,Γ,

~f(t) ∈ C([0, T ]; ~L2(Ω)), (Ph,S
~f)(t) = ∇F (t) ∈ C1([0, T ]; ~Gh,S(Ω)),

problem (3.1)–(3.4) has a unique strong solution in the segment [0, T ], i.e., the following
assertions are valid:

a) ~u(t, x) ∈ C1([0, T ]; ~J0,S(Ω)), ∇p(t, x) ∈ C([0, T ]; ~G(Ω)) and the first equation
(3.1) holds for any t ∈ [0, T ];

b)
∂ζ

∂t
= (~u · ~n)Γ ∈ C([0, T ];L2,Γ);

c) p = σLζ ∈ C([0, T ];H1/2
Γ );

d) conditions (3.4) hold.

The proof of Theorem 3.1 is based on the assertion that Cauchy problem (3.7) has a
unique strong solution ζ(t) with values in D(A−1/2) ⊂ L2,Γ in the interval [0, T ] if the
conditions

(3.9) ζ0 ∈ D(A−1/2B), ζ1 ∈ D(B1/2), F (t) ∈ C1([0, T ];D(A−1/2))

are fulfilled.

3.3. For eigenoscillations, i.e., for solutions of the homogeneous problem (3.7) of the
form ζ(t) = ζexp(iωt), we have the spectral problem

(3.10) Bζ = λAζ, λ = ρω2σ−1, ζ ∈ D(B) ⊂ L2,Γ.

Theorem 3.2. If λmin(B) > 0, then problem (3.10) has a discrete spectrum, consisting
of positive eigenvalues λk with limit point λ = +∞. The numbers λk are successive
minima of the variation ratio

(3.11)

(ζ, ζ)B

(ζ, ζ)A
=
{∫

Γ

[|∇Γζ|2 + a|ζ|2] dΓ +
∮

∂Γ

χ|ζ|2 ds
}
/

∫
Ω

|∇ϕ|2 dΩ,

∆ϕ = 0 (in Ω ),
∂ϕ

∂n
= 0 (on S ),

∂ϕ

∂n
= ζ (on Γ ),

∫
Γ

ϕdΓ = 0.

The asymptotic behavior of λk is the following

(3.12) λk =
(
|Γ|
4π

)−3/2

k3/2[1 + o(1)] ( k −→∞ ).
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Eigenfunctions {∇ϕk}∞k=1 form an orthogonal basis in the space ~Gh,S(Ω).

Theorem 3.3. (inversion of the Lagrange theorem on stability). Suppose that
the operator B is not positive definite and has exactly κ (with regard to multiplicities)
negative eigenvalues and the q-multiple eigenvalue λ = λ0 = 0. Then problem (3.10) has
also κ negative eigenvalues and the q-multiple eigenvalue λ = 0. Consequently, in the
case, the hydrodynamical system is unstable.

The proof of the theorem is based on properties of linear operators that are self-adjoint
in a Pontryagin space.

4. A pendulum with a capillary ideal fluid

The problem was studied in works of Kopachevsky N. D. and Vadiaa Ali (see [15, 16]).

4.1. Consider the problem of Section 2 but now we will assume that this problem is
two-dimensional and a fluid is a capillary one. In the case a pendulum performs small
oscillations relatively the axis Oy1.

Then the statement of the problem is the following (see Sections 2 and 3):

(4.1) ρ
∂2 ~w

∂t2
+ ρ

(
∂2~δ

∂t2
× ~r
)

+∇p = ρ~f, div ~w = 0 (in Ω ),

(4.2) wn := ~w · ~n = 0 (on S ),
∫

Γ

ζ dΓ ( ζ := wn|Γ ),

(4.3) p = σLζ + ρg
(
~δ × ~r

)
· ~e3 (on Γ ),

(4.4) σLζ = −σ∆Γζ − σk2
1ζ + ρg cos(~̂n, ~e3)ζ,

∂ζ

∂ν
+ χζ = 0 (on ∂Γ ),

(4.5) J
d2~δ

dt2
+ ρ

∫
Ω

(
~r × ∂2 ~w

∂t2

)
dΩ +mgl~δ − ρg

∫
Γ

(~e3 × ~r) ζ dΓ = ~M(t),

(4.6) ~w(0, x) = ~w0(x),
∂ ~w

∂t
(0, x) = ~u0(x), x ∈ Ω; ~δ(0) = ~δ0, ~δ′(0) = ~ω0.

Here ~w = ~w(t, x) is the displacement field of relative motions of the fluid in the vessel,
~δ(t) = δ1(t)~e1 is the angular displacement of the body, J > 0 is the inertia tensor (only
one positive constant in the case). Other notations are the same as in Sections 2 and 3.

4.2. As in Section 2, we use the orthogonal decomposition (2.7) and the representations

(4.7)
~w = ~u+∇Φ, ~u ∈ ~J0(Ω), ∇Φ ∈ ~Gh,S(Ω),

∇p = ∇ϕ+∇p0, ∇ϕ ∈ ~Gh,S(Ω), ∇p0 ∈ ~G0,Γ(Ω).

After projecting (4.1) on subspaces (2.7), using the operator C of the auxiliary boundary
value problem, we have

(4.8) ∆Φ = 0 (in Ω ),
∂Φ
∂n

= 0 (on S ),
∂Φ
∂n

= ζ (on Γ ),
∫

Γ

Φ dΓ = 0,

acting by the law Cζ := Φ|Γ = C

(
∂Φ
∂n

)
Γ

, and taking into account the so-called Cauchy-

Lagrange’s integral, we obtain the following Cauchy problem from (4.1)–(4.6):

(4.9)
d2

dt2

[(
A11 A12

A21 A22

)(
ζ
~δ

)]
+
(
B11 B12

B21 B22

)(
ζ
~δ

)
=

(
ρF

~M − ρ
∫
Ω

(
~r × ~f0

)
dΩ

)
.
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Here

(4.10) A11ζ := ρCζ, A12
~δ := ρψ0δ1, A21ζ := ρ~e1

∫
Γ

ϕ0ζ dΓ, A22
~δ = (Jb + Jf )~δ,

∇ψ0 = P0,S(~e1 × ~r), Jb is the inertia tensor of the body and

Jf := ρ

∫
Ω

|(I − P0)(~e1 × ~r)|2 dΩ > 0 is a modified inertia tensor for the fluid,

∇F = P0,S
~f , ~f0 = P0

~f , and ϕ0 is the Zhukovsky potential,

(4.11) ∆ϕ0 = 0 (in Ω ),
∂ϕ0

∂n
= (~e1 × ~r) · ~n (on ∂Ω ),

∫
Γ

ϕ0 dΓ = 0.

Further,

(4.12)
B11ζ := B0ζ, B0ζ := θ(σLσ)θζ, B12

~δ := ρgθ ((~e1 × ~r) · ~e3) δ1,

B21ζ := −ρg
∫

Γ

(~e3 × ~r) ζ dΓ, B22
~δ := mgl~δ,

where D(B0) is defined as in (3.5).
Thus, problem (4.1)–(4.6) is transformed to a Cauchy problem for the equation,

(4.13)
d2

dt2
(Aξ) +Bξ = f(t), ξ(0) = ξ0, ξ′(0) = ξ1,

in the Hilbert space H = L2,Γ ⊕ R with

(4.14)
A = (Akl)2k,l=1, B = (Bkl)2k,l=1, ξ = (ζ;~δ)t, f = (ρF ;M − ρ

∫
Ω

(~r × ~f0) dΩ)t,

ξ0 = (ζ0;~δ0)t, ζ0 = (~w0 · ~n)Γ; ξ1 = (ζ1; ~ω0)t, ζ1 := (~u0 · ~n)Γ.

4.3. Consider properties of the operator matrices A and B in (4.13).

Lemma 4.1. The operator A : H −→ H is a self-adjoint positive compact operator,
acting in (real) Hilbert space H = L2,Γ ⊕ R.

Lemma 4.2. The operator B0 : D(B0) ⊂ L2,Γ −→ L2,Γ is a bounded from below self-
adjoint operator with discrete spectrum. If B0 � 0, then D(B1/2

0 ) = H1(Γ)∩L2,Γ =: H1
Γ.

Lemma 4.3. The operator B : D(B) = D(B0)⊕R ⊂ H −→ H is a bounded from below
self-adjoint operator with discrete spectrum. If

(4.15) λmin(B0)− gρ2(σml)−1 > 0,

where l is the distance between the origin and the mass center, then B � 0.
If λmin(B0) < 0, then the quadratic form (Bξ, ξ)H can take negative values. If

λmin(B0) = 0 and
∫
Γ
ζ1(B0)x2 dΓ 6= 0 (where ζ1(B0) is the first eigenelement of B0),

then the form (Bξ, ξ)H can also take negative values.

On the base of these properties, we formulate, as in Section 2 and Section 3, the main
result (see Theorem 3.1).

Theorem 4.1. Under the assumptions

(4.16)

~w0 ∈ ~J0,S(Ω), ζ0 := (~w0 · ~n)Γ ∈ H5/2(Γ) ∩ D(B0),
[
(Ph,S~u

0) · ~n
]
Γ
∈ H1

Γ,

~f ∈ C([0, T ]; ~L2(Ω)), Ph,S
~f = ∇F ∈ C1([0, T ]; ~Gh,S(Ω)),

~δ0 ∈ R, ~ω0 ∈ R, ~M(t) ∈ C1([0, T ]),

problem (4.13) has a unique strong solution with values in H
1/2
Γ = H1/2(Γ) ∩ L2,Γ, and

problem (4.1)–(4.6) has a unique strong solution on the segment [0, T ], i.e.,
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a) ~w(t, x) ∈ C2([0, T ]; ~J0,S(Ω)), ∇p(t, x) ∈ C([0, T ]; ~G(Ω)) and the first equation
(4.1) holds for any t ∈ [0, T ];

b) ζ = wn ∈ C([0, T ];H5/2(Γ) ∩ D(B0)) and equation (4.3) holds for any t ∈ [0, T ];
c) ~δ(t) = δ1(t)~e1 ∈ C2([0, T ]; R) and equation (4.5) is valid;
d) the initial conditions hold.

4.4. Consider the cases where condition (4.15) is fulfilled or not, i.e., the hydrome-
chanical system is statically stable or unstable in linear approximation. In problem on
eigenoscillations, we have once more problem (3.10):

(4.17) Bξ = λAξ, λ = ω2, ξ ∈ D(B) ⊂ H.
Theorem 4.2. Problem (4.17) has a real discrete spectrum with limit point at +∞.
Eigenvalues of (4.17) are successive minima of variation ratio,

(4.18) (Bξ, ξ)H/(Aξ, ξ)H, ξ = (ζ;~δ)t ∈ D(B),

(4.19)

(Aξ, ξ)H = ρ

∫
Ω

|∇Φ + δ1∇ϕ0|2 dΩ + Jb|δ1|2,

(Bξ, ξ)H = ρg

∫
Γ

|ζ + δ1(θx2)|2ds+ g
(
ml − ρ

∫
Γ

|θx2|2 dΓ
)
|δ1|2

+
∫

Γ

{
σ|ζ ′(s)|2 +

[
ρg(cos(~̂n, ~e3)− 1)− σk2

1(s)
]
|ζ(s)|2

}
ds

+ σ

2∑
i=1

χ(si)|ζ(si)|2,

where si (i = 1, 2) are the ends of Γ and Φ is a solution to problem (4.8).
If the conditions

(4.20) λ1(B) 6 · · · 6 λκ(B) < 0 = λκ+1(B) = · · · = λκ+q(B) < λκ+q+1(B) 6 · · ·
hold, then problem (4.17) has eigenvalues {λk(A;B)}∞k=1 with the same properties as in
(4.20). In particular, if κ > 1, then we have the assertion that solutions to problem
(4.1)–(4.16) are unstable.

5. A capillary viscous fluid uniformly rotating in a vessel

In the section, we follow [17, 18] and [9, pp. 217–228].

5.1. Consider small oscillations of a viscous incompressible capillary fluid partially filling
an arbitrary uniformly rotating (relatively the axis Ox3) vessel. We assume that an
equilibrium state of the fluid is stable. Then we have the following initial boundary
value problem (see [7, p. 356], [9, p. 188]):

(5.1)
∂~u

∂t
− 2ω0~u× ~e3 +

1
ρ
∇p = ν∆~u+ ~f, div ~u = 0 (in Ω);

(5.2) ~u = ~0 (on S),
∂ζ

∂t
= γn~u := ~u · ~n (on Γ),

∫
Γ

ζ dΓ = 0;

(5.3) ρν(ui,3 + u3,i) = 0, i = 1, 2; −p+ 2ρνu3,3 = −Lσζ := σ∆Γζ − aΓζ (on Γ),

(5.4) aΓ := −σ(k2
1 + k2

2) + ρg cos(~̂n, ~e3)− ρω2
0r cos(~̂n, ~er), ζ = 0 (on ∂Γ),

(5.5) ~u(0, x) = ~u0(x), x ∈ Ω; ζ(0, x) = ζ0(x), x ∈ Γ.

Here ~ω0 = ω0~e3 is the angular velocity of the vessel, ν > 0 is the kinematic viscosity,
ui,j is the covariant derivative of ui with respect to ξj (in a local coordinate system in
some neighborhood of Γ, with the Lame coefficient h3 ≡ 1 on Γ), ~u(t, x) is the relative
velocity of the fluid, p(t, x) is the dynamical pressure, ζ(t, x) is the displacement field
along the external normal ~n of the moving free surface Γ(t) from Γ.
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5.2. Let ~J1
0,S(Ω) be the Hilbert space of velocity fields with a finite dissipation of energy,

i.e., the vector space with the squared norm

(5.6) ‖~u‖21,Ω :=
1
2

∫
Ω

3∑
k,j=1

∣∣∣∣∂uk

∂xj
+
∂uj

∂xk

∣∣∣∣2 dΩ, div ~u = 0 (in Ω), ~u = ~0 (on S).

The space ~J1
0,S(Ω) is dense in ~J0,S(Ω) ([7, p. 114]).

Using two so-called auxiliary boundary value S. Krein’s problems ([8, p. 277–280]) we
transform (5.1)–(5.5) to the problem

(5.7)
d~v

dt
+
d~w

dt
+ νA~v − 2iω0S0(~v + ~w) = P0,S

~f, ~v(0) = ~v0,

(5.8)
d~w

dt
+ ν−1V Bσγn(~v + ~w) = ~0, ~w(0) = ~w0,

(5.9) ~v0 = ~u0 − ~w0, ~w0 = −νV Bσζ
0,

where A � 0 is the operator of the first auxiliary problem, D(A1/2) = ~J1
0,S(Ω), 0 <

A−1 ∈ S∞, S0 = S∗0 , σ(S0) = σess(S0) = [−1, 1], V is the operator of the second
auxiliary problem, Bσ = θLσθ, D(Bσ) = {ζ ∈ L2,Γ : Bσζ ∈ L2,Γ, ζ = 0 (on ∂Γ)}, Bσ is
a self-adjoint bounded from below operator of potential energy of the system.

Further,

(5.10) ~J1
0,S(Ω) = ~N1(Ω)⊕ ~M1(Ω), ~N1(Ω) := {~v ∈ ~J1

0,S(Ω) : γn~v = 0 (on Γ)}

and ~M1(Ω) is a subspace of all weak solutions to the second auxiliary problem.
After substitutions ~v = A−1/2~ξ, ~w = A−1/2~η, we have from (5.7)–(5.9) the problem

(5.11)
d~ξ

dt
+ νA~ξ − 2iω0A

1/2S0A
−1/2(~ξ + ~η)− ν−1B(~ξ + ~η) = A1/2P0,S

~f,

(5.12)
d~η

dt
+ ν−1B(~ξ + ~η) = ~0, ~η(0) = −ν−1Q∗Bσζ

0, ~ξ(0) = A1/2~u0 − ~η(0),

(5.13) B = Q∗BσQ, Q = γnA
−1/2, Q∗ = A1/2V.

Lemma 5.1. The operator B : ~M0(Ω) −→ ~M0(Ω), ~M0(Ω) := A1/2 ~M1(Ω), is a self-
adjoint operator with discrete spectrum with limit point at +∞. Eigenvalues of the oper-
ators B and A have the asymptotic behavior, respectively,

(5.14)
λj(B) = σ

(
|Γ|
π

)−1/2

j1/2[1 + o(1)], λj(A) =
(
|Ω|
3π2

)−2/3

j2/3[1 + o(1)]

(j −→∞).

5.3. Suppose λmin(B) > 0. Introduce the operators

(5.15)
R := B1/2PA−1/2 : ~J0,S(Ω) −→ ~M0(Ω),

R+ := A−1/2PB1/2, D(R+) := D(B1/2) ⊂ ~M0(Ω),

where P : ~J0,S(Ω) −→ ~M0(Ω) is the orthoprojection.

Lemma 5.2. For the operators R and R+ the following properties hold:

(5.16) R ∈ S∞, R+ = R∗|D(B1/2), R+ = R∗ ∈ S∞.
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After substitution ~w = ν−1R+~z, problem (5.7)–(5.9) can be rewritten in the form

(5.17)

(I +
1
ν
R∗)dy

dt
+ (I + F)A0y = f0(t), y(0) = y0,

F :=
1
ν
R− 2iω0S =

1
ν

(
0 0
R 0

)
− 2iω0

(
1
νS0A

−1 S0A
−1/2B−1/2

0 0

)
,

A0 :=
(
νA 0
0 ν−1B

)
, y =

(
~v
~z

)
, f0(t) =

(
P0,S

~f
~0

)
, y0 =

(
~v(0)
~z(0)

)
.

Here we assumed that B � 0, i.e., the hydrodynamical system is statically stable in
linear approximation.

Theorem 5.1. Let for problem (5.1)–(5.5) the following assumptions be valid:

(5.18) ~f(t, x) ∈ Cα([0, T ]; ~L2(Ω)), 0 < α 6 1, ~u0 ∈ ~J0,S(Ω), ~u0 = ~v0 + ~w0,

(5.19) ~v0 ∈ D(A) ⊂ ~J1
0,S(Ω), ~w0 ∈ ~M1(Ω) ⊂ ~J1

0,S(Ω), γn ~w
0 ∈ D(B1/2

σ ).

Then problem (5.17) has a unique strong solution in the interval [0, T ].

The proof of the theorem is based on the assertion that problem (5.17) is equivalent
to an abstract parabolic Cauchy problem with operator coefficient that is a generator of
an analytic semigroup.

Theorem 5.1 allows us, under some additional assumptions of smoothness for ζ0 and
~u0, functions B~z(t) and PA~v(t), to prove that the initial boundary value problem (5.1)–
(5.5) has a unique strong solution (see [18]).

5.4. Consider solutions to homogeneous problem (5.17) in the form y(t) = ye−λt, where
λ is an eigenvalue (complex frequency of oscillations) and y is an amplitude element.
Then for unknown y and λ we have the spectral problem

(5.20) (I + F)A0y = λ(I + ν−1R∗)y, y = (~v;~z)t ∈ D(A0).

Further we will use the following definition (see [19, p. 248–249]). The sequence
{fj}∞j=1 of elements from a Hilbert spaceH is said to be an Abel–Lidsky basis of the order
α > 0 if there exists an increasing index sequence mk, 0 = m0 < m1 < . . . < ml < . . .,
such that the series

∞∑
l=0

Plf, Plf :=
ml+1∑

j=ml+1

(f, gj)ej(t)fj , ej(t) := exp(−µα
j t), ∀f ∈ H,

µj ∈ Λθ := {λ ∈ C : | arg λ| < θ}, ej(t) ≡ 1 (µj 6∈ Λθ),

converges for t > 0 and the sum f(t) of the series tends to f as t −→ +0. In the
definition, {gj} is a system biorthogonal to {fj}, {fj} is a sequence of eigenelements of
an operator with discrete spectrum and all eigenvalues µj of the operator (except for a
finite number of them) are located in Λθ.

Theorem 5.2. The spectrum of problem (5.20) is discrete with limit point at ∞. All
eigenvalues λ are finite-multiple and are located (except for a finite numbers of them) in
the sector Λε for any ε > 0. Root (eigen- and associated-)elements to problem (5.20)
form an Abel–Lidsky basis of order α > 2. The asymptotic behavior of eigenvalues to
problem (5.20) is the following:

(5.21) λj = σν−1

(
1
π
|Γ|
)−1/2

j1/2[1 + o(1)] (j −→∞).

The proof of the theorem is based on assertions 10–20 from [19, p. 292].
As a corollary of Theorem 5.2 we have the following statement: if the hydrodynamical

system is statically stable in linear approximation then all normal motions, i.e., solutions
of the form yexp(−λt), are asymptotically stable, because Reλj > 0 for any j > 1.
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5.5. Assume now that λmin(B) < 0 and therefore the hydrodynamical system is not
statically stable (in linear approximation). Consider the spectral problem

(5.22) A~ξ − αB(~ξ + ~η) = λ̃~ξ, ~ξ ∈ D(A), α = ν−2, λ̃ := λ/ν,

(5.23) αB(~ξ + ~η) = λ̃~η, P ~ξ + ~η ∈ D(B),

generated by the evolution problem (5.11)–(5.13) for the case ω0 = 0.

Lemma 5.3. Let the conditions
(5.24)

λ1(Bσ) 6 · · · 6 λκ(Bσ) < 0 = λκ+1(Bσ) = · · · = λκ+q(Bσ) < λκ+q+1(Bσ) 6 · · ·
be valid for the operator Bσ. Then the properties

(5.25) λ1(B) 6 · · · 6 λκ(B) < 0 = λκ+1(B) = · · · = λκ+q(B) < λκ+q+1(B) 6 · · ·

hold for the operator B = Q∗BσQ : D(B) ⊂ ~M0(Ω) −→ ~M0(Ω).

Lemma 5.4. If KerB 6= {0} and q > 0 in (5.25) then problem (5.22)–(5.23) has a
transient solution (from the right half-plane to the left) of the form

(5.26) λ̃ = λ̃0 = 0, ~η = ~η0 = ~ψ, ∀ψ ∈ Ker B, ~ξ = ~0.

Theorem 5.3. (the principle of changing stability). The transition of the eigen-
values from the right complex half-plane to the left one occurs along the real axis, where
the eigenelements corresponding to such λ′s have no associated elements.

Lemma 5.5. For λ̃ 6= 0 problem (5.22), (5.23) is equivalent to the problem

(5.27) αA−1~ξ + αA−1P1~η = µ~ξ, µ := αλ̃−1,

(5.28) −αP1A
−1~ξ + (B−1

1 − αP1A
−1P1)~η = µ~η,

where P1 : ~M0(Ω) −→ ~M0(Ω)	Ker B, B1 := P1BP1.

Lemma 5.6. If the condition

(5.29) 4α < λ1(A)/|λ1(B1)|
holds then problem (5.27)–(5.28) has exactly κ eigenvalues µ (counting the multiplicities)
in the left half-plane.

As a corollary of Lemmas 5.5 and 5.6 we get the following main result.

Theorem 5.4. Let for the operator Bσ conditions (5.24) be valid. Then the spectral
problem

(5.30) A{~ξ − 2iω0ν
−1S(~ξ + ~η)} − αB(~ξ + ~η) = λ̃~ξ,

(5.31) αB(P~ξ + ~η) = λ̃~η, P ~ξ + ~η ∈ D(B),

(5.32) ~ξ − 2iω0ν
−1S(~ξ + ~η) ∈ D(A), S := A−1/2S0A

−1/2,

has exactly κ eigenvalues located in the left half-plane and the q-multiple eigenvalue
λ = λ0 = 0.

In particular, if κ > 1, q > 0, then the hydrodynamical system under consideration is
dynamical unstable.

The proof of Theorem 5.4 is based on perturbation theory and on the assertion that
eigenvalues are continuous functions of the parameters of the problem (see [9, p. 217–228],
[18]).
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Hypothesis 5.1. For arbitrary ν > 0 and ω0 = 0, the spectral problem (5.20) has
no more than a finite number of pairs of non-real eigenvalues (located symmetrically
relatively to the real axis). If ν is sufficiently large then all the eigenvalues are real and
positive.

The hypothesis was expressed by N. D. Kopachevsky, S. G. Krein and A. D. Mishkis
in 1966. There are some hydrodynamical problem (see [10], Section 7.3, 7.4) verifying it.

6. A pendulum with a capillary viscous fluid

This problem, on the one hand, is a generalization of the problem of Section 4 in the
case of a viscous capillary fluid and, on the other hand, is a partial case of the problem
in Section 5 for ω0 = 0.

6.1. As in Section 4, we consider a two-dimensional problem on small oscillations of a
pendulum with a cavity partially filled with a capillary fluid, but now we assume that
the fluid is viscous. Then we have (see Section 4 and 5) the following initial boundary
value problem:

(6.1) ρ
∂~u

∂t
+ ρ

(
d~ω

dt
× ~r
)

+∇p = ρν∆~u+ ρ~f, div ~u = 0 (in Ω);

(6.2) ρ

∫
Ω

(
~r × ∂~u

∂t

)
dΩ + J

d~ω

dt
+ α~ω +mgl~δ − ρg

∫
Γ

(~e3 × ~r)ζ dΓ = ~M(t),

(6.3) ~u = ~0 (on S),
∫

Γ

ζ dΓ = 0,
∂ζ

∂t
= un (on Γ),

d~δ

dt
− ~ω = 0,

(6.4) ρν(u2,3 + u3,2) = 0, −p+ 2ρνu3,3 = −Lσζ + ρg(~δ × ~r) · ~e3 (on Γ),

(6.5) Lσζ := −σ∆Γζ − σk2
1ζ + ρg cos(~̂n, ~e3)ζ, ζ = 0 (on Γ),

(6.6) ~u(0, x) = ~u0(x), x ∈ Ω; ζ(0, x) = ζ0(x), x ∈ Γ; ~δ(0) = ~δ0, ~ω(0) = ~ω0.

Here the notations are the same as in Section 4 and 5 and α > 0 is the friction coefficient
on the axis Ox1. Besides, on ∂Γ (i.e., at the ends of the equilibrium line Γ) we have, as
in Section 5, a Dirichlet condition for ζ.

For classical solutions to problem (6.1)–(6.6), the law of full energy balance holds in
the following form (compare with (2.6)):

(6.7)

1
2
d

dt

{[
ρ

∫
Ω

|~u|2 dΩ + 2ρ
∫

Ω

~u · (~ω × ~r) dΩ + J |~ω|2
]

+
[
(ζ, ζ)B0 + 2ρ

∫
Γ

((~δ × ~r) · ~e3)ζ dΓ +mgl|~δ|2
]}

= −ρν‖~u‖21,Ω − α|~ω|2 + ρ

∫
Ω

~f · ~u dΩ + ~M · ~ω,

(6.8) (ζ, ζ)B0 :=
∫

Γ

[
σ|∇Γζ|2 + a|ζ|2

]
dΓ, a := −σk2

1 + ρg cos(~̂n, ~e3),

see the definition of the norm ‖ · ‖1,Ω in (5.6) for the two-dimensional case.
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6.2. For problem (6.1)–(6.6) we use the same operator approach that was applied to
problem (5.1)–(5.5). We represent ~u in the form

(6.9) ~u = ~v + ν−1R+~z, ~v ∈ D(A) ⊂ ~J0,S(Ω), ~z ∈ D(B) ⊂ ~M0(Ω),

and transform problem (6.1)–(6.6) to a Cauchy problem of the form (5.17) where now

(6.10) y(t) = (~v(t);~z(t); ~ω(t); ζ(t);~δ(t))t ∈ D(A)⊕D(B)⊕ R⊕ L2,Γ ⊕ R =: H.

More precisely, we have the problem

(6.11) (A0 +R1)
dy

dt
+ (I +R2)B0y +R3y = f(t), y(0) = y0,

(6.12) A0 = diag(ρI; ρI;J ; I; 1) � 0, R1 ∈ S∞(H), Ker (A0 +R1) = {0},

(6.13) B0 := diag (ρνA; ν−1B;α; I; 1) � 0, R2 ∈ S∞(H), R3 ∈ L(H).

Problem (6.11)–(6.13) is transformed, as in Section 5, to an abstract parabolic equation
in the Hilbert space H, and an analytic semigroup corresponds to it. Therefore, under
the assumptions f(t) ∈ Cγ([0, T ];H), γ ∈ (0, 1], y0 ∈ D(B0), problem (6.11) has a unique
strong solution in the interval [0, T ]. (For comparison, see Theorem 5.1). This assertion
is proved under the assumption that the investigated hydromechanical system is stable
in linear approximation, i.e., the quadratic form of the potential energy of the system,
namely, the form

(6.14) (ζ, ζ)B0 + 2ρ
∫

Γ

((~δ × ~r) · ~e3)ζ dΓ +mgl|~δ|2,

takes positive values for (ζ;~δ)t 6= 0 (see (6.8)).

Theorem 6.1. (inversion of the Lagrange theorem on stability). If the form
(6.14) takes negative values for some pairs (ζ;~δ)t, i.e., the potential energy of the system
has no minimum at an equilibrium state, then the spectral problem corresponding to
solutions of homogeneous problem (6.11) of the form y(t) = yexp(−λt) has eigenvalues
with Reλ < 0, and the investigated hydromechanical system is unstable.

Results of this section are obtained in a joint work with O. A. Dudik.

7. Convective motions of a viscous fluid in a vessel

Here we consider only the problem on instability of the mechanical equilibrium for a
nonunformly heated fluid in an arbitrary partially filled container (see [20], [9, pp. 162–
186]).

7.1. Let the equilibrium gradient of the temperature be ∇T0 = −α~e3, α 6= 0. Then
T0 = T0(x3) = −αx3 + α0, and the pressure field is

(7.1) P0 = P0(x3) = pa − ρgx3 + ρgβ(−αx
2
3

2
+ α0x3),

where β > 0 is the coefficient of thermal extension and pa is the atmospheric pressure.
Small convective motions of a fluid in a container are described by the following system

of equations, boundary value and initial conditions:

(7.2)
∂~u

∂t
= −1

ρ
∇p+ ν∆~u+ gβθ~e3, div ~u = 0 (in Ω), ~u = ~0 (on S),

(7.3)
∂θ

∂t
= α~u · ~e3 + χ∆θ (in Ω), θ = 0 (on S),

(7.4) ρν

(
∂ui

∂x3
+
∂u3

∂xi

)
= 0, i = 1, 2,

∂ζ

∂t
= ~u · ~e3, p− 2ρν

∂u3

∂x3
= ρgζ (on Γ),
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(7.5) χ
∂θ

∂n
+ aθ = αaζ (on Γ),

(7.6) ~u(0, x) = ~u0(x), θ(0, x) = θ0(x), x ∈ Ω; ζ(0, x) = ζ0(x), x ∈ Γ.

Here θ(t, x) is the deviation of the temperature from the equilibrium one, χ > 0 is the
coefficient of temperature conductivity, a > 0 is the interfase coefficient of head exchange.
Another notations are the same as in Section 6.

7.2. Consider solutions to problem (7.2)–(7.6) that depend on t according to the law
exp(−λt) and use auxiliary S. Krein’s problems and the following two ones:

(7.7) −∆ϕ = f (in Ω), ϕ = 0 (on S),
∂ϕ

∂n
+ aχ−1ϕ = 0 (on Γ);

(7.8) −∆ψ = 0 (in Ω), ψ = 0 (on S),
∂ψ

∂n
+ aχ−1ψ = η (on Γ).

As it is known, ϕ = A−1
1 f , where A1 � 0, 0 < A−1

1 ∈ S∞(L2(Ω)),

(7.9) λj(A1) =
(
|Ω|
6π2

)−2/3

j2/3[1 + o(1)] (j −→∞).

Respectively, ψ = V1η, V1 : H−1/2(Γ) −→ H1
0,S(Ω) = {ψ ∈ H1(Ω) : ψ = 0 (on S)},

(7.10) ‖ψ‖2H1
0,S

(Ω) :=
∫

Ω

|∇ψ|2 dΩ +
∫

Γ

aχ−1|ψ|2 dΓ (a > 0, χ > 0).

Using the operators of all these boundary value problems we transform (7.2)–(7.5) to
the following spectral problem for corresponding amplitude elements:

(7.11) ~ξ − gβν−1Cv = λν−1A−1~ξ + ν−1gλ−1B~ξ, B := Q∗Q,

(7.12) −αχ−1C∗~ξ + v = λχ−1A−1
1 v − aχ−1αλ−1Q∗1Q

~ξ, Q∗1 := A
1/2
1 V1,

(7.13)
Cv := A−1/2P0,S(A−1/2

1 v~e3), C∗~ξ := A
−1/2
1 (A−1/2~ξ · ~e3), ~ξ = A1/2~u, v = A

1/2
1 θ.

Lemma 7.1. The operators C : L2(Ω) −→ ~J0,S(Ω) and C∗ : ~J0,S(Ω) −→ L2(Ω) are
mutually adjoint and compact.

Lemma 7.2. The operator B = Q∗Q : ~J0,S(Ω) −→ ~M0(Ω) ⊂ ~J0,S(Ω) is compact and
non-negative, positive eigenvalues of B have the asymptotic behavior

(7.14) λj(B) =
(
|Γ|
16π

)1/2

j−1/2[1 + o(1)] (j −→∞).

To make the system (7.11)–(7.12) more symmetric, we make the substitution

(7.15) v =
(
|α|ν(χgβ)−1

)1/2
ϕ.

Then (7.11)–(7.12) transforms to the problem

(7.16) Îεy = λÂy + λ−1B̂y, y = (~ξ;ϕ)t ∈ H := ~J0,S(Ω)⊕ L2(Ω),

(7.17) Îε :=
(

I −εC
−ε signαC∗ I1

)
, B̂ :=

(
gν−1B 0

−a ε signαB1 0

)
,

Â := diag(ν−1A−1;χ−1A−1
1 ), ε = (|α|gβ(νχ)−1)1/2 > 0,

where I1 is the identity operator in L2(Ω) and B1 := Q∗1Q, B1 ∈ S∞.
In (7.16), the operator Â is compact and positive, the operator B̂ is compact. If a = 0,

then B̂ is nonnegative. Thus, the problem on normal convective motions of the fluid in
the vessel is a spectral problem for the following operator pencil of S. Krein’s type:

(7.18) L(λ) := Î − εK̂ − λÂ− λ−1B̂, K̂ =
(

0 C
signαC∗ 0

)
∈ S∞(H).
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7.3. In [9, pp. 169–176], the cases α > 0 (heating from below) and α < 0 (heating from
above) were studied. If was proved that the spectrum L(λ) is discrete with limit points
λ = 0 and λ = ∞. If |α| is sufficiently small then all eigenvalues are located in the right
complex half-plane, i.e., all normal oscillations are stable.

Here we consider only the case α > 0 and a = 0, i.e., the case of heating from below
for a given heat flow on the surface. Then

(7.19) K̂ =
(

0 C
C∗ 0

)
= K∗ ∈ S∞, B̂ = gν−1

(
B 0
0 0

)
.

If ε > 0 is sufficiently small then we have the following result ([9, pp. 174–176]).

Theorem 7.1. Let the intensity of heating, ε, satisfies the condition

(7.20) 0 6 ε < ε1 :=
(
λmax(K̂)

)−1

.

Then the spectrum of the pencil L(λ) is located in the right complex half-plane and consist
of two branches of eigenvalues {λ+

k }∞k=1 and {λ−k }∞k=1 situated on the real axis and of no
more then a finite number of non-real eigenvalues. For large values of viscosity there are
no non-real eigenvalues.

For sufficiently large ε the following assertion holds.

Theorem 7.2. Let the intensity of heating be satisfied the condition

(7.21) ε > ε2 := (µ+
1 )−1,

where µ+
1 is the maximal eigenvalue of the auxiliary spectral problem

(7.22)

−∆~u+∇p = µ−1v~e3, div ~u = 0 (in Ω), ~u = ~0 (on S),

un(= u3) = 0,
∂ui

∂x3
+
∂u3

∂xi
= 0 (on Γ), i = 1, 2;

−∆v = µ−1u3 (in Ω), v = 0 (on S),
∂v

∂n
= 0 (on Γ).

Then, under the condition of a constant heat flow on the free surface Γ and in the case
of heating from below, the spectral convection problem (7.16) has at least one negative
eigenvalue and, therefore, it has an aperiodically increasing with time mode of normal
convective motions.

The proof of the theorem has several steps and uses some assertions of operator theory
in the Pontryagin space. In particular, we consider the two-parameter pencil

(7.23) Mε,η(τ) := τÂ− B̂ − η(Î − εK̂)

and max-min principles for it, use the property

(7.24) Ker K̂ ⊂ Ker B̂, dim (Ker B̂ 	Ker K̂) = ∞,

double-sided estimates for eigenvalues of Mε,η(τ) and solutions properties to problem
(7.22) (see [9, pp. 176–186]).

Unsolved problem. Condition (7.20) is sufficient for stability of normal convective
motions of a fluid, and condition (7.21) is sufficient for instability of these motions. The
case 0 < ε1 6 ε 6 ε2 is an unsolved problem.
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