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p-ADIC FRACTIONAL DIFFERENTIATION OPERATOR WITH
POINT INTERACTIONS

S. KUZHEL AND S. TORBA

Dedicated to 100th birthday anniversary of Mark Krein.

Abstract. Finite rank point perturbations of the p-adic fractional differentiation
operator Dα are studied. The main attention is paid to the description of operator
realizations (in L2(Qp)) of the heuristic expression Dα +

Pn
i,j=1 bij < δxj , · > δxi

in a form that is maximally adapted for the preservation of physically meaningful
relations to the parameters bij of the singular potential.

1. Introduction

The conventional description of the physical space-time uses the field R of real num-
bers. In most cases, mathematical models based on R provide quite satisfactory descrip-
tions of the physical reality. However, the result of a physical measurement is always a
rational number, so the use of the completion R of the field of rational numbers Q is not
more than a mathematical idealization. On the other hand, by Ostrovski’s theorem, the
only reasonable alternative to R among completions of Q is the fields Qp of p-adic num-
bers (definition of Qp see below in Section 2). For this reason, it is natural to use p-adic
analysis in physical situations, where the conventional space-time geometry is known to
fail, for examples in the attempts to understand the matter at sub-Planck distances or
time intervals. In order to do this, at first, it is necessary to develop p-adic counterparts
of the standard quantum mechanics and quantum field theory.

There are many works devoted to such an activity (see the surveys in [13], [17]).
However, in spite of a considerable success obtained in recent years, many interesting
problems of p-adic quantum mechanics are still unsolved and wait for a comprehensive
study.

In the present paper, we are going to continue the investigation of the p-adic fractional
differentiation operator with point interactions started by A. Kochubei [12], [13].

In ‘usual’ mathematical physics, point interactions Hamiltonians are the operator
realizations in L2(Rr) of differential expressions −∆+VY or, more generally, (−∆)k+VY ,
where a zero-range potential VY =

∑n
i,j=1 bij < δxj , · > δxi (bij ∈ C) contains the Dirac

delta functions δx concentrated at points xi of the subset Y = {x1, . . . , xn} ⊂ Rr [1].
Since there exists a p-adic analysis based on the mappings from Qp into Qp and an

analysis connected with the mapping Qp into the field of complex numbers C, there exist
two types of p-adic physical models. The present paper deals with the mapping Qp → C,
i.e., complex-valued functions defined on Qp will be considered. In this case, the operation
of differentiation is not defined and the operator of fractional differentiation Dα of order

2000 Mathematics Subject Classification. Primary 47A10, 47A55; Secondary 81Q10.
Key words and phrases. p-adic analysis, fractional differentiation operator, point interactions.
The authors thank DFG (project 436 UKR 113/88/0-1) and DFFD (project 10.01/004) for the

support.

169



170 S. KUZHEL AND S. TORBA

α (α > 0) plays a corresponding role [13], [17]. In particular, p-adic Schrödinger-type
operators with potentials V (x) : Qp → C are defined as Dα + V (x) [13].

The definition of Dα is given in the framework of the p-adic distribution theory with
the help of Schwartz-type distributions D′(Qp). One of remarkable features of this theory
is that any distribution f ∈ D′(Qp) with point support suppf = {x} (x ∈ Qp) coincides
with the Dirac delta function at the point x multiplied by a constant c ∈ C, i.e., f = cδx.
For this reason, it is natural to consider the expression Dα + VY as a p-adic analogue of
Hamiltonians with finite rank point interactions.

In the present paper, the main attention is paid to the description of operator reali-
zations of Dα + VY in L2(Qp) in a form that is maximally adapted for the preservation
of physically meaningful relations to the parameters bij of the singular potential VY =∑n

i,j=1 bij < δxj , · > δxi .
In Section 2, we recall some elements of p-adic analysis [17], [13] needed for reading the

paper and establish a connection between α and the property of functions from D(Dα)
to be continuous. The same problem is also analyzed for the solutions of Dα + I = δ.

Section 3 contains a description of the Friedrichs extension of the symmetric ope-
rator associated with Dα + VY (this description depends on α) and the description of
operator realizations ofDα+VY in L2(Qp). Taking into account an intensive development
of consistent physical theories of quantum mechanics on the base of pseudo-Hermitian
Hamiltonians that are not Hermitian in the standard sense but satisfy a less restrictive
and more physical condition of symmetry in last few years [6], [16], we do not restrict
ourselves to the case of self-adjoint operators and consider the more general case of
η-self-adjoint operator realizations of Dα + VY (Theorem 3.1).

We use the following notations: D(A) and kerA denote the domain and the null-space
of the linear operator A, respectively. A �X means the restriction of A onto a set X.

2. Fractional differential operator Dα

2.1. Elements of p-adic analysis. Basically, we shall use notations from [17]. Let us
fix a prime number p. The field Qp of p-adic numbers is defined as the completion of
the field of rational numbers Q with respect to p-adic norm | · |p, which is defined as
follows: |0|p = 0; |x|p = p−γ if an arbitrary rational number x 6= 0 is represented as
x = pγ m

n , where γ = γ(x) ∈ Z and integers m and n are not divisible by p. The p-adic
norm | · |p satisfies the strong triangle inequality |x + y|p ≤ max(|x|p, |y|p). Moreover,
|x+ y|p = max(|x|p, |y|p) if |x|p 6= |y|p.

Any p-adic number x 6= 0 can be uniquely represented as a series,

(2.1) x = pγ(x)
+∞∑
i=0

xip
i, xi = 0, 1, . . . , p− 1, x0 > 0, γ(x) ∈ Z,

convergent in the p-adic norm (the canonical representation of x). In this case, |x|p =
p−γ(x).

The canonical representation (2.1) enables one to determine the fractional part {x}p

of x ∈ Qp by the rule {x}p = 0 if x = 0 or γ(x) ≥ 0; {x}p = pγ(x)
∑−γ(x)−1

i=0 xip
i if

γ(x) < 0.
Denote by

Bγ(a) = {x ∈ Qp | |x− a|p ≤ pγ} and Sγ(a) = {x ∈ Qp | |x− a|p = pγ},

respectively, the ball and the sphere of radius pγ with the center at a point a ∈ Qp and
set Bγ(0) = Bγ , Sγ(0) = Sγ , γ ∈ Z.

The ring Zp of p-adic integers coincides with the disc B0 (Zp = B0), which is the
completion of integers with respect to the p-adic norm | · |p.
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As usual, in order to define some classes of distributions on Qp, one has first to
introduce an appropriate class of test functions.

A complex-valued function f defined on Qp is called locally-constant if for any x ∈ Qp

there exists an integer l(x) such that f(x+ x′) = f(x), ∀x′ ∈ Bl(x).
Denote by D(Qp) the linear space of locally constant functions on Qp with compact

supports. For any test function φ ∈ D(Qp) there exists l ∈ Z such that φ(x+x′) = φ(x),
x′ ∈ Bl, x ∈ Qp. The largest of such numbers l = l(φ) is called the parameter of
constancy of φ. Typical examples of test functions are indicator functions of spheres and
balls,

(2.2) δ(|x|p − pγ) :=
{

1, x ∈ Sγ ,
0, x 6∈ Sγ ,

Ω(|x|p) :=
{

1, |x|p ≤ 1,
0, |x|p > 1.

In order to furnish D(Qp) with a topology, let us consider a subspace Dl
γ ⊂ D(Qp)

consisting of functions with supports in the ball Bγ and the parameter of constancy
≥ l. The convergence φn → 0 in D(Qp) has the following meaning: φk ∈ Dl

γ , where the
indices l and γ do not depend on k and φk tends uniformly to zero. This convergence
determines the Schwartz topology in D(Qp).

Denote by D′(Qp) the set of all linear functionals (Schwartz-type distributions) on
D(Qp). In contrast to distributions on Rn, any linear functional D(Qp) → C is automa-
tically continuous. The action of a functional f upon a test function φ will be denoted
by < f, φ >.

It follows from the definition of D(Qp) that any test function φ ∈ D(Qp) is continuous
on Qp. This means the Dirac delta function < δx, φ >= φ(x) is well defined for any point
x ∈ Qp.

On Qp there exists the Haar measure, i.e., a positive measure dpx invariant under
shifts, dp(x+ a) = dpx, and normalized by the equality

∫
|x|p≤1

dpx = 1.
Denote by L2(Qp) the set of measurable functions f on Qp satisfying the condi-

tion
∫

Qp
|f(x)|2dpx < ∞. The set L2(Qp) is a Hilbert space with the scalar product

(f, g)L2(Qp) =
∫

Qp
f(x)g(x)dpx.

The Fourier transform of φ ∈ D(Qp) is defined by the formula

F [φ](ξ) = φ̃(ξ) =
∫

Qp

χp(ξx)φ(x) dpx, ξ ∈ Qp,

where χp(ξx) = e2πi{ξx}p is an additive character of the field Qp for any fixed ξ ∈ Qp.
The Fourier transform F [·] maps D(Qp) onto D(Qp). Its extension by continuity onto
L2(Qp) determines an unitary operator in L2(Qp).

The Fourier transform F [f ] of a distribution f ∈ D′(Qp) is defined by the standard
relation < F [f ], φ >=< f, F [φ] >, ∀φ ∈ D(Qp). The Fourier transform is a linear
isomorphism of D′(Qp) onto D′(Qp).

2.2. The operator Dα. The operator of differentiation is not defined in L2(Qp). Its
role is played by the operator of fractional differentiation Dα (the Vladimirov pseudo-
differential operator) which is defined as

(2.3) Dαf =
∫

Qp

|ξ|αpF [f ](ξ)χp(−ξx) dpξ, α > 0.

It is easy to see [13] that Dαf is well defined for f ∈ D(Qp). Note that Dαf need not
to belong necessarily to D(Qp) (since the function |ξ|αp is not locally constant), however
Dαf ∈ L2(Qp).

Since D(Qp) is not invariant with respect to Dα we cannot define Dα on the whole
space D′(Qp). For a distribution f ∈ D′(Qp), the operation Dα is well defined only if
the right-hand side of (2.3) exists.
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In what follows we will consider the operator Dα, α > 0, as an unbounded operator
in L2(Qp). In this case, its domain of definition D(Dα) consists of those u ∈ L2(Qp)
for which |ξ|αpF [u](ξ) ∈ L2(Qp). Since Dα is unitarily equivalent to the operator of
multiplication by |ξ|αp , it is a positive self-adjoint operator in L2(Qp), its spectrum consists
of the eigenvalues λγ = pαγ (γ ∈ Z) of infinite multiplicity, and their accumulation point
λ = 0.

It is easy to see from (2.3) that an arbitrary (normalized) eigenfunction ψ of Dα

corresponding to the eigenvalue λγ = pαγ admits the description

ψ̃(ξ) = δ(|ξ|p − pγ)ρ(ξ),
∫

Sγ

|ρ(ξ)|2dpξ = 1,

where the function ρ(ξ) defined on the sphere Sγ serves as a parameter of the description.
Choosing ρ(ξ) in different ways one can obtain various orthonormal bases in L2(Qp)
formed by eigenfunctions of Dα [13], [14] [17]. In particular, the choice of ρ(ξ) as a
system of locally constant functions on Sγ leads to the well-known Vladimirov functions
[13], [17]. The selection of ρ(ξ) as indicators of a special class of subsets of Sγ gives the
p-adic wavelet basis {ψNjε} recently constructed in [14]. Precisely, it was shown [14] that
the set of eigenfunctions of Dα

(2.4) ψNjε(x) = p−
N
2 χ(pN−1jx)Ω(|pNx−ε|p), N ∈ Z, ε ∈ Qp/Zp, j = 1, . . . , p−1,

forms an orthonormal basis in L2(Qp) such that

(2.5) DαψNjε = pα(1−N)ψNjε.

Here the indexes N, j, ε serve as parameters of the basis. In particular, elements ε ∈
Qp/Zp can be described as ε =

∑m
i=1 εip

−i (m ∈ N, εi = 0, . . . , p− 1).

Theorem 2.1. An arbitrary function u ∈ D(Dα) is continuous on Qp if and only if
α > 1/2.

Proof. Let u ∈ D(Dα) and let

(2.6) u(x) =
∞∑

N=1

p−1∑
j=1

∑
ε

(u, ψNjε)ψNjε(x) +
0∑

N=−∞

p−1∑
j=1

∑
ε

(u, ψNjε)ψNjε(x)

be its expansion into the p-adic wavelet basic (2.4).
It is easy to see that ψNjε(x) ∈ D(Qp) and, hence, the functions ψNjε(x) are continuous

on Qp. Thus, to prove the continuity of u(x), it suffices to verify that the series in (2.6)
converges uniformly.

First of all we remark that for fixed N and x there is at most one ε such that ψNjε(x) 6=
0. Indeed, if there exist ε1 and ε2 such that ψNjεi(x) 6= 0, then Ω(|pNx− εi|p) = 1. But
then |pNx−ε1|p ≤ 1 and |pNx−ε2|p ≤ 1. By the strong triangle inequality, |ε1−ε2|p ≤ 1.
The latter relation and the condition εi ∈ Qp/Zp imply the equality ε1 = ε2.

Thus, for fixed N and x, the sum corresponding to the parameter ε consists of at most
one non-zero term.

Further, it follows from (2.4) and (2.6) that

(2.7) |ψNjε(x)| ≤ p−N/2 and |(u, ψNjε)| ≤ ‖u‖L2(Qp).

For a fixed N > 0, relations (2.7) ensure the following estimate:

(2.8)
∣∣∣∣ p−1∑

j=1

∑
ε

(u, ψNjε)ψNjε(x)
∣∣∣∣ ≤ p−N/2‖u‖L2(Qp)(p− 1), ∀x ∈ Qp,

which gives the uniform convergence of the first series in (2.6).
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The condition u ∈ D(Dα) and (2.5) imply (u, ψNjε) = pα(N−1)(Dαu, ψNjε). Using
this equality and (2.7), we obtain∣∣∣∣ p−1∑

j=1

∑
ε

(u, ψNjε)ψNjε(x)
∣∣∣∣ =

∣∣∣∣ p−1∑
j=1

∑
ε

pα(N−1)(Dαu, ψNjε)ψNjε(x)
∣∣∣∣

≤
{ p−1∑

j=1

∑
ε

|(Dαu, ψNjε)|2
}1/2{ p−1∑

j=1

∑
ε

p2α(N−1)|ψNjε(x)|2
}1/2

≤ ‖Dαu‖L2(Qp)

{ p−1∑
j=1

p−N+2α(N−1)

}1/2

.

The obtained estimate implies that the second series in (2.6) is uniformly convergent for
α > 1/2. Therefore, any function u ∈ D(Dα) is continuous on Qp for α > 1/2.

In the case a ≤ 1/2, we show that the function

(2.9) f(x) =
−1∑

N=−∞

1
|N |

p(N−1)/2ψN10(x)

(determined in p-adic wavelet basis) belongs to D(Dα) but f(x) is not continuous on Qp.
Obviously, f ∈ L2(Qp) and its Fourier transform is

f̃(ξ) =
−1∑

N=−∞

1
|N |

p(N−1)/2ψ̃N10(ξ).

By (2.3) and (2.5), |ξ|αp ψ̃N10(ξ) = pα(1−N)ψ̃N10(ξ). Hence,

|ξ|αp f̃(ξ) =
−1∑

N=−∞

1
|N |

p(N−1)/2 · pα(1−N)ψ̃N10(ξ)

and, since
{
ψ̃N10(ξ)

}
N≤−1

is orthonormal, |ξ|αp f̃(ξ) ∈ L2(Qp) for α ≤ 1/2 and |ξ|αp f̃(ξ) 6∈
L2(Qp) for α > 1/2. Hence, f(x) ∈ D(Dα) for α ≤ 1/2 only.

Let us show that f(x) is not continuous on Qp. First of all, using (2.4), we rewrite
the definition (2.9) of f as

(2.10) f(x) =
−1∑

N=−∞

1
|N |

p−1/2χ(pN−1x)Ω(|pNx|p).

It is easy to see that the restriction of the left-hand side of (2.10) onto any ball Bγ(a) ⊂
Qp \ {0} contains a finite number of non-zero terms. Therefore, f(x) is continuous on
Qp \ {0} and it is represented by point-wise convergent series (2.9).

Let us consider the sequence xn = pn, n ∈ N. Obviously, xn → 0, (n → ∞) in the
p-adic norm | · |p. Furthermore, Ω(|pNxn|p) = Ω(|pNpn|p) = 0 when N + n ≤ −1. On
the other hand, if N + n ≥ 1, then pN−1xn is an integer p-adic number and, hence,
χ(pN−1xn) = 1. Taking these relations into account, we deduce from (2.10) that

f(xn) = f(pn) = p−1/2

[
χ(p−1)
n

+
−1∑

N=−n+1

1
|N |

]
→∞ as n→∞.

Thus, f(x) cannot be continuous at x = 0. Theorem 2.1 is proved. �
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2.3. Properties of solutions of Dα + I = δ. Let us consider the equation

(2.11) Dαh+ h = δxk
, h ∈ L2(Qp), xk ∈ Qp, α > 0,

where Dα : L2(Qp) → D′(Qp) is understood in the distribution sense.
It is known [13] that Eq. (2.11) has a unique solution h = hk ∈ L2(Qp) for α > 1/2

and has no solutions belonging to L2(Qp) for α ≤ 1/2. The next statement continues
the investigation of hk.

Lemma 2.1. The solution hk of (2.11) is a function continuous on Qp when α > 1 and
continuous on Qp\{xk} when 1/2 < α ≤ 1.

Proof. Reasoning as in the proof of ([13, Lemma 3.7]), where the basis of Vladimirov
eigenfunctions was used, we establish an expansion of δxk

in terms of the p-adic wavelet
basis.

Let u ∈ D(Dα). By analogy with the proof of Theorem 2.1 we expand u in
an uniformly convergent series with respect to the complex-conjugated p-adic wavelet
basis {ψNjε}. Since {ψNjε} are continuous functions on Qp we can write u(xk) =∑∞

N=−∞
∑p−1

j=1

∑
ε(u, ψNjε)ψNjε(xk) for x = xk.

Consider

ψNjε(xk) = p−N/2χ(pN−1jxk)Ω(|pNxk − ε|p) = p−N/2χ(−pN−1jxk)Ω(|pNxk − ε|p).

Obviously, ψNjε(xk) 6= 0 ⇐⇒ |pNxk − ε|p ≤ 1. Here ε ∈ Qp/Zp and, hence, |ε|p > 1
for ε 6= 0. It follows from the strong triangle inequality and the condition ε ∈ Qp/Zp

that |pNxk − ε|p ≤ 1 ⇐⇒ ε = {pNxk}p (if ε 6= 0). Moreover, if ε = 0, then condition
|pNxk|p ≤ 1 implies {pNxk}p = 0. Combining these two cases we arrive at the conclusion
that

ψNjε(xk) =
{

0, ε 6= {pNxk}p,
p−N/2χ(−pN−1jxk), ε = {pNxk}p.

But then

< δxk
, u >= u(xk) =

∞∑
N=−∞

p−1∑
j=1

p−N/2χ(−pN−1jxk)
(
u, ψNj{pN xk}p

)
=

∞∑
N=−∞

p−1∑
j=1

p−N/2χ(−pN−1jxk) < ψNj{pN xk}p
, u > .

(2.12)

Since D(Qp) ⊂ D(Dα), the equality (2.12) means that

(2.13) δxk
=

∞∑
N=−∞

p−1∑
j=1

p−N/2χ(−pN−1jxk)ψNj{pN xk}p
,

where the series converges in D′(Qp).
Suppose that a function hk ∈ L2(Qp) is represented as a convergent series in L2(Qp),

hk(x) =
∞∑

N=−∞

p−1∑
j=1

∑
ε

cNjεψNjε(x).

Applying the operator Dα + I term-wise, we get the series

(2.14) Dαhk + hk =
∞∑

N=−∞

p−1∑
j=1

∑
ε

cNjε

(
1 + pα(1−N)

)
ψNjε,

converging in D′, since DαD(Qp) ⊂ L2(Qp). Comparing the terms of (2.13) and (2.14)
gives

cNjε =
{

0, ε 6= {pNxk}p,

p−N/2χ(−pN−1jxk)
[
pα(1−N) + 1

]−1
, ε = {pNxk}p.
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Thus,

(2.15) hk(x) =
∞∑

N=−∞

p−1∑
j=1

p−N/2χ(−pN−1jxk)
[
pα(1−N) + 1

]−1
ψNj{pN xk}p

(x).

Let us show that the series (2.15) is uniformly convergent on Qp for α > 1 and is
uniformly convergent on any ball not containing xk for 1/2 < α ≤ 1.

Indeed, by virtue of (2.7) the general term of (2.15) does not exceed

(2.16) p−N
[
pα(1−N) + 1

]−1 ≤ p−N .

Hence, the subseries of (2.15) formed by terms with N ≥ 0 converges uniformly.
For N < 0 the general term of (2.15) does not exceed

p−N
[
pα(1−N) + 1

]−1 ≤ 1
pα
p−N(1−α).

The obtained estimate implies that for α > 1 the subseries of (2.15) formed by terms
with N < 0 also converges uniformly. So, the series (2.15) converges uniformly for α > 1.
This proves the assertion of Lemma 2.1 for α > 1, since ψNjε are continuous on Qp.

Let Bγ(a) be a ball such that xk 6∈ Bγ(a). To prove Lemma 2.1 for 1/2 < α ≤ 1
it suffices to verify that the restriction of (2.15) onto Bγ(a) contains a finite number of
terms with negative parameter N < 0.

Indeed, it follows from the strong triangle inequality and the definitions of {·}p and
Ω(·) (see (2.2)) that

(2.17) Ω(|pNx− {pNxk}p|p) = Ω(|pNx− pNxk|p).

Hence, the restriction of ψNj{pN xk}p
(x) onto Bγ(a) is equal to 0 if |x− xk|p > pN for all

x ∈ Bγ(a). Since |x− xk|p > pγ , the relation ψNj{pN xk}p
(x) ≡ 0 (∀x ∈ Bγ(a)) holds for

all N ≤ γ. Using the estimation (2.16) we arrive at the conclusion that the series (2.15)
converges uniformly for any ball Bγ(a) ⊂ Qp \ {xk}. Lemma 2.1 is proved. �

Remark. The solution hk(x) of (2.11) constructed in Lemma 2.1 is a real-valued function.
This fact can be obtained directly from the expansion (2.15). Another way to establish
this is based on the invariance of the space D(Qp) and the operator Dα with respect to
the complex conjugation. Combining these properties with the uniqueness of the solution
of Dα + I = δxk

in L2(Qp), we get hk(x) = hk(x).

Corollary 2.1. Let the index α > 1/2 and points x1, . . . , xn ∈ Qp be fixed and let
Sp{hk}n

1 be the linear span of solutions hk (1 ≤ k ≤ n) of (2.11). Then Sp{hk}n
1 ∩

D(Dα/2) = {0} for 1/2 < α ≤ 1 and Sp{hk}n
1 ⊂ D(Dα/2) for α > 1.

Proof. The solution hk of (2.11) is determined by (2.15). Taking the expansion (2.15)
and the “semigroup property”

(2.18) Dα1Dα2 = Dα1+α2 , α1, α2 > 0,

of Dα into account, it is easy to see that hk ∈ D(Dα/2) if and only if the following series
converge in L2(Qp):

∞∑
N=1

p−1∑
j=1

p−N/2χ(−pN−1jxk)
[
pα(1−N) + 1

]−1
p

α
2 (1−N)ψNj{pN xk}p

+
0∑

N=−∞

p−1∑
j=1

p−N/2χ(−pN−1jxk)
[
pα(1−N) + 1

]−1
p

α
2 (1−N)ψNj{pN xk}p

(if the limit exists then it coincides with Dα/2hk). For the general term of the first series
we have∣∣p−N/2p

α
2 (1−N)χ(−pN−1jxk)

[
pα(1−N) + 1

]−1∣∣2 ≤ p−N(α+1)+α, N ≥ 1,
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which implies its convergence in L2(Qp) for any α > 1/2.
Similarly, the general term of the second series can be estimated as follows:∣∣p−N/2p

α
2 (1−N)χ(−pN−1jxk)

[
pα(1−N) + 1

]−1∣∣2 ≤ Cp(α−1)N , N ≤ 0.

Obviously this series converges for α > 1. Thus Sp{hk}n
1 ⊂ D(Dα/2) for α > 1.

Since pα(1−N) +1 ≤ 2pα(1−N) for N ≤ 0, we can estimate from below the general term
of the second series,

(2.19)
1

4pα
p(α−1)N ≤

∣∣p−N/2p
α
2 (1−N)χ(−pN−1jxk)

[
pα(1−N) + 1

]−1∣∣2 (N ≤ 0)

which implies its divergence in L2(Qp) for α ≤ 1.
Thus hk 6∈ D(Dα/2). From this, taking into account that the estimate (2.19) does

not depend on the choice of hk and the functions {ψNj{pN xk}p
(x)} (N < 0) of the basis

{ψNjε(x)} corresponding to hk (1 ≤ k ≤ n) in (2.15) are different for sufficiently small
negative indexes N , we conclude that Sp{hk}n

1 ∩ D(Dα/2) = {0} for 1/2 < α ≤ 1.
Corollary 2.1 is proved. �

3. Operator Dα with point interactions

3.1. The Friedrichs extension. Let H2 ⊂ H1 ⊂ L2(Qp) ⊂ H−1 ⊂ H−2 be the standard
scale of Hilbert spaces (A-scale) associated with the positive self-adjoint operator A =
Dα. Here Hs = D(As/2), s = 1, 2, with the norm ‖u‖s = ‖(Dα + I)s/2u‖ and H−s are
the completion of L2(Qp) with respect to the norm ‖u‖−s (see [3], [7] for details).

Recalling that hk(x) is a real-valued function and employing (2.12), (2.14) (with u
and ψNjε instead of hk and ψNjε, respectively), and (2.15), we get

(3.1) < δxk
, u >= u(xk) = ((Dα + I)u, hk)L2(Qp), ∀u ∈ D(Dα), xk ∈ Qp.

Thus, the Dirac delta function δxk
is well defined on H2 = D(Dα) and δxk

∈ H−2 for
α > 1/2.

Let us fix points x1, . . . , xn (n < ∞) from Qp and consider a positive symmetric
operator

(3.2) Asym = Dα �D, D = {u ∈ D(Dα) | u(x1) = · · · = u(xn) = 0}.
By Theorem 2.1 the formula (3.2) is well-defined for α > 1/2. In this case, (3.1)

implies that Asym is a closed densely defined operator in L2(Qp) and its defect subspace
H = ker(A∗sym+I) coincides with the linear span of {hk}n

k=1. Hence, the deficiency index
of Asym is equal to (n, n).

It is clear that the domain of the adjoint A∗sym has the form D(A∗sym) = D(Dα)+̇H
and

(3.3) A∗symf = A∗sym(u+ h) = Dαu− h, ∀f = u+ h ∈ D(A∗sym)

(u ∈ D(Dα), h ∈ H).

Proposition 3.1. Let AF be the Friedrichs extension of Asym. Then AF = Dα when
1/2 < α ≤ 1 and

AF = A∗sym �D(AF ), D(AF ) = {f(x) ∈ D(A∗sym) | f(x1) = · · · = f(xn) = 0}
when α > 1.

Proof. It follows from (2.18) that H1 = D(Dα/2). This relation and Corollary 2.1 mean
that H ⊂ H1 (α > 1) and H ∩ H1 = {0} (1/2 < α ≤ 1).

After such a preparatory work, the proof is a direct consequence of some ‘folklore’
results of the extension theory. For the convenience of the reader some principal stages
are repeated below.
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First of all, we recall that the Friedrichs extension AF of Asym is defined as the
restriction of the adjoint A∗sym onto D(AF ) = D ∩ D(A∗sym), where D is the completion
of D(Asym) in the Hilbert space H1.

Using the obvious equality H1 = D ⊕1 H′ (here H′ = H ∩ H1 and ⊕1 denotes the
orthogonal sum in H1), we describe D(AF ) as follows:

D(AF ) = {f ∈ H1 ∩ D(A∗sym) | ((Dα + I)1/2f, (Dα + I)1/2h′)L2(Qp) = 0, ∀h′ ∈ H′}.

If H∩H1 = {0} (the case 1/2 < α ≤ 1), then H′ = {0} and D(AF ) = H1∩D(A∗sym) =
D(Dα). Thus AF = Dα.

If H ⊂ H1 (the case α > 1), then H′ = H, D(A∗sym) ⊂ H1 and

D(AF ) = {f ∈ D(A∗sym) | ((Dα + I)1/2f, (Dα + I)1/2hk)L2(Qp) = 0, 1 ≤ k ≤ n}.

Repeating the same arguments as in the proof of (3.1) it is easy to see that ((Dα +
I)1/2f, (Dα + I)1/2hk)L2(Qp) = f(xk). Proposition 3.1 is proved. �

3.2. Operator realizations of Dα + VY in L2(Qp). In the additive singular pertur-
bations theory, the algorithm for determining operator realizations of finite rank point
perturbations of Dα is determined by the general expression

(3.4) AY = Dα + VY , VY =
n∑

i,j=1

bij < δxj , · > δxi , bij ∈ C,

Y = {x1, . . . , xn} is well known [3] and it is based on the construction of some extension
(regularization) AY reg := Dα + VY reg of (3.4) onto the domain D(A∗sym) = D(Dα)+̇H.

The L2(Qp)-part

(3.5) Ã = AY reg �D( eA), D(Ã) = {f ∈ D(A∗sym) | AY regf ∈ L2(Qp)}

of the regularization AY reg is called the operator realization of Dα + VY in L2(Qp).
Since the action of Dα on elements of H is defined by (2.11), the regularization AY reg

depends on the determination of VY reg.
If α > 1, the singular potential VY =

∑n
i,j=1 bij < δxj , · > δxi is form bounded (since

all hk ∈ H1 and, hence, all δxk
∈ H−1). In this case, D(A∗sym) ⊂ H1 consists of functions

continuous on Qp (Lemma 2.1) and the delta functions δxk
are uniquely determined on

elements f ∈ D(A∗sym) by continuity (cf. (3.1))

(3.6) < δxk
, f >= ((Dα + I)1/2f, (Dα + I)1/2hk)L2(Qp) = f(xk).

Thus, for α > 1, the regularizationAY reg is uniquely defined and formula (3.5) provides
a unique operator realization of (3.4) in L2(Qp) corresponding to a fixed singular potential
VY .

The case 1/2 < α ≤ 1 is more complicated, because δxk
cannot be extended onto

D(A∗sym) by continuity.
Since any function f ∈ D(A∗sym) = D(Dα)+̇H admits a decomposition f = u +∑n
j=1 cjhj (u ∈ D(Dα), ci ∈ C), the extension of δxk

to D(A∗sym) is well determined if
the entries rkj =< δxk

, hj > of the matrix R = (rkj)n
k,j=1 are known. In this case, the

extended delta-function δxk
acts on functions f ∈ D(A∗sym) by the rule

(3.7) < δxk
, f >= u(xk) + c1rk1 + · · ·+cnrkn, 1 ≤ k ≤ n.

(We preserve the same notation δxk
for the extension.)

Since H ∩ H1 = {0}, the system {δxk
}n

k=1 is H−1-independent (i.e., its linear span
Sp{δxk

}n
1 ∩ H−1 = {0}). Therefore, the natural restrictions on the choice of rkj in (3.7)

induced by the fact that a functional < φ, · > where φ ∈ Sp{δxk
}n
1 ∩H−1 admits a natural

extension by continuity onto H1∩D(A∗sym) do not appear in our case (see [3] for details).
This means that, in general, any Hermitian matrix R = (rkj)n

k,j=1 can be used for the
determination of the extended functionals < δxk

, · > in (3.7).
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One of the possible approaches to the definition of rkj deals with the fact that the
functions hj(x) turn out to be continuous at the point x = xk if j 6= k (see Lemma 2.1).
In view of this, it is natural to assume that

(3.8) rkj =< δxk
, hj >= hj(xk), j 6= k.

However this formula cannot be used for the definition of rkk because the substitution
of xk for x in (2.15) leads to the formal equality

(3.9) hk(xk) = (p− 1)
∞∑

N=−∞

p−N

pα(1−N) + 1

with a divergent series in the right-hand side. Note that this series does not depend on
k. For this reason, some choice of a real number r = rkk (1 ≤ k ≤ n) can be interpreted
as a certain regularization of

∑∞
−∞

p−N

pα(1−N)+1
.

It follows from (2.15), (2.17), and (3.8) that rkj = rjk. Hence, the matrix R =
(rkj)n

k,j=1 constructed in such a way is Hermitian.
It should be noted that if we will use (3.7) instead of the direct formula (3.6) for the

definition of extensions < δxk
, · > in the case α > 1, then we arrive at just the same form

of the matrix R. The difference only is in the convergence of the series in (3.9) for α > 1
and, hence, rkk = hk(xk).

3.3. Description of operator realizations. Let η be an invertible bounded self-adjoint
operator in L2(Qp).

An operator A is called η-self-adjoint in L2(Qp) if A∗ = ηAη−1, where A∗ denotes the
adjoint of A [5]. Obviously, self-adjoint operators are a particular case of η-self-adjoint
ones for η = I. In this case, we will use notation ‘self-adjoint’ instead of ‘I-self-adjoint’.

We are going to describe η-self-adjoint operator realizations Ã (see (3.5)) of Dα + VY

in L2(Qp).
To do this, we determine linear mappings Γi : D(A∗sym) → Cn (i = 0, 1)

(3.10) Γ0f =

 < δx1 , f >
...

< δxn , f >

 , Γ1f = −

 c1
...
cn

 , ∀f = u+
n∑

i=1

cihi ∈ D(A∗sym).

In what follows we will assume that

(3.11) Dαη = ηDα and η : H → H.

By the second relation in (3.11), the action of η on elements of H can be described
with the help of a matrix Y = (yij)n

i,j=1, i.e.,

(3.12) η

n∑
i=1

cihi = (h1, . . . , hn)Y(c1, . . . , cn)t (ci ∈ C),

where the upper index t denotes the operation of transposition. Since, in general, the
basis {hi}n

i=1 of H is not orthogonal, the matrix Y is not Hermitian (Y 6= Yt
).

Lemma 3.1. If α > 1, then

Γ0ηf = Yt
Γ0f and Γ1ηf = YΓ1f (∀f ∈ D(A∗sym)).

These equalities also hold for 1/2 < α ≤ 1 if RY = YtR, where the matrix R deter-
mines the extended functionals < δxk

, · > in (3.7).

Proof. Let f = u+
∑

i=1 cihi ∈ D(A∗sym). By (3.12)

(3.13) ηf = ηu+ (h1, . . . , hn)Y(c1, . . . , cn)t,
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where ηu ∈ D(Dα) (see the first relation in (3.11)). In view of (3.10),

Γ1ηf = −Y(c1, . . . , cn)t = YΓ1f.

It follows from the first relation in (3.11) that η(Dα + I)1/2 = (Dα + I)1/2η. Taking
this equality into account, we deduce from (3.6)

< δxk
, ηf > = ((Dα + I)1/2f, (Dα + I)1/2ηhk)L2(Qp)

= (y1k, . . . , ynk)(< δx1 , f >, . . . , < δxn , f >)t

that implies Γ0ηf = Yt
Γ0f for α > 1.

Similar arguments with the employing (3.7), (3.13), and RY = YtR give

Γ0ηf = Γ0ηu+RY(c1, . . . , cn)t = Yt
Γ0u+ YtR(c1, . . . , cn)t

= Yt
Γ0[u+ (h1, . . . , hn)(c1, . . . , cn)t] = Yt

Γ0f

for 1/2 < α ≤ 1. Lemma 3.1 is proved. �

Theorem 3.1. Let Ã be the operator realization of Dα + VY defined by (3.5). Then Ã
coincides with the operator

(3.14) AB = A∗sym � D(AB), D(AB) = {f ∈ D(A∗sym) | BΓ0f = Γ1f},
where B = (bij)n

i,j=1 is the coefficient matrix of the singular potential VY .
The operator AB is self-adjoint if and only if the matrix B is Hermitian.
If η satisfy (3.11) and α > 1, then AB is η-self-adjoint if and only if the matrix YB

is Hermitian. This statement is also true for the case 1/2 < α ≤ 1 under the additional
condition that the matrix RY is Hermitian, where R determines the extended functionals
< δxk

, · > in (3.7).

Proof. It follows from (2.11), (3.3), and (3.10) that

AV regf = A∗symf + (δx1 , . . . , δxn)(BΓ0f − Γ1f), f ∈ D(A∗sym).

This equality and (3.5) mean that the operator realization Ã of Dα + VY coincides with
the operator AB determined by (3.14).

It is known (see, e.g., [4], [8]) that the triple (Cn,Γ0,Γ1), where Γi are defined by
(3.10), is a boundary value space (BVS) of Asym. This means that the abstract Green
identity

(3.15) (A∗symf, g)− (f,A∗symg) = (Γ1f,Γ0g)Cn − (Γ0f,Γ1g)Cn , f, g ∈ D(A∗sym)

is satisfied and the map (Γ0,Γ1) : D(A∗sym) → Cn ⊕ Cn is surjective.
It follows from the general results of the BVS-theory [9], [10], [15] that the operator

AB determined by (3.14) is self-adjoint ⇐⇒ the matrix B is Hermitian.
Conditions (3.11) imposed on η ensure the commutativity of η with Asym and A∗sym,

i.e.,

(3.16) ηAsym = Asymη, ηA∗sym = A∗symη.

Relations (3.16) and the definition of η-self-adjoint operators imply that AB is η-self-
adjoint ⇐⇒ ηAB is a self-adjoint extension of the symmetric operator Fsym = ηAsym.

Thus, the description of η-self-adjoint operators is reduced to the similar problem for
self-adjoint ones.

It immediately follows from Lemma 3.1 and relations (3.15), (3.16) that the triple
(Cn,Γ0,YΓ1) is a BVS for the symmetric operator Fsym. In this BVS, the operator ηAB
is described by the formula (cf. (3.14)):

ηAB = ηA∗sym �D(ηAB), D(ηAB) = {f ∈ D(A∗sym) | YBΓ0f = YΓ1f}
that completes the proof of Theorem 3.1. �
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