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THE SQUARE-TRANSFORM OF HERMITE-BIEHLER FUNCTIONS.

A GEOMETRIC APPROACH

VYACHESLAV PIVOVARCHIK AND HARALD WORACEK

This paper is dedicated to the memory of M. G. Krein.

Abstract. We investigate the subclass of symmetric indefinite Hermite-Biehler
functions which is obtained from positive definite Hermite-Biehler functions by means
of the square-transform. It is known that functions of this class can be characterized
in terms of location of their zeros. We give another, more elementary and geomet-
ric, proof of this result. The present proof employs a ‘shifting-of-zeros’ perturbation
method. We apply our results to obtain information on the eigenvalues of a concrete
boundary value problems.

1. Introduction and main result

The Hermite-Biehler class is the set of all entire functions E which have no zeros in
the open upper half-plane C+ and satisfy

(1.1) |E(z)| ≤ |E(z)|, z ∈ C
+ .

An indefinite generalization of this notion is obtained when (1.1) is replaced by the a
kernel condition:

If Ω ⊆ C is a domain and K(w, z) is a function defined on Ω × Ω, which is analytic

in the variables z and w and has the property that K(w, z) = K(z, w), then K is called
an analytic symmetric kernel (shortly a kernel) on Ω. Let κ ∈ N ∪ {0}. We say that
the kernel K has κ negative squares, if for each choice of n ∈ N and z1, . . . , zn ∈ Ω the
quadratic form

QK(ξ1, . . . , ξn) :=

n∑

i,j=1

K(zj , zi)ξiξj

has at most κ negative squares, and if for some choice of n, z1, . . . , zn this upper bound
is actually attained.

Definition 1.1. Let κ ∈ N ∪ {0}. The set HBκ of Hermite-Biehler functions with κ

negative squares is defined to be the set of all entire functions E which satisfy

(i) E and E# have no common nonreal zeros;
(ii) the kernel

(1.2) KE(w, z) := i
E(z)E(w) − E#(z)E#(w)

z − w
, z, w ∈ C ,

has κ negative squares.
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Moreover, we define the set of indefinite Hermite-Biehler functions as

HB<∞ :=
⋃

κ∈N∪{0}

HBκ .

If E ∈ HB<∞, we will denote by ind− E the actual number of negative squares of the
kernel (1.2).

The fact that positive definiteness of the kernel KE coincides with the condition (1.1) is
a classical result, see e.g. [10].

In this paper we are concerned with two subclasses of indefinite Hermite-Biehler func-
tions and the relationship between them.

Definition 1.2.

(i) The set HBsym
κ of symmetric Hermite-Biehler functions with κ negative squares is

defined as the set of all functions E ∈ HBκ which satisfy the functional equation

(1.3) E(z) = E(−z) .

(ii) The set HBsb
κ of semibounded Hermite-Biehler functions with κ negative squares

is defined as the set of all functions E ∈ HBκ which have the property that the

meromorphic function E(z)+E(z)

E(z)−E(z)
has only finitely many poles in C \ [0,∞).

The notations HB
sym
<∞ and HBsb

<∞ are defined correspondingly.

To any entire function F , an entire function sqF , its square-transform, can be associ-

ated by setting A(z) := 1
2 (E(z) + E(z)), B(z) := 1

2i
(E(z) − E(z)), and defining

(sqF )(z) := A(z2) + izB(z2) .

Clearly, sqF satisfies the functional equation (1.3), i.e., sqF (z) = sqF (−z). It is a
consequence of [4, Theorem 4.1], and was explicitly shown in [13], that sq induces a
bijection of the set

{
F ∈ HBsb

<∞ : F has no zeros in (−∞, 0)
}

onto HB
sym
<∞. Hence we obtain a partition of HB

sym
<∞ into the classes

sq
( {

F ∈ HBsb
κ : F has no zeros in (−∞, 0)

})
, κ ∈ N ∪ {0} .

In [13] the following result was proved, and, as a consequence, information on the distri-
bution of eigenvalues of some concrete boundary value problems was obtained.

Theorem 1.3. Let E ∈ HB
sym
<∞ . Then

(1.4) E ∈ sq
({

F ∈ HBsb
0 : F has no zeros in (−∞, 0)

})

if and only if its zeros are distributed according to the following two rules:

(Z1) All zeros of E in C+ are simple and located on the imaginary axis.
(Z2) Denote the zeros of E which lie in C

+ by iy1, . . . , iyκ with 0 < y1 < · · · < yκ.
Then, for every k = 2, . . . , κ, the number of zeros of E in (−iyk−1,−iyk) is
odd. The number of zeros of E in [0,−iy1) is even. Thereby all zeros are
counted according to their multiplicities.

The proof of necessity that the zeros of an element of (1.4) are distributed according
to (Z1) and (Z2) is a bit elaborate but in essence elementary. In contrast to necessity, the
proof of sufficiency of these conditions which is given in [13] is more involved and rather
implicit. It relies on the theory of (symmetric and semibounded) de Branges Pontryagin
spaces as developed in [6], [5]. The geometric meaning of the conditions (Z1) and (Z2)
remains unrevealed.

It is our aim in the present note to give another proof of the sufficiency part of
Theorem 1.3, which is more elementary and beautifully explains the geometry behind
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(Z1) and (Z2). We use a perturbation method, which was already employed in [12] for
the case of polynomials.

Moreover, we will, as another application of Theorem 1.3, determine the distribution
of eigenvalues of the boundary value problem

(1.5) −y′′ + ipλy + q(x)y = λ2y, x ∈ (0, b) ∪ (b, a) ,

(1.6) y(0) = 0, y(a) = 0, y(b − 0) = y(b + 0) ,

(1.7) y′(b − 0) − y′(b + 0) + (β + iαλ − mλ2)y(b − 0) = 0 ,

where b ∈ (0, a), p > 0, α > 0, m > 0, β ∈ R, q(x) is real valued and its restrictions
belong to L2(0, b) and L2(b, a), correspondingly. This problem arises in the study of small
transversal vibrations of a smooth inhomogeneous string with damping. The conditions
(1.6) mean that the ends of the string are fixed, the conditions (1.7) describe a ring of
mass m which is located at x = b and which moves with damping proportional to α in
the direction orthogonal to the equilibrium position of the string. The parameter p is
the coefficient of damping of the string. We will show:

Theorem 1.4. Let σ be the spectrum of the problem (1.5)-(1.7). There exist two disjoint
sets Σ1, Σ2, where Σ1 consists of a finite number of pairs of conjugate purely imaginary
and nonzero points which lie in the strip {z ∈ C : | Im z| ≤ p

2}, and Σ2 satisfies the
conditions (Z1) and (Z2), such that σ is represented as follows:

(i) if α = mp, then Σ2 ⊆ R, and σ = (Σ1 ∪ Σ2) + ip

2 ;
(ii) if α < mp, then Σ2 is contained in the half-plane {z ∈ C : | Im z| ≥ − p

2}, and

σ = (Σ1 ∪ Σ2) + ip

2 ;
(iii) if α > mp, then Σ2 is contained in the half-plane {z ∈ C : | Im z| ≤ p

2}, and

σ = (Σ1 ∪Σ2)+ ip

2 , where Σ2 denotes the reflection of Σ2 with respect to the real
line.

The content of the present paper is divided into three sections. In Section 2 we set
up our notation and provide some preliminary results. In Section 3 we give the proof of
the sufficiency part of Theorem 1.3. Finally, in Section 4, we apply Theorem 1.3 to the
boundary value problem (1.5)–(1.7), and establish Theorem 1.4.

2. Preliminaries

Let H(C) denote the set of all entire functions. Throughout this paper all topological
terms concerning elements of H(C) will refer to locally uniform convergence, that is the
topology induced by the metric

ρ(F, G) :=

∞∑

n=1

1

2n

sup|z|≤n |F (z) − G(z)|

1 + sup|z|≤n |F (z) − G(z)|
, F, G ∈ H(C) .

For F ∈ H(C) put F#(z) := F (z). The map F 7→ F# is a conjugate linear and isometric
involution of H(C). We can decompose any entire function into its ‘real-’ and ‘imaginary-’
part with respect to this involution: For F ∈ H(C) put

ReF :=
F + F#

2
, ImF :=

F − F#

2i
.

Then (ReF )# = ReF , (ImF )# = ImF , and F = ReF + iImF . An entire function F is
called real, if ImF = 0, i.e., if F = F#.

Remark 2.1. The real- and imaginary- part of a complex number w is denoted by Rew

and Imw, respectively. One has to distinguish the entire functions ReF and ImF from
the C∞-functions Re F and ImF which assign to a point z ∈ C the value Re(F (z)) and
Im(F (z)), respectively.
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a. Symmetry

We deal with entire functions which satisfy the functional equation (1.3).

Definition 2.2. Denote by H(C)sym the set

H(C)sym :=
{
F ∈ H(C) : F#(z) = F (−z)

}
.

Note that H(C)sym is a closed subset of H(C). Moreover, it contains the sum and the
product of each two of its elements, and all real multiples of each of its elements.

Since F#(z) = ReF (z) − iImF (z) and F (−z) = ReF (−z) + iImF (−z), we have
F ∈ H(C)sym if and only if ReF is an even function and ImF is odd. This enables us
to make the following construction:

Definition 2.3. Let F ∈ H(C)sym. Then real entire functions A±(z), B±(z) are well-
defined by the equations

A+(z2) = A−(z2) = ReF (z) ,

B+(z2) = zImF (z), B−(z2) =
ImF (z)

z
.

Define mappings T± : H(C)sym → H(C) by

(T+F )(z) := A+(z) + iB+(z), (T−F )(z) := A−(z) + iB−(z) .

The following properties of the transformations T± are seen by elementary computa-
tion. We will, therefore, omit their proofs.

(i) The map T+ is a bijection of H(C)sym onto {F ∈ H(C) : ImF (0) = 0}.
(ii) The map T− is a bijection of H(C)sym onto H(C), and (T−)−1 = sq .
(iii) T+ and T− are continuous.
(iv) We have T±(F#) = (T±F )#.
(v) Let G ∈ H(C) be real and even, and let g ∈ H(C) be defined by the equation

g(z2) = G(z). Then T±(GF ) = gT±F .

b. The indefinite Hermite-Biehler class

Let us discuss the class HB<∞ in a bit more detail.

Remark 2.4.

(i) The powerful condition in Definition 1.1 is the requirement that KE(w, z) has
a finite number of negative squares. However, the innocent looking condition
that E and E# have no common nonreal zeros will, especially in the present
context, play an important role. For example its presence allows us to evaluate
the number of negative squares of KE(w, z) in terms of the zeros of E, cf. [13,
Remark 2.3, (ii)], [8] :

Let E ∈ HB<∞, then ind− E is equal to the number of zeros of E which are
located in the open upper half plane counted according to their multiplicities.

(ii) The condition that a kernel has a finite number of negative squares is stable with
respect to convergent sequences of uniformly bounded negative index. If En → E

and each of the kernels KEn
has at most κ negative squares, then also the kernel

KE has at most κ negative squares. I.e., in the limit the negative index may
decrease but cannot increase. This shows the following statement.

Assume that En ∈
⋃κ

ν=0 HBν converges to an entire function E, and assume
that E has no pairs of conjugate nonreal zeros. Then E ∈

⋃κ

ν=0 HBν .

The set Nκ of generalized Nevanlinna functions with κ negative squares is defined as
the set of all functions q which are meromorphic in C \ R, satisfy q(z) = q(z), and have
the property that the kernel

(2.1) Lq(w, z) :=
q(z) − q(w)

z − w
, z, w ∈ C

+
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has κ of negative squares. The set of all generalized Nevanlinna functions is then N<∞ :=
⋃

κ∈N∪{0} Nκ. For q ∈ N<∞, the actual number of negative squares of the kernel (4.5)

will be denoted by ind− q.
This is a generalization of a classical class of functions also known as the Nevanlinna

class (not to be mixed up with the set of all functions of bounded characteristic, which
is sometimes also referred to as the ‘Nevanlinna class’). It follows e.g. from [10] that
q ∈ N0 if and only if q is analytic in C \ R, symmetric with respect to the real axis, and
satisfies Im q(z) ≥ 0 for all z ∈ C+.

Indefinite Hermite-Biehler functions are closely related to generalized Nevanlinna func-
tions: Let E ∈ H(C) be such that E and E# have no common nonreal zeros, and put
q := ReE

ImE
. Then E ∈ HB<∞ if and only if q ∈ N<∞, and, in this case, ind− E = ind− q.

A product representation of an indefinite Hermite-Biehler function can be given, cf. [7],
[13].

Theorem 2.5. (Krĕın’s Factorization Theorem). Let E ∈ HB<∞, then only finitely
many zeros of E lie in C+, E has no pairs of conjugate nonreal zeros, and the nonreal
zeros a1, a2, . . . of E satisfy the Blaschke condition

∑

n

∣
∣ Im

1

an

∣
∣ < ∞ .

Whenever numbers pn ∈ N ∪ {0} are chosen such that
∑

n
1

|an|pn+1 < ∞, the function E

can be factorized as a convergent product,

(2.2) E(z) = γD(z)e−iaz
∏

n

(
1 −

z

an

)
exp

( pn∑

l=1

zl

l
Re

1

al
n

)

,

where D is real and has only real zeros, |γ| = 1, and a ≥ 0.
Conversely, if γ, D, a, a1, a2, . . ., p1, p2, . . ., are given and subject to the mentioned

conditions, then (2.2) defines an entire function which belongs to HB<∞.

As a consequence we obtain that HB<∞ is stable with respect to dividing out zeros.

Corollary 2.6. Let E ∈ HB<∞ and let P be a polynomial such that E
P

∈ H(C). Then
E
P

∈ HB<∞ and

ind−
E

P
= ind− E − N ,

where N is the number of zeros of P in C
+ counted according to their multiplicities.

Proof. Write

E(z) = γD(z)e−iaz
∏

n

(
1 −

z

an

)
exp

( pn∑

l=1

zl

l
Re

1

al
n

)

according to Krĕın’s Factorization Theorem. Since every zero of P must also be a zero
of E with at least the same multiplicity, we can enumerate the nonreal zeros a1, a2, . . .

of E in such a way that P (z) = P̃ (z)
∏k

n=1

(
1 − z

an

)
where P̃ (z) has only real zeros. It

follows that

E(z)

P (z)
= γ ·

[D(z)

D̃(z)
exp

( k∑

n=1

pn∑

l=1

zl

l
Re

1

al
n

) ]

e−iaz
∏

n>k

(
1 −

z

an

)
exp

( pn∑

l=1

zl

l
Re

1

al
n

)

.

From the converse statement in Krĕın’s Factorization Theorem we obtain that E
P

∈
HB<∞. The assertion on negative indices follows from Remark 2.4, (i). �

c. More on the relation between HB
sym
<∞ and HBsb

<∞

Since T− = sq−1, we know from [13, Proposition 2.10] that, if E ∈ HB
sym
<∞, then the

transformed function T−E is again an indefinite Hermite-Biehler function. It was proved
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in [5] under an additional assumption that E has no real zeros, that also T+ has this
property. It is an important observation, which appears as a consequence of [4, Proposi-
tion 3.2], that thereby negative indices sum up. Since this fact is essential for our further
arguments, we provide an explicit proof.

Lemma 2.7. Let E ∈ HB
sym
<∞. Then T±E ∈ HBsb

<∞ and we have

ind− T+E + ind− T−E = ind− E .

Proof. Let A±, B± be as in Definition 2.3. Assume that w ∈ C \ [0,∞) is a zero of A+

or A−. Let z ∈ C+ be such that z2 = w. Then, by the definition of A±, it follows that
ReE(z) = 0. Similarly, we see that if B+(w) = 0 or B−(w) = 0, then z is a zero of ImE.

Hence, if w ∈ C \ [0,∞) is a common zero of A+ and B+, or of A− and B−, then z is
a common zero of ReE and ImE, a contradiction. In particular it follows that T+E as
well as T−E has no pair of conjugate nonreal zeros.

Consider the functions

q(z) :=
ReE(z)

ImE(z)
, q+(z) :=

A+(z)

B+(z)
, q−(z) :=

A−(z)

B−(z)
.

Then q ∈ N<∞ and ind− q = ind− E. By the definition of A± and B±, we have

q(z) = zq+(z2) =
q−(z2)

z
.

Now we can apply [4, Proposition 3.2], and obtain that q+, q− ∈ N<∞ and ind− q+ +
ind− q− = ind− q. This shows that T−E, T+E ∈ HB<∞, and that ind− T−E +
ind− T+E = ind− E.

As we have seen above in the first paragraph of this proof, a zero w ∈ C \ [0,∞) of
B+ or B− gives rise to a zero z ∈ C+ of ReE or ImE, respectively. However, since
ReE
ImE

∈ N<∞, this function can have only finitely many poles in C+. Since ReE and
ImE have no common nonreal zeros, the function ImE, and with it also B+ and B−,
can have only finitely many zeros in C \ [0,∞). In particular, T−E and T+E satisfy the
requirement of Definition 1.2, (ii). �

3. Proof of sufficiency in Theorem 1.3

The present proof is based on a ‘shifting-of-zeros’ perturbation argument. We present
its core in the form of three lemmas. The first one is an immediate consequence of Krĕın’s
Factorization Theorem.

Lemma 3.1. Let E ∈ HB<∞ and let η1, . . . , ηN : [0, 1] → C be continuous and such that
for each t ∈ [0, 1] the set

Mt :=
{
z ∈ C : E(z) = 0

}
∪ {η1(t), . . . , ηN (t)}

does not contain pairs of conjugate nonreal points, cf. Figure 1.
Define

e(t) :=
N∏

j=1

(z − ηj(t)) · E(z), t ∈ [0, 1] .

Then e maps [0, 1] continuously into HB<∞ and we have

ind− e(t) = ind− E + #{j : Im ηj(t) > 0}.

Proof. The fact that e(t) is a continuous map into H(C) is obvious. Write

E(z) = γD(z)e−iaz
∏

n

(

1 −
z

an

)

exp
( pn∑

l=1

zl

l
Re

1

al
n

)
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×

•

×

⋄
⋄

• ... zeros of E

× ... conjugates (forbidden points)

η(t)

forbidden curve

η(t) for t with
Im η(t) > 0

Figure 1. Path of η(t) (N = 1)

according to Krĕın’s Factorization Theorem. Put c(t) :=
∏

j:ηj(t) 6=0 ηj(t) and let k(t) :=

#{j : ηj(t) = 0}. Then

e(t) =
(

γ
c(t)

|c(t)|

)

·
[

|c(t)|(−1)N−k(t)zk(t)D(z)
]

· e−iaz

×
∏

j:ηj(t) 6=0

(

1 −
z

ηj(t)

)

·
∏

n

(

1 −
z

an

)

exp
( pn∑

l=1

zl

l
Re

1

al
n

)

.

From the converse part of Krĕın’s Factorization Theorem, we obtain e(t) ∈ HB<∞. The
assertion on negative indices follows from Remark 2.4, (i). �

Lemma 3.2. Let κ ∈ N ∪ {0}, let I be a nonempty and connected subset of R, and
let e : I → HBsym

κ be continuous. Then the functions ind− T+e(t) and ind− T−e(t) are
constant on I.

Proof. Put κ0 := mint∈I ind− T+e(t). By Lemma 2.7 we have κ0 ≤ κ. Moreover, if
κ0 = κ, we must have ind− T+e(t) = κ and ind− T−e(t) = 0 for all t ∈ I, and we are
done. Hence let us assume that κ0 < κ.

Consider the set

J :=
{
t ∈ I : ind− T+e(t) = κ0

}
.

Then J is nonempty. Remark 2.4, (ii), and the continuity of T+ imply that J is closed,
for if s ∈ J , then

κ0 ≤ ind− T+e(s) ≤ sup
t∈J

ind− T+e(t) = κ0 .

Consider the set I \ J . By Lemma 2.7 we have

I \ J =
{
t ∈ I : ind− T+e(t) > κ0

}
=

{
t ∈ I : ind− T−e(t) < κ − κ0

}

=
{
t ∈ I : ind− T−e(t) ≤ κ − κ0 − 1

}
.

From Remark 2.4, (ii), and the continuity of T−, it now follows that also I \ J is closed.
Since I is connected, we conclude that I = J . This means that ind− T+e(t) = κ0 and

ind− T−e(t) = κ − κ0 for all t ∈ I. �
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Lemma 3.3. Let E ∈ HB
sym
<∞ and assume that E has a simple zero at the origin. Let

I = (α, β), α ∈ [−∞, 0), β ∈ (0,∞], be the largest interval which contains zero and is
such that E has no zeros in (−iβ,−iα) \ {0}. Define a function e : I → H(C) by

e(t) :=
z − it

z
E(z), t ∈ I .

Then e maps I continuously into HB
sym
<∞, and the function ind− T−e(t) is constant on I.

Proof. We have E(z)
z

∈ HB<∞ and e(t) = (z − it)E(z)
z

. Hence, by the definition of I, we
may apply Lemma 3.1 and obtain that e(t) ∈ HB<∞ for all t ∈ I, and that

ind− e(t) =

{

ind− E + 1, t > 0,

ind− E, t ≤ 0.

Since
(z − it

z

)#

=
z + it

z
=

(−z) − it

(−z)
,

we see that e(t) ∈ H(C)sym.
By Lemma 3.2 both of the functions ind− T+e(t) and ind− T−e(t) are constant on

(α, 0] as well as on (0, β). Put

ν± := ind− T±e(t), t ∈ (α, 0] ,

π± := ind− T±e(t), t ∈ (0, β) .

Then, by Remark 2.4 (ii), and the continuity of T−,

(3.1) ν− = ind− T−e(0) ≤ π− .

We claim that

(3.2) π+ ≥ ν+ + 1 .

Assuming this claim, it follows that

ν+ + ν− = ind− E = π+ + π− − 1 ≥ (ν+ + 1) + π− − 1 = ν+ + π−

and hence ν− ≥ π−. Together with (3.1) we obtain ν− = π−, and this is the assertion of
the lemma.

It remains to establish the claim (3.2). To this end let us compute T+e(t) more
explicitly. We have

e(t) =
(

1 − i
t

z

)

E(z) =
(

1 − i
t

z

)(

ReE(z) + iImE(z)
)

=
[

ReE(z) + t
ImE(z)

z

]

︸ ︷︷ ︸

=Ree(t)(z)

+ i
[

ImE(z) − t
ReE(z)

z

]

︸ ︷︷ ︸

=Ime(t)(z)

.

To shorten the notation put A := ReT−E and B := ImT−E. Then the above formula
rewrites as

Ree(t)(z) = A(z2) + tB(z2), Ime(t)(z) =
1

z

(
z2B(z2) − tA(z2)

)
.

The definition of T+ now gives
(
ReT+e(t)

)
(z) = A(z) + tB(z),

(
ImT+e(t)

)
(z) = zB(z) − tA(z) ,

i.e.,

(3.3) T+e(t)(z) =
[
A(z) + tB(z)

]
+ i

[
zB(z)− tA(z)

]
.

Since E(0) = 0, we have ReE(0) = ImE(0) = 0, and it follows from the definition of
T− that A(0) = 0. Since ReE is even, it has a zero of multiplicity at least 2 at 0. Due
to our assumption that 0 is a simple zero of E, the function ImE must therefore have a
simple zero at the origin. This implies that B(0) = ImT−E(0) 6= 0, and that ImT+E

has a simple zero at 0. Hence T+E = T+e(0) has a simple zero at the origin.
By Hurwitz’s Theorem there exist r1 > 0 and ǫ1 > 0 such that, for every t ∈ (−ǫ1, ǫ1),

the function T+e(t) has exactly one zero ζ(t) in the disk U0 := {z ∈ C : |z| < r1} and
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this zero is simple. By the generalized Theorem of Logarithmic Residues, ζ(t) depends
real-analytically on t.

We differentiate the identity T+e(t)(ζ(t)) = 0 with respect to t using the representation
(3.3) of T+e(t) (the prime denotes derivation with respect to the complex variable z, the
dot the derivative with respect to the real variable t),

0 =
[
A′(ζ(t))ζ̇(t) + B(ζ(t)) + tB′(ζ(t))ζ̇(t)

]

+ i
[
ζ̇(t)B(ζ(t)) + ζ(t)B′(ζ(t))ζ̇(t) − A(ζ(t)) − tA′(ζ(t))ζ̇(t)

]

= ζ̇(t)
[
A′(ζ(t)) + tB′(ζ(t)) + iB(ζ(t)) + iζ(t)B′(ζ(t)) − itA′(ζ(t))

]

+
[
B(ζ(t)) − iA(ζ(t))

]
.

Evaluating at t = 0, and keeping in mind that ζ(0) = 0 and A(0) = 0, yields

0 = ζ̇(0)
[
A′(0) + iB(0)

]
+ B(0) .

Since B(0) 6= 0, we obtain

ζ̇(0) =
−B(0)

A′(0) + iB(0)
=

−B(0)A′(0) + iB(0)2

|A′(0) + iB(0)|2
,

and thus

Im ζ̇(0) > 0 .

Since t is a real variable,
d

dt

(
Im ζ(t)) = Im

( d

dt
ζ(t)

)
.

We conclude that, locally at 0, the function Im ζ(t) is strictly increasing. In particular,
there exists δ ∈ (0, ǫ1] such that

Im ζ(t)

{

> 0, t ∈ (0, δ),

< 0, t ∈ (−δ, 0).

Let a1, . . . , an denote the zeros of T+E in the open upper half plane, and let α1, . . . , αn

be their multiplicities, so that α1 + · · · + αn = ind− T+E = ν+. By Hurwitz’s Theorem,
there exist r2 > 0 and ǫ2 > 0 such that the disks Uj := {z ∈ C : |z − aj | < r2} are
pairwise disjoint, are entirely contained in the open upper half plane, do not intersect the
disk U0, and have the property that for every t ∈ (−ǫ2, ǫ2) and j = 1, . . . , n the function
T+e(t) has zeros inside Uj whose total multiplicity is equal to αj . It follows that, for
every t ∈ (0, min{δ, ǫ2}), the total multiplicity of zeros of T+e(t) in the open upper half
plane is at least equal to α1 + · · · + αn + 1 = ν+ + 1. �

We are now ready for our new proof of the sufficiency part of Theorem 1.3.

Proof. Assume that E ∈ HB
sym
<∞ and that the zeros of E are distributed according to the

rules (Z1) and (Z2). Since sq−1 = T−, we have to show that ind− T−E = 0. We will use
induction on ind− E.

Step 1, ind− E = 0. In this case the fact that ind− T−E = 0 is immediate from
Lemma 2.7.

Step 2, reduction to the case where E has no zeros in (−iy1, iy1). Assume that ind− E >

0, let y1 be as in Theorem 1.3, and denote by ia1, . . . , ia2k the zeros of E in the interval
[0,−iy1) listed according to their multiplicities and enumerated such that 0 ≥ a1 ≥ · · · ≥
a2k. We will move these zeros away from the imaginary axis. Since their total number
is even, this can be done retaining the symmetry property of E.

If k = 0, there is nothing to do. Assume that k > 0. Put

ηj(t) := t
−iy1

2
+ (1 − t)iaj, t ∈ [0, 1], j = 1, . . . , 2k ,
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and consider the map

e(t) :=

2k∏

j=1

(
z − ηj(t)

)
·

E(z)
∏2k

j=1(z − iaj)
, t ∈ [0, 1] ,

cf. Figure 2.

•

•

•

•

• •

• •

••

•

•

×

×

⋄−iy1

2

iy1

ia1

ia2

ia2k

−iy1

Figure 2. Producing one multiple zero with even multiplicity

For all values of t and j, the point ηj(t) lies on the imaginary axis. Hence,
[z − ηj(t)

z − iaj

]#

=
z + ηj(t)

z + iaj

=
(−z) − ηj(t)

(−z) − iaj

,

and it follows that e(t) ∈ H(C)sym. Since ηj depends continuously on t and Im ηj(t) ≤ 0,
Corollary 2.6 and Lemma 3.1 give e(t) ∈ HB<∞ and ind− e(t) = ind− E, t ∈ [0, 1]. We
therefore may apply Lemma 3.2 and conclude that

ind− T−e(1) = ind− T−E .

Choose ǫ > 0 such that no zero of e(1) lies in [−iy1

2 − ǫ, −iy1

2 + ǫ] \ {−iy1

2 }. Put

λl(t) :=
−iy1

2
− tǫ, λr(t) := t

−iy1

2
+ tǫ, t ∈ [0, 1] ,

and consider the map

f(t) := λl(t)
kλr(t)

k ·
e(1)(z)

(z + iy1

2 )2k
, t ∈ [0, 1] ,

cf. Figure 3.
The same argument as above will show that

ind− f(t) = ind− f(0)
(

= ind− e(1) = ind− E
)
, t ∈ [0, 1] ,

ind− T−f(1) = ind− T−f(0) (= ind− T−e(1) = ind− T−E
)
.

The function f(1) belongs to HB
sym
<∞, its zeros are distributed according to the rules (Z1)

and (Z2), and we have

ind− f(1) = ind− E, ind− T−f(1) = ind− T−E .

Moreover, f(1) has no zeros in (−iy1, iy1).
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• •

• •

••

•

•

×

×

•

•⋄ ⋄

−iy1

2

iy1

−iy1

Figure 3. Moving the zeros symmetrically away from the imaginary axis

Step 3, the inductive step. Due to the considerations in Step 2, we may assume that E

has no zeros in (−iy1, iy1). Put

Ê(z) :=
zE(z)

z − iy1
,

then Ê ∈ H(C)sym. Moreover, by Corollary 2.6, Ê ∈ HB<∞ and ind− Ê = ind− E − 1.

Let I = (α, β) be the largest interval which contains 0 and is such that Ê has no zeros
in (−iβ,−iα) \ {0}. Then β > y1, in particular y1 ∈ I. An application of Lemma 3.3 to

Ê, cf. Figure 4, yields

ind− T−Ê = ind− T−E .

However, the function Ê belongs to HB
sym
<∞ and satisfies the conditions (Z1) and (Z2)

since the total number of zeros in (−iy2,−iy1) is odd and we have produced a simple

zero at the origin. Moreover, ind− Ê < ind− E. Hence, by the inductive hypothesis,

ind− T−Ê = 0. This completes the proof of Theorem 1.4, sufficiency. �

4. An application

We come to the proof of Theorem 1.4. Here we will actually use the necessity part in
Theorem 1.3, the proof of which can be found in [13]. First let us substitute λ := z + ip

2
for the spectral parameter λ. Then (1.5)–(1.7) become

(4.1) y′′(x) + z2y(x) +
(p2

4
− q(x)

)
= 0, x ∈ (0, b) ∪ (b, a),

(4.2) y(0) = y(a) = 0, y(b − 0) = y(b + 0),

(4.3) y′(b − 0) − y′(b + 0) +
(
β1 + i(α − mp)z − mz2

)
y(b − 0) = 0,

where β1 := β + mp2

4 − αp
2 .

Let s1(ζ, x), c1(ζ, x), x ∈ (0, b), and s2(ζ, x), c2(ζ, x), x ∈ (b, a), be the solutions of the
equation

y′′(x) + ζy(x) +
(p2

4
− q(x)

)
= 0
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• •

• •

••

•

•

×

×

•

⋄

• •

iy1

−iy1

Figure 4. Moving one zero out of C
+

on the interval (0, b) and (b, a), respectively, which satisfy

s1(ζ, 0) = 0, s′1(ζ, 0) = 1, s2(ζ, b) = 0, s′2(ζ, b) = 1,

c1(ζ, 0) = 1, c′1(ζ, 0) = 0, c2(ζ, b) = 1, c′2(ζ, b) = 0.

We will use the following standard properties of these functions, see e.g. [3], [2], [9] .

Remark 4.1.

(i) All zeros of each of the functions s1(ζ, b), c1(ζ, b), s2(ζ, a), c2(ζ, a), are real, sim-

ple, and lie in [− p2

4 ,∞).
(ii) The functions s1(ζ, b) and c1(ζ, b) have no common zeros. The same holds for

each of the pairs s1(ζ, b) and s′1(ζ, b), s2(ζ, b) and c2(ζ, b), s2(ζ, b) and s′2(ζ, b).
(iii) The functions

s1(ζ, b)

c1(ζ, b)
,

s1(ζ, b)

s′1(ζ, b)
,

s2(ζ, b)

c2(ζ, b)
,

s2(ζ, b)

s′2(ζ, b)

belong to the Nevanlinna class N0, i.e., have nonnegative imaginary part through-
out the upper half-plane.

A standard argument will show that the spectrum of the problem (4.1)–(4.3) coincides
with the set of zeros of the function

φ(z) := s′1(z
2, b)s2(z

2, b) + s1(z
2, b)c2(z

2, b)

+
(
β1 + i(α − mp)z − mz2

)
s1(z

2, b)s2(z
2, b) .

This function belongs to H(C)sym and, hence, can be written as a square-transform of
some entire function. In fact,

φ(z) =
[

s′1(z
2, b)s2(z

2, b) + s1(z
2, b)c2(z

2, b) + (β1 − mz2)s1(z
2, b)s2(z

2, b)
]

+ iz
[

(α − mp)s1(z
2, b)s2(z

2, b)
]

= sqF (z) ,

where

F (z) :=
[

s′1(z, b)s2(z, b) + s1(z, b)c2(z, b) + (β1 − mz)s1(z, b)s2(z, b)
]

+ i
[

(α − mp)s1(z, b)s2(z, b)
]

.
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Case (I), α = mp. In this case the term i(α−mp)z in (4.3) is not present. Hence, if we
substitute ζ = z2, the problem (4.1)–(4.3) rewrites as

(4.4) y′′(x) + ζy(x) +
(p2

4
− q(x)

)

= 0, x ∈ (0, b) ∪ (b, a),

(4.5) y(0) = y(a) = 0, y(b − 0) = y(b + 0),

(4.6) y′(b − 0) − y′(b + 0) + (β1 − mζ)y(b − 0) = 0.

It is known, see e.g. [11], that the eigenvalues of this problem are all real, simple, and lie

in [− p2

4 ,∞). However, the eigenvalues of (4.4)–(4.6) are just the zeros of the function F ,

hence the zeros of F are all real, simple, and contained in [− p2

4 ,∞).
Changing back the spectral parameter ζ to z, we see that the spectrum of (4.1)–(4.3)

can be written as a disjoint union of the set Σ1 which contains all square-roots of negative
zeros of F (each with multiplicity 1), and of the set Σ2 which contains all square-roots
of positive zeros of F , each with multiplicity 1, and, in case F (0) = 0, the point 0 with
multiplicity 2. Clearly, for all z ∈ Σ1, we have ‖ Im z‖ ≤ p

2 . Changing back the spectral
parameter z to λ, yields the assertion of Theorem 1.1 in the present case.

Cases (II),(III), α 6= mp. By Remark 4.1 (iii), and since m > 0, we have

q(z) := −
s′1(z, b)s2(z, b) + s1(z, b)c2(z, b) + (β1 − mz2)s1(z, b)s2(z, b)

s1(z, b)s2(z, b)

= −
s′1(z, b)

s1(z, b)
−

c2(z, b)

s2(z, b)
− β1 + mz ∈ N0 .

It follows that

ReF

ImF
∈

{

N0, α < mp

−N0, α > mp
.

By property Remark 4.1 (i), all zeros of ImF are real. In particular, ReF and ImF

cannot have common nonreal zeros.
In order to apply Theorem 1.3, we have to take care about possible zeros of F located

on the negative real line. Assume that w ∈ (−∞, 0) is such that F (w) = 0. Then
ReF (w) = 0 and ImF (w) = 0. We see from the second relation that either s1(w, b) = 0
or s2(w, a) = 0. If, say s1(w, b) = 0, then by Remark 4.1 (ii), we have s′1(w, b) 6= 0,
and hence the first relation implies that s2(w, a) = 0. Similarly, if s2(w, a) = 0, then
c2(w, a) 6= 0, and hence s1(w, b) = 0. Thus ImF has a zero of multiplicity 2 at w. The
multiplicity of w as a zero of ReF is, by what was said in Case (I) above, equal to 1.

Hence F (z)
z−w

takes a nonzero real value at w.

All real negative zeros of s1(ζ, b), and hence also all real negative zeros of F , lie in

[− p2

4 ,∞). Denote them by w1, . . . , wN , and put

F̂ (z) :=
F (z)

∏N

j=1(z − wj)
.

From now on we have to distinguish the cases α < mp and α > mp.

Case (II), α < mp. In this case we have F ∈ HBsb
0 , and thus also F̂ ∈ HBsb

0 . However,

F̂ has no real negative zeros, and hence the zeros of sq F̂ are distributed according to
(Z1) and (Z2). We have

sqF (z) =

N∏

j=1

(z2 − wj) · sq F̂ (z) .
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Let Σ1 denote the set of all square-roots of the numbers w1, . . . , wN , each with multi-
plicity 1, and let Σ2 be the collection of zeros of sq F̂ . Then Σ1 is distributed as required
in the assertion of Theorem 1.4, and Σ2 satisfies (Z1) and (Z2). Since all eigenvalues of
the problem (4.1)–(4.3) are geometrically simple, we must have Σ1 ∩ Σ2 = ∅. Changing
back the spectral parameter z to λ yields the asserted representation of the spectrum of
(1.5)–(1.7) with these sets Σ1 and Σ2. Now it also follows that Im z ≥ p

2 for all z ∈ Σ2,
since we know that, by our conditions on β and q, the spectrum of (1.5)–(1.7) lies in the
closed upper half-plane, cf. [11].

Case (III), α > mp. In this case we have F# ∈ HBsb
0 , and thus Theorem 1.3 may be

applied to F̂#. Let Σ1 be as above and let Σ2 be the collection of zeros of F̂#. The
same arguments as above will yield the assertion of Theorem 1.4 also in this case. �
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1997.

2. F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York,

1997.
3. I. S. Kac, M. G. Krein, On spectral functions of a string, Appendix II to: F. V. Atkinson, Dis-

crete and Continuous Boundary Problems. [Russian translation], Mir, Moscow, 1968, pp. 648–
737; I. S. Kac, M. G. Krein, On the Spectral Function of the String, Amer. Math. Soc. Transl.,
Ser. 2, Vol. 103, 1974, pp. 19–102.
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