PG-FRAMES IN BANACH SPACES

M. R. ABDOLLAHPOUR, M. H. FAROUGHI, AND A. RAHIMI

ABSTRACT. For extending the concepts of *p*-frame, frame for Banach spaces and atomic decomposition, we will define the concept of *pg*-frame and *g*-frame for Banach spaces, by which each $f \in X$ (X is a Banach space) can be represented by an unconditionally convergent series $f = \sum g_i \Lambda_i$, where $\{\Lambda_i\}_{i \in J}$ is a *pg*-frame, $\{g_i\} \in (\sum \oplus Y_i^*)_{l_q}$ and $\frac{1}{p} + \frac{1}{q} = 1$. In fact, a *pg*-frame $\{\Lambda_i\}$ is a kind of an overcomplete basis for X^* . We also show that every separable Banach space X has a *g*-Banach frame with bounds equal to 1.

1. INTRODUCTION

Various generalization of frames for Hilbert spaces have been proposed recently. For example, frame of subspaces [3], pseudo-frames [14], bounded quasi-projectors [10], oblique frames [7], [8] and so on. The most recent of these belongs to Wenchang Sun. In this generalization, W. Sun chose a family of bounded operators on a sequence of Hilbert spaces and called this system a generalized frame or a g-frame. By his extension, if $\{\Lambda_i\}_{i\in J}$ is a g-frame then every element $f \in \mathcal{H}$ can be represented as $f = \sum_{i\in J} \Lambda_i^* \Lambda_i S^{-1} f$.

The concept of frames in Banach spaces have been introduced by Christensen and Stoeva [5], Casazza, Han and Larson [4] and Grochenig [11]. In the present paper, by using Sun's extension and some techniques in a frame for Banach spaces, we shall introduce pg-frames and g-frames for Banach spaces that allows every element $f \in X$ to be represented by an unconditionally convergent series $f = \sum_{i \in J} g_i \Lambda_i f$, where $\{\Lambda_i\}_{i \in J}$ is a pg-frame, $\{g_i\}_{i \in J} \in (\sum \oplus Y_i^*)_{l_q}$ and $\frac{1}{p} + \frac{1}{q} = 1$. Throughout this paper, J is a subset of \mathbb{N} , \mathcal{H} is a separable Hilbert space, $\{\mathcal{H}_i\}_{i \in J}$

Throughout this paper, J is a subset of \mathbb{N} , \mathcal{H} is a separable Hilbert space, $\{\mathcal{H}_i\}_{i \in J}$ is a sequence of separable Hilbert spaces, X is a Banach space with dual X^* and also $\{Y_i\}_{i \in J}$ is a sequence of Banach spaces.

Definition 1.1. We call a sequence $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ a *g*-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in J}$ if there exist two positive constants A and B such that

$$A\|f\|^2 \le \sum_{i \in J} \|\Lambda_i f\|^2 \le B\|f\|^2, \quad f \in \mathcal{H}$$

We call A and B the lower and upper g-frame bounds, respectively.

We call $\{\Lambda_i\}_{i \in J}$ a tight g-frame if A = B and Parseval g-frame if A = B = 1. The following proposition was proved in [18] and gives a representation for each $f \in \mathcal{H}$.

Proposition 1.2. Let $\{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for \mathcal{H} . The operator

$$S: \mathcal{H} \to \mathcal{H},$$
$$Sf = \sum_{i \in J} \Lambda_i^* \Lambda_i f$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 41A58; Secondary 42C15.

Key words and phrases. Atomic decomposition, Bessel sequence, frame, Banach frame, g-frame, g-Banach frame, pg-frame, qg-Riesz basis, perturbation.

is a positive invertible operator and every $f \in \mathcal{H}$ has an expansion

$$f = \sum_{i \in J} S^{-1} \Lambda_i^* \Lambda_i f = \sum_{i \in J} \Lambda_i^* \Lambda_i S^{-1} f.$$

The operator S is called the g-frame operator of $\{\Lambda_i\}_{i \in J}$.

Definition 1.3. Let $1 . A countable family <math>\{g_i\}_{i \in J} \subseteq X^*$ is a *p*-frame for X, if there exist constants A, B > 0 such that

$$A||f||_X \le \left(\sum |g_i(f)|^p\right)^{\frac{1}{p}} \le B||f||_X, \quad f \in X.$$

We will use the following lemma; its proof can be found in [13].

Lemma 1.4. If $U: X \to Y$ is a bounded operator from a Banach space X into a Banach space Y then its adjoint $U^*: Y^* \to X^*$ is surjective, if and only if, U has a bounded inverse on \mathcal{R}_U .

2. Duals of g-frames

Definition 2.1. Let $\{\Lambda_i\}_{i\in J}$ and $\{\Theta_i\}_{i\in J}$ be two *g*-frames for \mathcal{H} such that

$$f = \sum_{i \in J} \Theta_i^* \Lambda_i f, \quad f \in \mathcal{H}$$

then $\{\Theta_i\}_{i\in J}$ is called an alternate dual of $\{\Lambda_i\}_{i\in J}$.

We have the following situation which shows that if $\{\Theta_i\}_{i\in J}$ is an alternate dual of $\{\Lambda_i\}_{i\in J}$ then $\{\Lambda_i\}_{i\in J}$ is an alternate dual of $\{\Theta_i\}_{i\in J}$.

Proposition 2.2. Let $\{\Lambda_i\}_{i \in J}$ and $\{\Theta_i\}_{i \in J}$ be g-frames for a Hilbert space \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in J}$ such that

$$f = \sum_{i \in J} \Lambda_i^* \Theta_i f, \quad f \in \mathcal{H}$$

then for each $f \in \mathcal{H}, f = \sum_{i \in J} \Theta_i^* \Lambda_i f$.

Proof. Let us define $T : \mathcal{H} \to \mathcal{H}$ by $Tf = \sum_{i \in J} \Theta_i^* \Lambda_i f$. If the upper *g*-frame bounds of $\{\Lambda_i\}_{i \in J}$ and $\{\Theta_i\}_{i \in J}$ are *B* and *B'*, respectively, then

$$T\| = \sup_{\|f\|=1} |\langle Tf, f \rangle|$$

$$\leq \sup_{\|f\|=1} \left(\sum_{i \in J} \|\Lambda_i f\|^2 \right)^{\frac{1}{2}} \left(\sum_{i \in J} \|\Theta_i f\|^2 \right)^{\frac{1}{2}} \leq \sqrt{BB'}.$$

Hence $T \in B(\mathcal{H})$. For $f, g \in \mathcal{H}$, we have

$$\langle Tf,g\rangle = \langle \sum_{i\in J} \Theta_i^* \Lambda_i f,g\rangle = \sum_{i\in J} \langle \Lambda_i f,\Theta_i f\rangle.$$

Also,

$$\langle f,g \rangle = \langle f, \sum_{i \in J} \Lambda_i^* \Theta_i g \rangle = \sum_{i \in J} \langle \Lambda_i f, \Theta_i g \rangle.$$

So $\langle Tf,g \rangle = \langle f,g \rangle$ for all $f,g \in \mathcal{H}$, which implies that T = I.

Let $\{f_i\}$ be a frame for a Hilbert space \mathcal{H} and $V : \mathcal{H} \to \mathcal{H}$ be an invertible operator. Then $\{Vf_i\}$ is a frame for \mathcal{H} and the same result holds for g-frames.

Proposition 2.3. Let $\{\Lambda_i\}_{i\in J}$ be a g-frame for a Hilbert space \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in J}$ and $V \in B(\mathcal{H})$ be an invertible operator. Then $\{\Lambda_i V\}_{i\in J}$ is a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in J}$ and its g-frame operator is $S' = V^*SV$.

Proof. Let $\{\Lambda_i\}_{i\in J}$ be a *g*-frame for \mathcal{H} . We have

$$A\|Vf\|^2 \le \sum_{i \in J} \|\Lambda_i Vf\|^2 \le B\|Vf\|^2, \quad f \in \mathcal{H}.$$

202

Since V is invertible,

$$A\|V^{-1}\|^{-2}\|f\|^{2} \leq \sum_{i \in J} \|\Lambda_{i}Vf\|^{2} \leq B\|V\|^{2}\|f\|^{2}, \quad f \in \mathcal{H},$$

so $\{\Lambda_i V\}_{i \in J}$ is a *g*-frame for \mathcal{H} .

For each $f \in \mathcal{H}$, we have

$$SVf = \sum_{i \in J} \Lambda_i^* \Lambda_i Vf,$$

therefore

$$V^*SVf = \sum_{i \in J} V^*\Lambda_i^*\Lambda_iVf.$$

Let S' be the g-frame operator of $\{\Lambda_i V\}_{i \in J}$, then for each $f \in \mathcal{H}$,

$$S'f = \sum_{i \in J} V^* \Lambda_i^* \Lambda_i V f,$$

hence $S' = V^* S V$.

Note that when $\{\Lambda_i\}_{i\in J}$ is a g-frame for a Hilbert space \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in J}$ and $\{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i)\}_{i\in J}$ is a family of bounded operators such that $f = \sum_{i\in J} \Theta_i^* \Lambda_i f$ for each $f \in \mathcal{H}$. Then $\{\Theta_i\}_{i\in J}$ is not necessarily a g-frame. For instance, let $\mathcal{H} = \mathbb{C}$ and $K_i = \mathbb{C}$, choose sequences $\{c_i\}$ and $\{d_i\}$ in \mathbb{C} such that $\sum_{i\in J} |d_i|^2 = \infty$, $\sum_{i\in J} |c_i|^2 = 1$ and $\sum_{i\in J} c_i \bar{d}_i = 1$. If $\Lambda_i f = c_i f$ and $\Theta_i f = d_i f$ then $\{\Lambda_i\}_{i\in J}$ is a normalized tight g-frame for \mathbb{C} and

$$\sum_{i\in J} \Theta_i^* \Lambda_i f = \sum_{i\in J} \Theta_i^*(c_i f) = \sum_{i\in J} c_i \bar{d}_i f = f, \quad f \in \mathbb{C}.$$

Also we have

$$\sum_{i \in J} \|\Theta_i f\|^2 = \sum_{i \in J} \|d_i f\|^2 = \sum_{i \in J} |d_i|^2 \|f\|^2 = \infty.$$

Therefore $\{\Theta_i\}_{i \in J}$ is not a *g*-frame for $\{c_i\}$.

Let $\{\mathcal{H}_i\}_{i \in J}$ be a sequence of Hilbert spaces. Then, the orthogonal sum of $\{\mathcal{H}_i\}_{i \in J}$ is the Hilbert space

$$\bigoplus_{i \in J} \mathcal{H}_i = \left\{ \{f_i\} : f_i \in \mathcal{H}_i, \sum_{i \in J} \|f_i\|^2 < \infty \right\}$$

with the inner product defined by

$$\langle \{f_i\}, \{g_i\} \rangle = \sum_i \langle f_i, g_i \rangle.$$

Let for all $i \in J$, $\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i)$. Then, we define the operator $\bigoplus_{i \in J} \Lambda_i$ on $\bigoplus_{i \in J} \mathcal{H}_i$ by $\bigoplus_{i \in J} \Lambda_i(\{f_i\}) = \{\Lambda_i f_i\}_{i \in J}$.

Proposition 2.4. Let $\{\Lambda_i\}_{i\in J}$ and $\{\Theta_i\}_{i\in J}$ be two g-frames for Hilbert spaces \mathcal{H} and K with respect to $\{\mathcal{H}_i\}_{i\in J}$ and $\{K_i\}_{i\in J}$, respectively. Then $\{\Lambda_i \oplus \Theta_i\}_{i\in J}$ is a g-frame for $\mathcal{H} \oplus K$ with respect to $\{\mathcal{H}_i \oplus K_i\}_{i\in J}$ and

$$S_{\Lambda\oplus\Theta} = S_{\Lambda} \oplus S_{\Theta},$$

where $S_{\Lambda\oplus\Theta}$, S_{Λ} and S_{Θ} are the g-frame operators of $\{\Lambda_i\oplus\Theta_i\}_{i\in J}$, $\{\Lambda_i\}_{i\in J}$ and $\{\Theta_i\}_{i\in J}$, respectively.

Proof. Let $\{\Lambda_i\}_{i \in J}$ be a *g*-frame for \mathcal{H} with bounds A_1 and B_1 with respect to $\{\mathcal{H}_i\}_{i \in J}$, then

(2.1)
$$A_1 \|f\|^2 \le \sum_{i \in J} \|\Lambda_i f\|^2 \le B_1 \|f\|^2$$

203

for all $f \in \mathcal{H}$. Suppose that $\{\Theta_i\}_{i \in J}$ is a g-frame for K with bounds A_2 and B_2 with respect to $\{K_i\}_{i \in J}$, we have

(2.2)
$$A_2 \|g\|^2 \le \sum_{i \in J} \|\Theta_i g\|^2 \le B_2 \|g\|^2$$

for each $g \in \mathcal{H}$. From (2.1) and (2.2) we conclude that for each $f \in H$ and $g \in K$,

$$A_1 ||f||^2 + A_2 ||g||^2 \le \sum_{i \in J} ||\Lambda_i f||^2 + ||\Theta_i g||^2 \le B_1 ||f||^2 + B_2 ||g||^2.$$

Let $A = \min\{A_1, A_2\}$, $B = \max\{B_1, B_2\}$ and $f \oplus g \in H \oplus K$. We have

$$A\|f \oplus g\|^2 \le \sum_{i \in J} \|(\Lambda_i \oplus \Theta_i)(f \oplus g)\|^2 \le B\|f \oplus g\|^2.$$

So,

$$S_{\Lambda\oplus\Theta}(f\oplus g) = \sum_{i\in J} (\Lambda_i\oplus\Theta_i)^*(\Lambda_i\oplus\Theta_i)(f\oplus g) = \sum_{i\in J} (\Lambda_i^*\oplus\Theta_i^*)(\Lambda_if\oplus\Theta_ig)$$
$$= \sum_{i\in J} (\Lambda_i^*\oplus\Theta_i^*)(\Lambda_if\oplus\Theta_ig) = \sum_{i\in J} (\Lambda_i^*\Lambda_if\oplus\Theta_i^*\Theta_ig)$$
$$= \left(\sum_{i\in J} (\Lambda_i^*\Lambda_if\right) \oplus \left(\sum_{i\in J} \Theta_i^*\Theta_ig\right) = (S_{\Lambda}\oplus S_{\Theta})(f\oplus g).$$

Hence, $S_{\Lambda \oplus \Theta} = S_{\Lambda} \oplus S_{\Theta}$.

Corollary 2.5. If $\Lambda_i = {\Lambda_{ij}}_{j \in J}$ is a g-frame for a Hilbert space \mathcal{H}_i with respect to ${\mathcal{H}_{ij}}_{j \in J}$, with bounds A_i and B_i such that $\inf_{i \in J} A_i = A > 0$ and $\sup_{i \in J} B_i = B < \infty$. Then $\Lambda = {\bigoplus_{i \in \mathbb{N}} \Lambda_i}$ is a g-frame for the Hilbert space $\bigoplus_{i \in \mathbb{N}} \mathcal{H}_i$ with respect to ${\bigoplus_{i \in \mathbb{N}} \mathcal{H}_{ij}}_{i \in J}$ with bounds A and B.

3. PG-frame

As mentioned earlier, a *p*-frame for Banach spaces was introduced by Christensen and Stoeva [5] and a *p*-frame of subspaces by Faroughi and Najati [15]. The following definition is a generalization of *g*-frames that helps for every $f \in X^*$ to be represented as an unconditionally convergent series.

Definition 3.1. We call a sequence $\{\Lambda_i \in B(X, Y_i) : i \in J\}$ a *pg*-frame for X with respect to $\{Y_i : i \in J\}$ if there exist A, B > 0 such that

(3.1)
$$A\|x\|_X \le \left(\sum_{i \in J} \|\Lambda_i x\|^p\right)^{\frac{1}{p}} \le B\|x\|_X, \quad x \in X.$$

A, B is called the pg-frame bounds of $\{\Lambda_i\}_{i \in J}$.

If only the second inequality in (3.1) is satisfied, $\{\Lambda_i\}_{i \in J}$ is called a *pg*-Bessel sequence for X with respect to $\{Y_i : i \in J\}$ with bound B.

Similar to frames and g-frames [16], the following propositions show that the image of a pg-frame under a bounded operator is also a pg-frame.

Proposition 3.2. Let $\{\Lambda_i\}_{i\in J}$ be a pg-frame for X with respect to $\{Y_i\}_{i\in J}$. Let S be a bounded invertible operator on X and $\Gamma_i = \Lambda_i S$. Then $\{\Gamma_i\}_{i\in J}$ is a pg-frame for X with pg-frame bounds $A\|S^{-1}\|^{-1}$ and $B\|S\|$.

Proof. Let $\{\Lambda_i\}_{i \in J}$ be a *pg*-frame for X. Then

$$A\|Sx\|_X \le \left(\sum_{i\in J} \|\Lambda_i Sx\|^p\right)^{\frac{1}{p}} \le B\|Sx\|_X, \quad x \in X.$$

Since S is invertible,

$$A\|S^{-1}\|^{-1}\|x\|_X \le \left(\sum_{i\in J} \|\Gamma_i x\|^p\right)^{\frac{1}{p}} \le B\|S\|\|x\|_X, \quad x \in X,$$

so $\{\Gamma_i\}_{i \in J}$ is a *pg*-frame for X.

Corollary 3.3. Let $\{\Lambda_i\}_{i\in J}$ be a pg-frame for X with respect to $\{Y_i\}_{i\in J}$ and $S: X \to X$ be an isometry. If $\Gamma_i = \Lambda_i S$ then $\{\Gamma_i\}_{i\in J}$ is a pg-frame for X with the same bounds.

Proposition 3.4. Let $\{\Lambda_i\}_{i\in J}$ be a pg-frame for X with respect to $\{Y_i\}_{i\in J}$ and $S: X \to X$ be a bounded operator. Then $\{\Lambda_i S\}_{i\in J}$ is a pg-frame for X if and only if S is bounded below.

Proof. Let $\{\Lambda_i S\}_{i \in J}$ be a pg-frame for X with bounds m, n. We have

$$m\|x\|_X \le \left(\sum_{i\in J} \|\Lambda_i Sx\|^p\right)^{\frac{1}{p}} \le n\|x\|_X, \quad x\in X.$$

Let A, B be pg-frame bounds of $\{\Lambda_i\}_{i \in J}$. Since

$$A\|Sx\|_X \le \left(\sum_{i\in J} \|\Lambda_i Sx\|^p\right)^{\frac{1}{p}} \le B\|Sx\|_X, \quad x \in X,$$

 $m\|x\|_X \leq B\|Sx\|_X$. Thus, for each $x \in X$, $\|Sx\|_X \geq \frac{\delta}{m}\|x\|_X$. Now, suppose there exists $\delta > 0$ such that for each $x \in X$, $\|Sx\|_X > \delta\|x\|_X$. Since

$$A\delta \|x\|_{X} \le A \|Sx\|_{X} \le \left(\sum_{i \in J} \|\Lambda_{i}Sx\|^{p}\right)^{\frac{1}{p}} \le B \|Sx\|_{X} \le B \|S\| \|x\|_{X},$$

 $\{\Lambda_i S\}$ is a *pg*-frame for X with bounds $A\delta$ and B||S||.

Definition 3.5. Let $\{Y_i\}_{i \in J}$ be a sequence of Banach spaces. We define

$$\left(\sum_{i\in J}\oplus Y_i\right)_{l_p} = \left\{ \{x_i\}_{i\in J} | x_i\in Y_i, \left(\sum \|x_i\|^p\right)^{\frac{1}{p}} < +\infty \right\}.$$

Then $\left(\sum_{i\in J} \oplus Y_i\right)_{l_p}$ is a Banach space with the norm

$$\|\{x_i\}_{i\in J}\|_p = \left(\sum_{i\in J} \|x_i\|^p\right)^{\frac{1}{p}}.$$

Let $1 < p, q < \infty$ be conjugate exponents, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. If $x^* = \{x_i^*\}_{i \in J} \in (\sum_{i \in J} \oplus Y_i^*)_{l_q}$ then an easy computation shows that the formula

$$\langle x, x^* \rangle = \sum_{i \in J} \langle x_i, x_i^* \rangle, \quad x = \{x_i\} \in \left(\sum_{i \in J} \oplus Y_i\right)_{l_p}$$

defines a continuous functional on $(\sum_{i \in J} \oplus Y_i)_{l_p}$ whose norm is equal to $||x^*||_q$ and its dual can be characterized with the following lemma whose proof can be found in [1].

Lemma 3.6. Let $1 < p, q < \infty$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\left(\sum_{i\in J} \oplus Y_i\right)_{l_p}^* = \left(\sum_{i\in J} \oplus Y_i^*\right)_{l_q},$$

where the equality holds under the duality

(3.2)

$$\langle x, x^* \rangle = \sum_{i \in J} \langle x_i, x_i^* \rangle$$

Definition 3.7. If $\{\Lambda_i\}_{i \in J}$ is a *pg*-frame, we define the operators T and U, by

$$U: X \to \left(\sum_{i \in J} \oplus Y_i\right)_{l_p}$$
$$U: T = \{\Lambda: T\}: \in J$$

205

M. R. ABDOLLAHPOUR, M. H. FAROUGHI, AND A. RAHIMI

(3.3)
$$T: \left(\sum_{i\in J} \oplus Y_i^*\right)_{l_q} \to X^*,$$
$$T\{g_i\}_{i\in J} = \sum_{i\in J} g_i\Lambda_i.$$

The operators U, T are called the analysis and synthesis operators of $\{\Lambda_i\}_{i \in J}$.

Now, we characterize pg-Bessel sequence and pg-frames by the operator T defined by (3.3).

Proposition 3.8. $\{\Lambda_i \in B(X, Y_i) : i \in J\}$ is a pg-Bessel sequence for X with respect to $\{Y_i\}$ if and only if the operator T defined by (3.3) is a well defined and bounded operator.

Proof. Suppose that $\{\Lambda_i\}_{i \in J}$ is a *pg*-Bessel sequence with bound *B*, then we show that for each $\{f_i\}_{i \in J} \in (\sum_{i \in J} \oplus Y_i^*)_{l_q}$ the series $\sum_{i \in J} f_i \Lambda_i$ is convergent unconditionally. For finite subsets $J_1, J_2 \subset J$ and $J_2 \subsetneq J_1$, we have

$$\begin{split} \|\sum_{i\in J_1} f_i\Lambda_i - \sum_{i\in J_2} f_i\Lambda_i\| &= \|\sum_{i\in J_1\setminus J_2}^k f_i\Lambda_i\| = \sup_{\|x\|=1} \|\sum_{i\in J_1\setminus J_2} f_i\Lambda_ix\| \\ &\leq \sup_{\|x\|=1} \sum_{i\in J_1\setminus J_2} \|f_i\| \|\Lambda_ix\| \\ &\leq \left(\sum_{i\in J_1\setminus J_2} \|f_i\|^q\right)^{\frac{1}{q}} \sup_{\|x\|=1} \left(\sum_{i\in J_1\setminus J_2} \|\Lambda_ix\|^p\right)^{\frac{1}{p}} \\ &\leq B\left(\sum_{i\in J_1\setminus J_2} \|f_i\|^q\right)^{\frac{1}{q}}, \end{split}$$

so, $\sum_{i \in J} f_i \Lambda_i$ is unconditionally convergent. By the same argument,

$$\left\|\sum_{i\in J}f_i\Lambda_i\right\| \le B\left(\sum_{i\in J}\|f_i\|^q\right)^{\frac{1}{q}}.$$

Hence,

$$||T\{f_i\}_{i\in J}|| \le B\left(\sum_{i\in J} ||f_i||^q\right)^{\frac{1}{q}} = B||\{f_i\}||_q,$$

so, T is bounded and $||T|| \leq B$.

For the converse, assume that T is well define and bounded. For $x \in X$, consider

$$F_x : \left(\sum_{i \in J} \oplus Y_i^*\right)_{l_q} \to \mathbb{C},$$

$$F_x(\{g_i\}) = (T\{g_i\})(x) = \sum_{i \in J} g_i \Lambda_i x,$$

then F_x is in $(\sum_{i \in J} \oplus Y_i^*)_{l_q}^*$, so

$$\{\Lambda_i x\} \in \left(\sum_{i \in J} \oplus Y_i\right)_{l_p}$$

and

$||F_x(\{g_i\})|| \le ||T|| ||\{g_i\}||_q ||x||.$

By the Hahn-Banach theorem, there is $\{g_i\} \in (\sum_{i \in J} \oplus Y_i^*)_{l_q}$ with $\|\{g_i\}\|_q \leq 1$ such that

$$\|\{\Lambda_i x\}\|_p = \big|\sum_{i\in J} g_i \Lambda_i x\big|$$

Therefore,

$$\left(\sum_{i\in J} \|\Lambda_i x\|^p\right)^{\frac{1}{p}} = \|\{\Lambda_i x\}\|_p \le \sup_{\|\{g_i\}\|_q \le 1} \left|\sum_{i\in J} g_i \Lambda_i x\right| = \|F_x\| \le \|T\| \|x\|. \qquad \Box$$

Lemma 3.9. If $\{\Lambda_i\}_{i \in J}$ is a pg-frame, then the operator U has closed range.

Proof. Let $\{\Lambda_i\}_{i \in J}$ be a pg-frame. Then there exist A, B > 0 such that

$$A||x||_X \le \left(\sum_{i\in J} \|\Lambda_i x\|^p\right)^{\frac{1}{p}} \le B||x||_X, \quad x \in X.$$

So,

 $A||x|| \le ||Ux|| \le B||x||.$

If Ux = 0 then x = 0, hence U is one-to-one and so $X \simeq \mathcal{R}_U$, therefore U has closed range.

Lemma 3.10. If all of Y_i 's are reflexive and $\{\Lambda_i\}_{i \in J}$ is a pg-frame for X with respect to $\{Y_i\}_{i \in J}$ then X is reflexive.

Proof. By lemma (3.9), \mathcal{R}_U is a closed subspace of $\left(\sum_{i \in J} \oplus Y_i\right)_{l_p}$ and $X \simeq \mathcal{R}_U$ so X is reflexive.

Lemma 3.11. Let $\{\Lambda_i\}_{i \in J}$ be a pg-Bessel sequence for X with respect to $\{Y_i\}_{i \in J}$. Then (i) $U^* = T$.

(ii) If $\{\Lambda_i\}_{i \in J}$ has the lower pg-frame condition and all of Y_i 's are reflexive, then $T^* = U$.

Proof. (i) For any $x \in X$ and $\{g_i\}_{i \in J} \in \left(\sum_{i \in J} \oplus Y_i^*\right)_{l_a}$, we have

$$\langle Ux, \{g_i\}_{i \in J} \rangle = \langle \{\Lambda_i x\}_{i \in J}, \{g_i\}_{i \in J} \rangle = \sum_{i \in J} \langle \Lambda_i x, g_i \rangle = \sum_{i \in J} g_i \Lambda_i x$$

and

$$\langle x, T\{g_i\}_{i \in J} \rangle = \langle x, \sum_{i \in J} g_i \Lambda_i \rangle = \sum_{i \in J} g_i \Lambda_i x,$$

so $T^* = U$.

(ii) By Lemma (3.9) \mathcal{R}_U is a closed subspace of $(\sum_{i \in J} \oplus Y_i)_{l_p}$ and so is reflexive, so $U^{**} = T^*$ hence $U = T^*$.

Theorem 3.12. $\{\Lambda_i\}_{i \in J}$ is a pg-frame for X with respect to $\{Y_i\}_{i \in J}$ if and only if the operator T defined by (3.3) is a surjective bounded operator.

Proof. If $\{\Lambda_i\}_{i \in J}$ is a *pg*-frame, by Proposition (3.8), *T* is well-defined and bounded. The proof of Lemma (3.9) shows that *U* is injective, so by Lemma (1.4) and (3.11)(i) $U^* = T$ is onto.

Conversely, assume that T is bounded and onto. Then Proposition (3.8) implies that $\{\Lambda_i\}_{i\in J}$ is a pg-Bessel sequence. Since $T = U^*$ is onto, by Lemma (1.4), U has a bounded inverse. So there exists A > 0 such that for all $x \in X$, $||Ux|| \ge A||x||$. In other words, $\{\Lambda_i\}_{i\in J}$ satisfies the lower pg-frame condition.

Corollary 3.13. If $\{\Lambda_i \in B(X, Y_i) : i \in J\}$ is a pg-frame for X with respect to $\{Y_i\}_{i \in J}$ then for any $x^* \in X^*$ there exists a $\{g_i\}_{i \in J} \in (\sum \oplus Y_i^*)_{l_q}$ such that

$$x^* = \sum_{i \in J} g_i \Lambda_i.$$

Definition 3.14. Let $1 < q < \infty$. A family $\{\Lambda_i \in B(X, Y_i) : i \in J\}$ is called a *qg*-Riesz basis for X^* with respect to $\{Y_i\}_{i \in J}$, if

- (i) $\{f : \Lambda_i f = 0, i \in J\} = \{0\}$ (i.e. $\{\Lambda_i\}_{i \in J}$ is *g*-complete);
- (ii) there are positive constants A, B such that for any finite subset $J_1 \subseteq J$ and $g_i \in Y_i^*, i \in J_1$,

$$A\bigg(\sum_{i\in J_1} \|g_i\|^q\bigg)^{\frac{1}{q}} \le \Big\|\sum_{i\in J_1} g_i\Lambda_i\Big\| \le B\bigg(\sum_{i\in J_1} \|g_i\|^q\bigg)^{\frac{1}{q}}.$$

The assumptions of definition (3.14) imply that $\sum_{i \in J} g_i \Lambda_i$ converges unconditionally for all $\{g_i\} \in (\sum_{i \in J} \oplus Y_i^*)_{l_q}$, and

$$A\bigg(\sum_{i\in J} \|g_i\|^q\bigg)^{\frac{1}{q}} \le \Big\|\sum_{i\in J} g_i\Lambda_i\Big\| \le B\bigg(\sum_{i\in J} \|g_i\|^q\bigg)^{\frac{1}{q}}$$

Therefore $\{\Lambda_i \in B(X, Y_i) : i \in J\}$ is a qg-Riesz basis for X, if and only if, the operator T defined by (3.3) is an invertible operator from $\left(\sum_{i \in J} \oplus Y_i^*\right)_{l_a}$ onto X^* .

The following Proposition shows that a qq-Riesz basis for X^* is a special case of pq-frames for X.

Proposition 3.15. Let $\{\Lambda_i \in B(X, Y_i) : i \in J\}$ be a qg-Riesz basis for X^* with respect to $\{Y_i\}_{i\in J}$ with the optimal upper qg-Riesz basis bound B. Then $\{\Lambda_i \in B(X,Y_i) : i \in J\}$ is a pg-frame for X with respect to $\{Y_i\}_{i \in J}$ with optimal upper pg-frame bound B.

Proof. Assume that $\{\Lambda_i \in B(X, Y_i) : i \in J\}$ is a qq-Riesz basis for X^* , the operator T defined by (3.3) is a bounded and invertible operator. Theorem (3.12) implies that $\{\Lambda_i\}_{i \in J}$ is a pg-frame for X. By Proposition (3.8) the upper qg-Riesz basis bound coincides with the upper pg-frame bound. \square

Theorem 3.16. Let $\{Y_i\}_{i\in J}$ be a sequence of reflexive Banach spaces. Let $\{\Lambda_i \in \mathcal{N}_i\}_{i\in J}$ $B(X,Y_i)$: $i \in J$ be a pg-frame for X with respect to $\{Y_i\}_{i\in J}$. Then the following statements are equivalent:

- (i) $\{\Lambda_i\}_{i\in J}$ is a qg-Riesz basis for X^* .
- (ii) If $\{g_i\}_{i\in J} \in \left(\sum_{i\in J} \oplus Y_i^*\right)_{l_q}$ and $\sum_{i\in J} g_i\Lambda_i = 0$ then $g_i = 0, i \in J$. (iii) $\mathcal{R}_U = \left(\sum_{i\in J} \oplus Y_i\right)_{l_p}$.

Proof. It is clear that (i) \Rightarrow (ii).

Suppose that (ii) holds. By Theorem (3.12), the operator T is bounded and onto, by (ii), T is also injective, therefore, T has a bounded inverse $T^{-1}: X^* \to (\sum_{i \in I} \oplus Y_i^*)_I$ and so $\{\Lambda_i\}_{i\in J}$ is a qg-Riesz basis for X.

(i) \Rightarrow (iii) Since $\{\Lambda_i\}_{i \in J}$ is a *qg*-Riesz basis for X^* , *T* has a bounded inverse on \mathcal{R}_T . By Lemma (1.4) the adjoint $T^* : X^{**} \to \left(\sum_{i \in J} \oplus Y_i\right)_{l_p}$ is surjective on \mathcal{R}_T . By Lemma (3.10) X is reflexive, and so Theorem (3.12) and Lemma (3.11) imply that $\mathcal{R}_U = (\sum_{i \in J} \oplus Y_i)_{l_p}$. (iii) \Rightarrow (i) Since the operator U is bijective, by Theorem 4.12 in [17], $T = U^*$: $\left(\sum_{i\in J} \oplus Y_i^*\right)_{l_q} \to X^*$ is invertible.

4. G-BANACH FRAMES

A Banach space of vector-valued sequences (or BV-space) is a linear space of sequences with a norm which makes it a Banach space. Let X be a Banach space and 1then

$$Y = \left\{ \{x_i\}_{i \in J} \, | \, x_i \in X, \, \left(\sum_{i \in J} \|x_i\|^p\right)^{\frac{1}{p}} < +\infty \right\}$$

and

$$l^{\infty} = \{\{x_i\} | \sup_{i \in J} ||x_i|| < \infty, \, x_i \in X\}$$

are BV-space for X.

In [11] Grochenig and in [4] Casazza, Han and Larson generalized frames to Banach spaces and defined Banach frames for Banach space X with respect to a BV-space, and in this paper we shall extend its definition to g-Banach frames for a Banach space Xwith respect to a BV-space.

Definition 4.1. Let X be a Banach space and \mathcal{H} be a separable Hilbert space. Let X_d be an associated Banach space of vector-valued sequences indexed by \mathbb{N} . Let $\{\Lambda_i\}_{i\in\mathbb{N}} \subset B(X,\mathcal{H})$ and $S: X_d \to X$ are given. If

- (i) $\{\Lambda_i x\}_{i \in \mathbb{N}} \in X_d$ for each $x \in X$,
- (ii) the norms $||x||_X$ and $||\{\Lambda_i x\}_{i \in \mathbb{N}}||_{X_d}$ are equivalent, and
- (iii) S is bounded and linear and $S{\Lambda_i x}_{i \in \mathbb{N}} = x$ for each $x \in X$,

then $({\Lambda_i}_{i \in \mathbb{N}}, S)$ is a g-Banach frame for X with respect to \mathcal{H} and X_d . The mapping S is the reconstruction operator. If the norm equivalence is given by

$$A \|x\|_{X} \le \|\{\Lambda_{i}x\}_{i \in \mathbb{N}}\|_{X_{d}} \le B \|x\|_{X}$$

for all $x \in X$, then A, B are called the frame bounds for $(\{\Lambda_i\}_{i \in \mathbb{N}}, S)$.

Theorem 4.2. Let \mathcal{H} be a separable Hilbert Space. Then every separable Banach space has a g-Banach frame with respect to \mathcal{H} with frame bounds A = B = 1.

Proof. If X is a separable Banach space, there exists $E \subset X$ such that $\overline{E} = X$ and E is a countable set. Let $\{e_i\}_{i \in \mathbb{N}}$ be an orthonormal basis for \mathcal{H} . We define the operators Λ_i from E into \mathcal{H} by

$$\Lambda_i(x_j) = \delta_{ij} \|x_j\| e_j, \quad j \in \mathbb{N}.$$

Then

$$\sup_{i} \|\Lambda_i(x_j)\| = \|x_j\|$$

Since $\overline{E} = X$, Λ_i can be extended to a bounded operator $\tilde{\Lambda}_i$ on X such that

(4.1)
$$\sup \|\tilde{\Lambda}_i(x)\| = \|x\|, \quad x \in X.$$

Let X_d be the subspace of $l^{\infty}(X)$ given by

$$X_d = \{\{\tilde{\Lambda}_i x\} : x \in X\}.$$

Let $S: X_d \to X$ be given by $S({\tilde{\Lambda}_i x}) = x$. Now, by equality (4.1), S is an isometry of X onto X_d and $({\tilde{\Lambda}_i}, S)$ is a g-Banach frame for X with respect to X_d . \Box

Perturbation of frames as a type of Paley-Winer theorem was proved by Casazza and Christensen [2], for Banach frames by Christensen and Heil [9] and for g-frames in Hilbert spaces by Faroughi, Najati and Rahimi [16]. In this section we present the perturbation of g-Banach frames.

Theorem 4.3. Let $({\Lambda_i}_{i \in \mathbb{N}}, S)$ be a g-Banach frame for X with respect to X_d . Let ${\Gamma_i}_{i \in \mathbb{N}} \subseteq B(X, \mathcal{H})$. If there exist $\lambda, \mu \ge 0$ such that

(i) $\lambda \|U\| + \mu < \|S\|^{-1}$,

(ii)
$$\|\{\Lambda_i(x) - \Gamma_i(x)\}\|_{x_d} \le \lambda \|\{\Lambda_i(x)\}\|_{x_d} + \mu \|x\|_X, x \in X,$$

then there exists an operator T such that $({\Gamma_i}_{i\in\mathbb{N}}, T)$ is a g-Banach frame for X with respect to X_d with frame bounds $||S|| - (\lambda ||U|| + \mu)$ and $||U|| + (\lambda ||U|| + \mu)$, where U is the operator $Ux = {\Lambda_i(x)}_{i\in\mathbb{N}}, x \in X$.

Proof. Let us define the operator $V : X \to X_d$ by $Vx = \{\Gamma_i(x)\}_{i \in \mathbb{N}}$. Since $(\{\Lambda_i\}_{i \in \mathbb{N}}, S)$ is a g-Banach frame for X hence there exist A, B > 0 such that

$$A||x||_X \le ||\{\Lambda_i(x)\}||_{X_d} \le B||x||_X, \quad x \in X.$$

So U is bounded and by (ii) for every $x \in X$,

$$||Ux - Vx||_{X_d} \le \lambda ||Ux||_{X_d} + \mu ||x||_X.$$

Therefore,

$$||Vx||_{X_d} \le (||U|| + \lambda ||U|| + \mu) ||x||_{X_d}$$

so the upper g-frame bound is $(||U|| + \lambda ||U|| + \mu)$. For the lower bound, we have SU = I so

$$||I - SV|| \le ||S|| ||U - V|| \le ||S|| (\lambda ||U|| + \mu) < 1,$$

therefore, SV is invertible, and $||(SV)^{-1}|| \le (1 - ||U|| + \mu) < 1$. If we consider $T = (SV)^{-1}S$ then TV = I,

$$||x||_X \le ||T|| ||Vx||_{X_d} \le \frac{||S||}{1 - (\lambda ||U|| + \mu) ||S||} ||Vx||_{X_d},$$

and so

$$(\|S\|^{-1} - (\lambda \|U\| + \mu)) \|x\|_X \le \|Vx\|_{X_d},$$

and this concludes the proof.

Acknowledgments. The authors would like to express their sincere thanks to Ole Christensen and the referee for the useful comments.

References

- C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhikers Guide, Springer-Verlag, New York—Berlin, 1999.
- P. G. Cazassa and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), no. 5, 543–557.
- P. G. Cazassa and Gitta Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, Contemp. Math., Vol. 345, Amer. Math. Soc., Providence, R. I., 2004, 87–113.
- P. G. Cazassa, D. Han, and D. R. Larson, Frames for Banach spaces, Contemp. Math. Vol. 247, Amer. Math. Soc., Providence, R. I., 1999, 149–182.
- O. Christensen and D. Stoeva, p-frames in separable Banach spaces, Adv. Comput. Math. 18 (2003), no. 2–4, 117–126.
- 6. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2002.
- O. Christensen and Y. C. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal. 17 (2004), 48–68.
- Y. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier Anal. Appl. 9 (2003), 77–96.
- O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33–47.
- M. Fornasier, Decompositions of Hilbert space: local construction of global frames, Proc. Int. Conf., Constructive Theory of Functions (ed. B. Bojanov), Varna 2002. DARBA, Sofia, 2003, pp. 275–281.
- K. Grochenig, Describing functions: atomic decomposition versus frames, Monatsh. Math. 112 (1991), 1–41.
- D. Han, D. R. Larson, Frames, bases and group representations, Memoirs Amer. Math. Soc. 147 (2000), no. 697, 1–91.
- 13. H. Heuser, Functional Analysis, John Wiley, New York, 1982.
- S. Li and H. Ogawa, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl. 10 (2004), 409–431.
- 15. A. Najati and M. H. Faroughi, *p-frames of subspaces in separable Hilbert spaces*, Southest Asian Bull. Math. (to appear).
- A. Najati, A. Rahimi, and M. H. Faroughi, *G-frames in Hilbert spaces* (submitted for publication).
- 17. W. Rudin, Functional Analysis, MacGraw-Hill, New York, 1973.
- 18. W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437-452.

DEPARTMENT OF MATHEMATICS, TABRIZ UNIVERSITY, TABRIZ, IRAN *E-mail address*: mr_abdollahpour@yahoo.com

DEPARTMENT OF MATHEMATICS, TABRIZ UNIVERSITY, TABRIZ, IRAN *E-mail address*: mhfaroughi@yahoo.com

DEPARTMENT OF MATHEMATICS, TABRIZ UNIVERSITY, TABRIZ, IRAN *E-mail address*: asgharrahimi@yahoo.com

Received 25/01/2006; Revised 28/07/2006

210