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PG-FRAMES IN BANACH SPACES

M. R. ABDOLLAHPOUR, M. H. FAROUGHI, AND A. RAHIMI

Abstract. For extending the concepts of p-frame, frame for Banach spaces and
atomic decomposition, we will define the concept of pg-frame and g-frame for Banach
spaces, by which each f ∈ X (X is a Banach space) can be represented by an
unconditionally convergent series f =

P
giΛi, where {Λi}i∈J is a pg-frame, {gi} ∈

(
P

⊕Y ∗
i )lq and 1

p
+ 1

q
= 1. In fact, a pg-frame {Λi} is a kind of an overcomplete

basis for X∗. We also show that every separable Banach space X has a g-Banach
frame with bounds equal to 1.

1. Introduction

Various generalization of frames for Hilbert spaces have been proposed recently. For
example, frame of subspaces [3], pseudo-frames [14], bounded quasi-projectors [10], oblique
frames [7], [8] and so on. The most recent of these belongs to Wenchang Sun. In this ge-
neralization, W. Sun chose a family of bounded operators on a sequence of Hilbert spaces
and called this system a generalized frame or a g-frame. By his extension, if {Λi}i∈J is
a g-frame then every element f ∈ H can be represented as f =

∑
i∈J Λ∗i ΛiS

−1f .
The concept of frames in Banach spaces have been introduced by Christensen and

Stoeva [5], Casazza, Han and Larson [4] and Grochenig [11]. In the present paper,
by using Sun’s extension and some techniques in a frame for Banach spaces, we shall
introduce pg-frames and g-frames for Banach spaces that allows every element f ∈ X to
be represented by an unconditionally convergent series f =

∑
i∈J giΛif , where {Λi}i∈J

is a pg-frame, {gi}i∈J ∈ (
∑
⊕Y ∗

i )lq and 1
p + 1

q = 1.
Throughout this paper, J is a subset of N, H is a separable Hilbert space, {Hi}i∈J

is a sequence of separable Hilbert spaces, X is a Banach space with dual X∗ and also
{Yi}i∈J is a sequence of Banach spaces.

Definition 1.1. We call a sequence {Λi ∈ B(H,Hi) : i ∈ J} a g-frame for H with
respect to {Hi}i∈J if there exist two positive constants A and B such that

A‖f‖2 ≤
∑
i∈J

‖Λif‖2 ≤ B‖f‖2, f ∈ H.

We call A and B the lower and upper g-frame bounds, respectively.

We call {Λi}i∈J a tight g-frame if A = B and Parseval g-frame if A = B = 1.
The following proposition was proved in [18] and gives a representation for each f ∈ H.

Proposition 1.2. Let {Λi ∈ B(H,Hi) : i ∈ J} be a g-frame for H. The operator

S : H → H,

Sf =
∑
i∈J

Λ∗i Λif

2000 Mathematics Subject Classification. Primary 41A58; Secondary 42C15.
Key words and phrases. Atomic decomposition, Bessel sequence, frame, Banach frame, g-frame,

g-Banach frame, pg-frame, qg-Riesz basis, perturbation.

201



202 M. R. ABDOLLAHPOUR, M. H. FAROUGHI, AND A. RAHIMI

is a positive invertible operator and every f ∈ H has an expansion

f =
∑
i∈J

S−1Λ∗i Λif =
∑
i∈J

Λ∗i ΛiS
−1f.

The operator S is called the g-frame operator of {Λi}i∈J .

Definition 1.3. Let 1 < p < ∞. A countable family {gi}i∈J ⊆ X∗ is a p-frame for X,
if there exist constants A,B > 0 such that

A‖f‖X ≤ (
∑

|gi(f)|p)
1
p ≤ B‖f‖X , f ∈ X.

We will use the following lemma; its proof can be found in [13].

Lemma 1.4. If U : X → Y is a bounded operator from a Banach space X into a Banach
space Y then its adjoint U∗ : Y ∗ → X∗ is surjective, if and only if, U has a bounded
inverse on RU .

2. Duals of g-frames

Definition 2.1. Let {Λi}i∈J and {Θi}i∈J be two g-frames for H such that

f =
∑
i∈J

Θ∗
i Λif, f ∈ H,

then {Θi}i∈J is called an alternate dual of {Λi}i∈J .

We have the following situation which shows that if {Θi}i∈J is an alternate dual of
{Λi}i∈J then {Λi}i∈J is an alternate dual of {Θi}i∈J .

Proposition 2.2. Let {Λi}i∈J and {Θi}i∈J be g-frames for a Hilbert space H with respect
to {Hi}i∈J such that

f =
∑
i∈J

Λ∗i Θif, f ∈ H,

then for each f ∈ H, f =
∑

i∈J Θ∗
i Λif.

Proof. Let us define T : H → H by Tf =
∑

i∈J Θ∗
i Λif. If the upper g-frame bounds of

{Λi}i∈J and {Θi}i∈J are B and B′, respectively, then

‖T‖ = sup
‖f‖=1

|〈Tf, f〉|

≤ sup
‖f‖=1

( ∑
i∈J

‖Λif‖2
) 1

2
( ∑

i∈J

‖Θif‖2
) 1

2

≤
√

BB′.

Hence T ∈ B(H). For f, g ∈ H, we have

〈Tf, g〉 = 〈
∑
i∈J

Θ∗
i Λif, g〉 =

∑
i∈J

〈Λif,Θif〉.

Also,
〈f, g〉 = 〈f,

∑
i∈J

Λ∗i Θig〉 =
∑
i∈J

〈Λif,Θig〉.

So 〈Tf, g〉 = 〈f, g〉 for all f, g ∈ H, which implies that T = I. �

Let {fi} be a frame for a Hilbert space H and V : H → H be an invertible operator.
Then {V fi} is a frame for H and the same result holds for g-frames.

Proposition 2.3. Let {Λi}i∈J be a g-frame for a Hilbert space H with respect to {Hi}i∈J

and V ∈ B(H) be an invertible operator. Then {ΛiV }i∈J is a g-frame for H with respect
to {Hi}i∈J and its g-frame operator is S

′
= V ∗SV .

Proof. Let {Λi}i∈J be a g-frame for H. We have

A‖V f‖2 ≤
∑
i∈J

‖ΛiV f‖2 ≤ B‖V f‖2, f ∈ H.



PG-FRAMES IN BANACH SPACES 203

Since V is invertible,

A‖V −1‖−2‖f‖2 ≤
∑
i∈J

‖ΛiV f‖2 ≤ B‖V ‖2‖f‖2, f ∈ H,

so {ΛiV }i∈J is a g-frame for H.
For each f ∈ H, we have

SV f =
∑
i∈J

Λ∗i ΛiV f,

therefore
V ∗SV f =

∑
i∈J

V ∗Λ∗i ΛiV f.

Let S′ be the g-frame operator of {ΛiV }i∈J , then for each f ∈ H,

S′f =
∑
i∈J

V ∗Λ∗i ΛiV f,

hence S
′
= V ∗SV . �

Note that when {Λi}i∈J is a g-frame for a Hilbert space H with respect to {Hi}i∈J

and {Θi ∈ B(H,Hi)}i∈J is a family of bounded operators such that f =
∑

i∈J Θ∗
i Λif

for each f ∈ H. Then {Θi}i∈J is not necessarily a g-frame. For instance, let H = C and
Ki = C, choose sequences {ci} and {di} in C such that

∑
i∈J |di|2 = ∞,

∑
i∈J |ci|2 = 1

and
∑

i∈J cid̄i = 1. If Λif = cif and Θif = dif then {Λi}i∈J is a normalized tight
g-frame for C and ∑

i∈J

Θ∗
i Λif =

∑
i∈J

Θ∗
i (cif) =

∑
i∈J

cid̄if = f, f ∈ C.

Also we have ∑
i∈J

‖Θif‖2 =
∑
i∈J

‖dif‖2 =
∑
i∈J

|di|2‖f‖2 = ∞.

Therefore {Θi}i∈J is not a g-frame for {ci}.
Let {Hi}i∈J be a sequence of Hilbert spaces. Then, the orthogonal sum of {Hi}i∈J is

the Hilbert space

⊕i∈JHi =
{
{fi} : fi ∈ Hi,

∑
i∈J

‖fi‖2 < ∞
}

with the inner product defined by

〈{fi}, {gi}〉 =
∑

i

〈fi, gi〉.

Let for all i ∈ J, Λi ∈ B(H,Hi). Then, we define the operator ⊕i∈JΛi on ⊕i∈JHi by
⊕i∈JΛi({fi}) = {Λifi}i∈J .

Proposition 2.4. Let {Λi}i∈J and {Θi}i∈J be two g-frames for Hilbert spaces H and K
with respect to {Hi}i∈J and {Ki}i∈J , respectively. Then {Λi ⊕ Θi}i∈J is a g-frame for
H⊕K with respect to {Hi ⊕Ki}i∈J and

SΛ⊕Θ = SΛ ⊕ SΘ,

where SΛ⊕Θ, SΛ and SΘ are the g-frame operators of {Λi⊕Θi}i∈J , {Λi}i∈J and {Θi}i∈J ,
respectively.

Proof. Let {Λi}i∈J be a g-frame for H with bounds A1 and B1 with respect to {Hi}i∈J ,
then

(2.1) A1‖f‖2 ≤
∑
i∈J

‖Λif‖2 ≤ B1‖f‖2
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for all f ∈ H. Suppose that {Θi}i∈J is a g-frame for K with bounds A2 and B2 with
respect to {Ki}i∈J , we have

(2.2) A2‖g‖2 ≤
∑
i∈J

‖Θig‖2 ≤ B2‖g‖2

for each g ∈ H. From (2.1) and (2.2) we conclude that for each f ∈ H and g ∈ K,

A1‖f‖2 + A2‖g‖2 ≤
∑
i∈J

‖Λif‖2 + ‖Θig‖2 ≤ B1‖f‖2 + B2‖g‖2.

Let A = min{A1, A2} , B = max{B1, B2} and f ⊕ g ∈ H ⊕K. We have

A‖f ⊕ g‖2 ≤
∑
i∈J

‖(Λi ⊕Θi)(f ⊕ g)‖2 ≤ B‖f ⊕ g‖2.

So,

SΛ⊕Θ(f ⊕ g) =
∑
i∈J

(Λi ⊕Θi)∗(Λi ⊕Θi)(f ⊕ g) =
∑
i∈J

(Λ∗i ⊕Θ∗
i )(Λif ⊕Θig)

=
∑
i∈J

(Λ∗i ⊕Θ∗
i )(Λif ⊕Θig) =

∑
i∈J

(Λ∗i Λif ⊕Θ∗
i Θig)

=
( ∑

i∈J

(Λ∗i Λif

)
⊕

( ∑
i∈J

Θ∗
i Θig

)
= (SΛ ⊕ SΘ)(f ⊕ g).

Hence, SΛ⊕Θ = SΛ ⊕ SΘ. �

Corollary 2.5. If Λi = {Λij}j∈J is a g-frame for a Hilbert space Hi with respect to
{Hij}j∈J , with bounds Ai and Bi such that infi∈JAi = A > 0 and supi∈J Bi = B <
∞. Then Λ = {⊕i∈NΛi} is a g-frame for the Hilbert space ⊕i∈NHi with respect to
{⊕i∈NHij}i∈J with bounds A and B.

3. PG-frame

As mentioned earlier, a p-frame for Banach spaces was introduced by Christensen
and Stoeva [5] and a p-frame of subspaces by Faroughi and Najati [15]. The following
definition is a generalization of g-frames that helps for every f ∈ X∗ to be represented
as an unconditionally convergent series.

Definition 3.1. We call a sequence {Λi ∈ B(X, Yi) : i ∈ J} a pg-frame for X with
respect to {Yi : i ∈ J} if there exist A,B > 0 such that

(3.1) A‖x‖X ≤
( ∑

i∈J

‖Λix‖p

) 1
p

≤ B‖x‖X , x ∈ X.

A,B is called the pg-frame bounds of {Λi}i∈J .
If only the second inequality in (3.1) is satisfied, {Λi}i∈J is called a pg-Bessel sequence

for X with respect to {Yi : i ∈ J} with bound B.

Similar to frames and g-frames [16], the following propositions show that the image
of a pg-frame under a bounded operator is also a pg-frame.

Proposition 3.2. Let {Λi}i∈J be a pg-frame for X with respect to {Yi}i∈J . Let S be a
bounded invertible operator on X and Γi = ΛiS. Then {Γi}i∈J is a pg-frame for X with
pg-frame bounds A‖S−1‖−1 and B‖S‖.

Proof. Let {Λi}i∈J be a pg-frame for X. Then

A‖Sx‖X ≤
( ∑

i∈J

‖ΛiSx‖p

) 1
p

≤ B‖Sx‖X , x ∈ X.
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Since S is invertible,

A‖S−1‖−1‖x‖X ≤
( ∑

i∈J

‖Γix‖p

) 1
p

≤ B‖S‖‖x‖X , x ∈ X,

so {Γi}i∈J is a pg-frame for X. �

Corollary 3.3. Let {Λi}i∈J be a pg-frame for X with respect to {Yi}i∈J and S : X → X
be an isometry. If Γi = ΛiS then {Γi}i∈J is a pg-frame for X with the same bounds.

Proposition 3.4. Let {Λi}i∈J be a pg-frame for X with respect to {Yi}i∈J and S : X →
X be a bounded operator. Then {ΛiS}i∈J is a pg-frame for X if and only if S is bounded
below.

Proof. Let {ΛiS}i∈J be a pg-frame for X with bounds m,n. We have

m‖x‖X ≤
( ∑

i∈J

‖ΛiSx‖p

) 1
p

≤ n‖x‖X , x ∈ X.

Let A,B be pg-frame bounds of {Λi}i∈J . Since

A‖Sx‖X ≤
( ∑

i∈J

‖ΛiSx‖p

) 1
p

≤ B‖Sx‖X , x ∈ X,

m‖x‖X ≤ B‖Sx‖X . Thus, for each x ∈ X, ‖Sx‖X ≥ δ
m‖x‖X . Now, suppose there exists

δ > 0 such that for each x ∈ X, ‖Sx‖X > δ‖x‖X . Since

Aδ‖x‖X ≤ A‖Sx‖X ≤
( ∑

i∈J

‖ΛiSx‖p

) 1
p

≤ B‖Sx‖X ≤ B‖S‖‖x‖X ,

{ΛiS} is a pg-frame for X with bounds Aδ and B‖S‖. �

Definition 3.5. Let {Yi}i∈J be a sequence of Banach spaces. We define( ∑
i∈J

⊕Yi

)
lp

=
{
{xi}i∈J |xi ∈ Yi,

(∑
‖xi‖p

) 1
p

< +∞
}

.

Then
(∑

i∈J ⊕Yi

)
lp

is a Banach space with the norm

‖{xi}i∈J‖p =
( ∑

i∈J

‖xi‖p

) 1
p

.

Let 1 < p, q < ∞ be conjugate exponents, i.e. 1
p+ 1

q = 1. If x∗ = {x∗i }i∈J ∈ (
∑

i∈J ⊕Y ∗
i )lq

then an easy computation shows that the formula

〈x, x∗〉 =
∑
i∈J

〈xi, x
∗
i 〉, x = {xi} ∈

( ∑
i∈J

⊕Yi

)
lp

defines a continuous functional on (
∑

i∈J ⊕Yi)lp whose norm is equal to ‖x∗‖q and its
dual can be characterized with the following lemma whose proof can be found in [1].

Lemma 3.6. Let 1 < p, q < ∞ be such that 1
p + 1

q = 1. Then( ∑
i∈J

⊕Yi

)∗

lp

=
( ∑

i∈J

⊕Y ∗
i

)
lq

,

where the equality holds under the duality

〈x, x∗〉 =
∑
i∈J

〈xi, x
∗
i 〉.

Definition 3.7. If {Λi}i∈J is a pg-frame, we define the operators T and U, by

U : X →
( ∑

i∈J

⊕Yi

)
lp

,

(3.2) Ux = {Λix}i∈J ,
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T :
( ∑

i∈J

⊕Y ∗
i

)
lq

→ X∗,

(3.3) T{gi}i∈J =
∑
i∈J

giΛi.

The operators U, T are called the analysis and synthesis operators of {Λi}i∈J .

Now, we characterize pg-Bessel sequence and pg-frames by the operator T defined by
(3.3).

Proposition 3.8. {Λi ∈ B(X, Yi) : i ∈ J} is a pg-Bessel sequence for X with respect to
{Yi} if and only if the operator T defined by (3.3) is a well defined and bounded operator.

Proof. Suppose that {Λi}i∈J is a pg-Bessel sequence with bound B, then we show that
for each {fi}i∈J ∈ (

∑
i∈J ⊕Y ∗

i )lq the series
∑

i∈J fiΛi is convergent unconditionally. For
finite subsets J1, J2 ⊂ J and J2 & J1, we have∥∥ ∑

i∈J1

fiΛi −
∑
i∈J2

fiΛi

∥∥ =
∥∥ k∑

i∈J1\J2

fiΛi

∥∥ = sup
‖x‖=1

∥∥ ∑
i∈J1\J2

fiΛix
∥∥

≤ sup
‖x‖=1

∑
i∈J1\J2

‖fi‖‖Λix‖

≤
( ∑

i∈J1\J2

‖fi‖q

) 1
q

sup
‖x‖=1

( ∑
i∈J1\J2

‖Λix‖p

) 1
p

≤ B

( ∑
i∈J1\J2

‖fi‖q

) 1
q

,

so,
∑

i∈J fiΛi is unconditionally convergent. By the same argument,∥∥∑
i∈J

fiΛi

∥∥ ≤ B

( ∑
i∈J

‖fi‖q

) 1
q

.

Hence,

‖T{fi}i∈J‖ ≤ B

( ∑
i∈J

‖fi‖q

) 1
q

= B‖{fi}‖q,

so, T is bounded and ‖T‖ ≤ B.
For the converse, assume that T is well define and bounded. For x ∈ X, consider

Fx :
( ∑

i∈J

⊕Y ∗
i

)
lq

→ C,

Fx({gi}) = (T{gi})(x) =
∑
i∈J

giΛix,

then Fx is in (
∑

i∈J ⊕Y ∗
i )∗lq , so

{Λix} ∈
( ∑

i∈J

⊕Yi

)
lp

and
‖Fx({gi})‖ ≤ ‖T‖‖{gi}‖q‖x‖.

By the Hahn-Banach theorem, there is {gi} ∈ (
∑

i∈J ⊕Y ∗
i )lq with ‖{gi}‖q ≤ 1 such

that
‖{Λix}‖p =

∣∣ ∑
i∈J

giΛix
∣∣.

Therefore,( ∑
i∈J

‖Λix‖p

) 1
p

= ‖{Λix}‖p ≤ sup
‖{gi}‖q≤1

∣∣ ∑
i∈J

giΛix
∣∣ = ‖Fx‖ ≤ ‖T‖‖x‖. �
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Lemma 3.9. If {Λi}i∈J is a pg-frame, then the operator U has closed range.

Proof. Let {Λi}i∈J be a pg-frame. Then there exist A,B > 0 such that

A||x||X ≤
( ∑

i∈J

‖Λix‖p

) 1
p

≤ B‖x‖X , x ∈ X.

So,
A‖x‖ ≤ ‖Ux‖ ≤ B‖x‖.

If Ux = 0 then x = 0, hence U is one-to-one and so X ' RU , therefore U has closed
range. �

Lemma 3.10. If all of Yi’s are reflexive and {Λi}i∈J is a pg-frame for X with respect
to {Yi}i∈J then X is reflexive.

Proof. By lemma (3.9), RU is a closed subspace of
(∑

i∈J ⊕Yi

)
lp

and X ' RU so X is
reflexive. �

Lemma 3.11. Let {Λi}i∈J be a pg-Bessel sequence for X with respect to {Yi}i∈J . Then
(i) U∗ = T .
(ii) If {Λi}i∈J has the lower pg-frame condition and all of Yi’s are reflexive, then

T ∗ = U.

Proof. (i) For any x ∈ X and {gi}i∈J ∈
(∑

i∈J ⊕Y ∗
i

)
lq

, we have

〈Ux, {gi}i∈J〉 = 〈{Λix}i∈J , {gi}i∈J〉 =
∑
i∈J

〈Λix, gi〉 =
∑
i∈J

giΛix

and
〈x, T{gi}i∈J〉 =

〈
x,

∑
i∈J

giΛi

〉
=

∑
i∈J

giΛix,

so T ∗ = U.
(ii) By Lemma (3.9) RU is a closed subspace of (

∑
i∈J ⊕Yi)lp and so is reflexive, so

U∗∗ = T ∗ hence U = T ∗. �

Theorem 3.12. {Λi}i∈J is a pg-frame for X with respect to {Yi}i∈J if and only if the
operator T defined by (3.3) is a surjective bounded operator.

Proof. If {Λi}i∈J is a pg-frame, by Proposition (3.8), T is well-defined and bounded. The
proof of Lemma (3.9) shows that U is injective, so by Lemma (1.4) and (3.11)(i) U∗ = T
is onto.

Conversely, assume that T is bounded and onto. Then Proposition (3.8) implies that
{Λi}i∈J is a pg-Bessel sequence. Since T = U∗ is onto, by Lemma (1.4) , U has a bounded
inverse . So there exists A > 0 such that for all x ∈ X, ‖Ux‖ ≥ A‖x‖. In other words,
{Λi}i∈J satisfies the lower pg-frame condition. �

Corollary 3.13. If {Λi ∈ B(X, Yi) : i ∈ J} is a pg-frame for X with respect to {Yi}i∈J

then for any x∗ ∈ X∗ there exists a {gi}i∈J ∈ (
∑
⊕Y ∗

i )lq such that

x∗ =
∑
i∈J

giΛi.

Definition 3.14. Let 1 < q < ∞. A family {Λi ∈ B(X, Yi) : i ∈ J} is called a qg-Riesz
basis for X∗ with respect to {Yi}i∈J , if

(i) {f : Λif = 0, i ∈ J} = {0} (i.e. {Λi}i∈J is g-complete);
(ii) there are positive constants A,B such that for any finite subset J1 ⊆ J and

gi ∈ Y ∗
i , i ∈ J1,

A

( ∑
i∈J1

‖gi‖q

) 1
q

≤
∥∥ ∑

i∈J1

giΛi

∥∥ ≤ B

( ∑
i∈J1

‖gi‖q

) 1
q

.
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The assumptions of definition (3.14) imply that
∑

i∈J giΛi converges unconditionally
for all {gi} ∈ (

∑
i∈J ⊕Y ∗

i )lq , and

A

( ∑
i∈J

‖gi‖q

) 1
q

≤
∥∥∑

i∈J

giΛi

∥∥ ≤ B

( ∑
i∈J

‖gi‖q

) 1
q

.

Therefore {Λi ∈ B(X, Yi) : i ∈ J} is a qg-Riesz basis for X, if and only if, the operator
T defined by (3.3) is an invertible operator from

(∑
i∈J ⊕Y ∗

i

)
lq

onto X∗.
The following Proposition shows that a qg-Riesz basis for X∗ is a special case of

pg-frames for X.

Proposition 3.15. Let {Λi ∈ B(X, Yi) : i ∈ J} be a qg-Riesz basis for X∗ with respect
to {Yi}i∈J with the optimal upper qg-Riesz basis bound B. Then {Λi ∈ B(X, Yi) : i ∈ J}
is a pg-frame for X with respect to {Yi}i∈J with optimal upper pg-frame bound B.

Proof. Assume that {Λi ∈ B(X, Yi) : i ∈ J} is a qg-Riesz basis for X∗, the operator T de-
fined by (3.3) is a bounded and invertible operator. Theorem (3.12) implies that {Λi}i∈J

is a pg-frame for X. By Proposition (3.8) the upper qg-Riesz basis bound coincides with
the upper pg-frame bound. �

Theorem 3.16. Let {Yi}i∈J be a sequence of reflexive Banach spaces. Let {Λi ∈
B(X, Yi) : i ∈ J} be a pg-frame for X with respect to {Yi}i∈J . Then the following
statements are equivalent:

(i) {Λi}i∈J is a qg-Riesz basis for X∗.
(ii) If {gi}i∈J ∈

(∑
i∈J ⊕Y ∗

i

)
lq

and
∑

i∈J giΛi = 0 then gi = 0, i ∈ J.

(iii) RU = (
∑

i∈J ⊕Yi)lp .

Proof. It is clear that (i) ⇒(ii).
Suppose that (ii) holds. By Theorem (3.12), the operator T is bounded and onto, by

(ii), T is also injective, therefore, T has a bounded inverse T−1 : X∗ →
(∑

i∈J ⊕Y ∗
i

)
lq

and so {Λi}i∈J is a qg-Riesz basis for X.
(i)⇒ (iii) Since {Λi}i∈J is a qg-Riesz basis for X∗, T has a bounded inverse onRT . By

Lemma (1.4) the adjoint T ∗ : X∗∗ →
(∑

i∈J ⊕Yi

)
lp

is surjective onRT . By Lemma (3.10)
X is reflexive, and so Theorem (3.12) and Lemma (3.11) imply that RU = (

∑
i∈J ⊕Yi)lp .

(iii) ⇒ (i) Since the operator U is bijective, by Theorem 4.12 in [17], T = U∗ :(∑
i∈J ⊕Y ∗

i

)
lq
→ X∗ is invertible. �

4. G-Banach frames

A Banach space of vector-valued sequences (or BV-space) is a linear space of sequences
with a norm which makes it a Banach space. Let X be a Banach space and 1 < p < ∞
then

Y =
{
{xi}i∈J |xi ∈ X,

( ∑
i∈J

‖xi‖p

) 1
p

< +∞
}

and
l∞ = {{xi}| sup

i∈J
‖xi‖ < ∞, xi ∈ X}

are BV -space for X.
In [11] Grochenig and in [4] Casazza, Han and Larson generalized frames to Banach

spaces and defined Banach frames for Banach space X with respect to a BV -space, and
in this paper we shall extend its definition to g-Banach frames for a Banach space X
with respect to a BV -space.
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Definition 4.1. Let X be a Banach space and H be a separable Hilbert space. Let Xd

be an associated Banach space of vector-valued sequences indexed by N. Let {Λi}i∈N ⊂
B(X,H) and S : Xd → X are given. If

(i) {Λix}i∈N ∈ Xd for each x ∈ X,
(ii) the norms ‖x‖X and ‖{Λix}i∈N‖Xd

are equivalent, and
(iii) S is bounded and linear and S{Λix}i∈N = x for each x ∈ X,

then ({Λi}i∈N, S) is a g-Banach frame for X with respect to H and Xd. The mapping S
is the reconstruction operator. If the norm equivalence is given by

A‖x‖X ≤ ‖{Λix}i∈N‖Xd
≤ B‖x‖X

for all x ∈ X, then A,B are called the frame bounds for ({Λi}i∈N, S).

Theorem 4.2. Let H be a separable Hilbert Space. Then every separable Banach space
has a g-Banach frame with respect to H with frame bounds A = B = 1.

Proof. If X is a separable Banach space, there exists E ⊂ X such that E = X and E is
a countable set. Let {ei}i∈N be an orthonormal basis for H. We define the operators Λi

from E into H by
Λi(xj) = δij‖xj‖ej , j ∈ N.

Then
sup

i
‖Λi(xj)‖ = ‖xj‖.

Since E = X, Λi can be extended to a bounded operator Λ̃i on X such that

(4.1) sup
i
‖Λ̃i(x)‖ = ‖x‖, x ∈ X.

Let Xd be the subspace of l∞(X) given by

Xd = {{Λ̃ix} : x ∈ X}.

Let S : Xd → X be given by S({Λ̃ix}) = x. Now, by equality (4.1), S is an isometry of
X onto Xd and ({Λ̃i}, S) is a g-Banach frame for X with respect to Xd. �

Perturbation of frames as a type of Paley-Winer theorem was proved by Casazza and
Christensen [2], for Banach frames by Christensen and Heil [9] and for g-frames in Hilbert
spaces by Faroughi, Najati and Rahimi [16]. In this section we present the perturbation
of g-Banach frames.

Theorem 4.3. Let ({Λi}i∈N, S) be a g-Banach frame for X with respect to Xd. Let
{Γi}i∈N ⊆ B(X,H). If there exist λ, µ ≥ 0 such that

(i) λ‖U‖+ µ < ‖S‖−1,
(ii) ‖{Λi(x)− Γi(x)}‖xd

≤ λ‖{Λi(x)}‖xd
+ µ‖x‖X , x ∈ X,

then there exists an operator T such that ({Γi}i∈N, T ) is a g-Banach frame for X with
respect to Xd with frame bounds ‖S‖ − (λ‖U‖ + µ) and ‖U‖ + (λ‖U‖ + µ), where U is
the operator Ux = {Λi(x)}i∈N, x ∈ X.

Proof. Let us define the operator V : X → Xd by V x = {Γi(x)}i∈N. Since ({Λi}i∈N, S)
is a g-Banach frame for X hence there exist A,B > 0 such that

A‖x‖X ≤ ‖{Λi(x)}‖Xd
≤ B‖x‖X , x ∈ X.

So U is bounded and by (ii) for every x ∈ X,

‖Ux− V x‖Xd
≤ λ‖Ux‖Xd

+ µ‖x‖X .

Therefore,
‖V x‖Xd

≤ (‖U‖+ λ‖U‖+ µ)‖x‖X ,

so the upper g-frame bound is (‖U‖+ λ‖U‖+ µ). For the lower bound, we have SU = I
so

‖I − SV ‖ ≤ ‖S‖‖U − V ‖ ≤ ‖S‖(λ‖U‖+ µ) < 1,



210 M. R. ABDOLLAHPOUR, M. H. FAROUGHI, AND A. RAHIMI

therefore, SV is invertible, and ‖(SV )−1‖ ≤ (1 − ‖U‖ + µ) < 1. If we consider T =
(SV )−1S then TV = I,

‖x‖X ≤ ‖T‖‖V x‖Xd
≤ ‖S‖

1− (λ‖U‖+ µ)‖S‖
‖V x‖Xd

,

and so
(‖S‖−1 − (λ‖U‖+ µ))‖x‖X ≤ ‖V x‖Xd

,

and this concludes the proof. �
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