$P G$-FRAMES IN BANACH SPACES

M. R. ABDOLLAHPOUR, M. H. FAROUGHI, AND A. RAHIMI

Abstract

For extending the concepts of p-frame, frame for Banach spaces and atomic decomposition, we will define the concept of $p g$-frame and g-frame for Banach spaces, by which each $f \in X$ (X is a Banach space) can be represented by an unconditionally convergent series $f=\sum g_{i} \Lambda_{i}$, where $\left\{\Lambda_{i}\right\}_{i \in J}$ is a $p g$-frame, $\left\{g_{i}\right\} \in$ $\left(\sum \oplus Y_{i}^{*}\right)_{l_{q}}$ and $\frac{1}{p}+\frac{1}{q}=1$. In fact, a $p g$-frame $\left\{\Lambda_{i}\right\}$ is a kind of an overcomplete basis for X^{*}. We also show that every separable Banach space X has a g-Banach frame with bounds equal to 1 .

1. Introduction

Various generalization of frames for Hilbert spaces have been proposed recently. For example, frame of subspaces [3], pseudo-frames [14], bounded quasi-projectors [10], oblique frames [7], [8] and so on. The most recent of these belongs to Wenchang Sun. In this generalization, W. Sun chose a family of bounded operators on a sequence of Hilbert spaces and called this system a generalized frame or a g-frame. By his extension, if $\left\{\Lambda_{i}\right\}_{i \in J}$ is a g-frame then every element $f \in \mathcal{H}$ can be represented as $f=\sum_{i \in J} \Lambda_{i}^{*} \Lambda_{i} S^{-1} f$.

The concept of frames in Banach spaces have been introduced by Christensen and Stoeva [5], Casazza, Han and Larson [4] and Grochenig [11]. In the present paper, by using Sun's extension and some techniques in a frame for Banach spaces, we shall introduce $p g$-frames and g-frames for Banach spaces that allows every element $f \in X$ to be represented by an unconditionally convergent series $f=\sum_{i \in J} g_{i} \Lambda_{i} f$, where $\left\{\Lambda_{i}\right\}_{i \in J}$ is a $p g$-frame, $\left\{g_{i}\right\}_{i \in J} \in\left(\sum \oplus Y_{i}^{*}\right)_{l_{q}}$ and $\frac{1}{p}+\frac{1}{q}=1$.

Throughout this paper, J is a subset of \mathbb{N}, \mathcal{H} is a separable Hilbert space, $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ is a sequence of separable Hilbert spaces, X is a Banach space with dual X^{*} and also $\left\{Y_{i}\right\}_{i \in J}$ is a sequence of Banach spaces.
Definition 1.1. We call a sequence $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ a g-frame for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ if there exist two positive constants A and B such that

$$
A\|f\|^{2} \leq \sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2} \leq B\|f\|^{2}, \quad f \in \mathcal{H}
$$

We call A and B the lower and upper g-frame bounds, respectively.
We call $\left\{\Lambda_{i}\right\}_{i \in J}$ a tight g-frame if $A=B$ and Parseval g-frame if $A=B=1$.
The following proposition was proved in [18] and gives a representation for each $f \in \mathcal{H}$.
Proposition 1.2. Let $\left\{\Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in J\right\}$ be a g-frame for \mathcal{H}. The operator

$$
\begin{gathered}
S: \mathcal{H} \rightarrow \mathcal{H} \\
S f=\sum_{i \in J} \Lambda_{i}^{*} \Lambda_{i} f
\end{gathered}
$$

[^0]is a positive invertible operator and every $f \in \mathcal{H}$ has an expansion
$$
f=\sum_{i \in J} S^{-1} \Lambda_{i}^{*} \Lambda_{i} f=\sum_{i \in J} \Lambda_{i}^{*} \Lambda_{i} S^{-1} f
$$

The operator S is called the g-frame operator of $\left\{\Lambda_{i}\right\}_{i \in J}$.
Definition 1.3. Let $1<p<\infty$. A countable family $\left\{g_{i}\right\}_{i \in J} \subseteq X^{*}$ is a p-frame for X, if there exist constants $A, B>0$ such that

$$
A\|f\|_{X} \leq\left(\sum\left|g_{i}(f)\right|^{p}\right)^{\frac{1}{p}} \leq B\|f\|_{X}, \quad f \in X
$$

We will use the following lemma; its proof can be found in [13].
Lemma 1.4. If $U: X \rightarrow Y$ is a bounded operator from a Banach space X into a Banach space Y then its adjoint $U^{*}: Y^{*} \rightarrow X^{*}$ is surjective, if and only if, U has a bounded inverse on \mathcal{R}_{U}.

2. Duals of g-Frames

Definition 2.1. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ and $\left\{\Theta_{i}\right\}_{i \in J}$ be two g-frames for \mathcal{H} such that

$$
f=\sum_{i \in J} \Theta_{i}^{*} \Lambda_{i} f, \quad f \in \mathcal{H}
$$

then $\left\{\Theta_{i}\right\}_{i \in J}$ is called an alternate dual of $\left\{\Lambda_{i}\right\}_{i \in J}$.
We have the following situation which shows that if $\left\{\Theta_{i}\right\}_{i \in J}$ is an alternate dual of $\left\{\Lambda_{i}\right\}_{i \in J}$ then $\left\{\Lambda_{i}\right\}_{i \in J}$ is an alternate dual of $\left\{\Theta_{i}\right\}_{i \in J}$.

Proposition 2.2. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ and $\left\{\Theta_{i}\right\}_{i \in J}$ be g-frames for a Hilbert space \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ such that

$$
f=\sum_{i \in J} \Lambda_{i}^{*} \Theta_{i} f, \quad f \in \mathcal{H}
$$

then for each $f \in \mathcal{H}, f=\sum_{i \in J} \Theta_{i}^{*} \Lambda_{i} f$.
Proof. Let us define $T: \mathcal{H} \rightarrow \mathcal{H}$ by $T f=\sum_{i \in J} \Theta_{i}^{*} \Lambda_{i} f$. If the upper g-frame bounds of $\left\{\Lambda_{i}\right\}_{i \in J}$ and $\left\{\Theta_{i}\right\}_{i \in J}$ are B and B^{\prime}, respectively, then

$$
\begin{aligned}
\|T\| & =\sup _{\|f\|=1}|\langle T f, f\rangle| \\
& \leq \sup _{\|f\|=1}\left(\sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{i \in J}\left\|\Theta_{i} f\right\|^{2}\right)^{\frac{1}{2}} \leq \sqrt{B B^{\prime}}
\end{aligned}
$$

Hence $T \in B(\mathcal{H})$. For $f, g \in \mathcal{H}$, we have

$$
\langle T f, g\rangle=\left\langle\sum_{i \in J} \Theta_{i}^{*} \Lambda_{i} f, g\right\rangle=\sum_{i \in J}\left\langle\Lambda_{i} f, \Theta_{i} f\right\rangle
$$

Also,

$$
\langle f, g\rangle=\left\langle f, \sum_{i \in J} \Lambda_{i}^{*} \Theta_{i} g\right\rangle=\sum_{i \in J}\left\langle\Lambda_{i} f, \Theta_{i} g\right\rangle
$$

So $\langle T f, g\rangle=\langle f, g\rangle$ for all $f, g \in \mathcal{H}$, which implies that $T=I$.
Let $\left\{f_{i}\right\}$ be a frame for a Hilbert space \mathcal{H} and $V: \mathcal{H} \rightarrow \mathcal{H}$ be an invertible operator. Then $\left\{V f_{i}\right\}$ is a frame for \mathcal{H} and the same result holds for g-frames.

Proposition 2.3. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a g-frame for a Hilbert space \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ and $V \in B(\mathcal{H})$ be an invertible operator. Then $\left\{\Lambda_{i} V\right\}_{i \in J}$ is a g-frame for \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ and its g-frame operator is $S^{\prime}=V^{*} S V$.
Proof. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a g-frame for \mathcal{H}. We have

$$
A\|V f\|^{2} \leq \sum_{i \in J}\left\|\Lambda_{i} V f\right\|^{2} \leq B\|V f\|^{2}, \quad f \in \mathcal{H}
$$

Since V is invertible,

$$
A\left\|V^{-1}\right\|^{-2}\|f\|^{2} \leq \sum_{i \in J}\left\|\Lambda_{i} V f\right\|^{2} \leq B\|V\|^{2}\|f\|^{2}, \quad f \in \mathcal{H}
$$

so $\left\{\Lambda_{i} V\right\}_{i \in J}$ is a g-frame for \mathcal{H}.
For each $f \in \mathcal{H}$, we have

$$
S V f=\sum_{i \in J} \Lambda_{i}^{*} \Lambda_{i} V f
$$

therefore

$$
V^{*} S V f=\sum_{i \in J} V^{*} \Lambda_{i}^{*} \Lambda_{i} V f
$$

Let S^{\prime} be the g-frame operator of $\left\{\Lambda_{i} V\right\}_{i \in J}$, then for each $f \in \mathcal{H}$,

$$
S^{\prime} f=\sum_{i \in J} V^{*} \Lambda_{i}^{*} \Lambda_{i} V f
$$

hence $S^{\prime}=V^{*} S V$.
Note that when $\left\{\Lambda_{i}\right\}_{i \in J}$ is a g-frame for a Hilbert space \mathcal{H} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ and $\left\{\Theta_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)\right\}_{i \in J}$ is a family of bounded operators such that $f=\sum_{i \in J} \Theta_{i}^{*} \Lambda_{i} f$ for each $f \in \mathcal{H}$. Then $\left\{\Theta_{i}\right\}_{i \in J}$ is not necessarily a g-frame. For instance, let $\mathcal{H}=\mathbb{C}$ and $K_{i}=\mathbb{C}$, choose sequences $\left\{c_{i}\right\}$ and $\left\{d_{i}\right\}$ in \mathbb{C} such that $\sum_{i \in J}\left|d_{i}\right|^{2}=\infty, \sum_{i \in J}\left|c_{i}\right|^{2}=1$ and $\sum_{i \in J} c_{i} \bar{d}_{i}=1$. If $\Lambda_{i} f=c_{i} f$ and $\Theta_{i} f=d_{i} f$ then $\left\{\Lambda_{i}\right\}_{i \in J}$ is a normalized tight g-frame for \mathbb{C} and

$$
\sum_{i \in J} \Theta_{i}^{*} \Lambda_{i} f=\sum_{i \in J} \Theta_{i}^{*}\left(c_{i} f\right)=\sum_{i \in J} c_{i} \bar{d}_{i} f=f, \quad f \in \mathbb{C} .
$$

Also we have

$$
\sum_{i \in J}\left\|\Theta_{i} f\right\|^{2}=\sum_{i \in J}\left\|d_{i} f\right\|^{2}=\sum_{i \in J}\left|d_{i}\right|^{2}\|f\|^{2}=\infty
$$

Therefore $\left\{\Theta_{i}\right\}_{i \in J}$ is not a g-frame for $\left\{c_{i}\right\}$.
Let $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ be a sequence of Hilbert spaces. Then, the orthogonal sum of $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ is the Hilbert space

$$
\oplus_{i \in J} \mathcal{H}_{i}=\left\{\left\{f_{i}\right\}: f_{i} \in \mathcal{H}_{i}, \sum_{i \in J}\left\|f_{i}\right\|^{2}<\infty\right\}
$$

with the inner product defined by

$$
\left\langle\left\{f_{i}\right\},\left\{g_{i}\right\}\right\rangle=\sum_{i}\left\langle f_{i}, g_{i}\right\rangle .
$$

Let for all $i \in J, \Lambda_{i} \in B\left(\mathcal{H}, \mathcal{H}_{i}\right)$. Then, we define the operator $\oplus_{i \in J} \Lambda_{i}$ on $\oplus_{i \in J} \mathcal{H}_{i}$ by $\oplus_{i \in J} \Lambda_{i}\left(\left\{f_{i}\right\}\right)=\left\{\Lambda_{i} f_{i}\right\}_{i \in J}$.
Proposition 2.4. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ and $\left\{\Theta_{i}\right\}_{i \in J}$ be two g-frames for Hilbert spaces \mathcal{H} and K with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$ and $\left\{K_{i}\right\}_{i \in J}$, respectively. Then $\left\{\Lambda_{i} \oplus \Theta_{i}\right\}_{i \in J}$ is a g-frame for $\mathcal{H} \oplus K$ with respect to $\left\{\mathcal{H}_{i} \oplus K_{i}\right\}_{i \in J}$ and

$$
S_{\Lambda \oplus \Theta}=S_{\Lambda} \oplus S_{\Theta}
$$

where $S_{\Lambda \oplus \Theta}, S_{\Lambda}$ and S_{Θ} are the g-frame operators of $\left\{\Lambda_{i} \oplus \Theta_{i}\right\}_{i \in J},\left\{\Lambda_{i}\right\}_{i \in J}$ and $\left\{\Theta_{i}\right\}_{i \in J}$, respectively.

Proof. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a g-frame for \mathcal{H} with bounds A_{1} and B_{1} with respect to $\left\{\mathcal{H}_{i}\right\}_{i \in J}$, then

$$
\begin{equation*}
A_{1}\|f\|^{2} \leq \sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2} \leq B_{1}\|f\|^{2} \tag{2.1}
\end{equation*}
$$

for all $f \in \mathcal{H}$. Suppose that $\left\{\Theta_{i}\right\}_{i \in J}$ is a g-frame for K with bounds A_{2} and B_{2} with respect to $\left\{K_{i}\right\}_{i \in J}$, we have

$$
\begin{equation*}
A_{2}\|g\|^{2} \leq \sum_{i \in J}\left\|\Theta_{i} g\right\|^{2} \leq B_{2}\|g\|^{2} \tag{2.2}
\end{equation*}
$$

for each $g \in \mathcal{H}$. From (2.1) and (2.2) we conclude that for each $f \in H$ and $g \in K$,

$$
A_{1}\|f\|^{2}+A_{2}\|g\|^{2} \leq \sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2}+\left\|\Theta_{i} g\right\|^{2} \leq B_{1}\|f\|^{2}+B_{2}\|g\|^{2}
$$

Let $A=\min \left\{A_{1}, A_{2}\right\}, B=\max \left\{B_{1}, B_{2}\right\}$ and $f \oplus g \in H \oplus K$. We have

$$
A\|f \oplus g\|^{2} \leq \sum_{i \in J}\left\|\left(\Lambda_{i} \oplus \Theta_{i}\right)(f \oplus g)\right\|^{2} \leq B\|f \oplus g\|^{2}
$$

So,

$$
\begin{aligned}
S_{\Lambda \oplus \Theta}(f \oplus g) & =\sum_{i \in J}\left(\Lambda_{i} \oplus \Theta_{i}\right)^{*}\left(\Lambda_{i} \oplus \Theta_{i}\right)(f \oplus g)=\sum_{i \in J}\left(\Lambda_{i}^{*} \oplus \Theta_{i}^{*}\right)\left(\Lambda_{i} f \oplus \Theta_{i} g\right) \\
& =\sum_{i \in J}\left(\Lambda_{i}^{*} \oplus \Theta_{i}^{*}\right)\left(\Lambda_{i} f \oplus \Theta_{i} g\right)=\sum_{i \in J}\left(\Lambda_{i}^{*} \Lambda_{i} f \oplus \Theta_{i}^{*} \Theta_{i} g\right) \\
& =\left(\sum_{i \in J}\left(\Lambda_{i}^{*} \Lambda_{i} f\right) \oplus\left(\sum_{i \in J} \Theta_{i}^{*} \Theta_{i} g\right)=\left(S_{\Lambda} \oplus S_{\Theta}\right)(f \oplus g)\right.
\end{aligned}
$$

Hence, $S_{\Lambda \oplus \Theta}=S_{\Lambda} \oplus S_{\Theta}$.
Corollary 2.5. If $\Lambda_{i}=\left\{\Lambda_{i j}\right\}_{j \in J}$ is a g-frame for a Hilbert space \mathcal{H}_{i} with respect to $\left\{\mathcal{H}_{i j}\right\}_{j \in J}$, with bounds A_{i} and B_{i} such that $\operatorname{in} f_{i \in J} A_{i}=A>0$ and $\sup _{i \in J} B_{i}=B<$ ∞. Then $\Lambda=\left\{\oplus_{i \in \mathbb{N}} \Lambda_{i}\right\}$ is a g-frame for the Hilbert space $\oplus_{i \in \mathbb{N}} \mathcal{H}_{i}$ with respect to $\left\{\oplus_{i \in \mathbb{N}} \mathcal{H}_{i j}\right\}_{i \in J}$ with bounds A and B.

3. $P G$-FRAME

As mentioned earlier, a p-frame for Banach spaces was introduced by Christensen and Stoeva [5] and a p-frame of subspaces by Faroughi and Najati [15]. The following definition is a generalization of g-frames that helps for every $f \in X^{*}$ to be represented as an unconditionally convergent series.

Definition 3.1. We call a sequence $\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in J\right\}$ a $p g$-frame for X with respect to $\left\{Y_{i}: i \in J\right\}$ if there exist $A, B>0$ such that

$$
\begin{equation*}
A\|x\|_{X} \leq\left(\sum_{i \in J}\left\|\Lambda_{i} x\right\|^{p}\right)^{\frac{1}{p}} \leq B\|x\|_{X}, \quad x \in X \tag{3.1}
\end{equation*}
$$

A, B is called the $p g$-frame bounds of $\left\{\Lambda_{i}\right\}_{i \in J}$.
If only the second inequality in (3.1) is satisfied, $\left\{\Lambda_{i}\right\}_{i \in J}$ is called a $p g$-Bessel sequence for X with respect to $\left\{Y_{i}: i \in J\right\}$ with bound B.

Similar to frames and g-frames [16], the following propositions show that the image of a $p g$-frame under a bounded operator is also a $p g$-frame.
Proposition 3.2. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in J}$. Let S be a bounded invertible operator on X and $\Gamma_{i}=\Lambda_{i} S$. Then $\left\{\Gamma_{i}\right\}_{i \in J}$ is a pg-frame for X with pg-frame bounds $A\left\|S^{-1}\right\|^{-1}$ and $B\|S\|$.
Proof. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a $p g$-frame for X. Then

$$
A\|S x\|_{X} \leq\left(\sum_{i \in J}\left\|\Lambda_{i} S x\right\|^{p}\right)^{\frac{1}{p}} \leq B\|S x\|_{X}, \quad x \in X
$$

Since S is invertible,

$$
A\left\|S^{-1}\right\|^{-1}\|x\|_{X} \leq\left(\sum_{i \in J}\left\|\Gamma_{i} x\right\|^{p}\right)^{\frac{1}{p}} \leq B\|S\|\|x\|_{X}, \quad x \in X
$$

so $\left\{\Gamma_{i}\right\}_{i \in J}$ is a $p g$-frame for X.
Corollary 3.3. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in J}$ and $S: X \rightarrow X$ be an isometry. If $\Gamma_{i}=\Lambda_{i} S$ then $\left\{\Gamma_{i}\right\}_{i \in J}$ is a pg-frame for X with the same bounds.

Proposition 3.4. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in J}$ and $S: X \rightarrow$ X be a bounded operator. Then $\left\{\Lambda_{i} S\right\}_{i \in J}$ is a pg-frame for X if and only if S is bounded below.

Proof. Let $\left\{\Lambda_{i} S\right\}_{i \in J}$ be a $p g$-frame for X with bounds m, n. We have

$$
m\|x\|_{X} \leq\left(\sum_{i \in J}\left\|\Lambda_{i} S x\right\|^{p}\right)^{\frac{1}{p}} \leq n\|x\|_{X}, \quad x \in X
$$

Let A, B be $p g$-frame bounds of $\left\{\Lambda_{i}\right\}_{i \in J}$. Since

$$
A\|S x\|_{X} \leq\left(\sum_{i \in J}\left\|\Lambda_{i} S x\right\|^{p}\right)^{\frac{1}{p}} \leq B\|S x\|_{X}, \quad x \in X,
$$

$m\|x\|_{X} \leq B\|S x\|_{X}$. Thus, for each $x \in X,\|S x\|_{X} \geq \frac{\delta}{m}\|x\|_{X}$. Now, suppose there exists $\delta>0$ such that for each $x \in X,\|S x\|_{X}>\delta\|x\|_{X}$. Since

$$
A \delta\|x\|_{X} \leq A\|S x\|_{X} \leq\left(\sum_{i \in J}\left\|\Lambda_{i} S x\right\|^{p}\right)^{\frac{1}{p}} \leq B\|S x\|_{X} \leq B\|S\|\|x\|_{X}
$$

$\left\{\Lambda_{i} S\right\}$ is a $p g$-frame for X with bounds $A \delta$ and $B\|S\|$.
Definition 3.5. Let $\left\{Y_{i}\right\}_{i \in J}$ be a sequence of Banach spaces. We define

$$
\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}=\left\{\left\{x_{i}\right\}_{i \in J} \mid x_{i} \in Y_{i},\left(\sum\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}}<+\infty\right\} .
$$

Then $\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}$ is a Banach space with the norm

$$
\left\|\left\{x_{i}\right\}_{i \in J}\right\|_{p}=\left(\sum_{i \in J}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}} .
$$

Let $1<p, q<\infty$ be conjugate exponents, i.e. $\frac{1}{p}+\frac{1}{q}=1$. If $x^{*}=\left\{x_{i}^{*}\right\}_{i \in J} \in\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}$ then an easy computation shows that the formula

$$
\left\langle x, x^{*}\right\rangle=\sum_{i \in J}\left\langle x_{i}, x_{i}^{*}\right\rangle, \quad x=\left\{x_{i}\right\} \in\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}
$$

defines a continuous functional on $\left(\sum_{i \in J} \oplus Y_{i}\right) l_{l_{p}}$ whose norm is equal to $\left\|x^{*}\right\|_{q}$ and its dual can be characterized with the following lemma whose proof can be found in [1].
Lemma 3.6. Let $1<p, q<\infty$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}^{*}=\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}},
$$

where the equality holds under the duality

$$
\left\langle x, x^{*}\right\rangle=\sum_{i \in J}\left\langle x_{i}, x_{i}^{*}\right\rangle .
$$

Definition 3.7. If $\left\{\Lambda_{i}\right\}_{i \in J}$ is a $p g$-frame, we define the operators T and U, by

$$
U: X \rightarrow\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}},
$$

$$
\begin{gather*}
T:\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}} \rightarrow X^{*} \\
T\left\{g_{i}\right\}_{i \in J}=\sum_{i \in J} g_{i} \Lambda_{i} \tag{3.3}
\end{gather*}
$$

The operators U, T are called the analysis and synthesis operators of $\left\{\Lambda_{i}\right\}_{i \in J}$.
Now, we characterize $p g$-Bessel sequence and $p g$-frames by the operator T defined by (3.3).

Proposition 3.8. $\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in J\right\}$ is a pg-Bessel sequence for X with respect to $\left\{Y_{i}\right\}$ if and only if the operator T defined by (3.3) is a well defined and bounded operator.

Proof. Suppose that $\left\{\Lambda_{i}\right\}_{i \in J}$ is a $p g$-Bessel sequence with bound B, then we show that for each $\left\{f_{i}\right\}_{i \in J} \in\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}$ the series $\sum_{i \in J} f_{i} \Lambda_{i}$ is convergent unconditionally. For finite subsets $J_{1}, J_{2} \subset J$ and $J_{2} \varsubsetneqq J_{1}$, we have

$$
\begin{aligned}
\left\|\sum_{i \in J_{1}} f_{i} \Lambda_{i}-\sum_{i \in J_{2}} f_{i} \Lambda_{i}\right\| & =\left\|\sum_{i \in J_{1} \backslash J_{2}}^{k} f_{i} \Lambda_{i}\right\|=\sup _{\|x\|=1}\left\|\sum_{i \in J_{1} \backslash J_{2}} f_{i} \Lambda_{i} x\right\| \\
& \leq \sup _{\|x\|=1} \sum_{i \in J_{1} \backslash J_{2}}\left\|f_{i}\right\|\left\|\Lambda_{i} x\right\| \\
& \leq\left(\sum_{i \in J_{1} \backslash J_{2}}\left\|f_{i}\right\|^{q}\right)^{\frac{1}{q}} \sup _{\|x\|=1}\left(\sum_{i \in J_{1} \backslash J_{2}}\left\|\Lambda_{i} x\right\|^{p}\right)^{\frac{1}{p}} \\
& \leq B\left(\sum_{i \in J_{1} \backslash J_{2}}\left\|f_{i}\right\|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

so, $\sum_{i \in J} f_{i} \Lambda_{i}$ is unconditionally convergent. By the same argument,

$$
\left\|\sum_{i \in J} f_{i} \Lambda_{i}\right\| \leq B\left(\sum_{i \in J}\left\|f_{i}\right\|^{q}\right)^{\frac{1}{q}}
$$

Hence,

$$
\left\|T\left\{f_{i}\right\}_{i \in J}\right\| \leq B\left(\sum_{i \in J}\left\|f_{i}\right\|^{q}\right)^{\frac{1}{q}}=B\left\|\left\{f_{i}\right\}\right\|_{q}
$$

so, T is bounded and $\|T\| \leq B$.
For the converse, assume that T is well define and bounded. For $x \in X$, consider

$$
\begin{gathered}
F_{x}:\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}} \rightarrow \mathbb{C} \\
F_{x}\left(\left\{g_{i}\right\}\right)=\left(T\left\{g_{i}\right\}\right)(x)=\sum_{i \in J} g_{i} \Lambda_{i} x
\end{gathered}
$$

then F_{x} is in $\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}^{*}$, so

$$
\left\{\Lambda_{i} x\right\} \in\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}
$$

and

$$
\left\|F_{x}\left(\left\{g_{i}\right\}\right)\right\| \leq\|T\|\left\|\left\{g_{i}\right\}\right\|_{q}\|x\|
$$

By the Hahn-Banach theorem, there is $\left\{g_{i}\right\} \in\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}$ with $\left\|\left\{g_{i}\right\}\right\|_{q} \leq 1$ such that

$$
\left\|\left\{\Lambda_{i} x\right\}\right\|_{p}=\left|\sum_{i \in J} g_{i} \Lambda_{i} x\right|
$$

Therefore,

$$
\left(\sum_{i \in J}\left\|\Lambda_{i} x\right\|^{p}\right)^{\frac{1}{p}}=\left\|\left\{\Lambda_{i} x\right\}\right\|_{p} \leq \sup _{\left\|\left\{g_{i}\right\}\right\|_{q} \leq 1}\left|\sum_{i \in J} g_{i} \Lambda_{i} x\right|=\left\|F_{x}\right\| \leq\|T\|\|x\|
$$

Lemma 3.9. If $\left\{\Lambda_{i}\right\}_{i \in J}$ is a pg-frame, then the operator U has closed range.
Proof. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a $p g$-frame. Then there exist $A, B>0$ such that

$$
A\|x\|_{X} \leq\left(\sum_{i \in J}\left\|\Lambda_{i} x\right\|^{p}\right)^{\frac{1}{p}} \leq B\|x\|_{X}, \quad x \in X
$$

So,

$$
A\|x\| \leq\|U x\| \leq B\|x\|
$$

If $U x=0$ then $x=0$, hence U is one-to-one and so $X \simeq \mathcal{R}_{U}$, therefore U has closed range.

Lemma 3.10. If all of Y_{i} 's are reflexive and $\left\{\Lambda_{i}\right\}_{i \in J}$ is a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in J}$ then X is reflexive.
Proof. By lemma (3.9), \mathcal{R}_{U} is a closed subspace of $\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}$ and $X \simeq \mathcal{R}_{U}$ so X is reflexive.

Lemma 3.11. Let $\left\{\Lambda_{i}\right\}_{i \in J}$ be a pg-Bessel sequence for X with respect to $\left\{Y_{i}\right\}_{i \in J}$. Then
(i) $U^{*}=T$.
(ii) If $\left\{\Lambda_{i}\right\}_{i \in J}$ has the lower pg-frame condition and all of Y_{i} 's are reflexive, then $T^{*}=U$.

Proof. (i) For any $x \in X$ and $\left\{g_{i}\right\}_{i \in J} \in\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}$, we have

$$
\left\langle U x,\left\{g_{i}\right\}_{i \in J}\right\rangle=\left\langle\left\{\Lambda_{i} x\right\}_{i \in J},\left\{g_{i}\right\}_{i \in J}\right\rangle=\sum_{i \in J}\left\langle\Lambda_{i} x, g_{i}\right\rangle=\sum_{i \in J} g_{i} \Lambda_{i} x
$$

and

$$
\left\langle x, T\left\{g_{i}\right\}_{i \in J}\right\rangle=\left\langle x, \sum_{i \in J} g_{i} \Lambda_{i}\right\rangle=\sum_{i \in J} g_{i} \Lambda_{i} x
$$

so $T^{*}=U$.
(ii) By Lemma (3.9) \mathcal{R}_{U} is a closed subspace of $\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}$ and so is reflexive, so $U^{* *}=T^{*}$ hence $U=T^{*}$.

Theorem 3.12. $\left\{\Lambda_{i}\right\}_{i \in J}$ is a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in J}$ if and only if the operator T defined by (3.3) is a surjective bounded operator.
Proof. If $\left\{\Lambda_{i}\right\}_{i \in J}$ is a $p g$-frame, by Proposition (3.8), T is well-defined and bounded. The proof of Lemma (3.9) shows that U is injective, so by Lemma (1.4) and (3.11)(i) $U^{*}=T$ is onto.

Conversely, assume that T is bounded and onto. Then Proposition (3.8) implies that $\left\{\Lambda_{i}\right\}_{i \in J}$ is a $p g$-Bessel sequence. Since $T=U^{*}$ is onto, by Lemma (1.4), U has a bounded inverse. So there exists $A>0$ such that for all $x \in X,\|U x\| \geq A\|x\|$. In other words, $\left\{\Lambda_{i}\right\}_{i \in J}$ satisfies the lower $p g$-frame condition.

Corollary 3.13. If $\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in J\right\}$ is a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in J}$ then for any $x^{*} \in X^{*}$ there exists a $\left\{g_{i}\right\}_{i \in J} \in\left(\sum \oplus Y_{i}^{*}\right)_{l_{q}}$ such that

$$
x^{*}=\sum_{i \in J} g_{i} \Lambda_{i} .
$$

Definition 3.14. Let $1<q<\infty$. A family $\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in J\right\}$ is called a $q g$-Riesz basis for X^{*} with respect to $\left\{Y_{i}\right\}_{i \in J}$, if
(i) $\left\{f: \Lambda_{i} f=0, i \in J\right\}=\{0\}$ (i.e. $\left\{\Lambda_{i}\right\}_{i \in J}$ is g-complete);
(ii) there are positive constants A, B such that for any finite subset $J_{1} \subseteq J$ and $g_{i} \in Y_{i}^{*}, i \in J_{1}$,

$$
A\left(\sum_{i \in J_{1}}\left\|g_{i}\right\|^{q}\right)^{\frac{1}{q}} \leq\left\|\sum_{i \in J_{1}} g_{i} \Lambda_{i}\right\| \leq B\left(\sum_{i \in J_{1}}\left\|g_{i}\right\|^{q}\right)^{\frac{1}{q}}
$$

The assumptions of definition (3.14) imply that $\sum_{i \in J} g_{i} \Lambda_{i}$ converges unconditionally for all $\left\{g_{i}\right\} \in\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}$, and

$$
A\left(\sum_{i \in J}\left\|g_{i}\right\|^{q}\right)^{\frac{1}{q}} \leq\left\|\sum_{i \in J} g_{i} \Lambda_{i}\right\| \leq B\left(\sum_{i \in J}\left\|g_{i}\right\|^{q}\right)^{\frac{1}{q}}
$$

Therefore $\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in J\right\}$ is a $q g$-Riesz basis for X, if and only if, the operator T defined by (3.3) is an invertible operator from $\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}$ onto X^{*}.

The following Proposition shows that a $q g$-Riesz basis for X^{*} is a special case of $p g$-frames for X.

Proposition 3.15. Let $\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in J\right\}$ be a qg-Riesz basis for X^{*} with respect to $\left\{Y_{i}\right\}_{i \in J}$ with the optimal upper $q g$-Riesz basis bound B. Then $\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in J\right\}$ is a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in J}$ with optimal upper pg-frame bound B.

Proof. Assume that $\left\{\Lambda_{i} \in B\left(X, Y_{i}\right): i \in J\right\}$ is a $q g$-Riesz basis for X^{*}, the operator T defined by (3.3) is a bounded and invertible operator. Theorem (3.12) implies that $\left\{\Lambda_{i}\right\}_{i \in J}$ is a $p g$-frame for X. By Proposition (3.8) the upper $q g$-Riesz basis bound coincides with the upper $p g$-frame bound.

Theorem 3.16. Let $\left\{Y_{i}\right\}_{i \in J}$ be a sequence of reflexive Banach spaces. Let $\left\{\Lambda_{i} \in\right.$ $\left.B\left(X, Y_{i}\right): i \in J\right\}$ be a pg-frame for X with respect to $\left\{Y_{i}\right\}_{i \in J}$. Then the following statements are equivalent:
(i) $\left\{\Lambda_{i}\right\}_{i \in J}$ is a qg-Riesz basis for X^{*}.
(ii) If $\left\{g_{i}\right\}_{i \in J} \in\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}$ and $\sum_{i \in J} g_{i} \Lambda_{i}=0$ then $g_{i}=0, i \in J$.
(iii) $\mathcal{R}_{U}=\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}$.

Proof. It is clear that (i) \Rightarrow (ii).
Suppose that (ii) holds. By Theorem (3.12), the operator T is bounded and onto, by (ii), T is also injective, therefore, T has a bounded inverse $T^{-1}: X^{*} \rightarrow\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}}$ and so $\left\{\Lambda_{i}\right\}_{i \in J}$ is a $q g$-Riesz basis for X.
(i) \Rightarrow (iii) Since $\left\{\Lambda_{i}\right\}_{i \in J}$ is a $q g$-Riesz basis for X^{*}, T has a bounded inverse on \mathcal{R}_{T}. By Lemma (1.4) the adjoint $T^{*}: X^{* *} \rightarrow\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}$ is surjective on \mathcal{R}_{T}. By Lemma (3.10) X is reflexive, and so Theorem (3.12) and Lemma (3.11) imply that $\mathcal{R}_{U}=\left(\sum_{i \in J} \oplus Y_{i}\right)_{l_{p}}$.
(iii) \Rightarrow (i) Since the operator U is bijective, by Theorem 4.12 in [17], $T=U^{*}$: $\left(\sum_{i \in J} \oplus Y_{i}^{*}\right)_{l_{q}} \rightarrow X^{*}$ is invertible.

4. G-Banach frames

A Banach space of vector-valued sequences (or BV-space) is a linear space of sequences with a norm which makes it a Banach space. Let X be a Banach space and $1<p<\infty$ then

$$
Y=\left\{\left\{x_{i}\right\}_{i \in J} \mid x_{i} \in X,\left(\sum_{i \in J}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}}<+\infty\right\}
$$

and

$$
l^{\infty}=\left\{\left\{x_{i}\right\} \mid \sup _{i \in J}\left\|x_{i}\right\|<\infty, x_{i} \in X\right\}
$$

are $B V$-space for X.
In [11] Grochenig and in [4] Casazza, Han and Larson generalized frames to Banach spaces and defined Banach frames for Banach space X with respect to a $B V$-space, and in this paper we shall extend its definition to g-Banach frames for a Banach space X with respect to a $B V$-space.

Definition 4.1. Let X be a Banach space and \mathcal{H} be a separable Hilbert space. Let X_{d} be an associated Banach space of vector-valued sequences indexed by \mathbb{N}. Let $\left\{\Lambda_{i}\right\}_{i \in \mathbb{N}} \subset$ $B(X, \mathcal{H})$ and $S: X_{d} \rightarrow X$ are given. If
(i) $\left\{\Lambda_{i} x\right\}_{i \in \mathbb{N}} \in X_{d}$ for each $x \in X$,
(ii) the norms $\|x\|_{X}$ and $\left\|\left\{\Lambda_{i} x\right\}_{i \in \mathbb{N}}\right\|_{X_{d}}$ are equivalent, and
(iii) S is bounded and linear and $S\left\{\Lambda_{i} x\right\}_{i \in \mathbb{N}}=x$ for each $x \in X$,
then $\left(\left\{\Lambda_{i}\right\}_{i \in \mathbb{N}}, S\right)$ is a g-Banach frame for X with respect to \mathcal{H} and X_{d}. The mapping S is the reconstruction operator. If the norm equivalence is given by

$$
A\|x\|_{X} \leq\left\|\left\{\Lambda_{i} x\right\}_{i \in \mathbb{N}}\right\|_{X_{d}} \leq B\|x\|_{X}
$$

for all $x \in X$, then A, B are called the frame bounds for $\left(\left\{\Lambda_{i}\right\}_{i \in \mathbb{N}}, S\right)$.
Theorem 4.2. Let \mathcal{H} be a separable Hilbert Space. Then every separable Banach space has a g-Banach frame with respect to \mathcal{H} with frame bounds $A=B=1$.

Proof. If X is a separable Banach space, there exists $E \subset X$ such that $\bar{E}=X$ and E is a countable set. Let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be an orthonormal basis for \mathcal{H}. We define the operators Λ_{i} from E into \mathcal{H} by

$$
\Lambda_{i}\left(x_{j}\right)=\delta_{i j}\left\|x_{j}\right\| e_{j}, \quad j \in \mathbb{N}
$$

Then

$$
\sup _{i}\left\|\Lambda_{i}\left(x_{j}\right)\right\|=\left\|x_{j}\right\|
$$

Since $\bar{E}=X, \Lambda_{i}$ can be extended to a bounded operator $\tilde{\Lambda}_{i}$ on X such that

$$
\begin{equation*}
\sup _{i}\left\|\tilde{\Lambda}_{i}(x)\right\|=\|x\|, \quad x \in X \tag{4.1}
\end{equation*}
$$

Let X_{d} be the subspace of $l^{\infty}(X)$ given by

$$
X_{d}=\left\{\left\{\tilde{\Lambda}_{i} x\right\}: x \in X\right\}
$$

Let $S: X_{d} \rightarrow X$ be given by $S\left(\left\{\tilde{\Lambda}_{i} x\right\}\right)=x$. Now, by equality (4.1), S is an isometry of X onto X_{d} and $\left(\left\{\tilde{\Lambda}_{i}\right\}, S\right)$ is a g-Banach frame for X with respect to X_{d}.

Perturbation of frames as a type of Paley-Winer theorem was proved by Casazza and Christensen [2], for Banach frames by Christensen and Heil [9] and for g-frames in Hilbert spaces by Faroughi, Najati and Rahimi [16]. In this section we present the perturbation of g-Banach frames.

Theorem 4.3. Let $\left(\left\{\Lambda_{i}\right\}_{i \in \mathbb{N}}, S\right)$ be a g-Banach frame for X with respect to X_{d}. Let $\left\{\Gamma_{i}\right\}_{i \in \mathbb{N}} \subseteq B(X, \mathcal{H})$. If there exist $\lambda, \mu \geq 0$ such that
(i) $\lambda\|U\|+\mu<\|S\|^{-1}$,
(ii) $\left\|\left\{\Lambda_{i}(x)-\Gamma_{i}(x)\right\}\right\|_{x_{d}} \leq \lambda\left\|\left\{\Lambda_{i}(x)\right\}\right\|_{x_{d}}+\mu\|x\|_{X}, \quad x \in X$,
then there exists an operator T such that $\left(\left\{\Gamma_{i}\right\}_{i \in \mathbb{N}}, T\right)$ is a g-Banach frame for X with respect to X_{d} with frame bounds $\|S\|-(\lambda\|U\|+\mu)$ and $\|U\|+(\lambda\|U\|+\mu)$, where U is the operator $U x=\left\{\Lambda_{i}(x)\right\}_{i \in \mathbb{N}}, x \in X$.

Proof. Let us define the operator $V: X \rightarrow X_{d}$ by $V x=\left\{\Gamma_{i}(x)\right\}_{i \in \mathbb{N}}$. Since $\left(\left\{\Lambda_{i}\right\}_{i \in \mathbb{N}}, S\right)$ is a g-Banach frame for X hence there exist $A, B>0$ such that

$$
A\|x\|_{X} \leq\left\|\left\{\Lambda_{i}(x)\right\}\right\|_{X_{d}} \leq B\|x\|_{X}, \quad x \in X
$$

So U is bounded and by (ii) for every $x \in X$,

$$
\|U x-V x\|_{X_{d}} \leq \lambda\|U x\|_{X_{d}}+\mu\|x\|_{X}
$$

Therefore,

$$
\|V x\|_{X_{d}} \leq(\|U\|+\lambda\|U\|+\mu)\|x\|_{X}
$$

so the upper g-frame bound is $(\|U\|+\lambda\|U\|+\mu)$. For the lower bound, we have $S U=I$ so

$$
\|I-S V\| \leq\|S\|\|U-V\| \leq\|S\|(\lambda\|U\|+\mu)<1
$$

therefore, $S V$ is invertible, and $\left\|(S V)^{-1}\right\| \leq(1-\|U\|+\mu)<1$. If we consider $T=$ $(S V)^{-1} S$ then $T V=I$,

$$
\|x\|_{X} \leq\|T\|\|V x\|_{X_{d}} \leq \frac{\|S\|}{1-(\lambda\|U\|+\mu)\|S\|}\|V x\|_{X_{d}}
$$

and so

$$
\left(\|S\|^{-1}-(\lambda\|U\|+\mu)\right)\|x\|_{X} \leq\|V x\|_{X_{d}}
$$

and this concludes the proof.
Acknowledgments. The authors would like to express their sincere thanks to Ole Christensen and the referee for the useful comments.

References

1. C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhikers Guide, Springer-Verlag, New York-Berlin, 1999.
2. P. G. Cazassa and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), no. 5, 543-557.
3. P. G. Cazassa and Gitta Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, Contemp. Math., Vol. 345, Amer. Math. Soc., Providence, R. I., 2004, 87-113.
4. P. G. Cazassa, D. Han, and D. R. Larson, Frames for Banach spaces, Contemp. Math. Vol. 247, Amer. Math. Soc., Providence, R. I., 1999, 149-182.
5. O. Christensen and D. Stoeva, p-frames in separable Banach spaces, Adv. Comput. Math. 18 (2003), no. 2-4, 117-126.
6. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2002.
7. O. Christensen and Y. C. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal. 17 (2004), 48-68.
8. Y. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier Anal. Appl. 9 (2003), 77-96.
9. O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33-47.
10. M. Fornasier, Decompositions of Hilbert space: local construction of global frames, Proc. Int. Conf., Constructive Theory of Functions (ed. B. Bojanov), Varna 2002. DARBA, Sofia, 2003, pp. 275-281.
11. K. Grochenig, Describing functions: atomic decomposition versus frames, Monatsh. Math. 112 (1991), 1-41.
12. D. Han, D. R. Larson, Frames, bases and group representations, Memoirs Amer. Math. Soc. 147 (2000), no. 697, 1-91.
13. H. Heuser, Functional Analysis, John Wiley, New York, 1982.
14. S. Li and H. Ogawa, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl. 10 (2004), 409-431.
15. A. Najati and M. H. Faroughi, p-frames of subspaces in separable Hilbert spaces, Southest Asian Bull. Math. (to appear).
16. A. Najati, A. Rahimi, and M. H. Faroughi, G-frames in Hilbert spaces (submitted for publication).
17. W. Rudin, Functional Analysis, MacGraw-Hill, New York, 1973.
18. W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437-452.

Department of Mathematics, Tabriz University, Tabriz, Iran
E-mail address: mr_abdollahpour@yahoo.com
Department of Mathematics, Tabriz University, Tabriz, Iran
E-mail address: mhfaroughi@yahoo.com
Department of Mathematics, Tabriz University, Tabriz, Iran
E-mail address: asgharrahimi@yahoo.com

[^0]: 2000 Mathematics Subject Classification. Primary 41A58; Secondary 42C15.
 Key words and phrases. Atomic decomposition, Bessel sequence, frame, Banach frame, g-frame, g-Banach frame, $p g$-frame, $q g$-Riesz basis, perturbation.

