THE ε_{∞}-PRODUCT OF A b-SPACE BY A QUOTIENT BORNOLOGICAL SPACE

BELMESNAOUI AQZZOUZ

Abstract

We define the ε_{∞}-product of a Banach space G by a quotient bornological space $E \mid F$ that we denote by $G \varepsilon_{\infty}(E \mid F)$, and we prove that G is an \mathcal{L}_{∞}-space if and only if the quotient bornological spaces $G \varepsilon_{\infty}(E \mid F)$ and $(G \varepsilon E) \mid(G \varepsilon F)$ are isomorphic. Also, we show that the functor $\varepsilon_{\infty} .: \operatorname{Ban} \times \mathbf{q B a n} \longrightarrow \mathbf{q B a n}$ is left exact. Finally, we define the ε_{∞}-product of a b-space by a quotient bornological space and we prove that if G is an ε b-space and $E \mid F$ is a quotient bornological space, then $(G \varepsilon E) \mid(G \varepsilon F)$ is isomorphic to $G \varepsilon_{\infty}(E \mid F)$.

1. Introduction and basic notions

The ε-product of two locally convex spaces was introduced by L. Schwartz in his famous article on vector-valued distributions [13], where he also looked at the ε-product of two continuous linear mappings. Many spaces of vector-valued functions or distributions turn out to be the ε-product of the corresponding space of scalar functions and the range space. Also, ε-products allow to reduce the treatment of many spaces of functions or distributions on product sets to the one dimensional case.
L. Waelbroeck [14], rediscovered the ε-product of two Banach spaces much later, without giving any explicit reference to the ε-product of Schwartz (we guess that Waelbroeck simply forgot to quote Schwartz). But his objective was to give a different approach to the ε-product of Schwartz in his special case.

It is well known that the ε-product by a Banach space is always a left exact functor but in general is not right exact. To study this problem for space of vector-valued functions that can be interpreted as an ε-product, Kaballo [8] introduced ε-spaces as locally convex spaces G for which the ε-product of the identity map of G with any surjective continuous linear mapping between Banach spaces is surjective and showed that a Banach space is an ε-space if and only if it is an \mathcal{L}_{∞}-space. As a consequence, if G is an \mathcal{L}_{∞}-space, the left exact functor $G \varepsilon$. : Ban $\longrightarrow \operatorname{Ban}, E \longrightarrow G \varepsilon E$ is exact, and then by Theorem 4.1 of [17], it admits an exact extension $G \varepsilon$. : qBan $\longrightarrow \mathbf{q B a n}$, $E|F \longrightarrow G \varepsilon(E \mid F)=(G \varepsilon E)|(G \varepsilon F)$, where $\mathbf{q B a n}$ is the category of quotient Banach spaces and Ban the category of Banach spaces. But there exist many important Banach spaces which are not \mathcal{L}_{∞}-spaces. For example, Khenkin [9], showed that if U is an open subset of $\mathbb{R}^{n}, n \geq 2$ and $r \in \mathbb{N}^{*}$, the Banach space $C^{r}(\bar{U})$ is not an \mathcal{L}_{∞}-space and Pelsczynski [11], proved that $A(\mathbf{D})$, the Banach space of continuous functions on the closed unit disc of \mathbb{C} and holomorphic on the open unit disc of \mathbb{C}, is not an \mathcal{L}_{∞}-space.

Now our interest in this paper is to discuss the following question:
Let G be a b-space and $E \mid F$ be a quotient bornological space, such that $G \varepsilon(E \mid F)$ is not isomorphic to $(G \varepsilon E) \mid(G \varepsilon F)$, is $G \varepsilon(E \mid F)$ a quotient of a b-space by a b-subspace? What is the relation between $(G \varepsilon E) \mid(G \varepsilon F)$ and $G \varepsilon(E \mid F)$?

[^0]Clearly, our question arises from the problem of lifting in the category of quotient bornological spaces of Waelbroeck [17], and the present paper is aimed to give a positive answer to this problem.

Recall that in [2], we defined the ε-product of an \mathcal{L}_{∞}-space by a quotient Banach space and we established a necessary and sufficient condition under which the ε-product is monic. Also, the ε_{c}-product of a Schwartz b-space by a quotient Banach space had been defined and some examples of applications were given. However, it is not clear how to define the ε_{c}-product of an arbitrary b-space by a quotient bornological space.

To do this, we shall define and study a new ε-product in the category of quotient bornological spaces of Waelbroeck [17] that we call the ε_{∞}-product and which coincides with the ε-product of Waelbroeck [14] for the class of \mathcal{L}_{∞}-spaces and the class of ε bspaces. It is also isomorphic to the ε_{c}-product of the class of Schwartz b-spaces defined in [2]. This ε_{∞}-product is useful to describe some spaces $\Im(X) \varepsilon(E \mid F)$ as a quotient of a b-space by a b-subspace.

To prove our results, we need to recall some definitions and notations. Let EV be the category of vector spaces and linear mappings over the scalar field \mathbb{R} or \mathbb{C}.

1. Let $\left(E,\| \|_{E}\right)$ be a Banach space. A Banach subspace F of E is a vector subspace endowed with a Banach norm $\left\|\|_{F}\right.$ such that the inclusion map $\left(F,\| \|_{F}\right) \longrightarrow\left(E,\| \|_{E}\right)$ is bounded. A quotient Banach space $E \mid F$ is a vector space E / F, where E is a Banach space and F a Banach subspace. If $E \mid F$ and $E_{1} \mid F_{1}$ are quotient Banach spaces, a strict morphism $u: E\left|F \longrightarrow E_{1}\right| F_{1}$ is a linear mapping $u: x+F \longmapsto u_{1}(x)+F_{1}$, where $u_{1}: E \longrightarrow E_{1}$ is a bounded linear mapping such that $u_{1}(F) \subseteq F_{1}$. We shall say that u_{1} induces u. Two bounded linear mappings $u_{1}, u_{2}: E \longrightarrow E_{1}$ both inducing a strict morphism, induce the same strict morphism iff the linear mapping $u_{1}-u_{2}: E \longrightarrow F_{1}$ is bounded. A pseudo-isomorphism $u: E\left|F \longrightarrow E_{1}\right| F_{1}$ is a strict morphism induced by a surjective bounded linear mapping $u_{1}: E \longrightarrow E_{1}$ such that $u_{1}^{-1}\left(F_{1}\right)=F$.

We call $\tilde{\mathbf{q}} \mathbf{B a n}$ the category of quotient Banach spaces and strict morphisms, it is a subcategory of $\mathbf{E V}$ and contains Ban, which is not abelian, in fact, if E is a Banach space and F a closed subspace of E, the quotient Banach space $E \mid F$ is not necessarily isomorphic to $(E / F) \mid\{0\}$.

Waelbroeck introduced in [16] an abelian category qBan generated by $\tilde{\mathbf{q} B a n}$ and inverses of pseudo-isomorphisms. For more information about quotient Banach spaces we refer the reader to [16].
2. A b-space (E, β) is a vector space E with a bounded structure β such that

$$
E=\bigcup_{B \in \beta} B
$$

with $B \in \beta$ if $B \subset B_{1} \cup B_{2}$ whenever $B_{1}, B_{2} \in \beta$, without any non-null vector subspace of E belonging to β, and in which for every $B \in \beta$ there exists a $B_{1} \in \beta$ with $B \subset B_{1}, B_{1}$ absolutely convex, and $E_{B_{1}}$, the subspace absorbed by B_{1} with the norm-gauge associated to B_{1}, being a Banach space.

A subspace F of a b-space E is bornologically closed if $F \cap E_{B}$ is closed in E_{B} for every completant bounded B of E.

Given two b-spaces $\left(E, \beta_{E}\right)$ and $\left(F, \beta_{F}\right)$, a linear mapping $u: E \longrightarrow F$ is bounded, if it maps boundeds of E into boundeds of F. The mapping u is bornologically surjective if for every $B^{\prime} \in \beta_{F}$, there exists $B \in \beta_{E}$ such that $u(B)=B^{\prime}$.

We denote by \mathbf{b} the category of \mathbf{b}-spaces and bounded linear mappings. For more information about b-spaces we refer the reader to [5], [6] and [15].

Let $\left(E, \beta_{E}\right)$ be a b-space. A b-subspace of E is a subspace F with a boundedness β_{F} such that $\left(F, \beta_{F}\right)$ is a b-space and $\beta_{F} \subseteq \beta_{E}$. A quotient bornological space $E \mid F$ is a vector space E / F, where E is a b-space and F a b-subspace of E. If $E \mid F$ and $E_{1} \mid F_{1}$ are quotient bornological spaces, a strict morphism $u: E\left|F \longrightarrow E_{1}\right| F_{1}$ is induced
by a bounded linear mapping $u_{1}: E \longrightarrow E_{1}$ whose restriction to F is a bounded linear mapping $F \longrightarrow F_{1}$. Two bounded linear mappings $u_{1}, v_{1}: E \longrightarrow E_{1}$, both inducing a strict morphism, induce the same strict morphism $E\left|F \longrightarrow E_{1}\right| F_{1}$ iff the linear mapping $u_{1}-v_{1}: E \longrightarrow F_{1}$ is bounded.

The class of quotient bornological spaces and strict morphisms is a category, that we call $\widetilde{\mathbf{q}}$. A pseudo-isomorphism $u: E\left|F \longrightarrow E_{1}\right| F_{1}$ is a strict morphism induced by a bounded linear mapping $u_{1}: E \longrightarrow E_{1}$ which is bornologically surjective and such that $u_{1}^{-1}\left(F_{1}\right)=F$ i.e. $B \in \beta_{F}$ if $B \in \beta_{E}$ and $u_{1}(B) \in \beta_{F_{1}}$. As for the category $\tilde{q} B a n$, there are pseudo-isomorphisms which do not have strict inverses, Waelbroeck constructed in [17] an abelian category \mathbf{q} that contains $\widetilde{\mathbf{q}}$ and in which all pseudo-isomorphisms of $\widetilde{\mathbf{q}}$ are isomorphisms.
3. The ε-product of two Banach spaces E and F is the Banach space $E \varepsilon F$ of linear mappings $E_{1} \longrightarrow F$ whose restrictions to the unit ball of E_{1} are $\sigma\left(E_{1}, E\right)$-continuous, where E_{1} is the topological dual of E. It follows from Proposition 2 of [14], that the ε-product is symmetric. If E_{i} end F_{i} are Banach spaces and $u_{i}: E_{i} \longrightarrow F_{i}$ are bounded linear mappings, $i=1,2$, the ε-product of u_{1} and u_{2} is the bounded linear mapping $u_{1} \varepsilon u_{2}: E_{1} \varepsilon E_{2} \longrightarrow F_{1} \varepsilon F_{2}, f \longmapsto u_{2} \circ f \circ u_{1}^{\prime}$, where u_{1}^{\prime} is the dual mapping of u_{1}. It is clear that if G is a Banach space and F is a Banach subspace of another Banach space E, then $G \varepsilon F$ is a Banach subspace of $G \varepsilon E$. For more detail about the ε-product we refer the reader to [7] and [14].
4. A Banach space E is an $\mathcal{L}_{\infty, \lambda}$-space, $\lambda \geq 1$, if and only if every finite-dimensional subspace F of E is contained in a finite-dimensional subspace F_{1} of E such that $d\left(F_{1}, l_{n}^{\infty}\right) \leq$ λ, where $n=\operatorname{dim} F_{1}, l_{n}^{\infty}$ is $\mathbf{K}^{n}(\mathbf{K}=\mathbb{R}$ or $\mathbb{C})$ with the norm $\sup _{1 \leq i \leq n}\left|x_{i}\right|$, and $d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\|, T: X \longrightarrow Y\right.$ isomorphism $\}$ is the Banach-Mazur distance of the Banach spaces X and Y. A Banach space E is an \mathcal{L}_{∞}-space if it is an $\mathcal{L}_{\infty, \lambda}$-space for some $\lambda \geq 1$. For more information about \mathcal{L}_{∞}-spaces we refer to see [10].

2. The ε_{∞}-Product of a Banach space

A Banach space G is called injective if the restriction mapping $\operatorname{Ban}(., G): \operatorname{Ban}(E, G)$ $\longrightarrow \operatorname{Ban}(F, G)$ is surjective, as soon as E is a Banach space and F is a closed subspace of E, where $\operatorname{Ban}(H, G)$ is the Banach space of all bounded linear mappings from H into $G, H=E, F$. Well known examples of injective Banach spaces are $l^{\infty}(I), I$ being any set. By [10], every injective Banach space is an \mathcal{L}_{∞}-space.

As the ε-product is a left exact functor on the category Ban, we shall consider strongly left exact sequences. A complex $0 \longrightarrow E \xrightarrow{u} F \xrightarrow{v} G$ is left exact in Ban if $\operatorname{Ker}(v)=$ $\operatorname{Im}(u)$. The complex $0 \longrightarrow E \xrightarrow{u} F \xrightarrow{v} G$ is strongly left exact in Ban if it is left exact and the image of v is closed in G.

Definition 2.1. Let G be a Banach space and I, J be sets. Then the strongly left exact complex $0 \longrightarrow G \xrightarrow{u} l^{\infty}(I) \xrightarrow{v} l^{\infty}(J)$ will be called a l^{∞}-resolution of G.

Proposition 2.2. Every Banach space G has l^{∞}-resolutions.
Proof. Let I be a dense subset in the closed unit ball $B_{G^{\prime}}$ of the topological dual space G^{\prime} of G. It is obvious that the linear mapping $u: G \longrightarrow l^{\infty}(I), x \longmapsto u(x)$ such that $u(x)(g)=g(x)$ for all $g \in I$, is an isometry. Since $u(G)$ is a closed subspace of $l^{\infty}(I)$, we identify G with $u(G)$. Then there exists a dense subset J in $B_{\left(l^{\infty}(I) / G\right)^{\prime}}$ and an isometric mapping $l^{\infty}(I) / G \longrightarrow l^{\infty}(J)$ where $\left(l^{\infty}(I) / G\right)^{\prime}$ is the topological dual of $l^{\infty}(I) / G$. The mapping $v: l^{\infty}(I) \longrightarrow l^{\infty}(J)$ is the composition of the quotient mapping $l^{\infty}(I) \longrightarrow l^{\infty}(I) / G$ and the isometry $l^{\infty}(I) / G \longrightarrow l^{\infty}(J)$. Its image is closed in $l^{\infty}(J)$. It follows that $0 \longrightarrow G \xrightarrow{u} l^{\infty}(I) \xrightarrow{v} l^{\infty}(J)$ is a l^{∞}-resolution of G.

Below, we define the ε-product of a Banach space by a quotient bornological space. For this we let $0 \longrightarrow G \xrightarrow{u} l^{\infty}(I) \xrightarrow{v} l^{\infty}(J)$ be a l^{∞}-resolution of G. Since $l^{\infty}(I)$ and $l^{\infty}(J)$ are \mathcal{L}_{∞}-spaces, it follows from [7] that the functor $l^{\infty}(K) \varepsilon$. : Ban \longrightarrow Ban is exact for $K=I, J$. On the other word, the inductive limit functor is exact on the category of bspaces [6], hence the functor $l^{\infty}(K) \varepsilon .: \mathbf{b} \longrightarrow \mathbf{b}$ is exact for $K=I, J$. Now, by Theorem 4.1 of [17], this functor admits an exact extension $l^{\infty}(K) \varepsilon .: \mathbf{q} \longrightarrow \mathbf{q}$. As a consequence, if $E \mid F$ is a quotient bornological space we have $l^{\infty}(K) \varepsilon(E \mid F)=\left(l^{\infty}(K) \varepsilon E\right) \mid\left(l^{\infty}(K) \varepsilon F\right)$ for $K=I, J$.

On the other hand, the bounded linear mapping $v \varepsilon \operatorname{Id}_{E}: l^{\infty}(I) \varepsilon E \longrightarrow l^{\infty}(J) \varepsilon E$ induces a strict morphism $v \varepsilon \operatorname{Id}_{E \mid F}:\left(l^{\infty}(I) \varepsilon E\right)\left|\left(l^{\infty}(I) \varepsilon F\right) \longrightarrow\left(l^{\infty}(J) \varepsilon E\right)\right|\left(l^{\infty}(J) \varepsilon F\right)$, and as the category \mathbf{q} is abelian, the object $\operatorname{Ker}\left(v \varepsilon \operatorname{Id}_{E \mid F}\right)$ exists, and then we obtain the following left exact sequence:

$$
0 \longrightarrow \operatorname{Ker}\left(v \varepsilon \operatorname{Id}_{E \mid F}\right) \xrightarrow{u \varepsilon \operatorname{Id}_{E \mid F}}\left(l^{\infty}(I) \varepsilon E\right)\left|\left(l^{\infty}(I) \varepsilon F\right) \xrightarrow{v \varepsilon \operatorname{Id}_{E \mid F}}\left(l^{\infty}(J) \varepsilon E\right)\right|\left(l^{\infty}(J) \varepsilon F\right)
$$

where

$$
\operatorname{Ker}\left(v \varepsilon \operatorname{Id}_{E \mid F}\right)=\left(v \varepsilon \operatorname{Id}_{E}\right)^{-1}\left(l^{\infty}(J) \varepsilon F\right) \mid\left(l^{\infty}(I) \varepsilon F\right)
$$

and $\left(v \varepsilon \operatorname{Id}_{E}\right)^{-1}\left(l^{\infty}(J) \varepsilon F\right)$ is a b-subspace of the b-space $l^{\infty}(I) \varepsilon E$ for the following boundedness: a subset B of $\left(v \varepsilon \operatorname{Id}_{E}\right)^{-1}\left(l^{\infty}(J) \varepsilon F\right)$ is bounded if it is bounded in $l^{\infty}(I) \varepsilon E$ and its image $\left(v \varepsilon \operatorname{Id}_{E}\right)(B)$ is bounded in $l^{\infty}(J) \varepsilon F$.

We let $G \varepsilon_{\text {Res }}(E \mid F)=\operatorname{Ker}\left(v \varepsilon \operatorname{Id}_{E \mid F}\right)$. This defines a functor $G \varepsilon_{\text {Res }}: ~: \mathbf{q} \longrightarrow \mathbf{q}$, $E \mid F \longrightarrow G \varepsilon_{\text {Res }}(E \mid F)$.

While the Banach space G has several l^{∞}-resolutions, we will prove that the object $G \varepsilon_{\text {Res }}(E \mid F)$ does not depend on l^{∞}-resolutions of G.

Proposition 2.3. Let G_{1}, G_{2} be two Banach spaces and $0 \longrightarrow G_{i} \xrightarrow{u_{i}} l^{\infty}\left(I_{i}\right) \xrightarrow{v_{i}}$ $l^{\infty}\left(J_{i}\right)$ be a l^{∞}-resolution of $G_{i}, i=1,2$. Let $u: G_{1} \longrightarrow G_{2}$ be a bounded linear mapping. Then there exist bounded linear mappings $v: l^{\infty}\left(I_{1}\right) \longrightarrow l^{\infty}\left(I_{2}\right)$ and w : $l^{\infty}\left(J_{1}\right) \longrightarrow l^{\infty}\left(J_{2}\right)$ making the following diagram commutative:

Proof. By the construction of l^{∞}-resolutions of the Banach spaces G_{1} and G_{2} (proof of Proposition 2.2), we have the following sequences:

$$
0 \longrightarrow G_{i} \xrightarrow{u_{i}} l^{\infty}\left(I_{i}\right) \longrightarrow l^{\infty}\left(I_{i}\right) / u_{i}\left(G_{i}\right) \longrightarrow l^{\infty}\left(J_{i}\right), \quad i=1,2 .
$$

Since G_{1} is a closed subspace of $l^{\infty}\left(I_{1}\right)$ and $l^{\infty}\left(J_{2}\right)$ is an injective Banach space, the mapping $u_{2} \circ u: G_{1} \longrightarrow l^{\infty}\left(I_{2}\right)$ can be extended to a bounded linear mapping $v: l^{\infty}\left(I_{1}\right) \longrightarrow l^{\infty}\left(I_{2}\right)$ such that the left square of the above diagram is commutative. The mapping v induces a bounded linear mapping $\bar{v}: l^{\infty}\left(I_{1}\right) / u_{1}\left(G_{1}\right) \longrightarrow l^{\infty}\left(I_{2}\right) / u_{2}\left(G_{2}\right)$. As $l^{\infty}\left(J_{2}\right)$ is injective, we can extend the composition $l^{\infty}\left(I_{1}\right) / u_{1}\left(G_{1}\right) \longrightarrow l^{\infty}\left(I_{2}\right) / u_{2}\left(G_{2}\right) \longrightarrow$ $l^{\infty}\left(J_{2}\right)$ to a bounded linear mapping $w: l^{\infty}\left(J_{1}\right) \longrightarrow l^{\infty}\left(J_{2}\right)$ such that the right square of the above diagram is commutative.

Now, we prove that the strict morphism defined by u is independent of v and w occuring in Proposition 2.3. In fact, let $E \mid F$ be a quotient bornological space. By applying the functor $. \varepsilon(E \mid F):$ Ban $\longrightarrow \mathbf{q}$ to the right square of the diagram of Proposition 2.3 and taking the kernels of the horizontal arrows $v_{i} \varepsilon \operatorname{Id}_{E \mid F}, i=1,2$, we obtain the following commutative diagram:

$$
\begin{aligned}
& \begin{array}{rlll}
0 \longrightarrow & \operatorname{Ker}\left(v_{1} \varepsilon \operatorname{Id}_{E \mid F}\right) \\
\\
\downarrow
\end{array} \quad \begin{array}{l}
l^{\infty}\left(I_{1}\right) \varepsilon(E \mid F) \\
\\
\downarrow^{v \varepsilon \operatorname{Id}_{E \mid F}}
\end{array} \xrightarrow{v_{1} \varepsilon \operatorname{Id}_{E \mid F}} \begin{array}{l}
l^{\infty}\left(J_{1}\right) \varepsilon(E \mid F) \\
\downarrow^{w \varepsilon \operatorname{Id}_{E \mid F}}
\end{array} \\
& 0 \longrightarrow \operatorname{Ker}\left(v_{2} \varepsilon \operatorname{Id}_{E \mid F}\right) \longrightarrow l^{\infty}\left(I_{2}\right) \varepsilon(E \mid F) \xrightarrow{v_{2} \varepsilon \operatorname{Id}_{E \mid F}} l^{\infty}\left(J_{2}\right) \varepsilon(E \mid F)
\end{aligned}
$$

where the strict morphism $\operatorname{Ker}\left(v_{1} \varepsilon \operatorname{Id}_{E \mid F}\right) \longrightarrow \operatorname{Ker}\left(v_{2} \varepsilon \operatorname{Id}_{E \mid F}\right)$ in the above diagram is induced by the restriction of $v \varepsilon \operatorname{Id}_{E}$ to the b-space $\left(v_{1} \varepsilon \operatorname{Id}_{E}\right)^{-1}\left(l^{\infty}\left(J_{1}\right) \varepsilon F\right)$. We call it $u \varepsilon_{R e s} \operatorname{Id}_{E \mid F}: G_{1} \varepsilon_{\text {Res }}(E \mid F) \longrightarrow G_{2} \varepsilon_{\text {Res }}(E \mid F)$.

We must show that $u \varepsilon_{R e s} \mathrm{Id}_{E \mid F}$ does not depend on the choice of the mappings v and w.

Indeed, if $u=0$, then there exists a bounded linear mapping $\beta: l^{\infty}\left(J_{1}\right) \longrightarrow l^{\infty}\left(I_{2}\right)$ such that the following square is commutative:

$$
\begin{array}{ccc}
l^{\infty}\left(I_{1}\right) & \xrightarrow{v_{1}} & l^{\infty}\left(J_{1}\right) \\
\downarrow^{v} & \swarrow_{\beta} & \downarrow^{w} \\
l^{\infty}\left(I_{2}\right) & \xrightarrow{v_{2}} & l^{\infty}\left(J_{2}\right)
\end{array}
$$

Now, by applying the functor $. \varepsilon(E \mid F): \mathbf{B a n} \longrightarrow \mathbf{q}$ to the above square, we obtain a strict morphism $\beta \varepsilon \operatorname{Id}_{E \mid F}: l^{\infty}\left(J_{1}\right) \varepsilon(E \mid F) \longrightarrow l^{\infty}\left(I_{2}\right) \varepsilon(E \mid F)$. Finally, it is easy to prove that the strict morphism $u \varepsilon_{R e s} \operatorname{Id}_{E \mid F}=0$. Hence the morphism $u \varepsilon_{R e s} \operatorname{Id}_{E \mid F}$ is well defined.

Now, we are in position to prove that the object $G \varepsilon_{\text {Res }}(E \mid F)$ is independent of l^{∞}-resolutions of G. Namely, we have the following result:
Theorem 2.4. Let G be a Banach space and $0 \longrightarrow G \xrightarrow{u_{i}} l^{\infty}\left(I_{i}\right) \xrightarrow{v_{i}} l^{\infty}\left(J_{i}\right), i=1,2$, be two l^{∞}-resolutions of G. Then, for every quotient bornological space $E \mid F$, the objects $G \varepsilon_{\text {Res }_{1}}(E \mid F)$ and $G \varepsilon_{R e s_{2}}(E \mid F)$ are naturally isomorphic.

Proof. Let us consider the following commutative diagrams:

and

By applying the functor $. \varepsilon(E \mid F): \mathbf{B a n} \longrightarrow \mathbf{q}$ to the above diagrams and by using the identities $\left(f^{\prime} \varepsilon \operatorname{Id}_{H}\right) \circ\left(f \varepsilon \operatorname{Id}_{H}\right)=\left(f^{\prime} \circ f\right) \varepsilon \operatorname{Id}_{H}$ for $f=u, v$ and $H=E$, F, we obtain

$$
\left(\operatorname{Id}_{G} \varepsilon_{R_{e s}, 1} \operatorname{Id}_{E \mid F}\right) \circ\left(\operatorname{Id}_{G} \varepsilon_{R^{2} s_{1,2}} \operatorname{Id}_{E \mid F}\right)=\operatorname{Id}_{G} \varepsilon_{\text {Res }_{1,1}} \operatorname{Id}_{E \mid F}=\operatorname{Id}_{G \varepsilon_{R e s_{1}}(E \mid F)}
$$

Also, using a similar argument, we have the following identity:

$$
\left(\operatorname{Id}_{G} \varepsilon_{\text {Res }_{1,2}} \operatorname{Id}_{E \mid F}\right) \circ\left(\operatorname{Id}_{G} \varepsilon_{\text {Res }_{2,1}} \operatorname{Id}_{E \mid F}\right)=\operatorname{Id}_{G} \varepsilon_{R e s_{2,2}} \operatorname{Id}_{E \mid F}=\operatorname{Id}_{G \varepsilon_{R e s_{2}}}(E \mid F)
$$

And this finishes the proof of Theorem 2.4.

Definition 2.5. The ε_{∞}-product of a Banach space G and a quotient bornological space $E \mid F$ is the object $G \varepsilon_{\infty}(E \mid F)$ that we define as $G \varepsilon_{R e s}(E \mid F)$ for some l^{∞}-resolution of G.

In [2], we proved the following result.
Proposition. ([2], Proposition 2.2). If G_{1}, G_{2} are \mathcal{L}_{∞}-spaces and $u: G_{1} \longrightarrow G_{2}$ is a bounded linear mapping, then u is injective with a closed range if and only if for every quotient Banach space $E \mid F$, the strict morphism $u \varepsilon \operatorname{Id}_{E \mid F}: G_{1} \varepsilon(E \mid F) \longrightarrow G_{2} \varepsilon(E \mid F)$ is injective.

This proposition is still valid in the category of quotient bornological spaces. In fact, if G is an \mathcal{L}_{∞}-space and $\left(E_{i} \mid F_{i}\right)_{i \in I}$ is an inductive system of quotient Banach spaces, since the category \mathbf{q} is stable under inductive limit, we can show that $G \varepsilon\left(\lim _{i}\left(E_{i} \mid F_{i}\right)\right) \simeq$ $\underset{\longrightarrow}{\lim _{i}}\left(G \varepsilon\left(E_{i} \mid F_{i}\right)\right)$.

On the other hand, a quotient bornological space $E \mid F$ can be considered as an inductive limit of quotient Banach spaces $E_{i} \mid F_{i}$. Indeed, let (B, C) be a couple of bounded completant sets, B bounded in E, C bounded in F and $C \subset B$. This set of couples is ordered by the relation $(B, C) \prec\left(B_{1}, C_{1}\right)$ if and only if $B \subset B_{1}$ and $C \subset C_{1}$. For such an order, the set of couples (B, C) is a net and the family $\left(E_{B} \mid F_{C}\right)_{(B, C)}$ is
 It follows that if G is an \mathcal{L}_{∞}-space and $E \mid F$ is a quotient bornological space, then $G \varepsilon(E \mid F)) \simeq \lim _{B, C}\left(G \varepsilon\left(E_{B} \mid F_{C}\right)\right)$.

Thus Proposition 2.2 of [2] holds in the category of quotient bornological spaces.
An important characterization of \mathcal{L}_{∞}-spaces by the ε_{∞}-product is giving by the following result.
Theorem 2.6. A Banach space G is an \mathcal{L}_{∞}-space if and only if whenever $E \mid F$ is a quotient bornological space, the objects $(G \varepsilon E) \mid(G \varepsilon F)$ and $G \varepsilon_{\infty}(E \mid F)$ are isomorphic.

Proof. Let $0 \longrightarrow G \xrightarrow{u} l^{\infty}(I) \xrightarrow{v} l^{\infty}(J)$ be a l^{∞}-resolution of G. By a dual result of Proposition II.5.13 of [10], the Banach space $l^{\infty}(I) / G$ is an \mathcal{L}_{∞}-space. We consider the following exact sequence:

$$
0 \longrightarrow G \xrightarrow{u} l^{\infty}(I) \xrightarrow{\pi} l^{\infty}(I) / G \longrightarrow 0 .
$$

If $E \mid F$ is a quotient bornological space, by applying the ε-product functor, we obtain the following commutative diagram:

where the three columns are exact (because $G, l^{\infty}(I)$ and $l^{\infty}(I) / G$ are \mathcal{L}_{∞}-spaces). By Proposition 2.5 and the example 2.4(i) of [8], the sequence

$$
\begin{equation*}
0 \longrightarrow G \varepsilon K \longrightarrow l^{\infty}(I) \varepsilon K \longrightarrow l^{\infty}(J) \varepsilon K \tag{1}
\end{equation*}
$$

is exact for $K=E_{B}, F_{C}$.

On the other hand, $E={\underset{\longrightarrow}{\lim }}_{B} E_{B}$ and $F={\underset{\longrightarrow}{C}}_{\lim _{C}}$, and since the inductive limit functor is exact on the category of b-spaces [6], it follows that the first and the second lines are exact. Finally, we deduce from Theorem 4.3.6 of [12] that the third line is exact.

If we consider the isometry $v_{1}: l^{\infty}(I) / G \longrightarrow l^{\infty}(J)$ such that $v=v_{1} \circ \pi$, the strict morphism $v_{1} \varepsilon \operatorname{Id}_{E \mid F}:\left(l^{\infty}(I) / G\right) \varepsilon(E \mid F) \longrightarrow l^{\infty}(J) \varepsilon(E \mid F)$ is injective (Proposition 2.2 of [2]) and $v \varepsilon \operatorname{Id}_{E \mid F}=\left(v_{1} \varepsilon \operatorname{Id}_{E \mid F}\right) \circ\left(\pi \varepsilon \operatorname{Id}_{E \mid F}\right)$. Then $\operatorname{Ker}\left(v \varepsilon \operatorname{Id}_{E \mid F}\right)=\operatorname{Ker}\left(\pi \varepsilon \operatorname{Id}_{E \mid F}\right)$, and this shows the result.

Conversely, if $a_{1}: X \longrightarrow Y$ is a surjective bounded linear mapping between Banach spaces, it induces an isomorphism $a: X\left|a_{1}^{-1}(0) \longrightarrow Y\right|\{0\}$. Let $0 \longrightarrow G \xrightarrow{u}$ $l^{\infty}(I) \xrightarrow{v} l^{\infty}(J)$ be a l^{∞}-resolution of G. By applying the left exact functors.$\varepsilon_{\infty}(X \mid$ $\left.a_{1}^{-1}(0)\right), . \varepsilon_{\infty}(Y \mid\{0\}): \mathbf{B a n} \longrightarrow \mathbf{q}$ (Theorem 3.1 of this paper) to the above left exact l^{∞}-resolution (1), we obtain the following commutative diagram:

As $l^{\infty}(I)$ and $l^{\infty}(J)$ are \mathcal{L}_{∞}-spaces, the strict morphisms $\operatorname{Id}_{l^{\infty}(I)} \varepsilon a$ and $\operatorname{Id}_{l^{\infty}(J)} \varepsilon a$ are isomorphism. Now, by using Lemma 4.3.3 of [12], we deduce that the morphism $\operatorname{Id}_{G} \varepsilon_{\infty} a$ is an isomorphism.

On the other hand, it follows from the left square of the above diagram that

$$
\begin{equation*}
\left(\left(\operatorname{Id}_{l \infty(I)}\right) \varepsilon a\right) \circ\left(u \varepsilon \operatorname{Id}_{\left(X \mid a_{1}^{-1}(0)\right)}\right)=\left(u \varepsilon \operatorname{Id}_{Y \mid\{0\}}\right) \circ\left(\operatorname{Id}_{G} \varepsilon_{\infty} a\right) \tag{2}
\end{equation*}
$$

and by the commutative square

$$
\begin{array}{lll}
G \varepsilon\left(X \mid a_{1}^{-1}(0)\right) & \longrightarrow & l^{\infty}(I) \varepsilon\left(X \mid a_{1}^{-1}(0)\right) \\
\downarrow & & \downarrow \\
G \varepsilon(Y \mid\{0\}) & \longrightarrow & l^{\infty}(I) \varepsilon(Y \mid\{0\})
\end{array}
$$

we have

$$
\begin{equation*}
\left(\operatorname{Id}_{l \infty(I)} \varepsilon a\right) \circ\left(u \varepsilon \operatorname{Id}_{\left(X \mid a_{1}^{-1}(0)\right)}\right)=\left(u \varepsilon \operatorname{Id}_{Y \mid\{0\}}\right) \circ\left(\operatorname{Id}_{G} \varepsilon a\right) \tag{3}
\end{equation*}
$$

By using the equalities (2) and (3), we obtain

$$
\left(u \varepsilon \operatorname{Id}_{Y \mid\{0\}}\right) \circ\left(\operatorname{Id}_{G} \varepsilon a\right)=\left(u \varepsilon \operatorname{Id}_{Y \mid\{0\}}\right) \circ\left(\operatorname{Id}_{G} \varepsilon_{\infty} a\right)
$$

Finally, since the strict morphism $u \varepsilon \operatorname{Id}_{Y \mid\{0\}}$ is injective, we deduce $\operatorname{Id}_{G} \varepsilon a=\operatorname{Id}_{G} \varepsilon_{\infty} a$. This proves that $\operatorname{Id}_{G} \varepsilon a: G \varepsilon X \mid\left(G \varepsilon a_{1}^{-1}(0)\right) \longrightarrow G \varepsilon(Y \mid\{0\})$ is an isomorphism, and then the mapping $\operatorname{Id}_{G} \varepsilon a_{1}: G \varepsilon X \longrightarrow G \varepsilon Y$ is surjective. This proves the result.

3. The left exactness of the functor ε_{∞}.

To show that for every quotient Banach space $E \mid F$, the functor.$\varepsilon_{\infty}(E \mid F)$ changes a left exact complex of the category Ban into a left exact complex of the category $\mathbf{q B a n}$, we need the following lemma.
Lemma 3.1. Let $0 \longrightarrow G_{1} \xrightarrow{u} G_{2} \xrightarrow{v} G_{3} \longrightarrow 0$ be a short exact complex of the category Ban. Let $b_{1}: G_{1} \longrightarrow l^{\infty}\left(X_{1}\right)$ and $b_{3}: G_{3} \longrightarrow l^{\infty}\left(X_{3}\right)$ be isometric embeddings. Then there exists an isometric embedding $b_{2}: G_{2} \longrightarrow l^{\infty}\left(X_{1}\right) \bigoplus l^{\infty}\left(X_{3}\right)$ such that the diagram

is commutative, where $\pi: l^{\infty}\left(X_{1}\right) \longrightarrow l^{\infty}\left(X_{1}\right) \bigoplus l^{\infty}\left(X_{3}\right)$ and $s: l^{\infty}\left(X_{1}\right) \bigoplus l^{\infty}\left(X_{3}\right) \longrightarrow$ $l^{\infty}\left(X_{3}\right)$ are the classical bounded linear mappings into and from a direct sum.

Proof. We assume that G_{1} is a closed subspace of G_{2} and G_{3} is the Banach space G_{2} / G_{1}. Let $G_{1} \subset l^{\infty}\left(X_{1}\right)$ and $G_{3} \subset l^{\infty}\left(X_{3}\right)$ be isometric embeddings. Since $l^{\infty}\left(X_{1}\right)$ is injective, the bounded linear mapping $b_{1}: G_{1} \longrightarrow l^{\infty}\left(X_{1}\right)$ can be extended to a bounded linear mapping $b_{2}^{\prime}: G_{2} \longrightarrow l^{\infty}\left(X_{1}\right)$ such that $b_{2}^{\prime} \circ u=b_{1}$. On the other hand, G_{2} is mapped into G_{3}, and G_{3} is mapped in $l^{\infty}\left(X_{3}\right)$. The composition of these mappings is a bounded linear mapping $b_{2}^{\prime \prime}: G_{2} \longrightarrow l^{\infty}\left(X_{3}\right)$. We let $b_{2}=b_{2}^{\prime} \bigoplus b_{2}^{\prime \prime}$. Let $x_{2}=x_{2}^{\prime} \bigoplus x_{2}^{\prime \prime} \in b_{2}\left(G_{2}\right)$; $x_{2}^{\prime \prime} \in b_{3}\left(G_{3}\right)$, we let $g_{3} \in G_{3}$ be the element mapped onto $x_{2}^{\prime \prime}$, then we see that $\left\|g_{3}\right\|_{G_{3}}=$ $\left\|x_{2}^{\prime \prime}\right\|_{l \infty\left(X_{3}\right)}$. And g_{3} can be lifted to $g_{2}^{\prime \prime} \in G_{2}$ such that $v\left(g_{2}^{\prime \prime}\right)=g_{3}$ and $\left\|g_{2}^{\prime \prime}\right\|_{G_{2}}<$ $(1+\varepsilon)\left\|g_{3}\right\|_{G_{3}}=(1+\varepsilon)\left\|x_{2}^{\prime \prime}\right\|_{l^{\infty}\left(X_{3}\right)}$. The element x_{2}^{\prime} belongs to $b_{2}^{\prime}\left(G_{2}\right)$, then an element $g_{1} \in G_{1}$ exists such that $b_{1}\left(g_{1}\right)=x_{2}^{\prime}$. Of course, $\left\|g_{1}\right\|_{G_{1}}=\left\|x_{2}^{\prime}\right\|_{l^{\infty}\left(X_{1}\right)}$ and $u\left(g_{1}\right)=g_{2}^{\prime \prime} \in G_{2}$ is such that $\left\|u\left(g_{1}\right)\right\|_{G_{2}}=\left\|x_{2}^{\prime}\right\|_{l^{\infty}\left(X_{3}\right)}$.

We have lifted $x_{2} \in b_{2}\left(G_{2}\right)$ to $g_{2}=g_{2}^{\prime}+g_{2}^{\prime \prime},\left\|g_{2}\right\|_{G_{2}} \leq(1+\varepsilon)\left\|x_{2}\right\|$. The bounded linear mapping $b_{2}: G_{2} \longrightarrow l^{\infty}\left(X_{1}\right) \bigoplus l^{\infty}\left(X_{3}\right)$ is isometric and then has a closed range.

Now, we are in position to prove the following result.
Theorem 3.2. Let $0 \longrightarrow G_{1} \xrightarrow{u_{1}} G_{2} \xrightarrow{u_{2}} G_{3}$ be a left exact complex of the category Ban. Let $E \mid F$ be a quotient Banach space. Then $0 \longrightarrow G_{1} \varepsilon_{\infty}(E \mid F) \longrightarrow G_{2} \varepsilon_{\infty}(E \mid$ $F) \longrightarrow G_{3} \varepsilon_{\infty}(E \mid F)$ is a left exact complex of the category $\mathbf{q B a n}$.

Proof. By Lemma 3.1, $b_{1}\left(G_{1}\right), b_{2}\left(G_{2}\right)$ and $b_{3}\left(G_{3}\right)$ are closed subspaces of the Banach spaces $l^{\infty}\left(X_{1}\right), l^{\infty}\left(X_{1}\right) \bigoplus l^{\infty}\left(X_{3}\right)$ and $l^{\infty}\left(X_{3}\right)$ respectively, and then the sequence $0 \longrightarrow$ $b_{1}\left(G_{1}\right) \longrightarrow b_{2}\left(G_{2}\right) \longrightarrow b_{3}\left(G_{3}\right) \longrightarrow 0$ is a short exact complex. We obtain the following commutative diagram:

where the three columns are exact and the first and the second lines are exact. One of the several 3×3 Lemmas [12] shows that the sequence $0 \longrightarrow l^{\infty}\left(X_{1}\right) / b_{1}\left(G_{1}\right) \longrightarrow$ $\left(l^{\infty}\left(X_{1}\right) \oplus l^{\infty}\left(X_{3}\right)\right) / b_{2}\left(G_{2}\right) \longrightarrow l^{\infty}\left(X_{3}\right) / b_{3}\left(G_{3}\right) \longrightarrow 0$ is a short exact complex.

The Banach spaces $l^{\infty}\left(X_{1}\right) / b_{1}\left(G_{1}\right)$ and $\left(l^{\infty}\left(X_{1}\right) \oplus l^{\infty}\left(X_{3}\right)\right) / b_{2}\left(G_{2}\right)$ are included in an isometric way in $l^{\infty}\left(Y_{1}\right)$ and $l^{\infty}\left(Y_{3}\right)$. By Lemma 3.1, there exists an isometric mapping $c_{2}^{\prime}:\left(l^{\infty}\left(X_{1}\right) \oplus l^{\infty}\left(X_{3}\right)\right) / b_{2}\left(G_{2}\right) \longrightarrow l^{\infty}\left(Y_{1}\right) \oplus l^{\infty}\left(Y_{3}\right)$ such that the following diagram is commutative:

We let c_{2} be the composition of the projection $l^{\infty}\left(X_{1}\right) \oplus l^{\infty}\left(X_{3}\right) \longrightarrow\left(l^{\infty}\left(X_{1}\right) \oplus\right.$ $\left.l^{\infty}\left(X_{3}\right)\right) / b_{2}\left(G_{2}\right)$ with the embedding $\left(l^{\infty}\left(X_{1}\right) \oplus l^{\infty}\left(X_{3}\right)\right) / b_{2}\left(G_{2}\right) \longrightarrow l^{\infty}\left(Y_{1}\right) \oplus l^{\infty}\left(Y_{3}\right)$. The sequence $\left(0, b_{2}, c_{2}\right)$ is a l^{∞}-resolution of G_{2} such that the following diagram is commutative:

We have chosen one l^{∞}-resolution of G_{2}, but we have proved that the quotient Banach space $G \varepsilon_{\infty}(E \mid F)$ does not depend on the l^{∞}-resolution (modulo a natural isomorphism). Instead of using the chosen l^{∞}-resolution, we use the l^{∞}-resolution above. By applying the functor.$\varepsilon_{\infty}(E \mid F)$ to the above diagram, we obtain

another 3×3 Lemma of [12], shows that the complex $0 \longrightarrow G_{1} \varepsilon_{\infty}(E \mid F) \longrightarrow G_{2} \varepsilon_{\infty}(E \mid$ $F) \longrightarrow G_{3} \varepsilon_{\infty}(E \mid F)$ is left exact.

Now, let $0 \longrightarrow G_{1} \longrightarrow G_{2} \longrightarrow H$ be a left exact complex and let $G_{3} \simeq G_{2} / u\left(G_{1}\right)$, the complex $0 \longrightarrow G_{1} \varepsilon_{\infty}(E \mid F) \longrightarrow G_{2} \varepsilon_{\infty}(E \mid F) \longrightarrow G_{3} \varepsilon_{\infty}(E \mid F)$ is left exact in qBan. Since G_{3} is (isomorphic to) a closed subspace of H, we have a second short exact complex $0 \longrightarrow G_{3} \longrightarrow H \longrightarrow H / G_{3} \longrightarrow 0$ in Ban, and the complex $0 \longrightarrow$ $G_{3} \varepsilon_{\infty}(E \mid F) \longrightarrow H \varepsilon_{\infty}(E \mid F) \longrightarrow\left(H / G_{3}\right) \varepsilon_{\infty}(E \mid F)$ is left exact. In particular, the strict morphism $G_{3} \varepsilon_{\infty}(E \mid F) \longrightarrow H \varepsilon_{\infty}(E \mid F)$ is injective. Hence, the complex $0 \longrightarrow G_{1} \varepsilon_{\infty}(E \mid F) \longrightarrow G_{2} \varepsilon_{\infty}(E \mid F) \longrightarrow H \varepsilon_{\infty}(E \mid F)$ is left exact in qBan.

Finally, if we consider the functor $G \varepsilon_{\infty}:: \mathbf{q B a n} \longrightarrow \mathbf{q B a n}$, where G is a Banach space, we have the following property:

Proposition 3.3. Let G be a Banach space and $0 \longrightarrow E_{1}\left|F_{1} \longrightarrow E_{2}\right| F_{2} \longrightarrow$ $E_{3} \mid F_{3} \longrightarrow 0$ be a short exact complex of quotient Banach spaces. Then the complex $0 \longrightarrow G \varepsilon_{\infty}\left(E_{1} \mid F_{1}\right) \longrightarrow G \varepsilon_{\infty}\left(E_{2} \mid F_{2}\right) \longrightarrow G \varepsilon_{\infty}\left(E_{3} \mid F_{3}\right)$ is left exact in $\mathbf{q B a n}$.

Proof. Let $0 \longrightarrow G \longrightarrow l^{\infty}(I) \longrightarrow l^{\infty}(J)$ be a l^{∞}-resolution of G. Since $l^{\infty}(I)$ and $l^{\infty}(J)$ are \mathcal{L}_{∞}-spaces, the functors $l^{\infty}(I) \varepsilon$. and $l^{\infty}(J) \varepsilon$. are exact on $\mathbf{q B a n}$, and it follows that, in the diagram

the last two columns are exact. On the other hand, by the definition of the ε_{∞}-product, the three lines are left exact. A 3×3 Lemma of [12] show that the first column is left exact.

4. The ε_{∞}-PRODUCT OF A B-SPACE

Let G be a b-space, then every completant bounded B of G is included in a completant bounded A of G such that the inclusion mapping $i_{A B}: G_{B} \longrightarrow G_{A}$ is bounded [5].

Let $0 \longrightarrow G_{C} \xrightarrow{\Phi_{C}} l^{\infty}\left(I_{C}\right) \xrightarrow{\Psi_{C}} l^{\infty}\left(J_{C}\right)$ be a l^{∞}-resolution of the Banach space G_{C}, $C=A, B$. By Proposition 2.3, there exist bounded linear mappings $v_{A B}: l^{\infty}\left(I_{B}\right) \longrightarrow$ $l^{\infty}\left(I_{A}\right)$ and $w_{A B}: l^{\infty}\left(J_{B}\right) \longrightarrow l^{\infty}\left(J_{A}\right)$ making commutative the following diagram:

If $E \mid F$ is a quotient bornological space, by applying the functor $\varepsilon(E \mid F): \mathbf{B a n} \longrightarrow \mathbf{q}$ to the right square of the above diagram and adding the kernels of the horizontal arrows $\Psi_{C} \varepsilon \operatorname{Id}_{E \mid F}, C=A, B$, we obtain the following commutative diagram:

$$
\begin{array}{lllll}
0 & \longrightarrow & G_{B} \varepsilon_{\infty}(E \mid F) \\
& \downarrow_{A B} \varepsilon_{\infty} \operatorname{Id}_{E \mid F} \\
0 & \longrightarrow & G_{A} \varepsilon_{\infty}(E \mid F) \\
0 & \stackrel{\Phi_{B} \varepsilon_{\infty} \operatorname{Id}_{E \mid F}}{\longrightarrow} & l^{\infty}\left(I_{B}\right) \varepsilon(E \mid F) \\
\Phi_{A} \varepsilon_{\infty} \operatorname{Id}_{E \mid F} & \downarrow^{v_{A B} \varepsilon \operatorname{Id}_{E \mid F}} & \xrightarrow{\Psi_{B} \varepsilon \operatorname{Id}_{E \mid F}} & l^{\infty}\left(J_{B}\right) \varepsilon(E \mid F) \\
l^{\infty}\left(I_{A}\right) \varepsilon(E \mid F) & \xrightarrow{\Psi_{A} \varepsilon \operatorname{Id}_{E \mid F}} & \downarrow^{w_{A B} \varepsilon \operatorname{Id}_{E \mid F}} \\
l^{\infty}\left(J_{A}\right) \varepsilon(E \mid F)
\end{array}
$$

where the strict morphism $i_{A B} \varepsilon_{\infty} \operatorname{Id}_{E \mid F}: G_{B} \varepsilon_{\infty}(E \mid F) \longrightarrow G_{A} \varepsilon_{\infty}(E \mid F)$ is induced by the restriction of $v_{A B} \varepsilon \operatorname{Id}_{E}$ to the b-space $\left(\Psi_{B} \varepsilon \operatorname{Id}_{E}\right)^{-1}\left(l^{\infty}\left(J_{B}\right) \varepsilon F\right)$. The system $\left(G_{B} \varepsilon_{\infty}(E \mid F), i_{A B} \varepsilon_{\infty} \operatorname{Id}_{E \mid F}\right)_{B}$ is inductive in \mathbf{q}, and then has an inductive limit which is a quotient bornological space.
Definition 4.1. The ε_{∞}-product of a b-space G and a quotient bornological space $E \mid F$ is the quotient bornological space $G \varepsilon_{\infty}(E \mid F)=\lim _{B} G_{B} \varepsilon_{\infty}(E \mid F)$.

Since the inductive limit functor is exact on the category of b-spaces [6], it follows from Theorem 4.1 of [17] that this functor admits an exact extension to the category of quotient bornological spaces.

Our aim now is to show some properties of this ε_{∞}-product.
Proposition 4.2. Let G be a b-space and $E \mid F$ be a quotient bornological space. Then there exists an injective strict morphism $(G \varepsilon E) \mid(G \varepsilon F) \longrightarrow G \varepsilon_{\infty}(E \mid F)$.
Proof. Let $G=\underset{\longrightarrow}{\lim _{B}} G_{B}$. Then by the same proof as in Proposition 2.12 of [3], we show the existence of an injective strict morphism $\left(G_{B} \varepsilon E\right) \mid\left(G_{B} \varepsilon F\right) \longrightarrow G_{B} \varepsilon_{\infty}(E \mid F)$.

Now, by applying the functor $\lim _{B}($.$) which is exact on \mathbf{q}$, we obtain the injective strict morphism ${\underset{\longrightarrow}{\lim }}_{B}\left(\left(G_{B} \varepsilon E\right) \mid\left(G_{B} \varepsilon F\right)\right) \longrightarrow \longrightarrow_{B}\left(G_{B} \varepsilon_{\infty}(E \mid F)\right)$. On the other hand, the quotient bornological space $\left(G_{B} \varepsilon E\right) \mid\left(G_{B} \varepsilon F\right)$ defines the following exact sequence:

$$
0 \longrightarrow G_{B} \varepsilon F \longrightarrow G_{B} \varepsilon E \longrightarrow\left(G_{B} \varepsilon E\right) \mid\left(G_{B} \varepsilon F\right) \longrightarrow 0
$$

Its image by the functor $\lim _{B}($.$) is the following exact sequence:$

This shows that

$$
\underline{\lim }_{B}\left(G_{B} \varepsilon E\right) \mid \lim _{B}\left(G_{B} \varepsilon F\right)=\lim _{B}\left(\left(G_{B} \varepsilon E\right) \mid\left(G_{B} \varepsilon F\right)\right)
$$

and hence, we obtain an injective strict morphism ${\underset{\longrightarrow}{\lim }}_{B}\left(G_{B} \varepsilon E\right) \mid \underset{\longrightarrow}{\lim _{B}}\left(G_{B} \varepsilon F\right) \longrightarrow$ $\underset{\longrightarrow}{\lim _{B}}\left(G_{B} \varepsilon_{\infty}(E \mid F)\right)$.

Now, we introduce the class of ε b-spaces. A b-space G is an ε b-space if the mapping $\operatorname{Id}_{G} \varepsilon u: G \varepsilon E \longrightarrow G \varepsilon F$ is bornologically surjective whenever $u: E \longrightarrow F$ is a surjective bounded linear mapping between Banach spaces.

For example, each \mathcal{L}_{∞}-space is an ε b-space, and if the b-space G is an inductive limit of \mathcal{L}_{∞}-spaces in the category \mathbf{b}, then G is an εb-space.

Theorem 4.3.

1. If a b-space G is a bornological inductive limit of \mathcal{L}_{∞}-spaces and $E \mid F$ is a quotient bornological space, then $(G \varepsilon E) \mid(G \varepsilon F)=G \varepsilon_{\infty}(E \mid F)$.
2. Let G be a b-space. If for each quotient bornological space $E \mid F$, we have $(G \varepsilon E) \mid$ $(G \varepsilon F)=G \varepsilon_{\infty}(E \mid F)$, then G is an εb-space.

Proof. 1. Since $G=\lim _{B} G_{B}$, where each G_{B} is an \mathcal{L}_{∞}-space, it follows from Theorem 2.6, that $\left(G_{B} \varepsilon E\right) \mid\left(G_{B} \varepsilon F\right)=G_{B} \varepsilon_{\infty}(E \mid F)$. As the functor $\lim _{B}($.$) is exact, we obtain$ $\xrightarrow[\longrightarrow]{\lim _{B}}\left(\left(G_{B} \varepsilon E\right) \mid\left(G_{B} \varepsilon F\right)\right)={\underset{\longrightarrow}{B}}_{\lim _{B}}\left(G_{B} \varepsilon_{\infty}(E \mid F)\right)$, and hence $(G \varepsilon E) \mid(G \varepsilon F)=G \varepsilon_{\infty}(E \mid$ $F)$.
2. Let $u_{1}: X \longrightarrow Y$ be a surjective bounded linear mapping between Banach spaces, it induces a pseudo-isomorphism $u: X\left|u_{1}^{-1}(0) \longrightarrow Y\right|\{0\}$. As $G=\lim _{B} G_{B}$, let

$$
0 \longrightarrow G_{B} \xrightarrow{\Phi_{B}} l^{\infty}\left(I_{B}\right) \xrightarrow{\Psi_{B}} l^{\infty}\left(J_{B}\right) \longrightarrow 0
$$

be a l^{∞}-resolution of the Banach space G_{B}. By applying the left exact functors $\varepsilon_{\infty}(X \mid$ $\left.u_{1}^{-1}(0)\right), . \varepsilon_{\infty}(Y \mid\{0\}): \mathbf{B a n} \longrightarrow \mathbf{q}$ to the above l^{∞}-resolution of G_{B}, we obtain the following commutative diagram:

$$
\begin{aligned}
& 0 \longrightarrow G_{B} \varepsilon_{\infty}\left(X \mid u_{1}^{-1}(0)\right) \longrightarrow l^{\infty}\left(I_{B}\right) \varepsilon\left(X \mid u_{1}^{-1}(0)\right) \quad \longrightarrow \quad l^{\infty}\left(J_{B}\right) \varepsilon\left(X \mid u_{1}^{-1}(0)\right) \\
& \downarrow^{\operatorname{Id}_{G_{B}} \varepsilon \infty u} \quad \downarrow^{\operatorname{Id} \infty_{l}\left(I_{B}\right) \varepsilon u} \quad \downarrow^{\operatorname{Id}_{l \infty} \infty\left(J_{B}\right) \varepsilon u} \\
& 0 \longrightarrow G_{B} \varepsilon_{\infty}(Y \mid\{0\}) \longrightarrow l^{\infty}\left(I_{B}\right) \varepsilon(Y \mid\{0\}) \longrightarrow l^{\infty}\left(J_{B}\right) \varepsilon(Y \mid\{0\})
\end{aligned}
$$

Since $l^{\infty}(I)$ and $l^{\infty}(J)$ are \mathcal{L}_{∞}-spaces, the strict morphisms $\operatorname{Id}_{l \infty\left(I_{B}\right)} \varepsilon u$ and $\operatorname{Id}_{l^{\infty}\left(J_{B}\right)} \varepsilon u$ are isomorphism. It follows from Lemma 4.3 .3 of [12], that the strict morphism $\operatorname{Id}_{G_{B}} \varepsilon_{\infty} u$: $G_{B} \varepsilon_{\infty}\left(X \mid u_{1}^{-1}(0)\right) \longrightarrow G_{B} \varepsilon_{\infty}(Y \mid\{0\})$ is an isomorphism.

Now, by applying the exact functor $\lim _{B}($.$) , we obtain the isomorphism$

$$
\lim _{B}\left(\operatorname{Id}_{G_{B}} \varepsilon_{\infty} u\right): \lim _{B}\left(G_{B} \varepsilon_{\infty}\left(X \mid u_{1}^{-1}(0)\right)\right) \longrightarrow \lim _{B}\left(G_{B} \varepsilon_{\infty}(Y \mid\{0\})\right)
$$

i.e. $\operatorname{Id}_{G} \varepsilon_{\infty} u: G \varepsilon_{\infty}\left(X \mid u_{1}^{-1}(0)\right) \longrightarrow G \varepsilon_{\infty}(Y \mid\{0\})$ is an isomorphism. As $(G \varepsilon X) \mid$ $\left(G \varepsilon\left(u_{1}^{-1}(0)\right)\right)=G \varepsilon_{\infty}\left(X \mid u_{1}^{-1}(0)\right)$ and $G \varepsilon_{\infty}(Y \mid\{0\})=(G \varepsilon Y) \mid\{0\}$, the bounded linear mapping $\operatorname{Id}_{G} \varepsilon u: G \varepsilon X \longrightarrow G \varepsilon Y$ is bornologically surjective, and hence G is an ε b-space. This ends the proof.

Remark 4.4. In [3], we defined the b-space $O_{1}(U, E)$ as the kernel of the following morphism $\bar{\partial}: \mathcal{E}(U, E) \longrightarrow \mathcal{E}(U, E) \otimes \mathbb{C}^{n *}$, where $\mathcal{E}(U, E)=\lim _{V \in \mathcal{C}_{U}}(\mathcal{E}(V) \varepsilon E)$ and $\mathbb{C}^{n *}$ is the space of antilinear forms on \mathbb{C}^{n}. We proved that if U is an open pseudo-convex subset of \mathbb{C}^{n}, E a b-space and F a bornologically closed subspace of E, then the bspaces $O_{1}(U, E / F)$ and $O(U, E) / O(U, F)$ are naturally isomorphic. (Proposition 2.14 of [3]). This result proves that the functor $O_{1}(U,):. \mathbf{b} \longrightarrow \mathbf{b} \subset \mathbf{q}$ is exact. Then it admits an unique and exact extension $O_{1}(U,):. \mathbf{q} \longrightarrow \mathbf{q}$ (Theorem 4.1 of [17]). As a consequence, for each quotient bornological space $E \mid F$, we obtain $O_{1}(U, E \mid F)$ and $O(U, E) \mid O(U, F)$ are isomorphic in the category \mathbf{q}.

On the other hand, the b-space $O(U)$ is nuclear (i.e. all bounded completant subset B of $O(U)$ is included in a bounded completant subset A of $O(U)$ such that the inclusion mapping $i_{A B}: O(U)_{B} \longrightarrow O(U)_{A}$ is nuclear), and then $O(U)$ is a bornological inductive limit of Banach spaces $O(U)_{B}$, where each $O(U)_{B}$ is isometrically isomorphic to the \mathcal{L}_{∞}-space c_{0} (i.e. the space of sequences which converge to 0) ([5]). Hence, by Theorem 4.3 (1), we have $O(U, E) \mid O(U, F)=O(U) \varepsilon_{\infty}(E \mid F)$.

Finally, for each quotient bornological space $E \mid F$, the spaces $O_{1}(U, E \mid F)$ and $O(U) \varepsilon_{\infty}(E \mid F)$ are isomorphic in the category \mathbf{q}.

References

1. B. Aqzzouz, Généralisations du Théorème de Bartle-Graves, C. R. Acad. Sci. Paris, Ser I. Math. 333 (2001), no. 10, 925-930.
2. B. Aqzzouz, The ε_{c}-product of a Schwartz b-space by a quotient Banach space and applications, Applied Categorical Structures 10 (2002), no. 6, 603-616.
3. B. Aqzzouz, M. T. Belghiti, H. El Alj, and R. Nouira, Some results on the space of holomorphic functions taking their values in b-spaces, Methods Funct. Anal. Topology 12 (2006), no. 2, 113123.
4. J. Frampton and A. Tromba, On the classification of spaces of Hölder continuous functions, J. Funct. Anal. 10 (1972), 336-345.
5. H. Hogbe-Nlend, Théorie des bornologies et applications, Lecture Notes in Mathematics, Vol. 213, Springer-Verlag, Berlin-New York, 1971.
6. C. Houzel, Séminaire Banach, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1972.
7. H. Jarchow, Locally Convex Spaces, B.G. Teubner, Stuttgart, 1981.
8. W. Kaballo, Lifting theorems for vector valued functions and the ε-product, Proc. of the 1st Poderborn Conf. on Functional Analysis, Vol. 27, North Holland, 1977, pp. 149-166.
9. G. M. Khenkin, Impossibility of a uniform homeomorphism between spaces of Smooth functions of one and of n variables ($n>2$), Math. USSR-Sb. 3 (1967), 551-561.
10. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
11. A. Pelsczynski, Sur certaines propriétés isomorphiques nouvelles des espaces de Banach de fonctions holomorphes $A(\boldsymbol{D})$ et H^{∞}, C. R. Acad. Sci. Paris 279 (1974), 9-12.
12. N. Popescu and L. Popescu, Theory of category, Editura Academiei Roumania, Bucuresti, 1979.
13. L. Schwartz, Théorie des distributions à valeurs vectorielles. I, Ann. Inst. Fourier. 7 (1957), pp. 1-141.
14. L. Waelbroeck, Duality and the injective tensor product, Math. Ann. 163 (1966), 122-126.
15. L. Waelbroeck, Topological vector spaces and algebras, Lecture Notes in Mathematics, Vol. 230, Springer-Verlag, Berlin-New York, 1971.
16. L. Waelbroeck, Quotient Banach Spaces, Banach Center Publ., 1982, pp. 553-562 and Warsaw, pp. 563-571.
17. L. Waelbroeck, The category of quotient bornological spaces, in Aspects of Mathematics and its Applications, Elsevier Sciences Publishers B.V., J. A. Barosso (ed.), 1986, pp. 873-894.

Université Ibn Tofail, Faculté des Sciences, Département de Mathématiques, Laboratoire d'Analyse Fonctionnelle, Harmonique et Complexe, B.P. 133, Kénitra, Morocco

E-mail address: baqzzouz@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 46M05, 46M15.
 Key words and phrases. Quotient bornological space, ε-product, \mathcal{L}_{∞}-space, $\varepsilon \mathrm{b}$-space, exact functor, abelian category, l^{∞}-resolution.

