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THE ε∞-PRODUCT OF A b-SPACE BY A QUOTIENT
BORNOLOGICAL SPACE

BELMESNAOUI AQZZOUZ

Abstract. We define the ε∞-product of a Banach space G by a quotient bornological
space E | F that we denote by Gε∞(E | F ), and we prove that G is an L∞-space
if and only if the quotient bornological spaces Gε∞(E | F ) and (GεE) | (GεF ) are
isomorphic. Also, we show that the functor .ε∞. : Ban× qBan −→ qBan is left
exact. Finally, we define the ε∞-product of a b-space by a quotient bornological
space and we prove that if G is an εb-space and E | F is a quotient bornological
space, then (GεE) | (GεF ) is isomorphic to Gε∞(E | F ).

1. Introduction and basic notions

The ε-product of two locally convex spaces was introduced by L. Schwartz in his
famous article on vector-valued distributions [13], where he also looked at the ε-product of
two continuous linear mappings. Many spaces of vector-valued functions or distributions
turn out to be the ε-product of the corresponding space of scalar functions and the range
space. Also, ε-products allow to reduce the treatment of many spaces of functions or
distributions on product sets to the one dimensional case.

L. Waelbroeck [14], rediscovered the ε-product of two Banach spaces much later, with-
out giving any explicit reference to the ε-product of Schwartz (we guess that Waelbroeck
simply forgot to quote Schwartz). But his objective was to give a different approach to
the ε-product of Schwartz in his special case.

It is well known that the ε-product by a Banach space is always a left exact functor
but in general is not right exact. To study this problem for space of vector-valued
functions that can be interpreted as an ε-product, Kaballo [8] introduced ε-spaces as
locally convex spaces G for which the ε-product of the identity map of G with any
surjective continuous linear mapping between Banach spaces is surjective and showed
that a Banach space is an ε-space if and only if it is an L∞-space. As a consequence,
if G is an L∞-space, the left exact functor Gε. : Ban −→ Ban, E −→ GεE is exact,
and then by Theorem 4.1 of [17], it admits an exact extension Gε. : qBan −→ qBan,
E | F −→ Gε(E | F ) = (GεE) | (GεF ), where qBan is the category of quotient Banach
spaces and Ban the category of Banach spaces. But there exist many important Banach
spaces which are not L∞-spaces. For example, Khenkin [9], showed that if U is an open
subset of IRn, n ≥ 2 and r ∈ IN∗, the Banach space Cr(U) is not an L∞-space and
Pelsczynski [11], proved that A (D), the Banach space of continuous functions on the
closed unit disc of lC and holomorphic on the open unit disc of lC, is not an L∞-space.

Now our interest in this paper is to discuss the following question:
Let G be a b-space and E | F be a quotient bornological space, such that Gε(E | F ) is

not isomorphic to (GεE) | (GεF ), is Gε(E | F ) a quotient of a b-space by a b-subspace?
What is the relation between (GεE) | (GεF ) and Gε(E | F )?
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Clearly, our question arises from the problem of lifting in the category of quotient
bornological spaces of Waelbroeck [17], and the present paper is aimed to give a positive
answer to this problem.

Recall that in [2], we defined the ε-product of an L∞-space by a quotient Banach
space and we established a necessary and sufficient condition under which the ε-product
is monic. Also, the εc-product of a Schwartz b-space by a quotient Banach space had
been defined and some examples of applications were given. However, it is not clear how
to define the εc-product of an arbitrary b-space by a quotient bornological space.

To do this, we shall define and study a new ε-product in the category of quotient
bornological spaces of Waelbroeck [17] that we call the ε∞-product and which coincides
with the ε-product of Waelbroeck [14] for the class of L∞-spaces and the class of εb-
spaces. It is also isomorphic to the εc-product of the class of Schwartz b-spaces defined
in [2]. This ε∞-product is useful to describe some spaces =(X)ε(E | F ) as a quotient of
a b-space by a b-subspace.

To prove our results, we need to recall some definitions and notations. Let EV be the
category of vector spaces and linear mappings over the scalar field IR or lC.

1. Let (E, ‖ ‖E) be a Banach space. A Banach subspace F of E is a vector subspace
endowed with a Banach norm ‖ ‖F such that the inclusion map (F, ‖ ‖F ) −→ (E, ‖ ‖E)
is bounded. A quotient Banach space E | F is a vector space E/F , where E is a Banach
space and F a Banach subspace. If E | F and E1 | F1 are quotient Banach spaces, a
strict morphism u : E | F −→ E1 | F1 is a linear mapping u : x+F 7−→ u1(x)+F1, where
u1 : E −→ E1 is a bounded linear mapping such that u1(F ) ⊆ F1. We shall say that
u1 induces u. Two bounded linear mappings u1, u2 : E −→ E1 both inducing a strict
morphism, induce the same strict morphism iff the linear mapping u1 − u2 : E −→ F1 is
bounded. A pseudo-isomorphism u : E | F −→ E1 | F1 is a strict morphism induced by
a surjective bounded linear mapping u1 : E −→ E1 such that u−1

1 (F1) = F .
We call q̃Ban the category of quotient Banach spaces and strict morphisms, it is a

subcategory of EV and contains Ban, which is not abelian, in fact, if E is a Banach
space and F a closed subspace of E, the quotient Banach space E | F is not necessarily
isomorphic to (E/F ) | {0}.

Waelbroeck introduced in [16] an abelian category qBan generated by q̃Ban and
inverses of pseudo-isomorphisms. For more information about quotient Banach spaces
we refer the reader to [16].

2. A b-space (E, β) is a vector space E with a bounded structure β such that

E =
⋃

B∈β

B,

with B ∈ β if B ⊂ B1 ∪B2 whenever B1, B2 ∈ β, without any non-null vector subspace
of E belonging to β, and in which for every B ∈ β there exists a B1 ∈ β with B ⊂ B1, B1

absolutely convex, and EB1 , the subspace absorbed by B1 with the norm-gauge associated
to B1, being a Banach space.

A subspace F of a b-space E is bornologically closed if F ∩ EB is closed in EB for
every completant bounded B of E.

Given two b-spaces (E, βE) and (F, βF ), a linear mapping u : E −→ F is bounded, if
it maps boundeds of E into boundeds of F . The mapping u is bornologically surjective
if for every B′ ∈ βF , there exists B ∈ βE such that u(B) = B′.

We denote by b the category of b-spaces and bounded linear mappings. For more
information about b-spaces we refer the reader to [5], [6] and [15].

Let (E, βE) be a b-space. A b-subspace of E is a subspace F with a boundedness βF

such that (F, βF ) is a b-space and βF ⊆ βE . A quotient bornological space E | F is a
vector space E/F , where E is a b-space and F a b-subspace of E. If E | F and E1 | F1

are quotient bornological spaces, a strict morphism u : E | F −→ E1 | F1 is induced
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by a bounded linear mapping u1 : E −→ E1 whose restriction to F is a bounded linear
mapping F −→ F1. Two bounded linear mappings u1,v1 : E −→ E1, both inducing
a strict morphism, induce the same strict morphism E | F −→ E1 | F1 iff the linear
mapping u1 − v1 : E −→ F1 is bounded.

The class of quotient bornological spaces and strict morphisms is a category, that we
call q̃. A pseudo-isomorphism u : E | F −→ E1 | F1 is a strict morphism induced by a
bounded linear mapping u1 : E −→ E1 which is bornologically surjective and such that
u−1

1 (F1) = F i.e. B ∈ βF if B ∈ βE and u1(B) ∈ βF1 . As for the category q̃Ban, there
are pseudo-isomorphisms which do not have strict inverses, Waelbroeck constructed in
[17] an abelian category q that contains q̃ and in which all pseudo-isomorphisms of q̃ are
isomorphisms.

3. The ε-product of two Banach spaces E and F is the Banach space EεF of linear
mappings E1 −→ F whose restrictions to the unit ball of E1 are σ(E1, E)-continuous,
where E1 is the topological dual of E. It follows from Proposition 2 of [14], that the
ε-product is symmetric. If Ei end Fi are Banach spaces and ui : Ei −→ Fi are bounded
linear mappings, i = 1, 2, the ε-product of u1 and u2 is the bounded linear mapping
u1εu2 : E1εE2 −→ F1εF2, f 7−→ u2 ◦ f ◦ u′1 , where u′1 is the dual mapping of u1. It is
clear that if G is a Banach space and F is a Banach subspace of another Banach space
E, then GεF is a Banach subspace of GεE. For more detail about the ε-product we refer
the reader to [7] and [14].

4. A Banach space E is an L∞,λ-space, λ ≥ 1, if and only if every finite-dimensional
subspace F of E is contained in a finite-dimensional subspace F1 of E such that d(F1, l

∞
n ) ≤

λ, where n = dim F1, l∞n is Kn (K = IR or lC) with the norm sup1≤i≤n |xi|, and
d (X, Y ) = inf{||T ||

∣∣∣∣T−1
∣∣∣∣ , T : X −→ Y isomorphism} is the Banach-Mazur distance

of the Banach spaces X and Y . A Banach space E is an L∞-space if it is an L∞,λ-space
for some λ ≥ 1. For more information about L∞-spaces we refer to see [10].

2. The ε∞-product of a Banach space

A Banach space G is called injective if the restriction mapping Ban(., G) : Ban(E,G)
−→ Ban(F,G) is surjective, as soon as E is a Banach space and F is a closed subspace
of E, where Ban(H,G) is the Banach space of all bounded linear mappings from H into
G, H = E, F . Well known examples of injective Banach spaces are l∞(I), I being any
set. By [10], every injective Banach space is an L∞-space.

As the ε-product is a left exact functor on the category Ban, we shall consider strongly
left exact sequences. A complex 0 −→ E

u−→ F
v−→ G is left exact in Ban if Ker(v) =

Im(u). The complex 0 −→ E
u−→ F

v−→ G is strongly left exact in Ban if it is left
exact and the image of v is closed in G.

Definition 2.1. Let G be a Banach space and I, J be sets. Then the strongly left exact
complex 0 −→ G

u−→ l∞(I) v−→ l∞(J) will be called a l∞-resolution of G.

Proposition 2.2. Every Banach space G has l∞-resolutions.

Proof. Let I be a dense subset in the closed unit ball BG′ of the topological dual space
G′ of G. It is obvious that the linear mapping u : G −→ l∞(I), x 7−→ u(x) such
that u(x)(g) = g(x) for all g ∈ I, is an isometry. Since u(G) is a closed subspace of
l∞(I), we identify G with u(G). Then there exists a dense subset J in B(l∞(I)/G)′ and
an isometric mapping l∞(I)/G −→ l∞(J) where (l∞(I)/G)′ is the topological dual of
l∞(I)/G. The mapping v : l∞(I) −→ l∞(J) is the composition of the quotient mapping
l∞(I) −→ l∞(I)/G and the isometry l∞(I)/G −→ l∞(J). Its image is closed in l∞(J).
It follows that 0 −→ G

u−→ l∞(I) v−→ l∞(J) is a l∞-resolution of G. �
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Below, we define the ε-product of a Banach space by a quotient bornological space. For
this we let 0 −→ G

u−→ l∞(I) v−→ l∞(J) be a l∞-resolution of G. Since l∞(I) and l∞(J)
are L∞-spaces, it follows from [7] that the functor l∞(K)ε. : Ban −→ Ban is exact for
K = I, J . On the other word, the inductive limit functor is exact on the category of b-
spaces [6], hence the functor l∞(K)ε. : b −→ b is exact for K = I, J . Now, by Theorem
4.1 of [17], this functor admits an exact extension l∞(K)ε. : q −→ q. As a consequence, if
E | F is a quotient bornological space we have l∞(K)ε(E | F ) = (l∞(K)εE) | (l∞(K)εF )
for K = I, J .

On the other hand, the bounded linear mapping vεIdE : l∞(I)εE −→ l∞(J)εE in-
duces a strict morphism vεIdE|F : (l∞(I)εE) | (l∞(I)εF ) −→ (l∞(J)εE) | (l∞(J)εF ),
and as the category q is abelian, the object Ker(vεIdE|F ) exists, and then we obtain the
following left exact sequence:

0 −→ Ker(vεIdE|F )
uεIdE|F−→ (l∞(I)εE) | (l∞(I)εF )

vεIdE|F−→ (l∞(J)εE) | (l∞(J)εF )

where

Ker(vεIdE|F ) = (vεIdE)−1(l∞(J)εF ) | (l∞(I)εF )

and (vεIdE)−1(l∞(J)εF ) is a b-subspace of the b-space l∞(I)εE for the following bound-
edness: a subset B of (vεIdE)−1(l∞(J)εF ) is bounded if it is bounded in l∞(I)εE and
its image (vεIdE)(B) is bounded in l∞(J)εF .

We let GεRes(E | F ) = Ker(vεIdE|F ). This defines a functor GεRes. : q−→ q,
E | F −→ GεRes(E | F ).

While the Banach space G has several l∞-resolutions, we will prove that the object
GεRes(E | F ) does not depend on l∞-resolutions of G.

Proposition 2.3. Let G1, G2 be two Banach spaces and 0 −→ Gi
ui−→ l∞(Ii)

vi−→
l∞(Ji) be a l∞-resolution of Gi, i = 1, 2. Let u : G1 −→ G2 be a bounded linear
mapping. Then there exist bounded linear mappings v : l∞(I1) −→ l∞(I2) and w :
l∞(J1) −→ l∞(J2) making the following diagram commutative:

0 −→ G1
u1−→ l∞(I1)

v1−→ l∞(J1)
↓u ↓v ↓w

0 −→ G2
u2−→ l∞(I2)

v2−→ l∞(J2)

Proof. By the construction of l∞-resolutions of the Banach spaces G1 and G2 (proof of
Proposition 2.2), we have the following sequences:

0 −→ Gi
ui−→ l∞(Ii) −→ l∞(Ii)/ui(Gi) −→ l∞(Ji), i = 1, 2.

Since G1 is a closed subspace of l∞(I1) and l∞(J2) is an injective Banach space,
the mapping u2 ◦ u : G1 −→ l∞(I2) can be extended to a bounded linear mapping
v : l∞(I1) −→ l∞(I2) such that the left square of the above diagram is commutative. The
mapping v induces a bounded linear mapping v : l∞(I1)/u1(G1) −→ l∞(I2)/u2(G2). As
l∞(J2) is injective, we can extend the composition l∞(I1)/u1(G1) −→ l∞(I2)/u2(G2) −→
l∞(J2) to a bounded linear mapping w : l∞(J1) −→ l∞(J2) such that the right square
of the above diagram is commutative. �

Now, we prove that the strict morphism defined by u is independent of v and w occur-
ing in Proposition 2.3. In fact, let E | F be a quotient bornological space. By applying
the functor .ε(E | F ) : Ban−→ q to the right square of the diagram of Proposition 2.3
and taking the kernels of the horizontal arrows viεIdE|F , i = 1, 2, we obtain the following
commutative diagram:
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0 −→ Ker(v1εIdE|F ) −→ l∞(I1)ε(E | F )
v1εIdE|F−→ l∞(J1)ε(E | F )

↓ ↓vεIdE|F ↓wεIdE|F

0 −→ Ker(v2εIdE|F ) −→ l∞(I2)ε(E | F )
v2εIdE|F−→ l∞(J2)ε(E | F )

where the strict morphism Ker(v1εIdE|F ) −→ Ker(v2εIdE|F ) in the above diagram is
induced by the restriction of vεIdE to the b-space (v1εIdE)−1(l∞(J1)εF ). We call it
uεResIdE|F : G1εRes(E | F ) −→ G2εRes(E | F ).

We must show that uεResIdE|F does not depend on the choice of the mappings v
and w.

Indeed, if u = 0, then there exists a bounded linear mapping β : l∞(J1) −→ l∞(I2)
such that the following square is commutative:

l∞ (I1)
v1−→ l∞ (J1)

↓v ↙β ↓w
l∞ (I2)

v2−→ l∞ (J2)

Now, by applying the functor .ε(E | F ) : Ban−→ q to the above square, we obtain
a strict morphism βεIdE|F : l∞(J1)ε(E | F ) −→ l∞(I2)ε(E | F ). Finally, it is easy to
prove that the strict morphism uεResIdE|F = 0. Hence the morphism uεResIdE|F is well
defined.

Now, we are in position to prove that the object GεRes(E | F ) is independent of
l∞-resolutions of G. Namely, we have the following result:

Theorem 2.4. Let G be a Banach space and 0 −→ G
ui−→ l∞(Ii)

vi−→ l∞(Ji), i = 1, 2,
be two l∞-resolutions of G. Then, for every quotient bornological space E | F , the objects
GεRes1(E | F ) and GεRes2(E | F ) are naturally isomorphic.

Proof. Let us consider the following commutative diagrams:

0 −→ G
u1−→ l∞ (I1)

v1−→ l∞ (J1)
↓IdG ↓u ↓v

0 −→ G
u2−→ l∞ (I2)

v2−→ l∞ (J2)
↓IdG ↓u

′

↓v
′

0 −→ G
u1−→ l∞ (I1)

v1−→ l∞ (J1)

and

0 −→ G
u1−→ l∞(I1)

v1−→ l∞(J1)
↓IdG ↓u

′
◦u ↓v

′
◦v

0 −→ G
u1−→ l∞ (I1)

v1−→ l∞ (J1)

By applying the functor .ε(E | F ) : Ban−→q to the above diagrams and by using the
identities (f

′
εIdH) ◦ (fεIdH) = (f

′ ◦ f)εIdH for f = u,v and H = E,F , we obtain

(IdGεRes2,1IdE|F ) ◦ (IdGεRes1,2IdE|F ) = IdGεRes1,1IdE|F = IdGεRes1 (E|F ).

Also, using a similar argument, we have the following identity:

(IdGεRes1,2IdE|F ) ◦ (IdGεRes2,1IdE|F ) = IdGεRes2,2IdE|F = IdGεRes2 (E|F ).

And this finishes the proof of Theorem 2.4. �
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Definition 2.5. The ε∞-product of a Banach space G and a quotient bornological space
E | F is the object Gε∞(E | F ) that we define as GεRes(E | F ) for some l∞-resolution
of G.

In [2], we proved the following result.

Proposition. ([2], Proposition 2.2). If G1, G2 are L∞-spaces and u : G1 −→ G2 is a
bounded linear mapping, then u is injective with a closed range if and only if for every
quotient Banach space E | F , the strict morphism uεIdE|F : G1ε(E | F ) −→ G2ε(E | F )
is injective.

This proposition is still valid in the category of quotient bornological spaces. In fact,
if G is an L∞-space and (Ei | Fi)i∈I is an inductive system of quotient Banach spaces,
since the category q is stable under inductive limit, we can show that Gε(lim−→i (Ei | Fi)) '
lim−→i (Gε (Ei | Fi)).

On the other hand, a quotient bornological space E | F can be considered as an
inductive limit of quotient Banach spaces Ei | Fi. Indeed, let (B,C) be a couple of
bounded completant sets, B bounded in E, C bounded in F and C ⊂ B. This set of
couples is ordered by the relation (B,C) ≺ (B1, C1) if and only if B ⊂ B1 and C ⊂ C1.
For such an order, the set of couples (B,C) is a net and the family (EB | FC)(B,C) is
an inductive system in the category q. Then we can write E | F ' lim−→(B,C)(EB | FC).
It follows that if G is an L∞-space and E | F is a quotient bornological space, then
Gε (E | F )) ' lim−→B,C (Gε (EB | FC)).

Thus Proposition 2.2 of [2] holds in the category of quotient bornological spaces.

An important characterization of L∞-spaces by the ε∞-product is giving by the fol-
lowing result.

Theorem 2.6. A Banach space G is an L∞-space if and only if whenever E | F is a
quotient bornological space, the objects (GεE) | (GεF ) and Gε∞(E | F ) are isomorphic.

Proof. Let 0 −→ G
u−→ l∞(I) v−→ l∞(J) be a l∞-resolution of G. By a dual result of

Proposition II.5.13 of [10], the Banach space l∞(I)/G is an L∞-space. We consider the
following exact sequence:

0 −→ G
u−→ l∞(I) π−→ l∞(I)/G −→ 0.

If E | F is a quotient bornological space, by applying the ε-product functor, we obtain
the following commutative diagram:

0 0 0
↓ ↓ ↓

0 −→ GεF −→ l∞(I)εF −→ (l∞(I)/G)εF −→ 0
↓ ↓ ↓

0 −→ GεE −→ l∞(I)εE −→ (l∞(I)/G)εE −→ 0
↓ ↓ ↓

0 −→ Gε(E | F ) −→ l∞(I)ε(E | F ) −→ (l∞(I)/G)ε(E | F ) −→ 0
↓ ↓ ↓
0 0 0

where the three columns are exact (because G, l∞(I) and l∞(I)/G are L∞-spaces). By
Proposition 2.5 and the example 2.4(i) of [8], the sequence

(1) 0 −→ GεK −→ l∞(I)εK −→ l∞(J)εK

is exact for K = EB , FC .
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On the other hand, E = lim−→BEB and F = lim−→CFC , and since the inductive limit
functor is exact on the category of b-spaces [6], it follows that the first and the second
lines are exact. Finally, we deduce from Theorem 4.3.6 of [12] that the third line is exact.

If we consider the isometry v1 : l∞(I)/G −→ l∞(J) such that v = v1 ◦ π, the strict
morphism v1εIdE|F : (l∞(I)/G)ε(E | F ) −→ l∞(J)ε(E | F ) is injective (Proposition 2.2
of [2]) and vεIdE|F = (v1εIdE|F ) ◦ (πεIdE|F ). Then Ker(vεIdE|F ) = Ker(πεIdE|F ), and
this shows the result.

Conversely, if a1 : X −→ Y is a surjective bounded linear mapping between Banach
spaces, it induces an isomorphism a : X | a−1

1 (0) −→ Y | {0}. Let 0 −→ G
u−→

l∞(I) v−→ l∞(J) be a l∞-resolution of G. By applying the left exact functors .ε∞(X |
a−1
1 (0)), .ε∞(Y | {0}) : Ban −→ q (Theorem 3.1 of this paper) to the above left exact

l∞-resolution (1), we obtain the following commutative diagram:

0 −→ Gε∞(X | a−1
1 (0)) −→ l∞(I)ε(X | a−1

1 (0)) −→ l∞(J)ε(X | a−1
1 (0))

↓ ↓ ↓
0 −→ Gε∞(Y | {0}) −→ l∞(I)ε(Y | {0}) −→ l∞(J)ε(Y | {0})

As l∞(I) and l∞(J) are L∞-spaces, the strict morphisms Idl∞(I)εa and Idl∞(J)εa are
isomorphism. Now, by using Lemma 4.3.3 of [12], we deduce that the morphism IdGε∞a
is an isomorphism.

On the other hand, it follows from the left square of the above diagram that

(2) ((Idl∞(I))εa) ◦ (uεId(X|a−1
1 (0))) = (uεIdY |{0}) ◦ (IdGε∞a)

and by the commutative square

Gε(X | a−1
1 (0)) −→ l∞(I)ε(X | a−1

1 (0))
↓ ↓
Gε(Y | {0}) −→ l∞(I)ε(Y | {0})

we have

(3) (Idl∞(I)εa) ◦ (uεId(X|a−1
1 (0))) = (uεIdY |{0}) ◦ (IdGεa).

By using the equalities (2) and (3), we obtain

(uεIdY |{0}) ◦ (IdGεa) = (uεIdY |{0}) ◦ (IdGε∞a).

Finally, since the strict morphism uεIdY |{0} is injective, we deduce IdGεa = IdGε∞a.
This proves that IdGεa : GεX | (Gεa−1

1 (0)) −→ Gε(Y | {0}) is an isomorphism, and
then the mapping IdGεa1 : GεX −→ GεY is surjective. This proves the result. �

3. The left exactness of the functor .ε∞.

To show that for every quotient Banach space E | F , the functor .ε∞(E | F ) changes
a left exact complex of the category Ban into a left exact complex of the category qBan,
we need the following lemma.

Lemma 3.1. Let 0 −→ G1
u−→ G2

v−→ G3 −→ 0 be a short exact complex of the
category Ban. Let b1 : G1 −→ l∞(X1) and b3 : G3 −→ l∞(X3) be isometric embeddings.
Then there exists an isometric embedding b2 : G2 −→ l∞(X1)

⊕
l∞(X3) such that the

diagram
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0 0 0
↓ ↓ ↓

0 −→ G1
u−→ G2

v−→ G3 −→ 0
↓b1 ↓b2 ↓b3

0 −→ l∞ (X1)
π−→ l∞ (X1)⊕ l∞ (X3)

s−→ l∞ (X3) −→ 0

is commutative, where π : l∞(X1) −→ l∞(X1)
⊕

l∞(X3) and s : l∞(X1)
⊕

l∞(X3) −→
l∞(X3) are the classical bounded linear mappings into and from a direct sum.

Proof. We assume that G1 is a closed subspace of G2 and G3 is the Banach space G2/G1.
Let G1 ⊂ l∞(X1) and G3 ⊂ l∞(X3) be isometric embeddings. Since l∞(X1) is injective,
the bounded linear mapping b1 : G1 −→ l∞(X1) can be extended to a bounded linear
mapping b′2 : G2 −→ l∞(X1) such that b′2 ◦ u = b1. On the other hand, G2 is mapped
into G3, and G3 is mapped in l∞(X3). The composition of these mappings is a bounded
linear mapping b′′2 : G2 −→ l∞(X3). We let b2 = b′2

⊕
b′′2 . Let x2 = x′2

⊕
x′′2 ∈ b2(G2);

x′′2 ∈ b3(G3), we let g3 ∈ G3 be the element mapped onto x′′2 , then we see that ‖ g3 ‖G3=
‖ x′′2 ‖l∞(X3). And g3 can be lifted to g′′2 ∈ G2 such that v(g

′′

2 ) = g3 and ‖ g′′2 ‖G2<
(1 + ε) ‖ g3 ‖G3= (1 + ε) ‖ x′′2 ‖l∞(X3). The element x′2 belongs to b′2(G2), then an
element g1 ∈ G1 exists such that b1(g1) = x′2. Of course, ‖ g1 ‖G1= ‖ x′2 ‖l∞(X1) and
u(g1) = g′′2 ∈ G2 is such that ‖ u(g1) ‖G2= ‖ x′2 ‖l∞(X3).

We have lifted x2 ∈ b2(G2) to g2 = g′2 + g′′2 , ‖ g2 ‖G2≤ (1 + ε) ‖ x2 ‖. The bounded
linear mapping b2 : G2 −→ l∞(X1)

⊕
l∞(X3) is isometric and then has a closed range.

�

Now, we are in position to prove the following result.

Theorem 3.2. Let 0 −→ G1
u1−→ G2

u2−→ G3 be a left exact complex of the category
Ban. Let E | F be a quotient Banach space. Then 0 −→ G1ε∞(E | F ) −→ G2ε∞(E |
F ) −→ G3ε∞(E | F ) is a left exact complex of the category qBan.

Proof. By Lemma 3.1, b1(G1), b2(G2) and b3(G3) are closed subspaces of the Banach
spaces l∞(X1), l∞(X1)

⊕
l∞(X3) and l∞(X3) respectively, and then the sequence 0 −→

b1(G1) −→ b2(G2) −→ b3(G3) −→ 0 is a short exact complex. We obtain the following
commutative diagram:

0 0 0
↓ ↓ ↓

0 −→ b1(G1) −→ b2(G2) −→ b3(G3) −→ 0
↓ ↓ ↓

0 −→ l∞(X1) −→ l∞(X1)⊕ l∞(X3) −→ l∞(X3) −→ 0
↓ ↓ ↓

0 −→ l∞(X1)/b1(G1) −→ (l∞(X1)⊕ l∞(X3))/b2(G2) −→ l∞(X3)/b3(G3) −→ 0
↓ ↓ ↓
0 0 0

where the three columns are exact and the first and the second lines are exact. One
of the several 3 × 3 Lemmas [12] shows that the sequence 0 −→ l∞(X1)/b1(G1) −→
(l∞(X1)⊕ l∞(X3))/b2(G2) −→ l∞(X3)/b3(G3) −→ 0 is a short exact complex.

The Banach spaces l∞(X1)/b1(G1) and (l∞(X1)⊕ l∞(X3))/b2(G2) are included in an
isometric way in l∞(Y1) and l∞(Y3). By Lemma 3.1, there exists an isometric mapping
c′2 : (l∞(X1)⊕ l∞(X3))/b2(G2) −→ l∞(Y1)⊕ l∞(Y3) such that the following diagram is
commutative:

0 0 0
↓ ↓ ↓

0 −→ l∞(X1)/b1(G1) −→ (l∞(X1)⊕ l∞(X3))/b2(G2) −→ l∞(X3)/b3(G3) −→ 0

↓c
′
1 ↓c

′
2 ↓c

′
3

0 −→ l∞ (Y1) −→ l∞ (Y1)⊕ l∞ (Y3) −→ l∞ (Y3) −→ 0
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We let c2 be the composition of the projection l∞(X1) ⊕ l∞(X3) −→ (l∞(X1) ⊕
l∞(X3))/b2(G2) with the embedding (l∞(X1) ⊕ l∞(X3))/b2(G2) −→ l∞(Y1) ⊕ l∞(Y3).
The sequence (0, b2, c2) is a l∞-resolution of G2 such that the following diagram is com-
mutative:

0 0 0
↓ ↓ ↓

0 −→ G1
u−→ G2

v−→ G3 −→ 0
↓b1 ↓b2 ↓b3

0 −→ l∞ (X1) −→ l∞ (X1)⊕ l∞ (X3) −→ l∞ (X3) −→ 0
↓c1 ↓c2 ↓c3

0 −→ l∞ (Y1) −→ l∞ (Y1)⊕ l∞ (Y3) −→ l∞ (Y3) −→ 0

We have chosen one l∞-resolution of G2, but we have proved that the quotient Banach
space Gε∞(E | F ) does not depend on the l∞-resolution (modulo a natural isomorphism).
Instead of using the chosen l∞-resolution, we use the l∞-resolution above. By applying
the functor .ε∞(E | F ) to the above diagram, we obtain

0 0 0
↓ ↓ ↓

0 −→ G1ε∞(E | F ) −→ G2ε∞(E | F ) −→ G3ε∞(E | F )
↓ ↓ ↓

0 −→ l∞ (X1) ε(E | F ) −→ (l∞ (X1)⊕ l∞ (X3))ε(E | F ) −→ l∞ (X3) ε(E | F )
↓ ↓ ↓

0 −→ l∞ (Y1) ε(E | F ) −→ (l∞ (Y1)⊕ l∞ (Y3))ε(E | F ) −→ l∞ (Y3) ε(E | F )

another 3× 3 Lemma of [12], shows that the complex 0 −→ G1ε∞(E | F ) −→ G2ε∞(E |
F ) −→ G3ε∞(E | F ) is left exact.

Now, let 0 −→ G1 −→ G2 −→ H be a left exact complex and let G3 ' G2/u(G1),
the complex 0 −→ G1ε∞(E | F ) −→ G2ε∞(E | F ) −→ G3ε∞(E | F ) is left exact in
qBan. Since G3 is (isomorphic to) a closed subspace of H, we have a second short
exact complex 0 −→ G3 −→ H −→ H/G3 −→ 0 in Ban, and the complex 0 −→
G3ε∞(E | F ) −→ Hε∞(E | F ) −→ (H/G3)ε∞(E | F ) is left exact. In particular,
the strict morphism G3ε∞(E | F ) −→ Hε∞(E | F ) is injective. Hence, the complex
0 −→ G1ε∞(E | F ) −→ G2ε∞(E | F ) −→ Hε∞(E | F ) is left exact in qBan. �

Finally, if we consider the functor Gε∞. : qBan −→ qBan, where G is a Banach
space, we have the following property:

Proposition 3.3. Let G be a Banach space and 0 −→ E1 | F1 −→ E2 | F2 −→
E3 | F3 −→ 0 be a short exact complex of quotient Banach spaces. Then the complex
0 −→ Gε∞(E1 | F1) −→ Gε∞(E2 | F2) −→ Gε∞(E3 | F3) is left exact in qBan.

Proof. Let 0 −→ G −→ l∞ (I) −→ l∞ (J) be a l∞-resolution of G. Since l∞(I) and
l∞(J) are L∞-spaces, the functors l∞ (I) ε. and l∞ (J) ε. are exact on qBan, and it
follows that, in the diagram
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0 0 0
↓ ↓ ↓

0 −→ Gε∞(E1 | F1) −→ l∞ (I) ε(E1 | F1) −→ l∞ (J) ε(E1 | F1)
↓ ↓ ↓

0 −→ Gε∞(E2 | F2) −→ l∞ (I) ε(E2 | F2) −→ l∞ (J) ε(E2 | F2)
↓ ↓ ↓

0 −→ Gε∞(E3 | F3) −→ l∞ (I) ε(E3 | F3) −→ l∞ (J) ε(E3 | F3)
↓ ↓ ↓
0 0 0

the last two columns are exact. On the other hand, by the definition of the ε∞-product,
the three lines are left exact. A 3 × 3 Lemma of [12] show that the first column is left
exact. �

4. The ε∞-product of a b-space

Let G be a b-space, then every completant bounded B of G is included in a completant
bounded A of G such that the inclusion mapping iAB : GB −→ GA is bounded [5].

Let 0 −→ GC
ΦC−→ l∞(IC) ΨC−→ l∞(JC) be a l∞-resolution of the Banach space GC ,

C = A,B. By Proposition 2.3, there exist bounded linear mappings vAB : l∞(IB) −→
l∞(IA) and wAB : l∞(JB) −→ l∞(JA) making commutative the following diagram:

(0,ΦB ,ΨB) : 0 −→ GB −→ l∞(IB) −→ l∞(JB)
↓iAB ↓ vAB ↓wAB

(0,ΦA,ΨA) : 0 −→ GA −→ l∞(IA) −→ l∞(JA)

If E | F is a quotient bornological space, by applying the functor .ε(E | F ) : Ban −→ q
to the right square of the above diagram and adding the kernels of the horizontal arrows
ΨCεIdE|F , C = A,B, we obtain the following commutative diagram:

0 −→ GBε∞(E | F )
ΦBε∞IdE|F−→ l∞(IB)ε(E | F )

ΨBεIdE|F−→ l∞(JB)ε(E | F )
↓iABε∞ IdE|F ↓ vABεIdE|F ↓wABεIdE|F

0 −→ GAε∞(E | F )
ΦAε∞IdE|F−→ l∞(IA)ε(E | F )

ΨAεIdE|F−→ l∞(JA)ε(E | F )

where the strict morphism iABε∞IdE|F : GBε∞(E | F ) −→ GAε∞(E | F ) is in-
duced by the restriction of vABεIdE to the b-space (ΨBεIdE)−1(l∞(JB)εF ). The system
(GBε∞(E | F ), iABε∞IdE|F )B is inductive in q, and then has an inductive limit which
is a quotient bornological space.

Definition 4.1. The ε∞-product of a b-space G and a quotient bornological space E | F
is the quotient bornological space Gε∞(E | F ) = lim−→BGBε∞(E | F ).

Since the inductive limit functor is exact on the category of b-spaces [6], it follows
from Theorem 4.1 of [17] that this functor admits an exact extension to the category of
quotient bornological spaces.

Our aim now is to show some properties of this ε∞-product.

Proposition 4.2. Let G be a b-space and E | F be a quotient bornological space. Then
there exists an injective strict morphism (GεE) | (GεF ) −→ Gε∞(E | F ).

Proof. Let G = lim−→BGB . Then by the same proof as in Proposition 2.12 of [3], we show
the existence of an injective strict morphism (GBεE) | (GBεF ) −→ GBε∞(E | F ).

Now, by applying the functor lim−→B(.) which is exact on q, we obtain the injective
strict morphism lim−→B((GBεE) | (GBεF )) −→ lim−→B(GBε∞(E | F )). On the other hand,
the quotient bornological space (GBεE) | (GBεF ) defines the following exact sequence:
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0 −→ GBεF −→ GBεE −→ (GBεE) | (GBεF ) −→ 0.

Its image by the functor lim−→B(.) is the following exact sequence:

0 −→ lim−→B(GBεF ) −→ lim−→B(GBεE) −→ lim−→B((GBεE) | (GBεF )) −→ 0.

This shows that

lim−→B(GBεE) | lim−→B(GBεF ) = lim−→B((GBεE) | (GBεF ))

and hence, we obtain an injective strict morphism lim−→B(GBεE) | lim−→B(GBεF ) −→
lim−→B(GBε∞(E | F )). �

Now, we introduce the class of εb-spaces. A b-space G is an εb-space if the mapping
IdGεu : GεE −→ GεF is bornologically surjective whenever u : E −→ F is a surjective
bounded linear mapping between Banach spaces.

For example, each L∞-space is an εb-space, and if the b-space G is an inductive limit
of L∞-spaces in the category b, then G is an εb-space.

Theorem 4.3.
1. If a b-space G is a bornological inductive limit of L∞-spaces and E | F is a quotient

bornological space, then (GεE) | (GεF ) = Gε∞(E | F ).
2. Let G be a b-space. If for each quotient bornological space E | F , we have (GεE) |

(GεF ) = Gε∞(E | F ), then G is an εb-space.

Proof. 1. Since G = lim−→BGB , where each GB is an L∞-space, it follows from Theorem
2.6, that (GBεE) | (GBεF ) = GBε∞(E | F ). As the functor lim−→B(.) is exact, we obtain
lim−→B((GBεE) | (GBεF )) = lim−→B(GBε∞(E | F )), and hence (GεE) | (GεF ) = Gε∞(E |
F ).

2. Let u1 : X −→ Y be a surjective bounded linear mapping between Banach spaces,
it induces a pseudo-isomorphism u : X | u−1

1 (0) −→ Y | {0}. As G = lim−→BGB , let

0 −→ GB
ΦB−→ l∞(IB) ΨB−→ l∞(JB) −→ 0

be a l∞-resolution of the Banach space GB . By applying the left exact functors .ε∞(X |
u−1

1 (0)), .ε∞(Y | {0}) : Ban −→ q to the above l∞-resolution of GB , we obtain the
following commutative diagram:

0 −→ GBε∞(X | u−1
1 (0)) −→ l∞(IB)ε(X | u−1

1 (0)) −→ l∞(JB)ε(X | u−1
1 (0))

↓IdGB
ε∞u ↓Idl∞(IB)εu ↓Idl∞(JB)εu

0 −→ GBε∞(Y | {0}) −→ l∞(IB)ε(Y | {0}) −→ l∞(JB)ε(Y | {0})

Since l∞(I) and l∞(J) are L∞-spaces, the strict morphisms Idl∞(IB)εu and Idl∞(JB)εu
are isomorphism. It follows from Lemma 4.3.3 of [12], that the strict morphism IdGB

ε∞u :
GBε∞(X | u−1

1 (0)) −→ GBε∞(Y | {0}) is an isomorphism.
Now, by applying the exact functor lim−→B(.), we obtain the isomorphism

lim−→B(IdGB
ε∞u) : lim−→B(GBε∞(X | u−1

1 (0))) −→ lim−→B(GBε∞(Y | {0}))

i.e. IdGε∞u : Gε∞(X | u−1
1 (0)) −→ Gε∞(Y | {0}) is an isomorphism. As (GεX) |(

Gε(u−1
1 (0))

)
= Gε∞(X | u−1

1 (0)) and Gε∞(Y | {0}) = (GεY ) | {0}, the bounded linear
mapping IdGεu : GεX −→ GεY is bornologically surjective, and hence G is an εb-space.
This ends the proof. �
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Remark 4.4. In [3], we defined the b-space O1 (U,E) as the kernel of the following
morphism ∂ : E (U,E) −→ E (U,E)⊗Cn∗, where E (U,E) = lim←−V ∈CU

(E (V ) εE) and Cn∗

is the space of antilinear forms on Cn. We proved that if U is an open pseudo-convex
subset of Cn, E a b-space and F a bornologically closed subspace of E, then the b-
spaces O1 (U,E/F ) and O (U,E) /O (U,F ) are naturally isomorphic. (Proposition 2.14
of [3]). This result proves that the functor O1 (U, .) : b −→ b ⊂ q is exact. Then it
admits an unique and exact extension O1 (U, .) : q −→ q (Theorem 4.1 of [17]). As a
consequence, for each quotient bornological space E | F , we obtain O1 (U,E | F ) and
O (U,E) | O (U,F ) are isomorphic in the category q.

On the other hand, the b-space O (U) is nuclear (i.e. all bounded completant subset B
of O (U) is included in a bounded completant subset A of O (U) such that the inclusion
mapping iAB : O (U)B −→ O (U)A is nuclear), and then O (U) is a bornological inductive
limit of Banach spaces O (U)B , where each O (U)B is isometrically isomorphic to the
L∞-space c0 (i.e. the space of sequences which converge to 0) ([5]). Hence, by Theo-
rem 4.3 (1), we have O (U,E) | O (U,F ) = O (U) ε∞(E | F ).

Finally, for each quotient bornological space E | F , the spaces O1 (U,E | F ) and
O (U) ε∞(E | F ) are isomorphic in the category q.
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