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ON NON-DENSELY DEFINED INVARIANT HERMITIAN
CONTRACTIONS

M. BEKKER

Abstract. We consider a non-densely defined Hermitian contractive operator which
is unitarily equivalent to its linear-fractional transformation. We show that such an
operator always admits self-adjoint extensions which are also unitarily equivalent to
their linear-fractional transformation.

1. Introduction and Preliminary

Let D = D be a closed proper subspace of a separable Hilbert space H with inner
product (·, ·). Let A : D 7→ H be an operator defined on D which possesses the following
properties:

(1) (Ah1, h2) = (h1, Ah2), for h1, h2 ∈ D (Hermitian property);
(2) ‖A‖ = sup{‖Ah‖ : h ∈ D, ‖h‖ ≤ 1} ≤ 1.

Such an operator A is called a non-densely defined Hermitian contractive operator, or
just a non-densely defined Hermitian contraction. Non-densely defined Hermitian con-
tractions were apparently at first time considered by M. G. Krĕın [11] in connection with
positive self-adjoint extensions of positive symmetric operators.

For a non-densely defined Hermitian contraction A we denote by ∆(A) the set of all
self-adjoint operators Â which are norm-preserving extensions of A, that is

(1) ∆(A) = {Â : Âf = Af, f ∈ D, Â∗ = Â, ‖Â‖ = ‖A‖}.

In [11] M. G. Krĕın proved that set ∆(A) 6= ∅. Moreover in [11] it was proved that the
set ∆(A) contains the smallest element Âµ and the largest element ÂM .

A description of the set ∆(A) was originally obtained by M. G. Krĕın [11] and pre-
sented in [1]. The article [12] among other important and interesting results contains a
description of the resolvents of operators Â ∈ ∆(A). Other proofs of such type of results
as well as further generalizations can be found in [3], [4], [9], [13]. Last two articles also
contain extensive lists of references.

In the form that we use in the present article the description of the set ∆(A) was
obtained or can be easily extracted from results of articles [5], [6], [10], [15].

Let N be the orthogonal complement of D in H, N = H 	 D, and let P be the
orthogonal projection onto D. We denote by B and C operators defined by:

(2) B = PA, C = (I − P )A.

The operator C maps D into N while B is an operator on D and satisfies the condition
B∗ = B.
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Using these notations operator A : D 7→ H can be represented as a block operator
matrix

A =
[
B
C

]
,

with respect to the decomposition H = D ⊕ N, and any operator Â ∈ ∆(A) can be
represented as a block operator matrix

(3) Â =
[
B C∗

C E

]
,

where E : N 7→ N satisfies E∗ = E .
The condition ‖A‖ ≤ 1 implies that for any f ∈ D the following is fulfilled:

((ID −B2)f, f) ≥ (C∗Cf, f).

The last inequality means that there exists a unique operator X : D → N, such that
‖X‖ ≤ 1 and

(4) C = X(ID −B2)1/2.

Initially the operator X is defined on R(ID −B2) (the closure of the range of ID −B2)
and then defined as zero operator on D 	R(ID − B2). The operator E is given by the
following formulas (see above mentioned references):

(5) E = O + R1/2ZR1/2

where

(6) O = −XBX∗, R = IN −XX∗,

ID and IN are identity operators in D and N respectively, and Z is an arbitrary self-
adjoint contraction (Z = Z∗, ‖Z‖ ≤ 1) on N. The set of all such contractive operators
Z we denote by B(N). In particular, the set ∆(A) contains only one element if and only
if R = 0, or XX∗ = IN, that is if and only if operator the X is a coisometry.

We denote by B(N) the set of all self-adjoint contractive operators on N. The set
∆(A) can be treated as the image of the set B(N) under the mapping Â : B(N) 7→ ∆(A)
defined by formulas (3)–(6). From these formulas it follows that Âµ = Â(−IN), while
ÂM = Â(IN). Later on we use the notations Eµ and EM for right bottom blocks of Âµ

and ÂM respectively. From the formulas above it follows that

(7) Eµ = −IN + X(ID −B)X∗,

and

(8) EM = IN −X(ID + B)X∗.

In this article we consider non-densely defined Hermitian contractions which are uni-
tarily equivalent to their linear fractional transformation (see Definition 1). Such opera-
tors we call invariant contractions. In Section 2 we show that such contractions always
admit self-adjoint extensions which are also unitarily equivalent to their linear fractional
transformation (invariant extensions) and give a necessary condition for the operator E
to be a right bottom block in the block representation (3) of an invariant extension.

In Section 3 we show that the extreme extensions Âµ and ÂM of the invariant con-
traction A are always invariant. From this result we deduce that if dimN = 1 then Âµ

and ÂM are only invariant self-adjoint extensions of A.
In Section 4 we consider an example of a non-densely defined invariant Hermitian

contraction. We use Theorem 3 to construct the extreme extensions. Finally, in Section 5
we briefly discuss relation between non-densely defined invariant Hermitian contractions
and positive symmetric operators which are scale-invariant (see Definition 2).
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2. Invariant Hermitian contractions

Let g : D 7→ D be a linear fractional transformation of the unit disk D onto itself
defined by

(9) g(z) =
z − κ

1− κz
, −1 < κ < 1,

and let G = {gn, n = 0,±1,±2, . . . , } be the group of linear fractional transformations
generated by g. Each transformation gn from G is of the form

gn : z 7→ z − κn

1− κnz

where

(10) κn =
sn − 1
sn + 1

, s =
1− κ

1 + κ
, n = 0,±1,±2, . . .

Without loss of generality we may assume that s > 1 and, therefore, 0 < κ < 1.
Let U be a unitary operator on a Hilbert space H.

Definition 1. Let A be a non-densely defined Hermitian contraction on a Hilbert space
H. The operator A is said to be (g, U)-invariant (or just invariant) if

(11) UnAU∗n = gn(A) = (A− κnID)(ID − κnA)−1, n = 0,±1,±2, . . .

Definition 1 is understood in the following sense: for any h ∈ D there exists h′ ∈ D
such that

(12) Unh = h′ − κnAh′

and

(13) UnAh = Ah′ − κnh′.

Denote by Mz, z ∈ C, the range of the operator A − zID. Then Definition 1 means
the unitary operator Un maps the subspace D onto M1/κn

and M0 onto Mκn .

Remark 1. From (11) one can easily deduce that for any z ∈ C the following is fulfilled:

UnMz = Mg−n(z).

Theorem 1. Let A be a non-densely defined (g, U)-invariant Hermitian contraction
defined on a proper closed subspace D of a Hilbert space H. Then it admits a (g, U)-
invariant contractive self-adjoint extension.

Proof. Denote by L(H) the algebra of all bounded operators on H. Recall that by B(N)
we denote the set of all self-adjoint contractions Z, Z = Z∗ on N. Observe that the set
∆(A) is convex and compact in the weak operator topology of L(H). Convexity of ∆(A)
is obvious from formulas (3)–(6).

To prove compactness observe that the set B(N) is a closed in the weak operator
topology subset of the unit ball of L(N). Because the closed unit ball of L(N) is compact
in the weak operator topology [7], so is B(N).

The mapping Â : B(N) → ∆(A) is a continuous mapping from B(N) with the weak
operator topology into L(H) with the weak operator topology. Indeed if Â(Z0) ∈ ∆(A)
let

V = {T ∈ L(H) : |((T − Â(Z0))fi, gi)| < ε, ε > 0, fi, gi ∈ H, i = 1, 2, . . . , N}

be a neighborhood of Â(Z0) in the weak operator topology of L(H). From formulas
(3)–(6) it follows that

(Â(Z)− Â(Z0))fi, gi) =
[
0 0
0 ((Z − Z0)R1/2(I − P )fi, R

1/2(I − P )gi)

]
.
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Therefore the neighborhood W of Z0 defined by

W = {S ∈ L(N) : |((S − Z0)R1/2(I − P )fi, R
1/2(I − P )gi)| < ε, i = 1, 2, . . . , N}

satisfies the condition Â(W ) ⊂ V . From continuity of the mapping Â we deduce that
∆(A) = Â(B(N)) is a compact subset of L(H) with the weak operator topology.

For T ∈ L(H), ‖T‖ ≤ 1, we denote by Ψn(T ) an operator from L(H) defined by

(14) Ψn(T ) = Un∗gn(T )Un.

Note that because 0 < κ < 1, the operator

g(T ) = (T − κI)(I − κT )−1

is a bounded operator on H.
Observe also that

(15) Ψn2(Ψn1(T )) = Ψn1+n2(T ).

We claim that Ψn(Â) is in ∆(A) for Â ∈ ∆(A). It is clear that Ψn(Â) = Ψn(Â)∗ and
‖Ψn(Â)‖ ≤ 1. We need to show that Ψn(Â)h = Ah for h ∈ D. But for h ∈ D according
to (12) and (13) we have

Unh = (h′ − κnAh′) = (h′ − κnÂh′), h′ ∈ D.

Therefore, for h ∈ D,

Un∗gn(Â)Unh = Un∗(Â− κnI)h′ = Un∗(Ah′ − κnh′) = Ah

since Â is an extension of A. Thus, for any n and for any Â ∈ ∆(A) the operator Ψn(Â)
is in ∆(A).

Therefore, the mapping Ψn : Â 7→ Ψn(Â) maps the compact convex subset ∆(A) of
the locally convex space L(H) with the weak operator topology into itself (in fact, Ψn

is a homeomorphism). Therefore, according to the Tychonoff fixed point theorem [16],
Ψn : ∆(A) 7→ ∆(A) has a fixed point. It particular this is true for n = 1. That is, there
exists an operator Â0 ∈ ∆(A) such that Â0 = Ψ1(Â0), or

UÂ0U
∗ = (Â0 − κI)(I − κÂ0)−1.

From (15) it follows that Â0 is a fixed point for all Ψn, n = 0,±1,±2, . . . This means
that Â0 is an invariant extension of A and completes the proof. �

Theorem 1 along with the block representation (3) of an operator Â from ∆(A) allow
to give a necessary condition for the operator E on N to be the right bottom block of
the invariant extension.

With respect to the decomposition H = D⊕N, operators Un, n = 0,±1,±2, . . . , are
representable in a block form as follows

(16) Un =
[
Rn Tn

Sn Qn

]
.

The operators Rn, Tn, Sn, and Qn satisfy the following relations which are a conse-
quence of unitarity of Un:

(17) R∗n = R−n, Q∗n = Q−n, T ∗n = S−n.

We rewrite (11) in the form

AU∗n(ID − κnA) = U∗n(A− κnID),

from which we deduce that that (g, U)−invariance of A results in the following relations
between blocks of A (see (2)) and blocks of Un, n = 0,±1,±2, . . .

(18) T ∗n(ID − κnB)− κnQ∗nC = 0,
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(19) R∗n(B − κnID) + S∗nC = BR∗n(ID − κnB)− κnBS∗nC,

(20) T ∗n(B − κnID) + Q∗nC = CR∗n(ID − κnB)− κnCS∗nC.

Suppose now that Â is an invariant contractive self-adjoint extension of A. Using (3)
we obtain that in addition to formulas (18)–(20), the following relations are fulfilled for
n = 0,±1,±2, . . .

(21)
κnEQ∗nE + (κnCS∗n + Q∗n)E + E(κnT ∗nC∗ −Q∗n)

+ κn(CR∗nC∗ −Q∗n) + T ∗nC∗ − CS∗n = 0,

that is E is a solution of a collection of Riccati equations. From this fact we immediately
deduce that if dimN = 1, then the operator A has at most two (g, U)-invariant self-
adjoint extensions. Later on it will be shown (Theorem 3 that the extreme extensions
Âµ and ÂM are (g, U)-invariant).

In what follows we assume that the non-densely defined contraction A does not have
numbers ±1 as eigenvalues. Then the self-adjoint operator B = PA on D (see (2)) also
does not have ±1 in its point spectrum. Indeed, if PAf = f , f ∈ D, then

‖Af − f‖2 = ‖Af‖2 + ‖f‖2 − (Af, f)− (f,Af)

= ‖Af‖2 − ‖f‖2 ≤ 0

since A is a contraction. For PAf = −f the proof is similar.
Our assumption does not cause a loss of generality. If λ = 1 (or λ = −1 or both) is

an eigenvalue of A then the corresponding eigenspace reduces the operator A and the
restriction of A to it is the self-adjoint identity operator which is (g, U)-invariant.

Denote by D+
n and D−

n the operators defined by

(22) D+
n = X(ID −B2)(ID + κnB)−1X∗,

and

(23) D−
n = X(ID −B2)(ID − κnB)−1X∗,

where equation (4) was used.
D±

n are bounded positive operators on the subspace N. Since κ−n = −κn (see (10)),
we have D+

−n = D−
n .

Lemma 1. Suppose that λ = ±1 are not eigenvalues of B. Then the operators D±
n

converge to the operators

(24) D± = X(ID ∓B)X∗

respectively as n →∞ in the weak operator topology of L(N).

Proof. It suffices to show that (D±
n h, h) → (D±h, h) as n →∞ for any h ∈ N. From the

spectral representation of B it follows that

(D+
n h, h) =

1∫
−1

1− λ2

1 + κnλ
dσh(λ)

where σh(λ) = (E(λ)X∗h, X∗h), and E(λ) is the resolution of the identity of B. Our
assumption about the spectrum of B gives σh({−1}) = σh({1}) = 0 and σh(λ) is conti-
nuous at λ = ±1.

Since κn → 1 as n →∞

lim
n→∞

1− λ2

1 + κnλ
=

{
0 λ = −1,

1− λ −1 < λ ≤ 1
.
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Now the Lebesgue dominating convergence theorem gives

lim
n→∞

(D+
n h, h) = lim

n→∞

1∫
−1

1− λ2

1 + κnλ
dσh(λ) =

1∫
−1

(1− λ) dσh(λ) = (D+h, h).

For the operators D−
n the proof is similar. Lemma is proved now. �

The same type of arguments show that in the weak operator topology of L(H)

(25) lim
n→∞

(1− κ2
n)C(ID − κnB)−2C∗ = lim

n→∞
(1− k2

n)X(ID −B2)(ID − κnB)−2X∗ = 0.

Using (17), (18)–(20), and (22) and (23), we rewrite (21) in the form

(26)

κnEQ∗nE + (IN − κ2
nD+

n )Q∗nE − EQ∗n(IN − κ2
nD−

n )

+ κnD+
n Q∗n + κnQ∗nD−

n − k2
nD+

n Q∗nD−
n − κnQ∗n

+ κn(1− κ2
n)Q∗nC(ID − κnB)−2C∗ = 0.

Theorem 2. Let A be a (g, U)-invariant Hermitian contraction with dimN < ∞, and
let Â ∈ ∆(A) be (g, U)-invariant. Then there exists a contraction Q on N (‖Q‖ ≤ 1)
such that the parameter E in the block representation (3) of Â satisfies the equation

(27) (E − Eµ)Q∗(E − EM ) = 0,

where Eµ and EM are defined by equations (7) and (8) respectively.

Proof. Since Un, n = 0,±1,±2, . . ., are unitary operators, the operators Q∗n = (I −
P )Un∗|N are in the unit ball of the space L(N). Since dimN < ∞, this unit ball is
compact. Let Q∗ be a limit point (in norm topology of L(N)) of the sequence {Q∗n}∞−∞.
It is clear that Q is a contraction. Suppose that lim

lj→+∞
Q∗lj = Q∗ (if lj → −∞, the proof

is similar). Because the norm topology and the weak operator topology are equivalent
on L(N), we can apply Lemma 1 and formula (25). Putting in (26) n = lj and taking
the limit as lj →∞ we obtain

EQ∗E + (IN −D+)Q∗E − EQ∗(IN −D−) + D+Q∗ + Q∗D− −D+Q∗D− −Q∗ = 0.

The last expression can be factored as

[E + (IN −D+)]Q∗[E − (IN −D−)] = 0,

which is (27) because of (7) and (8). This completes the proof. �

3. Invariance of Âµ and ÂM

In this section we show directly without using Theorem 1 that for a (g, U)-invari-
ant non-densely defined Hermitian contraction A the extreme extensions Âµ and ÂM

are (g, U)-invariant. Theorem 3 also provides an alternative proof of the existence of
invariant extensions.

Theorem 3. Let A be a non-densely defined (g, U)-invariant Hermitian contraction.
Then the self-adjoint operators Âµ and ÂM are (g, U)-invariant.

We present a portion of the proof in the following lemmas.

Lemma 2. Let A be a (g, U)-invariant non-densely defined Hermitian operator. Then
the operator ĝ(A) belongs to the set ∆(g(A)) if and only if it admits the following repre-
sentation:

(28) ĝ(A) =
[
UBU∗|M1/κ UC∗U∗|M1/κ

UCU∗|M1/κ E ′
]

,



ON NON-DENSELY DEFINED INVARIANT HERMITIAN CONTRACTIONS 229

where

(29) E ′ = UOU∗|M1/κ + UR1/2U∗Z ′UR1/2U∗|M1/κ,

Z ′ is an arbitrary contractive self-adjoint operator on the subspace N1/κ = M⊥
1/κ, and

the operators B, C, O, and R were defined by formulas (2), (5), and (6).

Proof. It is clear that the operator g(A) = (A− κID)(ID − κA)−1 is also a non-densely
defined Hermitian contraction. Its domain is the subspace M1/κ and its range is the
subspace Mκ. We denote by ∆(g(A)) the set of self-adjoint contractive extensions of the
operator g(A). The statement of the Lemma follows immediately from the Definition 1
and formulas (3)–(6). �

Remark 2. The Lemma 2 states that

ĝ(A)(Z ′) = UÂ(U∗Z ′U)U∗.

In particular,

(30) UÂµU∗ = [ĝ(A)]µ and UÂMU∗ = [ĝ(A)]M .

Lemma 3. Let A be a non-densely defined Hermitian contraction. Then

(31) g(∆(A)) = ∆(g(A)).

Proof. For an Â ∈ ∆(A) the operator g(Â) = (Â − κI)(I − κÂ)−1 is self-adjoint and
‖g(Â)‖ ≤ 1. We only need to show that g(Â) is an extension of g(A), i.e., g(Â)ϕ = g(A)ϕ
for ϕ ∈ D(g(A)) = M1/κ. But if ϕ ∈ M1/κ, then ϕ = h− κAh = h− κÂh, where h ∈ D,
and g(A)ϕ = Ah− κh = Âh− κh = g(Â)ϕ. Therefore, g(∆(A)) ⊂ ∆(g(A)).

Conversely, suppose that S ∈ ∆(g(A)), that is S = S∗, ‖S‖ ≤ 1, and Sϕ = g(A)ϕ =
Ah−κh for ϕ = h−κAh, h ∈ D. Therefore, any vector h from D is representable in the
form

h =
1

1− κ2
(ϕ + κSϕ),

while

Ah =
1

1− κ2
(Sϕ + κϕ).

These two equalities yield

Ah = (S + κI ′)(I ′ + κS)−1h = g−1(S)h.

Thus the self-adjoint operator g−1(S) is an extension of A, g−1(S) ∈ ∆(A). Therefore,
S ∈ g(∆(A)). This completes the proof. �

Lemma 4. Let S1 and S2 be self-adjoint operators, ‖Si‖ ≤ 1 for i = 1, 2, and suppose
that S1 ≤ S2. Then for g(x) = (x− κ)(1− κx)−1, −1 < κ < 1 the following inequality is
fulfilled:

g(S1) ≤ g(S2).

Proof. We may assume that κ > 0. From the condition of the Lemma it follows that
(I − κS1) ≥ (I − κS2). Because both operators I − κS1 and I − κS2 are boundedly
invertible and positive, (I − κS1)−1 ≤ (I − κS2)−1. Now the conclusion of the lemma
follows from the formula

g(S1)− g(S1) =
1− κ2

k
[(I − κS1)−1 − (I − κS2)−1].

For κ < 0 the proof is similar. �
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Proof of the Theorem 3. From (30) it follows that it suffices to show that [ĝ(A)]µ = g(Âµ)
and [ĝ(A)]M = g(ÂM ).

Suppose that [ĝ(A)]µ 6= g(Âµ). Then, according to Lemma 3, [ĝ(A)]µ = g(Â), where
Â ∈ ∆(A) and Â 6= Âµ. Then Âµ ≤ Â and from Lemma 4 it follows that g(Âµ) ≤ g(Â) =
[ĝ(A)]µ. Since g(Âµ) ∈ ∆(g(A)), it satisfies the inequality g(Âµ) ≥ [ĝ(A)]µ. Therefore
[ĝ(A)]µ = g(Âµ).

The equality [ĝ(A)]M = g(ÂM ) can be proved using similar arguments. �

Corollary 1. Let A be a non-densely defined (g, U)-invariant Hermitian contraction such
that dimN = 1. Suppose that the set ∆(A) contains more that one element. Then the
extreme extensions Âµ and ÂM are the only invariant self-adjoint contractive extensions
of A.

Indeed, as it was pointed out in the previous section, if dimN = 1, then operator A
has no more than two invariant self-adjoint extensions. Assumptions of the lemma mean
that Âµ 6= ÂM . Theorem 3 gives now desired conclusion.

4. Example

In this section we give an example of a non-densely defined Hermitian contraction
with dimN = 1. Using Theorem 3 it is possible in a simple way to construct extreme
extensions Âµ and ÂM and, therefore, to describe the set ∆(A).

Recall at first that the Hardy space H2(C+) consists of functions h(z) which are
analytic in the upper half-plane C+ = {z ∈ C : Imz > 0} and satisfy the condition

sup
y>0

∞∫
−∞

|h(x + iy)|2dx < ∞.

Functions from H2(C+) can be identified with their boundary functions (as usual, we
use the same notation for the analytic function h(z), z ∈ C+, and its boundary function
h(λ), λ ∈ R), which form a subspace of the space L2(R, dλ/2π). This subspace is denoted
by H2(R, dλ/2π). We use notation H2 if it clear whether we are speaking about analytic
functions h(z) of about their boundary values h(λ). It is well known (see, for example
[8]), that function h(z) ∈ H2(C+) can be recovered from its boundary function h(λ)
either by the Cauchy integral

h(z) =
1

2πi

∞∫
−∞

h(λ)
λ− z

dλ

or the Poisson integral

h(z) =
1
π

∞∫
−∞

y

(x− λ)2 + y2
h(λ) dλ, z = x + iy.

The inner product (f, g) in H2(C+) is defined by

(f, g) =
1
2π

∞∫
−∞

f(λ)g(λ) dλ.
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Let D be a subspace of H = H2(C+) of functions h(λ), λ ∈ R, which satisfy the
following condition

(32)
1
2π

∞∫
∞

h(λ)
1 + iλ

dλ = 0.

Condition (32) means that the analytic in C+ functions h from D satisfy condition
h(i) = 0. Clearly D is a proper subspace of H, and dimD⊥ = 1.

Define now an operator A on D as follows:

(33) (Ah)(λ) =
1− λ2

1 + λ2
h(λ).

Since A is the operator of multiplication by a real-valued function of absolute value
not greater than 1, A is a non-densely defined Hermitian contraction.

Let now a unitary operator U be defined by the formula

(34) (Uh)(λ) = s1/4h(s1/2λ),

where s > 1, and let the linear-fractional transformation g be defined by (9) and (10).
We are going to show that the operator A is (g, U)-invariant.

At first, according to the Definition 1 we need to show that for h ∈ D function
Uh ∈ (I − κA)D, that is the equation

s1/4h(s1/2λ) =
(

1− κ
1− λ2

1 + λ2

)
g(λ), κ =

s− 1
s + 1

has a solution g ∈ D. From the last relation we get

g(λ) =
s1/4(s + 1)

2
1 + λ2

1 + sλ2
h(
√

sλ).

Now we get
∞∫

−∞

g(λ)
1 + iλ

dλ =
s1/4(s + 1)

2

∞∫
−∞

[
1

1 + sλ2
− i

λ

1 + sλ2

]
h(
√

sλ) dλ = 0,

because for h ∈ H2(C+) the condition
∞∫

−∞

h(λ)
1 + iλ

dλ = 0

is equivalent to the conditions
∞∫

−∞

h(λ)
1 + λ2

dλ = 0 and

∞∫
−∞

λh(λ)
1 + λ2

dλ = 0.

Therefore, g ∈ D and

(A− κI)g =
(

1− λ2

1 + λ2
− s− 1

s + 1
I

)
s1/4(s + 1)

2
1 + λ2

1 + sλ2
h(
√

sλ)

= s1/4 1− sλ2

1 + sλ2
h(
√

sλ) = (UAh)(λ).

Thus A is a (g, U)-invariant operator.
It is easily seen that the orthogonal projection onto subspace N is defined as

(I − P )f(λ) =
2i

λ + i
f(i), f ∈ H2.
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Therefore, the operators B and C are defined as follows

(35) (Bh)(λ) =
1− λ2

1 + λ2
h(λ)− 2

λ + i
h′(i), h ∈ D,

and

(36) (Ch)(λ) =
2

λ + i
h′(i), h ∈ D.

The operator C∗ acts from N into D. It suffices to calculate the action of C∗ onto the
function (λ + i)−1. Direct verification shows that

(37) C∗ϕ0 = −1
2

λ− i

(λ + i)2
, ϕ0 =

1
λ + i

.

Since dimN = 1, the operator E in (3) is just the operator of multiplication by a real
number. We represent a function g from H2(C+) in the form

g(λ) =


g(λ)− 2i

λ + i
g(i)

2i

λ + i
g(i)


according to the decomposition H2(C+) = D⊕N. Now we obtain that for any Â ∈ ∆(A)

(38) Âg =


1− λ2

1 + λ2
g(λ) +

2iλ

1 + λ2
g(i)− 2

λ + i
g′(i)

1
λ + i

[2g′(i) + ig(i)(2E − 1)]

 .

Theorem 4. Let a unitary operator U be defined by (34) with s > 1, and let the linear-
fractional transformation g be defined by (9) and (10). Then the operator Â defined by

(38) is (g, U)-invariant if and only if E = ±1
2
.

Proof. The proof of the theorem is based on direct calculations. An operator Â is in-
variant if and only if for an arbitrary vector h ∈ H2(C+) and for the vector g ∈ H2(C+)
defined by (I − κnÂ)g = Unh the following equality is fulfilled: UnÂh = (Â − κnI)g.
Note that since the operator A is invariant, the condition PUnÂh = P (Â − κnI)g is
fulfilled automatically. The only nontrivial condition is

(39) PNUnÂh = PN(Â− κnI)g,

where PN = I − P is the orthogonal projection onto subspace N.
Pick a vector h from H2(C+) and rewrite the condition Unh = (I − κnÂ)g, n =

0,±1.± 2, . . . (of course, g depends on n) in the form
sn/4[h(sn/2λ)− 2i

λ + i
h(sn/2i)]

2isn/4

λ + i
h(sn/2i)

 =


g(λ)− 2i

λ + i
g(i)

2i

λ + i
g(i)



− κn


1− λ2

1 + λ2
g(λ) +

2iλ

1 + λ2
g(i)− 2

λ + i
g′(i)

1
λ + i

[2g′(i) + ig(i)(2E − 1)]

 ,
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from which we deduce that

h(λ) = s−n/4g(s−n/2λ)[1− κn
sn − λ2

sn + λ2
]− isn/4κn

sn + λ2
g(i)[(λ + isn/2) + 2E(λ− isn/2)]

(recall that κn = (sn − 1)/(sn + 1)). In particular,

(40) 2isn/4h(sn/2i) = 2ig(i)− κn[2g′(i) + ig(i)(2E − 1)]

and

(41) sn/4h(i) =
sn/2

sn + 1
g(i)[(1 + sn/2) + 2E(1− sn/2)].

Using (33) we obtain that the vector PNUnÂh, the orthogonal projection of the vector
UnÂh onto subspace N, is given by the formula

PNUnÂh =
2isn/4

λ + i

{
1 + sn

1− sn
h(sn/2i) +

h(i)
1− sn

[
2E(1− sn/2)− (1 + sn/2)

]}
.

From (40) and (41) we obtain that in terms of the vector g last formula takes the following
form:

(42)

PNUnÂh =
1

λ + i
[2g′(i) + ig(i)(2E − 1)]

+
2ig(i)
λ + i

{
1 + sn

1− sn
+

sn/2

1− s2n

[
4E2(1− sn/2)2 − (1 + sn/2)2

]}
.

Since PN(Â− κnI)g is given by

(43) PN(Â− κnI)g =
1

λ + i
{[2g′(i) + ig(i)(2E − 1)]− 2iκng(i)} ,

from (42) and (43) we obtain that (39) results the equation

1 + sn

1− sn
+

sn/2

1− s2n

[
4E2(1− sn/2)2 − (1 + sn/2)2

]
+

sn − 1
sn + 1

= 0,

from which we obtain that E = ±1
2
. This completes the proof. �

Now Theorem 1 gives the following statement.

Corollary 2. For the operator A above the extreme extensions Âµ and ÂM are obtained
according to the formula (38) with Eµ = −1/2 and EM = 1/2 respectively.

Remark 3. Note that the value E = 0 corresponds to the operator of multiplication by
(1− λ2)/(1 + λ2) followed by the projection from L2(R, dλ/2π) onto H2(R, dλ/2π), that
is the Toeplitz operator on H2(C+) with the symbol (1− λ2)/(1 + λ2).

Any operator Â from ∆(A) satisfies the condition ‖Âg‖ ≤ ‖g‖ for all g ∈ H2. Using
(38) it is not hard to calculate that Â is a contraction if and only if

(44)

2E2|g(i)|2 + 2E
[
2Re{ig(i)g′(i)} − |g(i)|2

]
− 1

2
|g(i)|2 − 1

2π

∞∫
−∞

4λ2

(1 + λ2)2
|g(λ)|2dλ ≤ 0.
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From last inequality we see that without lost of generality it is possible to assume that
g(i) = 1. Then from (44) it follows that the quantity E satisfies the following inequality:

1
2

1− 2Img′(i)−

√√√√√[1− 2Img′(i)]2 + 1 +
1
π

∞∫
−∞

4λ2

(1 + λ2)2
|g(λ)|2dλ


≤ E ≤ 1

2

1− 2Img′(i) +

√√√√√[1− 2Img′(i)]2 + 1 +
1
π

∞∫
−∞

4λ2

(1 + λ2)2
|g(λ)|2dλ

 .

Therefore, Eµ is equal to the supremum of the left-hand side to the last inequality over
the set of functions g from H2 which satisfies g(i) = 1, while EM is equal to the infimum
of the right-hand side over the same set.

5. Nondensely defined Hermitian contractions and positive
scale-invariant symmetric operators

Let H be a densely defined positive closed unbounded symmetric operator on a Hilbert
space H. We denote by D(H) the domain of the operator H.

In order to obtain positive self-adjoint extensions of operator H, M. G. Krĕın [11]
considered a nondensely defined Hermitian contraction A defined as follows:
the domain D of of A is the set of all vectors h ∈ H representable in the form

h = f +Hf, f ∈ D(H),

and
Ah = f −Hf.

The last two equations can be written in the form

(45) A = (I −H)(I +H)−1.

The operator H can be recovered from A by the formula

H = (I −A)(I + A)−1.

Because H is not self-adjoint, set D = D 6= H. The dimension of its orthogonal comple-
ment N = H	D is equal to the defect number of H.

Any element Â ∈ ∆(A) defines a positive self-adjoint extension H of H according to
the formula

H = (I − Â)(I + Â)−1.

The extreme extensions Âµ and ÂM correspond to the Friedrichs extension HF and the
Krĕın extension HK respectively.

Definition 2. Let H be a densely defined closed symmetric operator on a Hilbert space
H and let s be a positive number, s 6= 1. The operator H is said to be scale-invariant if
there exists a unitary operator U on H such that for all n = 0,±1,±2, . . .

UnD(H) = H,

and
UnHf = snHUnf, f ∈ D(H).

Without loss of generality we may assume that s > 1.
It is easy to check that a positive symmetric operator H is scale-invariant if and

only if the nondensely defined Hermitian contraction A defined by formula(45) is (g, U)-
invariant, where the transformation g is defined by (9). Therefore theorems that have
been proved above for nondensely defined invariant Hermitian contractions can be refor-
mulated in terms of unbounded symmetric operators in the following form:
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Theorem 5. Let H be a densely defined scale-invariant positive symmetric operator on
a Hilbert space H. Then

(1) H always admits a positive scale-invariant self-adjoint extension H. In particu-
lar, the Friedrichs extension HF and the Krĕın extension HK are scale invariant.

(2) If, in addition, the index of defect of H is (1, 1), then HF and HK are the only
scale-invariant positive self-adjoint extensions of H.

Theorem 5 appeared for the first time in [14] and we presented an alternative proof
of this theorem.
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