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ON SOLUTIONS TO “ALMOST EVERYWHERE”—
EULER–LAGRANGE EQUATION IN SOBOLEV SPACE W 1

2

E. V. BOZHONOK

Dedicated to the memory of Mark Krein.

Abstract. It is known, that if the Euler–Lagrange variational equation is fulfilled
everywhere in classical case C1 then it’s solution is twice continuously differentiable.
The present note is devoted to the study of a similar problem for the Euler–Lagrange
equation in the Sobolev space W 1

2 .

1. Introduction. Preliminaries

The well-known results of I. V. Skrypnik [1] show that in the “Hilbert” case W 1
2 ,

the variational functionals have special differential properties. In this case the Euler–
Lagrange functional is not, with the exception of degenerate case, twice Frechet differen-
tiable.

A thorough analysis of the situation shows, that the well-definiteness conditions of the
basic variational functional in a Sobolev space are already connected to an additional
requirement of “pseudoquadraticity” of the integrand with respect to y′. In addition,
the continuity of the functional in the classical “Banach” case corresponds to the K-
continuity, differentiability to the K-differentiability, and so on. For the “Sobolev” case
W 1

2 , the conditions of well-definiteness, compact continuity, compact and twice compact
differentiability of variational functionals were obtained in [2, 3].

The situation with extrema of variational functionals in W 1
2 is analogous. In this case

the extrema are, as a rule, ([2, 4, 5]) not local, but compact (K-extrema). In the pa-
pers [6–10] various both necessary and sufficient conditions of K-extrema for variational
functionals in W 1

2 are considered.
Let us give necessary definitions [2–5].
In what follows, E, Y, Z be real Banach spaces.

Definition 1.1. A functional Φ : E → R is called compactly differentiable at y ∈ E if,
for every absolutely convex compact set C ⊂ E, the restriction of Φ to (y + span C) is
Frechet differentiable with respect to the norm ‖ · ‖C induced by C.

We call a K-differentiable functional Φ twice K-differentiable at a point y ∈ E, if,
for every absolutely convex compact sets C1 and C2, there exists a bilinear form gC1C2

continuous on span C1 × span C2 such that

(Φ′
K(y + h)− Φ′

K(y)) · k = gC1C2(y) · (h, k) + o(‖h‖C1 · ‖k‖C2).

Here Φ′
K and Φ′′

K are the first K-derivative and the second K-derivative, respectively.

Definition 1.2. We call a functional

ϕ : [a; b]× Y × Z → R
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Weierstrass K-quadratic with respect to z (ϕ ∈ WK
2 (z)) if for every convex compact set

CY ⊂ Y there exists an absolutely convex compact set CZ ⊂ Z such that
(i) ϕ is continuous on [a; b]× CY × CZ ;
(ii) ϕ(x, y, z)/‖z‖2 is uniform continuous and bounded on [a; b]× CY × (Z\CZ).

Let us formulate a condition of the twice K-differentiability of a variational func-
tional [2, 5].

Theorem 1.3. Let f(x, y, z) be a twice continuously Frechet differentiable function on
[a; b] × E × E, Γ(f) the Hessian of f in the variables y and z. If Γ(f) ∈ WK

2 (z), then
the variational functional

Φ(y) =

b∫
a

f(x, y(x), y′(x)) dx, y ∈ W 1
2 ([a; b], E),

is twice K-differentiable, and

Φ′′
K(y)(h, k) =

b∫
a

[∂2f

∂y2
(x, y, y′)(h, k) +

∂2f

∂y∂z
(x, y, y′)

(
(h′, k) + (h, k′)

)
+

∂2f

∂z2
(x, y, y′)(h′, k′)

]
dx.

In particular in [2, 5], the classical Euler–Lagrange variational equation is obtained in
the following form.

Theorem 1.4. If, under the hypothesis of Theorem 1.3, y(·) ∈
◦

W 2
2 ([a; b], E), then

Φ′
K(y) = 0 if and only if the Euler–Lagrange variational equation

(1)
∂f

∂y
(x, y, y′)− d

dx

(
∂f

∂z
(x, y, y′)

)
= 0

is fulfilled a.e. on [a; b].

In the classical case y(·) ∈ C1, as is known [11], fulfillment of the variational equa-
tion (1) everywhere implies twice continuous differentiability of y(·). The present note is
devoted to the solution of an analogous problem for “a.e.”— Euler–Lagrange equation
in the Sobolev space W 1

2 .

2. Main results

At first, we need some generalization of the mean value theorem in locally convex
spaces (LCS) to the case of mappings of several real variables.

Lemma 2.1. Let E be a complete real LCS, F :
n∏

i=1

[xi;xi + ∆xi] =: [x;x + ∆x] → E. If

the mapping F is differentiable on [x;x + ∆x], then

(2) F (x + ∆x)− F (x) ∈
n∑

i=1

∆xi · conv
∂F

∂xi
([x;x + ∆x]).
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Proof. Following to a standard scheme, we apply the classical mean value theorem [12]
to the auxiliary function F̃ (t) = F (x + t ·∆x), 0 ≤ t ≤ 1,

F (x + ∆x)− F (x) = F̃ (1)− F̃ (0) ∈ conv F̃ ′([0; 1])

= conv
{
∇F (x + t ·∆x) ·∆x

∣∣ 0 ≤ t ≤ 1
}

=
(
conv

{
∇F (x + t ·∆x)

∣∣ 0 ≤ t ≤ 1
})
·∆x

⊂
(
conv∇F ([x;x + ∆x])

)
·∆x ⊂

{
conv

∂F

∂xi
([x;x + ∆x])

}n

i=1
·∆x

=
n∑

i=1

∆xi · conv
∂F

∂xi
([x;x + ∆x]).

�

The following basic result of the work is not directly connected to the Euler–Lagrange
variational equation.

Theorem 2.2. Let E be a complete real LCS, f : [a; b]× E × E → R, u = f(x, y, z) be a
C2-mapping, a mapping y(·) : [a; b] → E be everywhere continuous and almost everywhere
differentiable on [a; b]. If

(i) the mapping ∂f
∂z (x, y(x), y′(x)) is differentiable a.e. on [a; b];

(ii) the operators ∂2f
∂z2 (x, y(x), y′(x)) are continuously invertible for a.e. x ∈ [a; b],

then the function y(·) is twice approximately differentiable almost everywhere on [a; b],
and

y′′ap(x) = (y′)′ap
a.e.=

(
∂2f

∂z2
(x, y, y′)

)−1

×
[

d

dx

(
∂f

∂z
(x, y, y′)

)
− ∂2f

∂z∂x
(x, y, y′)− ∂2f

∂z∂y
(x, y, y′) · y′

]
.

(3)

Proof. Applying (2) to the function F (x, y, z) = ∂f
∂z (x, y, z) on [x;x + ∆x]× [y; y + ∆y]×

[z; z + ∆z] =: [h;h + ∆h] we obtain

∂f

∂z
(x + ∆x, y + ∆y, z + ∆z)− ∂f

∂z
(x, y, z) ∈ conv

∂2f

∂z∂x
([h;h + ∆h]) ·∆x

+ conv
∂2f

∂z∂y
([h;h + ∆h]) ·∆y + conv

∂2f

∂z2
([h;h + ∆h]) ·∆z.

(4)

Fix a point x ∈ [a; b] in which y′ exists and is approximately continuous and the
conditions (i)–(ii) of Theorem 2.2 are fulfilled. Choose a subset A ⊂ [a; b], having x as
a density point [13], such that y′(x + ∆x) → y′(x) as x + ∆x → x along A. Put in (3)
y = y(x), ∆y = y(x + ∆x) − y(x), ∆z = y′(x + ∆x) − y′(x); in addition, ∆y → 0 as

∆x → 0 by continuity of y(·), ∆z → 0 as x + ∆x
A→ x by approximate continuity of y′

at the point x. We get
∂f

∂z
(x + ∆x, y(x + ∆x), y′(x + ∆x))− ∂f

∂z
(x, y(x), y′(x))

∈ conv
∂2f

∂z∂x
([h;h + ∆h]) ·∆x + conv

∂2f

∂z∂y
([h;h + ∆h]) ·∆y(x)

+ conv
∂2f

∂z2
([h;h + ∆h]) ·∆y′(x).

(5)

By setting F (x) = ∂f
∂z (x, y(x), y′(x)) in (5), dividing both sides of the inclusion (5) by

∆x and passing to the limit as ∆x → 0, taking into account that f ∈ C2 and condition
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(ii) of Theorem 2.2, we come to the existence of the limit ∆y′(x)/∆x as ∆x → 0 along
A and, hence, to the equality

F ′(x) a.e.=
∂2f

∂z∂x
(x, y, y′) +

∂2f

∂z∂y
(x, y, y′) · y′ + ∂2f

∂z2
(x, y, y′) · (y′)′ap,

whence (3) follows. �

Corollary 2.3. If, under the hypothesis of Theorem 2.2, the function y(·) satisfies the
Euler–Lagrange variational equation a.e. on [a; b],

(6)
∂f

∂y
(x, y, y′)− d

dx

[
∂f

∂z
(x, y, y′)

]
a.e.= 0,

then the function y′′ap(x) is approximately continuous in the same points where y′(x) is

approximately continuous and the operator ∂2f
∂z2 (x, y(x), y′(x)) is continuously invertible.

Proof. It follows from (3) and (5) that

(7) y′′ap(x) a.e.=
(

∂2f

∂z2
(x, y, y′)

)−1 [
∂f

∂y
(x, y, y′)− ∂2f

∂z∂x
(x, y, y′)− ∂2f

∂z∂y
(x, y, y′) · y′

]
.

If x0 is a density point of A and y′(x) is continuous at a point y0 along A, then the
right hand-side of (7) is also, obviously, continuous at the point x0 along A, whence the
statement of Corollary follows. �

There arises a natural question on conditions of the existence of the usual (not appro-
ximate) derivative y′′(x).

Corollary 2.4. If, under the hypothesis of Theorem 2.2, y′(x) is continuous a.e. on
[a; b], then y′′(x) exists a.e. on [a; b].

Proof. Let x ∈ [a; b] be a point of continuity of y′, in which the function ∂f
∂z (x, y, y′) is

differentiable. Then it is possible to pass to the limit in (5) for ∆x arbitrarily approaching
zero. Whence we obtain

y′′(x) a.e.=
(

∂2f

∂z2
(x, y, y′)

)−1 [
∂f

∂y
(x, y, y′)− ∂2f

∂z∂x
(x, y, y′)− ∂2f

∂z∂y
(x, y, y′) · y′

]
.

�

Consider now the case of the Sobolev space y(·) ∈ W 1
2 . In this situation, it seems to

be natural to assume that the function y(·) ∈ W 1
2 satisfying the “a.e.”— Euler–Lagrange

equation belongs to the class W 2
2 . However this is not the case.

Example 2.5. Consider a simplest variational functional

Φ(y) =

1∫
0

(y′)2dx, y(·) ∈ W 1
2 ([0; 1], R).

Here f(x, y, z) = z2 and the Euler–Lagrange equation (6) has the form

(8) y′′(x) a.e.= 0.

Let χ(t) be the “Cantor ladder” [13] on [0; 1], y0(x) =
x∫
0

χ(t)dt, 0 ≤ x ≤ 1. Then

y′′0 (x) = χ′(x) = 0 a.e. on [0; 1], i.e. y0(·) satisfies the equation (8). However, under
the hypothesis of Example, y0(·) /∈ W 2

2 ([0; 1], R), as y0(·) is not an absolutely continuous
function.
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Let us note in conclusion that the question about sufficient conditions for the extremal
y(·) from W 1

2 to be in W 2
2 is actually solved in the work of I. V. Orlov “Compact ellipsoids

and compact extrema” (this issue, Example 3.5). It is shown in the work that if a compact
elliptic extremum is indeed realized on an extremal y0(·) and the lengths of the semiaxis
of the appropriate compact ellipsoid admit the estimate εk = O(1/k), then the extremum
realizes as a local one in the Sobolev space W 2

2 . In particular in this case, y0(·) ∈ W 2
2 .
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