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DIRECT THEOREMS IN THE THEORY OF APPROXIMATION OF
VECTORS IN A BANACH SPACE WITH EXPONENTIAL TYPE

ENTIRE VECTORS

YA. GRUSHKA AND S. TORBA

Abstract. For an arbitrary operator A on a Banach space X which is the generator
of a C0–group with certain growth condition at infinity, direct theorems on connection
between the degree of smoothness of a vector x ∈ X with respect to the operator A,
the rate of convergence to zero of the best approximation of x by exponential type
entire vectors for the operator A, and the k-module of continuity are established.
The results allow to obtain Jackson-type inequalities in a number of classic spaces of
periodic functions and weighted Lp spaces.

1. Introduction

Direct and inverse theorems establishing a relationship between the degree of smooth-
ness of a function with respect to a differentiation operator and the rate of convergence
to zero of its best approximation by trigonometric polynomials are well known in the
theory of approximation of periodic functions. Jackson’s inequality is one among such
results.

N. P. Kupcov proposed a generalized notion of the module of continuity, expanded
onto C0-groups in a Banach space [1]. Using this notion, N. P. Kupcov [1] and A. P. Te-
rehin [2] proved the generalized Jackson’s inequalities for the cases of a bounded group
and s-regular group. Recall that a group {U(t)}t∈R is called s-regular if the resolvent of
its generator A satisfies the condition ∃θ ∈ R : ‖Rλ(eiθAs)‖ ≤ C

Imλ .
G. V. Radzievskii studied the direct and inverse theorems [3, 4], using the notion

of a K-functional instead of module of continuity, but it should be noted that the K-
functional has two-sided estimates with regard to the module of continuity at least for
bounded C0-groups.

In the papers [5, 6] and [7] the authors investigated the case of a group of unitary
operators in a Hilbert space and established Jackson-type inequalities in Hilbert spaces
and their rigs. These inequalities are used to estimate the rate of convergence to zero of
the best approximation of both finite and infinite smoothness vectors for the operator A
by exponential type entire vectors.

We consider the C0-groups, generated by the so-called non-quasianalytic operators [8],
i.e. the groups satisfying

(1.1)
∫ ∞

−∞

ln ‖U(t)‖
1 + t2

dt < ∞.
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As was shown in [5], the set of exponential type entire vectors for the non-quasianalytic
operator A is dense in X, so the problem of approximation by exponential type entire
vectors is correct. On the other hand, it was shown in [9] that condition (1.1) is close to
the necessary one, so in the case when (1.1) doesn’t hold, the class of entire vectors isn’t
necessary dense in X, and the corresponding approximation problem loses its meaning.

The purpose of this work is to obtain Jackson-type inequalities in the case where a
vector of a Banach space is approximated by exponential type entire vectors for a non-
quasianalytic operator, and, in particular, Jackson-type inequalities in various classical
function spaces.

2. Preliminaries

Let A be a closed linear operator with dense domain of definition D(A) in the Banach
space (X, ‖·‖) over the field of complex numbers.

Let C∞(A) denotes the set of all infinitely differentiable vectors of the operator A, i.e.

C∞(A) =
⋂

n∈N0

D(An), N0 = N ∪ {0}.

For a number α > 0 we set

Eα(A) =
{
x ∈ C∞(A) | ∃c = c(x) > 0 ∀k ∈ N0

∥∥Akx
∥∥ ≤ cαk

}
.

The set Eα(A) is a Banach space with respect to the norm

‖x‖Eα(A) = sup
n∈N0

‖Anx‖
αn

.

Then E(A) =
⋃

α>0 Eα(A) is a linear locally convex space with respect to the topology
of the inductive limit of the Banach spaces Eα(A):

E(A) = lim ind
α→∞

Eα(A).

Elements of the space E(A) are called exponential type entire vectors of the operator A.
The type σ(x,A) of a vector x ∈ E(A) is defined as the number

σ(x,A) = inf {α > 0 : x ∈ Eα(A)} = lim sup
n→∞

‖Anx‖
1
n .

Example 2.1. Let X is one of the Lp(2π) (1 ≤ p < ∞) spaces of integrable in p-th
degree over [0, 2π], 2π-periodical functions or the space C(2π) of continuous 2π-periodical
functions (the norm in X is defined in a standard way), and let A is the differentiation
operator in the space X (D(A) = {x ∈ X∩AC(R) : x′ ∈ X}; (Ax)(t) = dx

dt , where AC(R)
denotes the space of absolutely continuous functions over R). It can be proved that in
such case the space E(A) coincides with the space of all trigonometric polynomials, and
for y ∈ E(A) σ(y, A) = deg(y), where deg(y) is the degree of the trigonometric polyno-
mial y.

In what follows, we always assume that the operator A is the generator of the group
of linear continuous operators {U(t) : t ∈ R} of class C0 on X. We recall that belonging
of the group to the C0 class means that for every x ∈ X the vector-function U(t)x is
continuous on R with respect to the norm of the space X.

For t ∈ R+, we set
MU (t) := sup

τ∈R, |τ |≤t

‖U(τ)‖ .

The estimation ‖U(t)‖ ≤ Meωt for some M,ω ∈ R implies MU (t) < ∞ (∀t ∈ R+). It is
easy to see that the function MU (·) has the following properties:

1) MU (t) ≥ 1, t ∈ R+;
2) MU (·) is monotonically non-decreasing on R+;
3) MU (t1 + t2) ≤ MU (t1)MU (t2), t1, t2 ∈ R+.
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According to [1], for x ∈ X, t ∈ R+ and k ∈ N we set

(2.1) ωk(t, x, A) = sup
0≤τ≤t

∥∥∆k
τx
∥∥ ,

where

(2.2) ∆k
h = (U(h)− I)k =

k∑
j=0

(−1)k−j

(
j

k

)
U(jh), k ∈ N0, h ∈ R (∆0

h ≡ 1).

Moreover, let

(2.3) ω̃k(t, x, A) = sup
|τ |≤t

∥∥∆k
τx
∥∥ .

Remark 2.1. It is easy to see that in the case of the bounded group {U(t)} (‖U(t)‖ ≤
M, t ∈ R) the quantities ωk(t, x, A) and ω̃k(t, x, A) are equivalent within constant factor
(ωk(t, x, A) ≤ ω̃k(t, x, A) ≤ M ωk(t, x, A)), and in the case of isometric group (‖U(t)‖ ≡
1, t ∈ R) these quantities coincide.

It is immediate from the definition of ω̃k(t, x, A) that for k ∈ N
1) ω̃k(0, x, A) = 0;
2) for fixed x the function ω̃k(t, x, A) is non-decreasing and is continuous by the

variable t on R+;
3) ω̃k(nt, x, A) ≤

(
1 + (n− 1)MU ((n− 1)t)

)k
ω̃k(t, x, A) (n ∈ N, t > 0);

4) ω̃k(µt, x,A) ≤
(
1 + µMU (µt)

)k
ω̃k(t, x, A) (µ, t > 0);

5) for fixed t ∈ R+ the function ω̃k(t, x, A) is continuous in x.
For arbitrary x ∈ X we set, according to [7, 6],

Er(x,A) = inf
y∈E(A) : σ(y,A)≤r

‖x− y‖ , r > 0,

i.e. Er(x,A) is the best approximation of the element x by exponential type entire vectors
y of the operator A for which σ(y, A) ≤ r. For fixed x Er(x,A) does not increase and
Er(x,A) → 0, r → ∞ for every x ∈ X if and only if the set E(A) of exponential type
entire vectors is dense in X. Particularly, as indicated above, the set E(A) is dense in X
if the group {U(t) : t ∈ R} belongs to non-quasianalytic class.

3. Abstract Jackson’s inequality in a Banach space

Theorem 3.1. Suppose that {U(t) : t ∈ R} satisfies condition (1.1). Then ∀k ∈ N there
exists a constant mk = mk(A) > 0, such that ∀x ∈ X the following inequality holds:

(3.1) Er(x,A) ≤ mk · ω̃k

(
1
r
, x,A

)
, r ≥ 1.

Remark 3.1. If, additionally, the group {U(t)} is bounded (MU (t) ≤ M̃ < ∞, t ∈ R),
then the assumption r ≥ 1 can be changed to r > 0.

Integral kernels, constructed in [10], will be used in the proving of the theorem. More-
over, we need additional properties of these kernels, lacking in [10]. The following lemma
shows how these kernels are constructed and continues the investigation of their proper-
ties.

In what follows we denote as Q the class of functions α : R 7→ R, satisfying the
following conditions:

I) α(·) is measurable and bounded on any segment [−T, T ] ⊂ R.
II) α(t) > 0, t ∈ R.

III) α(t1 + t2) ≤ α(t1)α(t2), t1, t2 ∈ R.
IV)

∫∞
−∞ |ln(α(t))| /(1 + t2) dt < ∞.
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Lemma 3.1. Let α ∈ Q. Then there exists such entire function Kα : C 7→ C that
1) Kα(t) ≥ 0, t ∈ R;
2)
∫∞
−∞Kα(t) dt = 1;

3) ∀r > 0 ∃cr = cr(α) > 0 ∀z ∈ C |Kα(rz)| ≤ cr
er|Im z|

α(|z|) .

Proof. Without lost of generality we may assume that the function α(t) satisfies addi-
tional conditions

V) α(t) ≥ 1, t ∈ R; 1

VI) α(t) is even on R and is monotonically increasing on R+;
VII)

∥∥α−1
∥∥

L1(R)
=
∫∞
−∞ |α−1(t)|dt < ∞.

It is easy to verify that assumptions V),VII) and condition that the function α(t) is
even in VI) don’t confine the general case if one examined the function α1(t) = α̃(t)α̃(−t),
where α̃(t) = (1 + α(t))(1 + t2). In [11, Theorems 1 and 2] it has been proved that the
monotony condition on α(t) in VI) doesn’t confine the general case too.

It follows from VII) that

(3.2) α(t) →∞, t →∞.

Let β(t) = lnα(t), t ∈ R. Conditions III)–VII) and (3.2) lead to conclusion that

β(t) > 0, β(−t) = β(t), β(t) →∞, t →∞;

β(t1 + t2) ≤ β(t1) + β(t2), t1, t2 ∈ R(3.3) ∫ ∞

1

β(t)
t2

dt < ∞.(3.4)

Because of (3.3) there exists limit limt→∞
β(t)

t . And, by virtue of (3.4)

(3.5) lim
t→∞

β(t)
t

= 0.

Also, using (3.4) it is easy to check that

(3.6)
∞∑

k=1

β(k)
k2

< ∞,

moreover, all terms of the series (3.6) are positive. From the convergence of series (3.6)
follows the existence of such sequence {Qn}∞n=1 ⊂ R that Qn > 1, Qn →∞, n →∞ and

(3.7)
∞∑

k=1

β(k)
k2

Qk = S < ∞.

We set

ak :=
β(k)Qk

S k2
, k ∈ N.

The definition of ak and (3.7) result in equality

(3.8)
∞∑

k=1

ak = 1.

We construct the sequence of functions, which, obviously, are entire for every n ∈ N

fn(z) :=
n∏

k=1

Pk(z), where Pk(z) =
(

sin akz
2

akz
2

)2

, z ∈ C, n ∈ N.

Similarly to the proof of the Denjoy-Carleman theorem [12, p.378] it can be concluded
that the sequence of (entire) functions fn(z) converges uniformly to the function

f(z) =
∞∏

k=1

(
sin akz

2
akz
2

)2

, z ∈ C

1As shown in [8], for non-quasianalytic groups the condition ‖U(t)‖ ≥ 1 always holds, therefore in
this paper the condition V) automatically takes place.
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in every disk {z ∈ C | |z| ≤ R}. Thus, by Weierstrass theorem, the function f(z) is entire.
Using the inequality | sin z| ≤ min(1, |z|)e|Im z|, z ∈ C and taking (3.8) into account,

when z ∈ C and r > 0, we receive

|f(rz)| =
∞∏

k=1

∣∣∣∣ sin akrz
2

akrz
2

∣∣∣∣2 ≤ ∞∏
k=1

(
2

akr|z|
min

(
1,

akr|z|
2

)
e

1
2 akr|Im z|

)2

= er|Im z|
∞∏

k=1

min2

(
1,

2
akr|z|

)
≤ er|Im |

N∏
k=1

min2

(
1,

2
akr|z|

)
for every N ∈ N. Using the inequality min(1, a) ·min(1, b) ≤ min(1, ab), we get
(3.9)

|f(rz)| ≤ er|Im z|min2

(
1,

N∏
k=1

2
akr|z|

)
= er|Im z|min2

(
1,

2N(∏N
k=1

β(k)Qk

S k2

)
(r|z|)N

)

= er|Im z|min2

(
1,

2NN !
β(1)

1 · · · β(N)
N

(
r
S

)N |z|NQ1 · · ·QN

)
.

Because of the condition Qn →∞, n →∞ there exists such number n(r) ∈ N that

(3.10) ∀n > n(r) Qn ≥
4
√

eS

r
.

It follows from (3.5) that there is T0 ∈ (0,∞) such that

(3.11) ∀ t > T0
β(t)

t
≤ 1.

In [10] the following statement was proved:

(3.12) ∀ t1, t2 ∈ R+ t1 ≤ t2 ⇒
β(t1)

t1
≥ 1

2
β(t2)

t2
.

Let z ∈ C and |z| ≥ max
(
β[−1](n(r)), T0

)
, where β[−1] is the inverse function of

the function β on [0,∞) (the inverse function β[−1] exists due to monotony of β on
[0,∞)). We substitute as N in (3.9) N := [β(|z|)], where [·] denotes the integer part
of a number. Then for k ∈ {1, . . . , N}, in accordance with (3.11) and (3.12), we obtain
k ≤ N ≤ β(|z|) ≤ |z| and

(3.13)
β(k)

k
≥ 1

2
β(|z|)
|z|

.

Using (3.9), (3.10), (3.13), we find

|f(rz)| ≤ er|Im z|

(
2NN !(

1
2

β(|z|)
|z|
)N (

r
S

)N |z|NQ1 · · ·QN

)2

≤ er|Im z|

(
2NN !(

1
2

N
|z|
)N (

r
S

)N |z|NQ1 · · ·QN

)2

= er|Im z|

(
22NN !

NN
(

r
S

)N
Q1 · · ·QN

)2

≤ er|Im z|

(
22N(

r
S

)N
Q1 · · ·QN

)2

= er|Im z|

( (
4S
r

)N
Q1 · · ·QN

)2

.

Since Qn ≥ 1, the last inequality leads to

(3.14)
|f(rz)| ≤ er|Im z|

( (
4S
r

)N( 4
√

eS
r

)N−n(r)

)2

= er|Im z|
(

4
√

eS

r

)2n(r)

e−[β(|z|)]

≤ er|Im z|
(

4
√

eS

r

)2n(r)

e−(β(|z|)−1) = C(1)
r

er|Im z|

α(|z|)
,
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where C
(1)
r = e

(
4
√

eS
r

)2n(r)

. When z ∈ C and |z| < max
(
β[−1](n(r)), T0

)
, using (3.9),

we get

(3.15) |f(rz)| ≤ er|Im z| = er|Im z|α(|z|)
α(|z|)

≤ er|Im z| C
(2)
r

α(|z|)
,

where C
(2)
r = α(max(β[−1](n(r)), T0)). It follows from (3.14), (3.15) that

(3.16) |f(rz)| ≤ er|Im z| C
(0)
r

α(|z|)
, z ∈ C, where C(0)

r = max(C(1)
r , C(2)

r ).

Inequality (3.16) and Condition VII) imply that ‖f‖L1(R) < ∞. Thus it is enough to
set Kα(z) := 1

‖f‖L1(R)
f(z), z ∈ C and use (3.16) to finish the proof. �

Let α ∈ Q, and Kα : C 7→ C is the function constructed by the function α in Lem-
ma 3.1. We set

Kα,r(z) := rKα(rz), z ∈ C, r ∈ (0,∞).

The Lemma 3.1 ensures us that the function Kα,r has the following properties:
1) Kα,r(t) ≥ 0, t ∈ R;
2)
∫∞
−∞Kα,r(t) dt = 1;

3) ∀z ∈ C |Kα,r(z)| ≤ rcr
er|Im z|

α(|z|) ; r > 0.

Lemma 3.2. ∀r ∈ (0,∞) there exists constant c̃r = c̃r(α) > 0, such that ∀n ∈ N the
following inequality holds:

|K(n)
α,r(t)| ≤ c̃r

√
2πn α

(
n
r

)
α(|t|)

rn, t ∈ R.

Proof. In what follows in this proof we assume t ∈ R, r ∈ (0,∞), n ∈ N. Let

γn,r(t) :=
{

ζ ∈ C : |ζ − t| = n

r

}
.

Using Cauchy’s integral theorem and Stirling’s approximation for n!, we get

|K(n)
α,r(t)| ≤

n!
2π

∮
γn,r(t)

|Kα,r(ξ)|
|ξ − t|n+1

|dξ| = n!
2π

rn+1

nn+1

∮
γn,r(t)

|Kα,r(ξ)||dξ|

≤ c(!)rn+1

√
2πn

e−n

∮
γn,r(t)

|Kα,r(ξ)||dξ|,

where

c(!) = sup
k∈N

k!√
2πk

( e

k

)k

< e1/12.

Using property 3) of the function Kα,r, the condition t ∈ R and conditions III), VI) of
the function α, one can find from the last inequality

|K(n)
α,r(t)| ≤

c(!)rn+1

√
2πn

e−nrcr

∮
γn,r(t)

er|Im ξ|

α(|ξ|)
|dξ|

=
c(!)rn+1

√
2πn

e−n rcr

α(|t|)

∮
γn,r(t)

er|Im (ξ−t)|α(|(t− ξ) + ξ|)
α(|ξ|)

|dξ|

≤ c(!)rn+1

√
2πn

e−n rcr

α(|t|)

∮
γn,r(t)

er|Im (ξ−t)|α(|t− ξ|)|dξ|

≤ c(!)rn+1

√
2πn

e−n rcr

α(|t|)

∮
γn,r(t)

enα
(n

r

)
|dξ| = c̃r

√
2πn α

(
n
r

)
α(|t|)

rn,

where c̃r = c(!)rcr. �
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Remark 3.2. If the function α(t) satisfies the conditions of Lemma 3.1, but, moreover,
has the polynomial order of growth at infinity, i.e. ∃m ∈ N0, ∃M > 0:

(3.17) α(t) ≤ M(1 + |t|)2m, t ∈ R,

another integral kernel may be used:

K̃α(z) =
1

Km

(
sin z

2m
z

2m

)2m

, Km =
∫ ∞

−∞

(
sin x

2m
x

2m

)2m

dx.

In much the same way to the proving of the Lemmas 3.1 and 3.2 one can show that∣∣K̃α(rz)
∣∣ ≤ C̃r

er|Im z|

α(|z|)
, where C̃r =

M

Km

(
1 +

2m

r

)2m

,

and ∣∣K̃(n)
α,r(t)

∣∣ ≤ c̃r

√
2πn α(n

r )
α(|t|)

rn, where c̃r = c(!)rC̃r,

that is to say, defined in such a way integral kernel satisfies Lemmas 3.1 and 3.2.

Proof of Theorem 3.1. Let the group {U(t) : t ∈ R} satisfies (1.1). Then it follows from
[11, Theorems 1 and 2] that

(3.18)
∫ ∞

−∞

ln (MU (|t|))
1 + t2

dt < ∞.

We fix arbitrary k ∈ N and set

α(t) :=
(
MU (|t|)

)k(1 + |t|)k+2, t ∈ R.

The function α is, obviously, even on R. Condition (3.18) and the properties of the
function MU (·) imply α ∈ Q, and, moreover,

(3.19)
∫ ∞

−∞

(
(1 + |t|)MU (|t|)

)k
α(t)

dt =
∫ ∞

−∞

dt

(1 + |t|)2
= 2.

Using Lemma 3.1 (or Remark 3.2 if α(t) ≤ M(1+|t|)m) for the function α(t), we construct
the family of kernels Kα,r.

In what follows, we assume x ∈ X, r ∈ (0,∞) and n ∈ {1, . . . , k}. We define

xr,n :=
∫ ∞

−∞
Kα,r(t)U(nt)x dt.

Let ν ∈ N0. Let’s prove that xr,n ∈ C∞(A) =
⋂

ν∈N0
D(Aν) and

(3.20) Aνxr,n =
(−1)ν

nν

∫ ∞

−∞
K(ν)

α,r(t)U(nt)x dt.

It follows from the property 3) of the function Kα,r and from Lemma 3.2 that there exists

such constant C̃(ν, r) > 0 that K(ν)
α,r(t) ≤

eC(ν,r)
α(t) , t ∈ R. Thus, using (3.19), we get

(3.21)

∫ ∞

−∞

∥∥∥K(ν)
α,r(t)U(nt)x

∥∥∥ dt ≤
∫ ∞

−∞

C̃(ν, r)
α(t)

‖U(t)‖n ‖x‖ dt

≤ C̃(ν, r) ‖x‖
∫ ∞

−∞

MU (|t|)k

α(t)
dt ≤ 2C̃(ν, r) ‖x‖ < ∞.

Therefore the integral
∫∞
−∞K(ν)

α,r(t)U(nt)x dt converges. We define

x(ν)
r,n =

(−1)ν

nν

∫ ∞

−∞
K(ν)

α,r(t)U(nt)x dt.
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Then, using closedness of the operator A and integration by parts, one can find for
x ∈ D(A) that x

(ν)
r,n ∈ D(A) and

(3.22)
Ax(ν)

r,n =
(−1)ν

nν

∫ ∞

−∞
K(ν)

α,r(t)U(nt)Axdt =
(−1)ν

nν

1
n

∫ ∞

−∞
K(ν)

α,r(t)(U(nt)x)′dt

= − (−1)ν

nν

1
n

∫ ∞

−∞
K(ν+1)

α,r (t)U(nt)x dt = x(ν+1)
r,n .

Let x is an arbitrary element of the space X. Then there exists the sequence {xm}∞m=1 ⊂
D(A) such that ‖xm − x‖ → 0, m → ∞. Consequently, using inequality (3.21) and
relation (3.22), one can get∥∥∥(xm)(ν)

r,n − x(ν)
r,n

∥∥∥ ≤ 1
nν

∫ ∞

−∞

∥∥∥K(ν)
α,r(t)U(nt)(xm − x)

∥∥∥ dt ≤ 2C̃(ν, r)
nν

‖xm − x‖ → 0;∥∥∥A(xm)(ν)
r,n − x(ν+1)

r,n

∥∥∥ =
∥∥∥(xm)(ν+1)

r,n − x(ν+1)
r,n

∥∥∥→ 0, m →∞.

Hence, taking into account closedness of the operator A, we have

(3.23) x(ν)
r,n ∈ D(A), Ax(ν)

r,n = x(ν+1)
r,n .

One can get (3.20) from (3.23) by induction.
Using relation (3.20) and Lemma 3.2, one can find

(3.24) ‖Aνxr,n‖ ≤
‖x‖
nν

∫ ∞

−∞

∣∣∣K(ν)
α,r(t)

∣∣∣ ‖U(nt)‖ dt

≤ ‖x‖
nν

∫ ∞

−∞
c̃r

√
2πν α

(
ν
r

)
α(|t|)

rν ‖U(t)‖n
dt

≤ c̃r ‖x‖
√

2πν α
(ν

r

)(∫ ∞

−∞

‖U(t)‖n

α(t)
dt

)( r

n

)ν

,

where, accordingly to (3.19) and due to n ≤ k,
∫∞
−∞

‖U(t)‖n

α(t) dt ≤
∫∞
−∞

‖U(t)‖k

α(t) dt ≤ 2 < ∞.

Since β(t) = ln(α(t)), t ∈ R, as was mentioned in the proof of Lemma 3.1, limτ→∞
β(τ)

τ =
0 (cf. (3.5)). Thus

lim
ν→∞

(
α
(ν

r

))1/ν

= lim
ν→∞

e
1
r ( r

ν β( ν
r )) = e

1
r ·0 = 1.

Therefore from relation (3.24) one can get:

lim sup
ν→∞

(
‖Aνxr,n‖

)1/ν ≤ r

n
.

The last inequality brings us to the conclusion that

(3.25) xr,n ∈ E(A) and σ(xr,n, A) ≤ r

n
.

For arbitrary x ∈ X we define

(3.26)

x̃r,k :=
∫ ∞

−∞
Kα,r(t)(x + (−1)k−1(U(t)− I)kx) dt

=
∫ ∞

−∞
Kα,r(t)

k∑
n=1

(−1)n+1

(
k

n

)
U(nt)x dt

(the absolute convergence by the norm of X of the integral in the right part of (3.26)
follows from inequality (3.21), so the definition of the vector x̃r,k is correct). Using
definition (3.26) one can get

x̃r,k =
k∑

n=1

(−1)n+1

(
k

n

)∫ ∞

−∞
Kα,r(t)U(nt)x dt =

k∑
n=1

(−1)n+1

(
k

n

)
xr,n.

Therefore, accordingly to (3.25),

x̃r,k ∈ E(A) and σ(x̃r,k, A) ≤ r.
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Hence for an arbitrary x ∈ X we have

Er(x,A) = inf
y∈E(A) : σ(y,A)≤r

‖x− y‖ ≤ ‖x− x̃r,k‖ .

Using (3.26), the property 2) of the kernel Kα,r and (2.3), the last inequality implies

Er(x,A) ≤
∥∥∥∥∫ ∞

−∞
Kα,r(t)x dt−

∫ ∞

−∞
Kα,r(t)

(
x + (−1)k−1(U(t)− I)kx

)
dt

∥∥∥∥
≤
∫ ∞

−∞
Kα,r(t)

∥∥(U(t)− I)kx
∥∥ dt ≤

∫ ∞

−∞
Kα,r(t)ω̃k(|t|, x, A) dt.

So, in accordance with the property 4) of the function ω̃k(|t|, x, A),

(3.27)
Er(x,A) ≤

∫ ∞

−∞
Kα,r(t)ω̃k

(
|rt|1

r
, x,A

)
dt

≤ ω̃k

(
1
r
, x,A

)∫ ∞

−∞

(
1 + |rt|MU (|t|)

)kKα,r(t) dt.

Taking into account properties of the function MU (·), the definition of Kα,r, Lemma 3.1
and equality (3.19), one can find for r ≥ 1∫ ∞

−∞

(
1 + |rt|MU (|t|)

)kKα,r(t) dt ≤
∫ ∞

−∞

(
1 + |rt|MU (rt)

)k
rKα(rt) dt

≤
∫ ∞

−∞

(
(1 + τ)MU (τ)

)kKα(τ) dτ ≤ c1

∫ ∞

−∞

(
(1 + |τ |)MU (|τ |)

)k
α(τ)

dτ = 2c1 < ∞.

In accordance with (3.27), inequality (3.1) holds for all r ∈ [1,∞) with a constant
mk = 2c1. It should be noted that constant mk, indeed, depends on k, because due to
3.1, the constant c1 = c1(α) depends on the function α(t) = (MU (|t|))k(1 + |t|)k+2.

Moreover, let the group {U(t)} is bounded (MU (t) ≤ M̃, t ∈ R, M̃ ≥ 1). Taking into
account properties of the function MU (·), the definition of Kα,r, Lemma 3.1 and equality
(3.19), one can find for r ∈ (0,∞)∫ ∞

−∞
(1 + |rt|MU (|t|))kKα,r(t) dt ≤

∫ ∞

−∞
(1 + |rt|M̃MU (rt))krKα(rt) dt

≤ M̃k

∫ ∞

−∞
((1 + τ)MU (τ))kKα(τ) dτ ≤ 2M̃kc1 < ∞,

which proves Remark 3.1 with the constant mk = 2M̃kc1. �

Theorem 3.1 allows us to prove the analogue of the classic Jackson’s inequality for m
times differentiable functions:

Corollary 3.1. Let x ∈ D(Am), m ∈ N0. Then ∀k ∈ N0

(3.28) Er(x,A) ≤ mk+m

MU

(
m
r

)
rm

ω̃k

(
1
r
,Amx,A

)
, r ≥ 1,

where the constants mn (n ∈ N) are the same as in Theorem 3.1.

Proof. Let x ∈ D(Am) and r ≥ 1. By Theorem 3.1,

Er(x,A) ≤ mk+m · ω̃k+m

(
1
r
, x,A

)
.
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Let t ∈ R, 0 ≤ |t| ≤ 1
r . Then, using properties of the groups of the C0 class and properties

of the function MU (t), one can get∥∥(U(t)− I)k+mx
∥∥ =

∥∥(U(t)− I)m(U(t)− I)kx
∥∥

≤
∫ t

0

· · ·
∫ t

0

‖U(ξ1 + · · ·+ ξm)‖
∥∥(U(t)− I)kAmx

∥∥ dξ1 . . . dξm

≤ MU (m|t|)
∥∥(U(t)− I)kAmx

∥∥ tm ≤
MU (m

r )
rm

ω̃k

(
1
r
,Amx,A

)
.

This implies ω̃k+m

(
1
r , x, A

)
= sup|t|≤ 1

r

∥∥(U(t)− I)k+mx
∥∥ ≤ MU ( m

r )

rm ω̃k

(
1
r , Amx,A

)
,

which proves inequality (3.28). �

By setting in Corollary 3.1 k = 0 and taking into account that ω̃0 (·, Amx,A) ≡ ‖Amx‖,
one can conclude the following inequality:

Corollary 3.2. Let x ∈ D(Am), m ∈ N0. Then

(3.29) Er(x,A) ≤ mm

rm

(
MU (1/r)

)m‖Amx‖ r ≥ 1,

where the constants mn (n ∈ N) are the same as in Theorem 3.1.

4. The examples of application of the abstract Jackson’s inequality in
particular spaces

Lets consider several examples of application of Theorem 3.1 in particular spaces.

4.1. Jackson’s inequalities in Lp(2π) and C(2π).

Example 4.1. Let the space X and the operator A are the same as in the Example 2.1.
Then for x ∈ X the quantity Er(x,A) is the value of the best approximation of function x
by trigonometric polynomials whose degree does not exceed r with respect to the norm
in X. It is generally known that differential operator A is a generator of (isometric) group
of shifts in the space X

(4.1)
(U(t)x)(ξ) = x(t + ξ), x ∈ X; t, ξ ∈ R,

‖U(t)‖ ≡ 1, t ∈ R,

where ‖U(·)‖ = ‖U(·)‖L(X) is the norm of the operator U(t) in the space L(X) of linear
continuous operators over X. It follows from (4.1) that

ω̃k(t, x, A) = ωk(t, x, A) = sup
0≤h≤t

∥∥∥∥ k∑
j=0

(−1)k−j

(
j

k

)
x(·+ jh)

∥∥∥∥
X

, t ∈ R+, x ∈ X.

I.e., in that case, ω̃k(t, x, A) coincides with classic modulus of continuity of k-th degree
in the space X.

Thus, from Theorem 3.1 and Corollary 3.1 one can conclude all classic Jackson-type
inequalities in the spaces C(2π) and Lp(2π), 1 ≤ p < ∞.

4.2. Jackson’s inequalities of the approximation by exponential type entire
functions in the space Lp(R, µp). We consider the real-valued function µ(t) satisfying
the following conditions:

1) µ(t) ≥ 1, t ∈ R,
2) µ(t) is even, monotonically non-decreasing when t > 0,
3) µ(t) satisfies naturally occurring in many applications condition µ(t+ s) ≤ µ(t) ·

µ(s), s, t ∈ R,
4)
∫∞
−∞

ln µ(t)
1+t2 dt < ∞,

or alternatively, instead of 4), the equivalent condition holds

4’)
∑∞

k=1
ln µ(k)

k2 < ∞.
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Lets consider several important classes of functions satisfying conditions 1)–4).
1. Constant function µ(t) ≡ 1, t ∈ R.
2. Functions with polynomial order of growth at infinity. It is easy to check that for

such functions following estimate holds: ∃k ∈ N, ∃M ≥ 1

µ(t) ≤ M(1 + |t|)k, t ∈ R.

3. Functions of the form

µ(t) = e|t|
β

, 0 < β < 1, t ∈ R.

4. µ(t) represented as a power series for t > 0. I.e.,

µ(t) =
∞∑

n=0

|t|n

mn
,

where {mn}n∈N is the sequence of positive real numbers satisfying two conditions
• m0 = 1, m2

n ≤ mn−1 ·mn+1, n ∈ N;
• ∀k, l ∈ N (k+l)!

mk+l
≤ k!

mk

l!
ml

.

The function µ(t), defined above, obviously satisfies conditions 1) and 2). The condition
∀k, l ∈ N (k+l)!

mk+l
≤ k!

mk

l!
ml

implies

(4.2)
n∑

k=0

tksn−kn!
k!(n− k)!mn

≤
n∑

k=0

tksn−k

mkmn−k
,

and it is easy to see that condition 3) follows from inequality (4.2). The Denjoy-Carleman
theorem [12, p. 376] asserts that the following conditions are equivalent:

a) µ(t) satisfies condition 4);

b)
∑∞

n=1

(
1

mn

)1/n

< ∞;

c)
∑∞

n=1
mn−1
mn

< ∞.

5. µ(t) as a module of an entire function with zeroes on the imaginary axis. We
consider

ω(t) = C

∞∏
k=1

(
1− t

itk

)
, t ∈ R,

where C ≥ 1, 0 < t1 ≤ t2 ≤ . . . ,
∑∞

k=1
1
tk

< ∞. We set µ(t) := |ω(t)|. Then µ(t)
satisfies conditions 1) – 3), and, as shown in [8], µ(t) satisfies condition 4) also.

Lets proceed to the description of the spaces Lp(R, µp). Let the function µ(t) satisfies
conditions 1) – 4). One can consider the space Lp(R, µp) of the functions x(s), s ∈ R,
integrable in p-th degree with the weight µp

‖x‖p
Lp(R,µp) =

∫ ∞

−∞
|x(s)|pµp(s) ds.

Lp(R, µp) is the Banach space. We consider the differential operator A (D(A) = {x ∈
Lp(R, µp) ∩ AC(R) : x′ ∈ Lp(R, µp)}, (Ax)(t) = dx

dt ). As in Example 4.1, the operator
A generates the group of shifts {U(t)}t∈R in the space Lp(R, µp). But in contrast to
Example 4.1, this group isn’t bounded. Indeed, lets consider

x(s) =

{
1, s ∈ [0, 1],
0, s 6∈ [0, 1].

Obviously, x(s) ∈ Lp(R, µp), but for t > 1

‖U(t)x‖p =
∫ ∞

−∞
|x(t + s)|pµp(s) ds =

∫ t

t−1

µp(s) ds ≥ µp(t− 1) →∞, t →∞.
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On the other hand, because of the property 3),

‖U(t)x‖p =
∫ ∞

−∞
|x(t+s)|pµp(s) ds ≤ µp(−t)

∫ ∞

−∞
|x(t+s)|pµp(t+s) ds =

(
µ(−t)

)p‖x‖p,

so ‖U(t)‖Lp(R,µp) ≤ µ(−t) = µ(|t|), t ∈ R. 2

By the same way as in the Example 4.1, modules of continuity ωk and ω̃k coincides
with classic ones, but in contrast to the Example 4.1, they don’t equal mutually. The
space E(A) consists of fast decreasing at the infinity entire functions. The examples of
such functions have been given in [8]. By applying Theorem 3.1 one can get

Corollary 4.1. ∀k ∈ N there exists constant mk(p, µ) > 0 such that ∀f ∈ Lp(R, µp)

Er(f) ≤ mk · ω̃k

(
1
r
, x,A

)
, r ≥ 1.
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2If µ(t) is continuous and µ(0) = 1, it is possible to show in a similar manner that ‖U(t)‖Lp(R,µp) =

µ(|t|).


