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ON CLOSED IDEALS OF ENTIRE FUNCTIONS OF FINITE
GAMMA-GROWTH

K. G. MALYUTIN AND V. O. GERASIMENKO

This note is dedicated to 100th anniversary of Mark Krein.

Abstract. We extend the result of Beurling on the closure in Hp of the linear
manifold F (z)·{polynomials of z} to the classes of entire functions of finite gamma-
growth.

Let Hp (p > 0) be the space of analytic functions F (z) in the unit disk {z ∈ C : |z| < 1}
such that

sup
0≤r<1

2π∫
0

|F (reiθ)|p dθ < ∞.

Let F = IF QF ∈ Hp, p > 0, where IF is the inner function and QF is the exterior
function of F [1, Chap. IV]. The following theorem for p = 2 was proved by A. Beurling
[2], the general case was considered by T. Srinivassan and J. K. Wang [3].

Theorem (Beurling). Let F = IF QF ∈ Hp, p > 0. Then the closure in Hp of the
linear manifold F (z)· {polynomials of z} is IF ·Hp.

This theorem was extended by K. G. Malyutin and Nazim Sadik [4] to the classes of
entire functions of finite order. In this note, we generalize the Beurling theorem to the
classes of entire functions of finite gamma-growth.

Definition 1. A growth function γ(r) is a function defined for 0 < r < ∞ that is
positive, nondecreasing, continuous, and unbounded.

Let E be the set of entire functions on the plane C. For some real constants A,B > 0,
we denote the Banach space

EA,B(γ) := {f : f ∈ E , ||f ||A,B = sup
z∈C

|f(z)| exp(−Aγ(B|z|)) < ∞}

and set E(γ) =
⋃

A,B>0

EA,B(γ). The set E(γ) is a linear locally convex space with the

topology of inductive limit. Furthermore, the space E(γ) is a topological algebra with
respect to the product and the sum of functions.

Definition 2. A sequence of entire functions {fn(z)} converges in the space E(γ) as
n →∞ to a function f(z) if and only if {fn(z)} converges to the function f(z) uniformly
on every compact subset of C and there exist constants A,B > 0 such that

|fn(z)| ≤ exp(Aγ(B|z|)), n ∈ N,

for all z ∈ C.

If γ(r) = rρ (ρ > 0) then the space E(γ) is a space of entire functions of finite order ρ
of mean type.
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Let f be an entire function. Then the Fourier coefficients of f are the functions

ck(r, f) =
1
2π

∫ 2π

0

(log |f(reiθ)|)e−ikθ dθ, k = 0,±1,±2, . . .

By Z(f) we will denote the set of zeros of the function f .
Following Rubel [5], we consider the distribution of sequences Z = {zn}∞n=1, with

multiplicity taken into account, of nonzero complex numbers zn, n = 1, 2, . . . Such
sequences Z are studied in relation to the growth function γ.

Let Z = {zn}∞n=1 be a sequence of nonzero complex numbers such that lim zn = ∞ as
n →∞. We define

N(r, Z) =
∫ r

0

n(t, Z)
t

dt ,

where n(t, Z) is the counting function of Z.
We say that the sequence Z has finite γ-density if there exist constants A, B such

that, for all r > 0,
N(r, Z) ≤ Aγ(Br) .

We define, for k = 1, 2, . . . and r ≥ 0,

S(r; k, Z) =
1
k

∑
|zn|≤r

(
1
zn

)k

, S′(r; k, Z) =
1
k

∑
|zn|≤r

(zn

r

)k

.

We define, for k = 1, 2, . . . and r2 ≥ r1 ≥ 0,

S(r1, r2; k, Z) = S(r2; k, Z)− S(r1; k, Z) .

When no confusion will result, we will drop the Z from the above notation and write
N(r), S(r; k), etc.

We say that the sequence Z is γ-balanced if there exist constants A, B such that

S(r1, r2; k) ≤ Aγ(Br1)
rk
1

+
Aγ(Br2)

rk
2

for all r2 > r1 > 0 and k = 1, 2, . . . .
We say that the sequence Z is γ-admissible if Z has finite γ-density and is γ-balanced.
Let f(z) ∈ E(γ), and let Z = {zn}∞n=1 be the set of all nonzero roots of the function

f(z). Then the set Z is γ-admissible [5, Theorem 13.5.2].
Suppose now that a sequence Z is γ-balanced, with A, B being the corresponding

constants. Let

p(γ) = inf
{

p = 1, 2, · · · : lim inf
r→∞

γ(r)
rp

= 0
}

.

Naturally, we let p(γ) = ∞ in the case lim inf
r→∞

γ(r)r−p > 0 as r → ∞ for each positive

integer p. For 1 ≤ k < p(γ), we have infr≥0 r−kγ(Br) > 0. Thus, there exist positive
numbers r′k such that

γ(Br′k)
(r′k)k

< 2
γ(Br)

rk

for r > 0 and 1 ≤ k < p(γ). For k in this range, we define αk = −S(rk; k), where
rk = inf r′k.

For those k, if there are any, for which k ≥ p(γ), we choose a sequence {rj}∞j=1,
limj→∞ rj = ∞, such that

lim
j→∞

γ(Brj)

r
p(γ)
j

= 0 .

For values of k, then, such that k ≥ p(γ), we define αk = − limj→∞ S(rj ; k). We note
that the limit exists (see the proof of Proposition 13.1.14 in [5]).
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Definition 3. A sequence {ck(r;Z)}, k = 0,±1,±2, . . . , defined by c0(r) = N(r),
ck(r)=rk{αk + S(r; k)}/2–S′(r; k)/2 for k = 1, 2, . . . , c−k(r)=ck(r) for k = 1, 2, . . . , is
said to be a sequence of Fourier coefficients associated with Z.

We remark that Definition 3 differs from Definition 13.2.3 in [5] in which ck(r) depends
on a sequence α of complex numbers.

Using Definition 3 of Fourier coefficients of the sequence Z, Propositions 13.2.5, 13.2.6,
and Theorems 13.4.5, 13.5.1, 13.5.2 in [5] we can formulate the following theorem.

Theorem 1. Let f(z) ∈ E(γ), and let Z be the set of all nonzero roots of the function
f(z). Suppose that {ck(r)} = {ck(r;Z)}, k = 0,±1,±2, . . . , is a sequence of Fourier
coefficients associated with Z. Then there exists a unique entire function Ĩf (z) ∈ E(γ)
with Z(Ĩf ) = Z, Ĩf (0) = 1, and ck(r; Ĩf ) = ck(r) for k = 0,±1,±2, . . .

Definition 4. Let a function f vanish at 0 with multiplicity m ≥ 0. The function
If (z) = zmĨf (z) is called the inner function of f and the function Qf (z) = f(z)/If (z) is
called the exterior function of f .

We also note that Qf (z) belongs to E(γ).
The purpose of this note is to prove the following theorem.

Theorem 2. Let f = IfQf ∈ E(γ), where If is the inner function of f and Qf is the
exterior function of f . Then the closure of the linear manifold f(z)· {polynomials of z}
is If · E(γ).

1. We denote H(r) = γ(er) and suppose that H(r) is a convex function on [0,+∞) such
that there exists

(1) lim
r→+∞

H(r)
r

= +∞.

Then the dual Young function H∗(r) to H(r) is defined, i.e.,

H∗(r) := max{ru−H(u) : u ≥ 0}.

The function H∗(r) is convex [6, §3.2], satisfies (1), and H(r)∗∗ ≡ H(r).
Let ur be a point of maximum of the function ru−H(u), u ≥ 0. By definition, H∗(r):

H∗(r) = rur −H(ur) ≤ rur. Using (1) for H∗(r), it is easy to see that lim
r→+∞

ur = +∞.

Hence, for all t ≥ 0, there exists r0(t) ≥ 0 such that

(2) H∗(r) = max{ru−H(u) : u ≥ t}

for all r ≥ r0(t).
Using (2) in [7], Abanina proved that the function Young dual to H1(r) = H(r+B)+D

is the function

(3) H∗
1 (r) = H∗(r)−Br −D.

Here B,D ≥ 0 are some fixed numbers. Let A > 0 be any fixed number. Then the
function Aγ(r) also is a function of growth. The function HA(r) Young dual to Aγ(r) is
convex on [0,+∞) and satisfies (1).

Let the entire function

(4) f(z) =
∞∑

n=0

anzn ∈ E(γ).

Then there exist constants A,B > 0 independent of r such that

M(r, f) := max
|z|=r

|f(z)| ≤ exp(Aγ(Br))
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for all r ≥ 0. Hence,

lnM(r, f) ≤ Aγ(Br) = AH(ln(Br)) = HA(lnB + ln r).

For the maximal term of power series (4), µ(r, f) := max
n≥0

|an|rn, we have the following

inequality:
µ(r, f) ≤ lnM(r, f) ≤ HA(lnB + ln r).

By (3), the function Young dual to HA(lnB + r) is the function H∗
A(r)− r lnB. Then

[6, theorem 3.2.5]

(5) ln |an| ≤ −H∗
A(n) + n lnB, n = 0, 1, . . .

Lemma. Let f(z) ∈ E(γ). Then there exists a sequence of polynomials Pn(z), n =
1, 2, . . . , such that Pn(z) converge in E(γ) as n →∞ to f(z).

Proof. Assume that the function f(z) can be written as (4). Then there exist A,B > 0
such that (5) holds. Hence, if (5) holds, then

∞∑
k=0

|ak|rk ≤
∞∑

k=0

exp{−H∗
A(k) + k lnB}rk =

∞∑
k=0

exp{−H∗
A(k) + k lnB + k ln(2r)} 1

2k

≤ max
k≥0

{exp{−H∗
A(k) + k lnB + k ln(2r)}}

∞∑
k=0

1
2k

≤ 2 exp{max
u≥0

{−H∗
A(u) + u ln(2Br)}}

= 2 exp{H∗∗
A (ln(2Br)} = 2 exp{HA(ln(2Br)} = 2 exp{Aγ(2Br)}.

Using this inequality, we obtain that the sequence of partial sums of the series (4)
converges in E(γ) as n →∞ to f(z). �

2. We now prove the main theorem.
a) We prove that If · E(γ) includes the closure in E(γ) of the linear manifold f(z)·{po-

lynomials of z}. Let g ∈ E(γ), and let {Pn(z)} be a sequence of polynomials such that
{fPn} converges in E(γ) as n →∞ to g(z).

Let {zk}∞k=1 be a set of zeros of the function f(z). Since {fPn} converges to g uniformly
on every compact set, we have that {f(zk)Pn(zk)} converges as n →∞ to g(zk) for any
k ∈ N. Since we have f(zk)Pn(zk) = 0 for any k, n ∈ N, g(zk) = 0 follows then for any
k ∈ N. Then G := g/If is an entire function. We just proved that G ∈ E(γ).

The following argument will be called a “standart argument”. Let C(a, ρ) be a disc
of radius ρ about a. Let {C(an, ρn)} be a sequence of disks. The number

(6) L = lim sup
n→∞

1
r

∑
|an|≤r

ρn

is called the upper density of the set
∞⋃

n=1
C(an, ρn) [8]. Using Theorem 11 [8, Chap. 1],

it is easy to see that given f ∈ E(γ), 0 < η < 1/2, there exist A(η), B > 0 such that

ln |f(reiθ)| ≥ −A(η)γ(Br)

for all reiθ /∈ Cη, where Cη is a set of discs of upper density η. Using arguments of the
paper [9], we can make the disks of Cη such that they are disjoint.

Thus, there exists a set Cη of disjoint discs of upper density η such that

(7) ln |G(reiθ)| ≤ A(η)γ(Br)

for all reiθ /∈ Cη, where A(η), B > 0 are constants independent of r.
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Let reiθ ∈ Cη and let C(an, ρn) be a disc of Cη such that reiθ ∈ C(an, ρn). It follows
from (6) that

ρn ≤
1 + η

1− η
r.

By the maximum modulus principle, relation (7) is true (probably with other con-
stants) for all z ∈ C.

b) We now prove that the closure of f(z)·{polynomials of z} includes If · E(γ). We
prove that the linear manifold Q(z)·{polynomials of z} is a set everywhere dense in
the space E(γ). Let g ∈ E(γ). Then (using the “standard argument”) g/Qf ∈ E(γ).
Let {Pn(z)} be a sequence of polynomials converging in E(γ) to g(z)/Qf (z). Then the
sequence {Qf (z)Pn(z)} converges to g(z) as n →∞. The proof is complete.
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