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THE SET OF DISCONTINUITY POINTS OF SEPARATELY
CONTINUOUS FUNCTIONS ON THE PRODUCTS OF COMPACT

SPACES

V. MYKHAYLYUK

Abstract. We solve the problem of constructing separately continuous functions on
the product of compact spaces with a given set of discontinuity points. We obtain
the following results.

1. For arbitrary Čech complete spaces X, Y , and a separable compact perfect
projectively nowhere dense zero set E ⊆ X × Y there exists a separately continuous
function f : X × Y → R the set of discontinuity points, which coincides with E.

2. For arbitrary Čech complete spaces X, Y , and nowhere dense zero sets A ⊆ X
and B ⊆ Y there exists a separately continuous function f : X × Y → R such
that the projections of the set of discontinuity points of f coincides with A and B,
respectively.

We construct an example of Eberlein compacts X, Y , and nowhere dense zero
sets A ⊆ X and B ⊆ Y such that the set of discontinuity points of every separately
continuous function f : X×Y → R does not coincide with A×B, and a CH-example
of separable Valdivia compacts X, Y and separable nowhere dense zero sets A ⊆ X
and B ⊆ Y such that the set of discontinuity points of every separately continuous
function f : X × Y → R does not coincide with A×B.

1. Introduction

It follows from Namioka’s theorem [1] that for arbitrary compact spaces X,Y and a
separately continuous function f : X × Y → R, the set D(f) of discontinuity points of f
is a projectively meagre set, that is, D(f) ⊆ A×B where A ⊆ X and B ⊆ Y are meagre
sets. In this connection, a problem on a characterization of sets of discontinuity points
of separately continuous functions on the product of two compact spaces was formulated
in [2]. In other words, it is required to establish for which projectively meagre Fσ-set E
in the product X × Y of compact spaces X and Y there exists a separately continuous
function f : X×Y → R with D(f) = E. This leads to solving the inverse problem of sep-
arately continuous mappings theory consisting in a construction of separately continuous
function with a given set of discontinuity points.

The inverse problem on [0, 1]2 and on the products of metrizable spaces was studied
in papers of many mathematicians, W. Young and G. Young, R. Kershner, R. Feiock,
Z. Grande, J. Breckenridge and T. Nishiura. The most general result in this direction
was obtained in [3]. It gives a characterization of the set of discontinuity points for
separately continuous functions of several variables on the product of spaces each of
which is the topological product of separable metrizable factors. This result for function
of two variables in compact spaces was proved in [4, Theorem 4] and it can be formulated
in the following way.
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Theorem 1.1. Let (Xs : s ∈ S), (Yt : t ∈ T ) be arbitrary families of metrizable compact
spaces, X =

∏
s∈S

Xs and Y =
∏

t∈T

Yt. Then, for any set E ⊆ X × Y , the following

conditions are equivalent:
(i) there exists a separately continuous function f : X × Y → R with D(f)=E;
(ii) there exists a sequence (En)∞n=1 of projectively nowhere dense zero sets En ⊆

X × Y such that E =
∞⋃

n=1
En.

Recall that a set A in a topological space X is called a zero set if there exists a
continuous function f : X → [0, 1] such that A = f (−1)(0), and a co-zero set if A = X \B
for some zero set B ⊆ X. A set E in the product X × Y of topological spaces X and
Y is called a projectively nowhere dense set if E is contained in the product A × B of
nowhere dense sets A ⊆ X and B ⊆ Y .

On other hand, the problem of constructing a separately continuous function with a
given oscillation was solved in [5]. It follows from [5] that for an arbitrary separable
projectively meagre Fσ-set E in the product X×Y of Eberlein compacts X and Y there
exists a separately continuous function f : X×Y → R with D(f) = E. Besides, examples
of nonseparable closed sets E1 and E2 in the products of two Eberlein compacts such
that E1 is a set of discontinuity points of some separately continuous function and E2 is
not a set of discontinuity points for every separately continuous function on the product
of the corresponding spaces.

Note that the following Price-Simon type property of Eberlein compacts (see [6,
p. 170]) plays an important role in the proof of the results of [5]. For every Eberlein
compact X and x0 ∈ X there exists a sequence of nonempty open sets, which converges
to x0 (a sequence (An)∞n=1 of sets An ⊆ Y converges to y0 ∈ Y in a topological space Y ,
that is An → x0, if for every neighbourhood U of y0 in Y there exists a number n0 ∈ N
such that An ⊆ U for all n ≥ n0).

The problem of constructing a separately continuous function on the product of two
compact spaces with a given one-point set of discontinuity points was solved in [7] using
a dependence of functions on some quantity of coordinates. It was obtained in [7] that
for nonisolated points x0 and y0 in compact spaces X and Y , respectively, there exists
a separately continuous function f : X × Y → R with D(f) = {(x0, y0)} if and only if
there exist sequences (Un)∞n=1 and (Vn)∞n=1 of nonempty co-zero sets Un ⊆ X and Vn ⊆ Y
which converge to x0 and y0 respectively, besides, x0 6∈ Un and y0 6∈ Vn for every n ∈ N.

Note that solving the inverse problem for a Fσ-set E =
∞⋃

n=1
En is reduces to a con-

struction of a separately continuous function f with D(f) = En where En is a closed set.
Therefore the following questions arise naturally in connection with the results mentioned
above.

Question 1.2. Let E be a projectively nowhere dense zero set in the product X × Y of
compact spaces X and Y . Does there exist a separately continuous function f : X×Y →
R with D(f) = E ?

Question 1.3. Let E be a projectively nowhere dense zero set in the product X × Y
of Eberlein compacts X and Y . Does there exist a separately continuous function f :
X × Y → R with D(f) = E ?

Question 1.4. Let E be a separable projectively nowhere dense zero set in the product
X × Y of compact spaces X and Y . Does there exist a separately continuous function
f : X × Y → R with D(f) = E ?

Besides, theorems on characterizations of sets of discontinuity points of separately
continuous functions, which were obtained, have been formulated in terms of properties
of projections. Therefore, it is important to study a weak inverse problem of constructing
a separately continuous function with given projections. It is connected with special
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inverse problems of constructing a separately continuous function with a given set of
discontinuity points, E, of a special type (E = A×B, E = {x0}×{y0}, etc.), which have
been studied in [8, 9]. In particular, a special inverse problem was solved in [8] in the
following cases: for a set A×{y0} where A is any nowhere dense zero set in a topological
space X and y0 is any nonisolated point with a countable base of neighbourhoods in a
completely regular space Y ; and for a set A×B where A and B are nowhere dense zero
sets in a topological space X and a locally connected space Y respectively. Thus the
following question arises naturally.

Question 1.5. Let A, B be nowhere dense zero sets in compact spaces X and Y respec-
tively. Does there exist a separately continuous function f : X × Y → R such that the
projections on X and Y of the set of discontinuity points of f coincide with A and B
respectively ?

In this paper we give affirmative answers to Question 1.2 if E is a separable perfect set,
and to Question 1.5. Further, we construct an example which gives a negative answer to
Question 1.3 (thus to Question 1.2), and an CH-example which gives a negative answer
to Question 1.4.

2. The inverse problem on the product of compact spaces

Recall some definitions and introduce some notations.
A set A in a topological space X is called a Gδ-set if there exists a sequence (Gn)∞n=1

of open in X sets Gn such that A =
∞⋂

n=1
Gn and Gn+1 ⊆ Gn for every n ∈ N where B

means the closure of a set B in the corresponding space.
A set A in a topological space X is called a perfect set if A is a perfect space in the

topology induced by X, that is every closed in A set is a Gδ-set in A.
A function f : X → R defined on a topological space X is called a lower semi-

continuous function at an x0 ∈ X if for every ε > 0 there exists a neighbourhood U of
x0 in X such that f(x) > f(x0)− ε for any x ∈ U , and a lower semi-continuous function
if f is lower semi-continuous at any point x ∈ X.

Let X,Y be arbitrary sets. The mappings prX : X×Y → X and prY : X×Y → Y are
defined as follows: prX(x, y) = x and prY (x, y) = y for every x ∈ X and y ∈ Y . Besides,
let f : X×Y → R be a function. For every x0 ∈ X and y0 ∈ Y the functions fx0 : Y → R
and fy0 : X → R are defined as follows: fx0(y) = f(x0, y) and fy0(x) = f(x, y0) for any
x ∈ X and y ∈ Y .

Let X be a topological space, A ⊆ X and f : X → R. The restriction of f to A
we denote by f |A. The real ωf (A) = sup

x′,x′′∈A
|f(x′) − f(x′′)| is called the oscillation of

f on A. If x0 ∈ X and U is a system of all neighborhoods of x0 in X then the real
ωf (x0) = inf

U∈U
ωf (U) is called the oscillation of f at x0.

For a function f : X → R defined on a set X the set supp f = {x ∈ X : f(x) 6= 0} is
called a support of f .

A completely regular space X is called a Čech complete space if for every compactifi-
cation cX of X the set X is a Gδ-set in cX (see [10, p. 297]).

Let X be a topological space. We say that a point x0 ∈ X has a weak Price-Simon
property in X if there exists a sequence (Un)∞n=1 of nonempty open in X sets Un such
that Un → x0, and X has a weak Price-Simon property if every point x ∈ X has the
weak Price-Simon property in X.

The following result takes an important place in solving the inverse problem and the
method used in the proof is similar to the method which was used in [11] for the product
of separable metrizable spaces.
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Theorem 2.1. Let X, Y be completely regular spaces, A ⊆ X and B ⊆ Y be nowhere
dense sets, E ⊆ A×B be a Gδ-set in Z = X × Y and P = {pn : n ∈ N} ⊆ E be a dense
in E set such that pn has the Price-Simon property in Z for every n ∈ N. Then there
exists a lower semi-continuous separately continuous function f : X × Y → Z such that
D(f) = E.

Proof. Let (Gn)∞n=1 be a sequence of open in Z sets such that E =
∞⋂

n=1
Gn andGn+1 ⊆ Gn

for every n ∈ N. Since A and B are nowhere dense and each point pn has the weak Price-
Simon property in Z, for every n ∈ N there exist sequences (Unk)∞k=1 and (Vnk)∞k=1 of
nonempty open in X and Y sets Unk and Vnk respectively such that Wnk = Unk ×
Vnk →

k→∞
pn, Unk ∩A = Vnk ∩B = Ø and Wnk ⊆ Gk for every k ∈ N. For every n, k ∈ N

pick a point znk ∈Wnk and a continuous function fnk : Z → [0, 1] such that fnk(znk) = 1
and fnk(z) = 0 for any z ∈ Z \Wnk. Show that the function f : X × Y → [0,+∞),

f(x, y) =
∞∑

n=1

∞∑
k=n

fnk(x, y), has the desired properties.

For every n ∈ N put Wn = Z \ Gn. Since fik|Wn = 0 for all i ∈ N and k ≥ n,

f |Wn =
∞∑

i=1

∞∑
k=i

fik|Wn
=

n∑
i=1

n∑
k=i

fik|Wn
. Therefore f is continuous at every point of the

set
∞⋃

n=1
Wn = Z \ E.

Besides, since Wnk ∩ ((A × Y ) ∪ (X × B)) = Ø for any n, k ∈ N, fa = fb = 0 for
any a ∈ A and b ∈ B. Therefore, in particular, f is a lower semi-continuous separately
continuous function.

It remains to show that E ⊆ D(f). Since f(pn) = 0 for each n ∈ N, f(znk) ≥
fnk(znk) = 1 for each k ≥ n and znk →

k→∞
pn, pn ∈ D(f), besides, ωf (pn) ≥ 1. Since

F = {z ∈ Z : ωf (z) ≥ 1} is closed in Z and F ⊆ D(f), we obtain E = P ⊆ F ⊆ D(f). �

For a set which is the union of a sequence of zero sets we obtain the following solution
to the inverse problem.

Theorem 2.2. Let X, Y be completely regular spaces, (En)∞n=1 be a sequence of separable

projectively nowhere dense Gδ-sets En in X×Y and E =
∞⋃

n=1
En, besides, every point of

E has the weak Price-Simon property in X×Y . Then there exists a separately continuous
function f : X × Y → R such that D(f) = E.

Proof. By Theorem 2.1 for every n ∈ N there exists a lower semi-continuous separately
continuous function gn : X × Y → R such that D(gn) = En. Fix any strictly increasing
homeomorphism ϕ : R → (−1, 1). Clearly, the functions fn : X×Y → (−1, 1), fn(x, y) =
ϕ(gn(x, y)), are lower semi-continuous separately continuous and D(fn) = En for every
n ∈ N. By [12, Corollary 2.2.2] for a separately continuous function f : X × Y → R,

f(x, y) =
∞∑

n=1

1
2n fn(x, y), we have D(f) =

∞⋃
n=1

D(fn) =
∞⋃

n=1
En = E. �

The following result gives an affirmative answer to Question 1.2 under some additional
conditions on E.

Theorem 2.3. Let X, Y be Čech complete spaces, (En)∞n=1 be a sequence of separable

compact perfect projectively nowhere dense Gδ-sets En in X × Y and E =
∞⋃

n=1
En. Then

there exists a separately continuous function f : X × Y → R such that D(f) = E.

Proof. Let X̃, Ỹ be the Stone-Čech compactifications of X and Y respectively. Since
X and Y are Čech complete spaces, X and Y are Gδ-sets in X̃ and Ỹ respectively.
Therefore all the sets En are Gδ-sets in X̃ × Ỹ . Every one-point subset of En is a Gδ-set
in the perfect compact En. Thus every one-point subset of E is a Gδ-set in the compact
space X̃× Ỹ . Hence every point p ∈ E has a countable base of neighbourhoods in X̃× Ỹ .
Then by Theorem 2.2, there exists a separately continuous function f̃ : X̃ × Ỹ → R such
that D(f̃) = E.
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Put f = f̃ |X×Y . Clearly that f is a separately continuous function and D(f) ⊆ E. It
remains to show that E ⊆ D(f).

Pick a point p = (x0, y0) ∈ E, neighbourhoods U and V of x0 and y0 in X and Y

respectively. Since X and Y are dense in X̃ and Ỹ respectively, Ũ = U and Ṽ = V are
neighbourhoods of x0 and y0 in X̃ and Ỹ respectively. Using the separate continuity of
f̃ we obtain that ωf̃ (Ũ × Ṽ ) = ωf̃ (U × V ) = ωf (U × V ). Therefore ωf (p) = ωf̃ (p) > 0
and p ∈ D(f). �

Note that the Čech completeness of X and Y in Theorem 2.3 cannot be weakened to
the complete regularity. Indeed, it was shown in [9, Theorem 1] that an analog of this
theorem for completely regular spaces X, Y and one-point set E does not depend of the
ZFC-axioms.

The method which we use to solve the weak inverse problem is similar to the method
from [8]. The following proposition gives a possibility to remove the connection type
conditions.

Proposition 2.4. Let X be a compact space, A ⊆ X be a zero set in X which is not
open in X. Then there exists a separately continuous function f : X → [0, 1] such
that A = f−1(0) and for every open in X set G ⊇ A there exists n0 ∈ N such that
{ 1

2n : n ≥ n0} ⊆ f(G).

Proof. Let g : X → [0, 1] be a continuous function such that A = g−1(0). Since A is not
open in X, g−1([0, ε))\A 6= Ø for every ε > 0. Therefore there exists a sequence (xn)∞n=1

of points xn ∈ X such that g(xn+1) < g(xn) < 1 for every n ∈ N and lim
n→∞

g(xn) = 0.

Pick any strictly increasing continuous function ϕ : [0, 1] → [0, 1] such that ϕ(g(xn)) =
1
2n . Put f(x) = ϕ(g(x)) for every x ∈ X. Clearly that f : X → [0, 1] is a continuous
function and A = f−1(0). For every n ∈ N put Gn = f−1(( 1

2n , 1]). Let G be an
arbitrary open in X set with A ⊆ G. Choosing a finite subcover from the open cover
{G} ∪ {Gn : n ∈ N} of compact space X we obtain an n0 ∈ N such that G ∪Gn0 = X.
Since f(xn) = 1

2n ≤ 1
2n0 for every n ≥ n0, { 1

2n : n ≥ n0} = {f(xn) : n ≥ n0} ⊆ G. �

The following theorem gives a positive answer to Question 1.5.

Theorem 2.5. Let X, Y be Čech complete spaces, (An)∞n=1, (Bn)∞n=1 be sequences of

nowhere dense compact Gδ-sets An and Bn in X and Y respectively, A =
∞⋃

n=1
An and

B =
∞⋃

n=1
Bn. Then there exists a separately continuous function f : X × Y → R such

that prXD(f) = A and prY D(f) = B.

Proof. Note that it is sufficient to prove this theorem for nowhere dense compact Gδ-sets
A and B in compact spaces X and Y respectively and a lower semi-continuous separately
continuous function f analogously as in the proof of Theorem 2.3.

Since A and B are zero sets in X and Y respectively, by Proposition 2.4 there exist
continuous functions g : X → [0, 1] and h : Y → [0, 1] such that A = g−1(0), B = h−1(0)
and for every open sets G1 ⊇ A and G2 ⊇ B in X and Y respectively there exists an
n0 ∈ N such that { 1

2n : n ≥ n0} ⊆ g(G1) and { 1
2n : n ≥ n0} ⊆ h(G2).

Consider the function

f(x, y) =

{
2g(x)h(y)

g2(x)+h2(y) , if (x, y) 6∈ A×B,

0, if (x, y) ∈ A×B.

It is easy to see that f is a lower semi-continuous separately continuous function and
D(f) ⊆ A×B.

Suppose that prXD(f) 6= A, that is, there exists an x0 ∈ A \ prXD(f). Since f
is continuous at every point of the compact set {x0} × B and f(x0, y) = 0 for every
y ∈ B, there exists a neighbourhood U of x0 in X and an open in Y set G such that
f(x, y) < 4

5 for any x ∈ U and y ∈ G. It follows from the choice of h that there exists
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an n0 ∈ N such that { 1
2n : n ≥ n0} ⊆ h(G). Since A = g−1(0) is nowhere dense,

(g−1([0, 1
2n0 )) ∩ U) \ A 6= Ø, that is, there exists an x1 ∈ U such that g(x1) ∈ (0, 1

2n0 ).
Choose an n ≥ n0 and a y1 ∈ G such that g(x1) ∈ [ 1

2n+1 ,
1
2n ) and h(y1) = 1

2n . Then

f(x1, y1) =
2g(x1)h(y1)

g2(x1) + h2(y1)
≥

2 1
2n+1

1
2n

1
4n+1 + 1

4n

=
4
5
,

but this contradicts the choice of U and G.
The equality prY D(f) = B can be obtained analogously. �

The reasoning similar to the one given after the proof of Theorem 2.3 shows that
the Čech completeness of X and Y in Theorem 2.5 cannot be weaken to the complete
regularity.

3. Separately continuous functions on the product of Eberlein compacts

In this section we construct an example which gives a negative answer to Question 1.3.
Recall that a compact space X which is homeomorphic to some weakly compact subset

of a Banach space is called an Eberlein compact. The Amir-Lindenstraus theorem [13]
states that a compact X is an Eberlein compact if and only if it is homeomorphic to some
compact subset of the space c0(T ) (c0(T ) is the space of all functions x : T → R such
that for every ε > 0 the set {t ∈ T : |x(t)| ≥ ε} is finite with the topology of pointwise
convergence on T ).

An idea of the corresponding space construction is closely related to the following
simple fact.

Proposition 3.1. Let f : [0, 1]2 → R be a separately continuous function. Then there
exist strictly decreasing sequences (an)∞n=1 and (bn)∞n=1 of reals an, bn ∈ (0, 1] such that
lim

n→∞
an = lim

n→∞
bn = 0 and |f(an, bm)− f(0, 0)| < 1

min{n,m} for every n,m ∈ N.

Proof. Since f0 is continuous at 0, there exists an a1 ∈ (0, 1) such that

|f(a1, 0)− f(0, 0)| < 1
2
.

Using the continuity of f0 and fa1 at 0 we choose b1 ∈ (0, 1) such that

|f(0, b1)− f(0, 0)| < 1
2

and |f(a1, y)− f(a1, 0)| < 1
2

for every y ∈ [0, b1]. Further, using the continuity of f0 and fb1 at 0 choose an a2 ∈
(0,min{ 1

2 , a1}) so that

|f(a2, 0)− f(0, 0)| < 1
4

and |f(x, b1)− f(0, b1)| <
1
2

for every x ∈ [0, a2]. Since f0 and fa2 are continuous at 0, there exists b2 ∈ (0,min{ 1
2 , b1})

such that
|f(0, b2)− f(0, 0)| < 1

4
and |f(a2, y)− f(a2, 0)| < 1

4
for every y ∈ [0, b2].

Continuing this procedure to infinity we obtain strictly decreasing sequences (an)∞n=1

and (bn)∞n=1 of reals an, bn ∈ (0, 1] such that lim
n→∞

an = lim
n→∞

bn = 0 and

|f(an, 0)− f(0, 0)| < 1
2n
, |f(0, bn)− f(0, 0)| < 1

2n
,

|f(an, y)− f(an, 0)| < 1
2n

and |f(x, bn)− f(0, bn)| < 1
2n

for every y ∈ [0, bn] and x ∈ [0, an+1]. Then for m ≥ n we have
|f(an, bm)− f(0, 0)| ≤ |f(an, bm)− f(an, 0)|+ |f(an, 0)− f(0, 0)|

<
1
2n

+
1
2n

=
1
n
.
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And for n > m we have

|f(an, bm)− f(0, 0)| ≤ |f(an, bm)− f(0, bm)|+ |f(0, bm)− f(0, 0)|

<
1

2m
+

1
2m

=
1
m
.

�

For the topological product X =
∏

s∈S

Xs of a family (Xs : s ∈ S) of topological spaces

Xs and a nonempty basic open set U =
∏

s∈S

Us put R(U) = {s ∈ S : Us 6= Xs}. Let,

besides, Y be a subspace of X. An nonempty open in Y set V is called a basic open set
if there exists a basic open set U = ϕ(V ) in X such that V = U ∩ Y . For any nonempty
basic open set V in Y we put R(V ) = R(ϕ(V )).

The following theorem is the main result of this section.

Theorem 3.2. There exist Eberlein compacts X and Y and nowhere dense zero sets A
and B in X and Y respectively such that D(f) 6= A×B for every separately continuous
function f : X × Y → R.

Proof. Denote the set of all strictly decreasing sequences s = (αn)∞n=1 of reals αn ∈ (0, 1]
such that lim

n→∞
αn = 0 by S0 and S = {0} ∪ S0. For every s = (αn) ∈ S0 and n ∈ N0 =

N ∪ {0} the function x(s, n) ∈ [0, 1]S is defined as follows: if n ∈ N, then

x(s, n)(t) =

 1, if t = s,
0, if t ∈ S0 \ {s},
αn, if t = 0,

and

x(s, 0)(t) =
{

1, if t = s,
0, if t ∈ S \ {s}.

Put X0 = [0, 1] × {0}S0 , Xs = {x(s, n) : n ∈ N0} for every s ∈ S0 and X =
⋃

s∈S

Xs.

Show that X is a closed subspace of Z = [0, 1]× {0, 1}S0 .
Since for every x ∈ X the set {s ∈ S0 : x(s) = 1} has at most one element, all

functions z ∈ X have the same properties. Therefore it is sufficient to prove that for
every z ∈ Z \X with |{s ∈ S0 : z(s) = 1}| ≤ 1 there exists an open neighbourhood U of
z in Z such that U ∩X = Ø.

Pick z0 ∈ Z \X such that |{s ∈ S0 : z(s) = 1}| ≤ 1. Note that |{s ∈ S0 : z(s) = 1}| =
1. Indeed, if z0(s) = 0 for every s ∈ S0 then z0 ∈ X0 which contradicts the choice of z0.
Pick s = (αn) ∈ S0 such that z0(s) = 1. Since z0 6= x(s, 0), z0(0) > 0. Note z0 6= x(s, n)
for every n ∈ N, therefore z0(0) 6= αn for every n ∈ N. Choose an open neighbourhood I
of z0(0) in [0,1] so that 0 6∈ I and αn 6∈ I for every n ∈ N. For the open neighbourhood
U = {z ∈ Z : z(0) ∈ I, z(s) = 1} of z0 in Z we have U ∩X = Ø.

Thus X is a compact. Since the supports of all functions x ∈ X are finite, X is an
Eberlein compact by [13].

Put A = {x ∈ X : x(0) = 0}. Clearly that A is a zero set in X. Since Xs = Xs \A
for every s ∈ S, X \A is a dense in X set. Therefore A is a nowhere dense in X set.

Denote Y = X, B = A and suppose that there exists a separately continuous
function f : X × Y → R such that D(f) = A × B. Note that the function ϕ :
X0 → [0, 1], ϕ(x) = x(0), is a homeomorphism, therefore the function g : [0, 1]2 → R,
g(u, v) = f(ϕ−1(u), ϕ−1(v)), is separately continuous. By Proposition 3.1 there ex-
ist strictly decreasing sequences (un)∞n=1 and (vn)∞n=1 of reals un, vn ∈ (0, 1] such that
lim

n→∞
un = lim

n→∞
vn = 0 and |g(un, vm)− g(0, 0)| < 1

min{n,m} for every n,m ∈ N.

For every n ∈ N put xn = ϕ−1(un) and yn = ϕ−1(vn). Since for every n,m ∈ N f is a
jointly continuous function at (xn, ym), there exist basic open neighbourhoods Unm and
Vnm of xn and ym in X and Y respectively such that |f(x, y) − f(xn, ym)| < 1

min{n,m}
for every x ∈ Unm and y ∈ Vnm.
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Consider an at most countable set T =
∞⋃

n,m=1
(R(Unm) ∪ R(Vnm)). Since the set of

all subsequences of some sequence has the cardinality 2ℵ0 , there exists an increasing
sequence (nk)∞k=1 of nk ∈ N such that s = (αk)∞k=1, t = (βk)∞k=1 6∈ T , where αk = unk

and βk = vnk
for every k ∈ N. Note that x0 = x(s, 0) ∈ A and y0 = x(t, 0) ∈ B. Show

that f is continuous at (x0, y0), which is impossible.
Fix ε > 0 and choose a number k0 such that 1

nk0
< ε

2 . Note that the sets U =
{x ∈ X : x(s) = 1, x(0) ≤ αk0} = {x(s, k) : k = 0 or k ≥ k0} and V = {y ∈ Y :
y(t) = 1, y(0) ≤ βk0} = {x(t, k) : k = 0 or k ≥ k0}} are neighbourhoods of x0 and
y0 in X and Y respectively. Pick i, j ≥ k0. It follows from s 6∈ R(Uninj ), t 6∈ R(Vninj ),
xni(0) = αi and ynj (0) = βj , that x(s, i) ∈ Uninj and x(t, j) ∈ Vninj . Therefore
|f(x(s, i), x(t, j)) − f(xni , ynj )| < 1

min{ni,nj} . It follows from f(xni
, ynj

) = g(uni
, vnj

)
and the choosing of sequences (un)∞n=1 and (vn)∞n=1 that

|f(x(s, i), x(t, j))− g(0, 0)| < 2
min{ni, nj}

.

Since f is a separately continuous function, x0 = lim
n→∞

x(s, n) and y0 = lim
n→∞

x(t, n),

|f(x(s, i), y0)− g(0, 0)| ≤ 2
ni

, |f(x0, x(t, j))− g(0, 0)| ≤ 2
nj

and f(x0, y0) = g(0, 0). Thus
|f(x, y)− f(x0, y0)| ≤ 2

nk0
< ε for every (x, y) ∈ U × V . �

4. Separately continuous functions on the products of separable
Valdivia compacts

Recall that a compact space X is called a Corson compact if it is homeomorphic to a
compact Z ⊆ RT such that |supp z| ≤ ℵ0 for every z ∈ Z, and a Valdivia compact if it is
homeomorphic to a compact Z ⊆ RT such that the set {z ∈ Z : |supp z| ≤ ℵ0} is dense
in Z. Clearly that any Corson compact is a Valdivia compact. Besides, it follows from
[13] that any Eberlein compact is a Corson compact.

Since every separable subset of a Corson compact is metrizable, it follows from The-
orem 2.3 that Question 1.4 has a positive answer for Corson compacts. Therefore it is
naturally to establish whether is it true for Valdivia compacts.

In this section we show that in CH-assumption Question 1.4 has a negative answer
even for separable Valdivia compacts.

The following notation is an important tool for the construction of the corresponding
example.

Let X ⊆ [0, 1]S , Y ⊆ [0, 1]T be arbitrary spaces, s0 ∈ S, t0 ∈ T and f : X × Y → R
be a function. We say that sequences (un)∞n=1 and (vn)∞n=1 of reals un, vn ∈ (0, 1] nullify
f in the coordinates s0 and t0 if the following conditions hold:
(1n) |f(x, y1)− f(x, y2)| < 1

n
for every n ∈ N, x ∈ X with x(s0) = un, m ≥ n, y1, y2 ∈ Y with y1(t) = y2(t) for
t ∈ T \ {t0}, y1(t0) = vm and y2(t0) = 0;

(2m) |f(x1, y)− f(x2, y)| < 1
m

for every m ∈ N, y ∈ Y with y(t0) = vm, n > m, x1, x2 ∈ X with x1(s) = x2(s)
for s ∈ S \ {s0}, x1(s0) = un and x2(s0) = 0.

Proposition 4.1. Let X ⊆ [0, 1]S, Y ⊆ [0, 1]T be compacts, s0 ∈ S, t0 ∈ T , A = {x ∈
X : x(s0) = 0}, B = {y ∈ Y : y(t0) = 0}, (an)∞n=1 and (bn)∞n=1 be strictly decreasing
sequences of reals an, bn ∈ (0, 1] with lim

n→∞
an = lim

n→∞
bn = 0 and f : X × Y → R be

a function with D(f) ⊆ A × B. Then there exist subsequences (un)∞n=1 and (vn)∞n=1 of
sequences (an)∞n=1 and (bn)∞n=1 respectively which nullify f in the coordinates s0 and t0.
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Proof. For every n ∈ N put An = {x ∈ X : x(s0) = an} and Bn = {y ∈ Y : y(t0) = bn}.
Since f is jointly continuous at any point of compacts An × Y , for every n ∈ N there
exists εn > 0 such that

|f(x, y1)− f(x, y2)| <
1
n

for any x ∈ An, y1, y2 ∈ Y with y1(t) = y2(t) for t ∈ T \ {t0} and |y1(t0)− y2(t0)| < εn.
Analogously, for every m ∈ N the joint continuity of f on the compact X×Bm implies

the existence of a δm > 0 such that

|f(x1, y)− f(x2, y)| <
1
m

for any y ∈ Bm, x1, x2 ∈ X with x1(s) = x2(s) for s ∈ S\{s0} and |x1(s0)−x2(s0)| < δm.
Denote i1 = 1 and choose strictly increasing sequences (in)∞n=2 and (jn)∞n=1 of numbers

in, jn ∈ N such that bjn < εin and ain+1 < δjn for every n ∈ N.
It remains to put un = ain and vn = bjn for every n ∈ N. �

Now describe a method of the construction of Valdivia compacts.
Let A be a system of sets A ⊆ [0, 1], S = {0} ∪ A, X0 = [0, 1], Xs = {0, 1} for every

s ∈ A and X =
∏

s∈S

Xs. For every finite set T ⊆ A put

ZT = {x ∈ X : x(s) = 1 ∀s ∈ T, x(s) = 0 ∀ s ∈ A \ T, x(0) ∈
⋂

A∈T

A},

if T 6= Ø, and
ZØ = {x ∈ X : x(s) = 0 ∀s ∈ A, x(0) ∈

⋃
A}.

The compact subspace XA = ∪{ZT : T ⊆ A, T is finite} of the space X is called a
compact generated by the system A. Clearly that XA is a Valdivia compact.

We use the following properties of compacts generated by systems.

Proposition 4.2. Let A be a system of sets A ⊆ [0, 1), X = XA and s0 = A0 ∈ A.
Then for every x ∈ XA if x(s0) = 1 then x(0) ∈ A0.

Proof. It follows from the definition of XA that for every x ∈ ∪{ZT : T ⊆ A, T is finite}
if x(s0) = 1 then x(0) ∈ A0. It remains to apply the closure operation. �

Proposition 4.3. Let A be a system of sets A ⊆ [0, 1) such that the set A0 =
⋃
A is at

most countable. Then XA is a separable compact.

Proof. Let A0 = {an : n ∈ N}. For every n ∈ N put An = {A ∈ A : an ∈ A} and
Xn = {x ∈ XA : x(0) = an, x(s) = 0 ∀s ∈ A\An}. Note that for every finite set T ⊆ An

the function

xT (s) =

 an, if s = 0,
1, if s ∈ T,
0, if s ∈ A \ T,

belongs to XA. Therefore Xn = {an} ×
∏

s∈An

{0, 1} ×
∏

s∈A\An

{0}. Since |An| ≤ 2ℵ0 , Xn

is a separable space by Hewitt-Marczewski-Pondiczery theorem [10, p. 133].

Since ZT ⊆
∞⋃

n=1
Xn for any finite set T ⊆ A, XA =

∞⋃
n=1

Xn. Thus XA is a separable

space. �

Proposition 4.4. Let A be a system of sets A ⊆ [0, 1) and B ⊆ A such that
⋃
B =

⋃
A.

Then ϕ(XA) = XB where ϕ : XA → R{0}∪B, ϕ(x) = x|{0}∪B.

Proof. The inclusion XB ⊆ ϕ(XA) follows immediately from the definition of a compact
generated by a system.

Fix a finite subsystem T ⊆ A. If T ∩B = Ø, then
⋃
B =

⋃
A implies ϕ(ZT ) ⊆ XB. If

T ∩ B 6= Ø, then the inclusion ϕ(ZT ) ⊆ XB follows from the definition of ZT .
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Since the set
⋃
{ϕ(ZT ) : T ⊆ A, T is finite} is dense in ϕ(XA), XB is dense in ϕ(XA).

Thus ϕ(XA) ⊆ XB. �

We use also the following two facts.

Proposition 4.5. Let (An)∞n=1 be a sequence of infinite sets An ⊆ N such that
n⋂

k=1

Ak

is an infinite set for every n ∈ N. Then there exists an infinite set B ⊆ N such that
|B \An| < ℵ0 for every n ∈ N.

Proof. It is sufficient to put n1 = minA1, nk = min(
k+1⋂
i=1

Ai \ {n1, . . . , nk−1}) for every

k ≥ 2 and B = {nk : k ∈ N}. �

Proposition 4.6. Let ω be the first ordinal of some infinite cardinality. Then there
exists a bijection ϕ : [1, ω)2 → [1, ω) such that ϕ(ξ, η) ≥ ξ for every ξ, η ∈ [1, ω).

Proof. Note that |[1, ω)2| = |[1, ω)| by Hessenberg’s theorem [14, p. 284], that is, there
exists a bijection ψ : [1, ω) → [1, ω)2. For every ξ ∈ [1, ω) denote (αξ, βξ) = ψ(ξ).

Using the transfinite induction we construct a bijection ϕ̃ : [1, ω) → [1, ω) such that
ϕ̃(ξ) ≥ αξ for every ξ ∈ [1, ω).

Put ϕ̃(1) = α1.
Assume that ϕ̃(η) is defined for all η ∈ [1, ξ) where ξ ∈ (1, ω). Put ϕ̃(ξ) = min([αξ, ω)\

{ϕ̃(η) : 1 ≤ η < ξ}).
Clearly that ϕ̃ is an injection and ϕ̃(ξ) ≥ αξ for every ξ ∈ [1, ω). Show that ϕ̃ is a

surjection.
Fix a ξ ∈ [1, ω). Choose an η ∈ [1, ω) such that ψ(η) = (ξ, 1), that is aη = ξ and

bη = 1. If ϕ̃(η) 6= ξ, then ξ ∈ {ϕ̃(ζ) : 1 ≤ ζ ≤ η}.
It remains to put ϕ = ϕ̃ ◦ ψ−1. �

Let Z, S be arbitrary sets, X ⊆ RS and f : X → Z. We say that f depends upon a
countable quantity of coordinates if there exists an at most countable set T ⊆ S such
that f(x′) = f(x′′) for every x′, x′′ ∈ X with x′|T = x′′|T . It is easy to see that for
any compact X ⊆ RS every continuous function f : X → R depends upon a countable
quantity of coordinates. It follows from [7, Theorem 1] that if X ⊆ RS and Y ⊆ RT are
separable compacts, then every separately continuous function f : X × Y → R depends
upon countable quantity of coordinates as a mapping defined on X × Y , that is there
exist at most countable sets S0 ⊆ S and T0 ⊆ T such that f(x′, y′) = f(x′′, y′′) for every
x′, x′′ ∈ X with x′|S0 = x′′|S0 and y′, y′′ ∈ Y with y′|T0 = y′′|T0 .

The following theorem is the main result of this section.

Theorem 4.7. (CH) There exist separable Valdivia compacts X and Y , nowhere dense
separable zero sets E and F in X and Y respectively such that D(f) 6= E × F for every
separately continuous function f : X × Y → R.

Proof. Put A0 = B0 = {0} ∪ { 1
n : n ∈ N}. Using the transfinite induction we construct

families (Aξ : 1 ≤ ξ < ω1) and (Bξ : 1 ≤ ξ < ω1) of sets Aξ = {0} ∪ {a(ξ)
n : n ∈ N} ⊆ A0

and Bξ = {0}∪ {b(ξ)n : n ∈ N} ⊆ B0 where (a(ξ)
n )∞n=1 and (b(ξ)n )∞n=1 are strictly decreasing

sequences which satisfy the following conditions:
(1) Aξ \Aη and Bξ \Bη are finite sets for every 0 ≤ η < ξ < ω1;
(2) for every ξ ∈ [1, ω1) and separately continuous function g : XAξ

× XBξ
→ R

with D(g) ⊆ Eξ × Fξ, where Aξ = {Aζ : 0 ≤ ζ < ξ}, Bξ = {Bζ : 0 ≤ ζ < ξ},
Eξ = {x ∈ XAξ

: x(0) = 0} and Fξ = {y ∈ XBξ
: y(0) = 0}, there exists an η ∈ [1, ω1)

such that the sequences (a(η)
n )∞n=1 and (b(η)

n )∞n=1 nullify g in the coordinates s0 = 0 and
t0 = 0.

Using Proposition 4.6 choose a bijection

[1, ω1) 3 ξ
ϕ7→ (ϕ1(ξ), ϕ2(ξ)) ∈ [1, ω1)2
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so that ϕ1(ξ) ≤ ξ for every ξ ∈ [1, ω1), in particular, ϕ1(1) = 1.
Since XA1 and XB1 are separable by Proposition 4.3, every separately continuous

function g : XA1×XB1 → R is determined by its values on some at most countable dense
subset of XA1 × XB1 . Therefore the system F1 of all separately continuous functions
g : XA1 ×XB1 → R with D(g) ⊆ E1 × F1 has the cardinality 2ℵ0 , that is F1 = {g(1,η) :
1 ≤ η < ω1}. Using Proposition 4.1 choose subsequences (a(1)

n )∞n=1 and (b(1)n )∞n=1 of the
sequence ( 1

n )∞n=1 which nullify gϕ(1) in the coordinates s0 = 0 and t0 = 0.
Assume that the sets Aη and Bη for 1 ≤ η < ξ < ω1 are constructed such that

condition (1) holds and for every η ∈ [1, ξ) the sequences (a(η)
n )∞n=1 and (b(η)

n )∞n=1 nullify
gϕ(η) in the coordinates s0 = 0 and t0 = 0 where Fη = {g(η,ζ) : 1 ≤ ζ < ω1} is the system
of all separately continuous functions g : XAη

×XBη
→ R with D(g) ⊆ Eη × Fη.

It follows from Proposition 4.3 that XAξ
and XBξ

are separable. Therefore the system
Fξ of all separately continuous functions g : XAξ

×XBξ
→ R with D(g) ⊆ Eξ × Fξ has

the cardinality 2ℵ0 , that is Fξ = {g(ξ,η) : 1 ≤ η < ω1}. Besides, since ϕ1(ξ) ≤ ξ, we have

gϕ(ξ) ∈
ξ⋃

η=1
Fη. Using Proposition 4.5 choose strictly decreasing sequences (an)∞n=1 and

(bn)∞n=1 of reals an, bn ∈ A0 such that for every η ∈ [1, ξ) the sets {an : n ∈ N} \Aη and
{bn : n ∈ N} \ Bη are finite. Now using Proposition 4.1 choose subsequences (a(ξ)

n )∞n=1

and (b(ξ)n )∞n=1 of sequences (an)∞n=1 and (bn)∞n=1 respectively which nullify gϕ(ξ) in the
coordinates s0 = 0 and t0 = 0.

Clearly that the families (Aξ : 1 ≤ ξ < ω1) and (Bξ : 1 ≤ ξ < ω1) satisfy (1). Show
that the condition (2) holds.

Fix ξ ∈ [1, ω1) and g ∈ Fξ. Then there exists a ζ ∈ [1, ω1) such that g = g(ξ,ζ). Since
ϕ is a bijection, there exists η ∈ [1, ω1) such that ϕ(η) = (ξ, ζ). Then the sequences
(a(η)

n )∞n=1 and (b(η)
n )∞n=1 nullify g(ξ,ζ) in the coordinates s0 = 0 and t0 = 0.

Put A = {Aξ : 0 ≤ ξ < ω1}, B = {Bξ : 0 ≤ ξ < ω1}, X = XA, Y = YB, E = {x ∈ X :
x(0) = 0} and F = {y ∈ Y : y(0) = 0}. Note that compacts E and F are homeomorphic
to {0, 1}ω1 . Therefore E and F are separable. It easy to see that E and F are nowhere
dense in X and Y respectively. Besides, by Proposition 4.4 for every ξ ∈ [1, ω1) we have
π

(ξ)
1 (X) = XAξ

and π
(ξ)
2 (Y ) = XBξ

where π(ξ)
1 : X → R{0}∪Aξ , π(ξ)

1 (x) = x|{0}∪Aξ
, and

π
(ξ)
2 : Y → R{0}∪Bξ , π(ξ)

2 (y) = y|{0}∪Bξ
.

Suppose that f : X × Y → R is a separately continuous function with D(f) = E ×F .
Since X and Y are separable, f depends upon a countable quantity of coordinates, that
is, there exist a ξ ∈ [1, ω1) and a function g : XAξ

× XBξ
→ R such that f(x, y) =

g(π(ξ)
1 (x), π(ξ)

2 (y)) for every x ∈ X and y ∈ Y . Note that mappings π(ξ)
1 and π

(ξ)
2 are

perfect, therefore g is a separately continuous function and D(g) = Eξ × Fξ by [7,
Proposition 2]. Thus, g ∈ Fξ. Using (2) choose an η ∈ [ξ, ω1) such that the sequences
(a(η)

n )∞n=1 and (b(η)
n )∞n=1 nullify g in the coordinates s0 = 0 and t0 = 0.

Put s1 = Aη, t1 = Bη, un = a
(η)
n and vn = b

(η)
n for every n ∈ N. Clearly that the

sequences (un)∞n=1 and (vn)∞n=1 nullify f in the coordinates s0 = 0 and t0 = 0.
It follows from Namioka’s theorem [1] that for the separately continuous functions

h1 : E × Y → R, h1 = f |E×Y , and h2 : X × F → R, h2 = f |X×F , there exist dense in
E and F respectively Gδ-sets E0 ⊆ E and F0 ⊆ F such that h1 is jointly continuous at
any point of E0 × Y and h2 is jointly continuous at any point of X × F0. Note that the
sets {x ∈ E : x(s1) = 1} and {y ∈ F : y(t1) = 1} are open and nonempty in E and F
respectively. Therefore there exist an x0 ∈ E0 and a y0 ∈ F0 such that x0(s1) = 1 and
y0(t1) = 1.

Show that f is jointly continuous at (x0, y0).



THE SET OF DISCONTINUITY POINTS . . . 295

Fix ε > 0 and k ∈ N so that 1
k ≤ ε

2 . Using the continuity of h1 and h2 at (x0, y0)
choose l ∈ N, s2, . . . , sl ∈ A, t2, . . . , tl ∈ B and δ < min{uk, vk} such that

|f(x, y)− f(x0, y0)| <
ε

2
for every (x, y) ∈ ((U ∩ E)× V ) ∪ (U × (V ∩ F )), where U = {x ∈ X : x(0) < δ, x(si) =
x0(si) for 1 ≤ i ≤ l} and V = {y ∈ Y : y(0) < δ, y(ti) = y0(ti) for 1 ≤ i ≤ l}.

Show that |f(x, y)− f(x0, y0)| < ε for every x ∈ U and y ∈ V . Fix x ∈ U and y ∈ V .
Clearly that it is sufficient to consider the case of x(0) > 0 and y(0) > 0. Note that
Proposition 4.2 implies x(0) ∈ Aη and y(0) ∈ Bη. It follows from the choice of δ that
there exist n,m ≥ k such that x(0) = un and y(0) = vm.

Assume that m ≥ n. Since the function

ỹ(t) =
{

0, if t = 0,
y(t), if t ∈ B,

belongs to V ∩F and the sequences (ui)∞i=1 and (vi)∞i=1 nullify f in the coordinates s0 = 0
and t0 = 0, we have

|f(x, y)− f(x, ỹ)| < 1
n
≤ 1
k
≤ ε

2
.

Then

|f(x, y)− f(x0, y0)| ≤ |f(x, y0)− f(x, ỹ)|+ |f(x, ỹ)− f(x0, y0)| <
ε

2
+
ε

2
= ε.

If n > m, then we reason analogously.
Thus f is jointly continuous at (x0, y0), which is impossible. �
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