THE SET OF DISCONTINUITY POINTS OF SEPARATELY CONTINUOUS FUNCTIONS ON THE PRODUCTS OF COMPACT SPACES

V. MYKHAYLYUK

Abstract

We solve the problem of constructing separately continuous functions on the product of compact spaces with a given set of discontinuity points. We obtain the following results. 1. For arbitrary Čech complete spaces X, Y, and a separable compact perfect projectively nowhere dense zero set $E \subseteq X \times Y$ there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ the set of discontinuity points, which coincides with E. 2. For arbitrary Čech complete spaces X, Y, and nowhere dense zero sets $A \subseteq X$ and $B \subseteq Y$ there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ such that the projections of the set of discontinuity points of f coincides with A and B, respectively.

We construct an example of Eberlein compacts X, Y, and nowhere dense zero sets $A \subseteq X$ and $B \subseteq Y$ such that the set of discontinuity points of every separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ does not coincide with $A \times B$, and a $C H$-example of separable Valdivia compacts X, Y and separable nowhere dense zero sets $A \subseteq X$ and $B \subseteq Y$ such that the set of discontinuity points of every separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ does not coincide with $A \times B$.

1. Introduction

It follows from Namioka's theorem [1] that for arbitrary compact spaces X, Y and a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$, the set $D(f)$ of discontinuity points of f is a projectively meagre set, that is, $D(f) \subseteq A \times B$ where $A \subseteq X$ and $B \subseteq Y$ are meagre sets. In this connection, a problem on a characterization of sets of discontinuity points of separately continuous functions on the product of two compact spaces was formulated in [2]. In other words, it is required to establish for which projectively meagre F_{σ}-set E in the product $X \times Y$ of compact spaces X and Y there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ with $D(f)=E$. This leads to solving the inverse problem of separately continuous mappings theory consisting in a construction of separately continuous function with a given set of discontinuity points.

The inverse problem on $[0,1]^{2}$ and on the products of metrizable spaces was studied in papers of many mathematicians, W. Young and G. Young, R. Kershner, R. Feiock, Z. Grande, J. Breckenridge and T. Nishiura. The most general result in this direction was obtained in [3]. It gives a characterization of the set of discontinuity points for separately continuous functions of several variables on the product of spaces each of which is the topological product of separable metrizable factors. This result for function of two variables in compact spaces was proved in [4, Theorem 4] and it can be formulated in the following way.

[^0]Theorem 1.1. Let $\left(X_{s}: s \in S\right)$, $\left(Y_{t}: t \in T\right)$ be arbitrary families of metrizable compact spaces, $X=\prod_{s \in S} X_{s}$ and $Y=\prod_{t \in T} Y_{t}$. Then, for any set $E \subseteq X \times Y$, the following conditions are equivalent:
(i) there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ with $D(f)=E$;
(ii) there exists a sequence $\left(E_{n}\right)_{n=1}^{\infty}$ of projectively nowhere dense zero sets $E_{n} \subseteq$ $X \times Y$ such that $E=\bigcup_{n=1}^{\infty} E_{n}$.

Recall that a set A in a topological space X is called a zero set if there exists a continuous function $f: X \rightarrow[0,1]$ such that $A=f^{(-1)}(0)$, and a co-zero set if $A=X \backslash B$ for some zero set $B \subseteq X$. A set E in the product $X \times Y$ of topological spaces X and Y is called a projectively nowhere dense set if E is contained in the product $A \times B$ of nowhere dense sets $A \subseteq X$ and $B \subseteq Y$.

On other hand, the problem of constructing a separately continuous function with a given oscillation was solved in [5]. It follows from [5] that for an arbitrary separable projectively meagre F_{σ}-set E in the product $X \times Y$ of Eberlein compacts X and Y there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ with $D(f)=E$. Besides, examples of nonseparable closed sets E_{1} and E_{2} in the products of two Eberlein compacts such that E_{1} is a set of discontinuity points of some separately continuous function and E_{2} is not a set of discontinuity points for every separately continuous function on the product of the corresponding spaces.

Note that the following Price-Simon type property of Eberlein compacts (see [6, p. 170]) plays an important role in the proof of the results of [5]. For every Eberlein compact X and $x_{0} \in X$ there exists a sequence of nonempty open sets, which converges to x_{0} (a sequence $\left(A_{n}\right)_{n=1}^{\infty}$ of sets $A_{n} \subseteq Y$ converges to $y_{0} \in Y$ in a topological space Y, that is $A_{n} \rightarrow x_{0}$, if for every neighbourhood U of y_{0} in Y there exists a number $n_{0} \in \mathbb{N}$ such that $A_{n} \subseteq U$ for all $n \geq n_{0}$).

The problem of constructing a separately continuous function on the product of two compact spaces with a given one-point set of discontinuity points was solved in [7] using a dependence of functions on some quantity of coordinates. It was obtained in [7] that for nonisolated points x_{0} and y_{0} in compact spaces X and Y, respectively, there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ with $D(f)=\left\{\left(x_{0}, y_{0}\right)\right\}$ if and only if there exist sequences $\left(U_{n}\right)_{n=1}^{\infty}$ and $\left(V_{n}\right)_{n=1}^{\infty}$ of nonempty co-zero sets $U_{n} \subseteq X$ and $V_{n} \subseteq Y$ which converge to x_{0} and y_{0} respectively, besides, $x_{0} \notin U_{n}$ and $y_{0} \notin V_{n}$ for every $n \in \mathbb{N}$.

Note that solving the inverse problem for a F_{σ}-set $E=\bigcup_{n=1}^{\infty} E_{n}$ is reduces to a construction of a separately continuous function f with $D(f)=E_{n}$ where E_{n} is a closed set. Therefore the following questions arise naturally in connection with the results mentioned above.

Question 1.2. Let E be a projectively nowhere dense zero set in the product $X \times Y$ of compact spaces X and Y. Does there exist a separately continuous function $f: X \times Y \rightarrow$ \mathbb{R} with $D(f)=E$?

Question 1.3. Let E be a projectively nowhere dense zero set in the product $X \times Y$ of Eberlein compacts X and Y. Does there exist a separately continuous function f : $X \times Y \rightarrow \mathbb{R}$ with $D(f)=E$?

Question 1.4. Let E be a separable projectively nowhere dense zero set in the product $X \times Y$ of compact spaces X and Y. Does there exist a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ with $D(f)=E$?

Besides, theorems on characterizations of sets of discontinuity points of separately continuous functions, which were obtained, have been formulated in terms of properties of projections. Therefore, it is important to study a weak inverse problem of constructing a separately continuous function with given projections. It is connected with special
inverse problems of constructing a separately continuous function with a given set of discontinuity points, E, of a special type $\left(E=A \times B, E=\left\{x_{0}\right\} \times\left\{y_{0}\right\}\right.$, etc. $)$, which have been studied in [8, 9]. In particular, a special inverse problem was solved in [8] in the following cases: for a set $A \times\left\{y_{0}\right\}$ where A is any nowhere dense zero set in a topological space X and y_{0} is any nonisolated point with a countable base of neighbourhoods in a completely regular space Y; and for a set $A \times B$ where A and B are nowhere dense zero sets in a topological space X and a locally connected space Y respectively. Thus the following question arises naturally.

Question 1.5. Let A, B be nowhere dense zero sets in compact spaces X and Y respectively. Does there exist a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ such that the projections on X and Y of the set of discontinuity points of f coincide with A and B respectively?

In this paper we give affirmative answers to Question 1.2 if E is a separable perfect set, and to Question 1.5. Further, we construct an example which gives a negative answer to Question 1.3 (thus to Question 1.2), and an CH -example which gives a negative answer to Question 1.4.

2. The inverse problem on the product of compact spaces

Recall some definitions and introduce some notations.
A set A in a topological space X is called $a \bar{G}_{\delta}$-set if there exists a sequence $\left(G_{n}\right)_{n=1}^{\infty}$ of open in X sets G_{n} such that $A=\bigcap_{n=1}^{\infty} G_{n}$ and $\bar{G}_{n+1} \subseteq G_{n}$ for every $n \in \mathbb{N}$ where \bar{B} means the closure of a set B in the corresponding space.

A set A in a topological space X is called a perfect set if A is a perfect space in the topology induced by X, that is every closed in A set is a G_{δ}-set in A.

A function $f: X \rightarrow \mathbb{R}$ defined on a topological space X is called a lower semicontinuous function at an $x_{0} \in X$ if for every $\varepsilon>0$ there exists a neighbourhood U of x_{0} in X such that $f(x)>f\left(x_{0}\right)-\varepsilon$ for any $x \in U$, and a lower semi-continuous function if f is lower semi-continuous at any point $x \in X$.

Let X, Y be arbitrary sets. The mappings $\mathrm{p} r_{X}: X \times Y \rightarrow X$ and $\mathrm{p}_{Y}: X \times Y \rightarrow Y$ are defined as follows: $\mathrm{p} r_{X}(x, y)=x$ and $\mathrm{p} r_{Y}(x, y)=y$ for every $x \in X$ and $y \in Y$. Besides, let $f: X \times Y \rightarrow \mathbb{R}$ be a function. For every $x_{0} \in X$ and $y_{0} \in Y$ the functions $f^{x_{0}}: Y \rightarrow \mathbb{R}$ and $f_{y_{0}}: X \rightarrow \mathbb{R}$ are defined as follows: $f^{x_{0}}(y)=f\left(x_{0}, y\right)$ and $f_{y_{0}}(x)=f\left(x, y_{0}\right)$ for any $x \in X$ and $y \in Y$.

Let X be a topological space, $A \subseteq X$ and $f: X \rightarrow \mathbb{R}$. The restriction of f to A we denote by $\left.f\right|_{A}$. The real $\omega_{f}(A)=\sup _{x^{\prime}, x^{\prime \prime} \in A}\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|$ is called the oscillation of f on A. If $x_{0} \in X$ and \mathcal{U} is a system of all neighborhoods of x_{0} in X then the real $\omega_{f}\left(x_{0}\right)=\inf _{U \in \mathcal{U}} \omega_{f}(U)$ is called the oscillation of f at x_{0}.

For a function $f: X \rightarrow \mathbb{R}$ defined on a set X the set $\operatorname{supp} f=\{x \in X: f(x) \neq 0\}$ is called a support of f.

A completely regular space X is called a Čech complete space if for every compactification $c X$ of X the set X is a G_{δ}-set in $c X$ (see [10, p. 297]).

Let X be a topological space. We say that a point $x_{0} \in X$ has a weak Price-Simon property in X if there exists a sequence $\left(U_{n}\right)_{n=1}^{\infty}$ of nonempty open in X sets U_{n} such that $U_{n} \rightarrow x_{0}$, and X has a weak Price-Simon property if every point $x \in X$ has the weak Price-Simon property in X.

The following result takes an important place in solving the inverse problem and the method used in the proof is similar to the method which was used in [11] for the product of separable metrizable spaces.

Theorem 2.1. Let X, Y be completely regular spaces, $A \subseteq X$ and $B \subseteq Y$ be nowhere dense sets, $E \subseteq A \times B$ be a \bar{G}_{δ}-set in $Z=X \times Y$ and $P=\left\{p_{n}: n \in \mathbb{N}\right\} \subseteq E$ be a dense in E set such that p_{n} has the Price-Simon property in Z for every $n \in \mathbb{N}$. Then there exists a lower semi-continuous separately continuous function $f: X \times Y \rightarrow Z$ such that $D(f)=E$.
Proof. Let $\left(G_{n}\right)_{n=1}^{\infty}$ be a sequence of open in Z sets such that $E=\bigcap_{n=1}^{\infty} G_{n}$ and $\bar{G}_{n+1} \subseteq G_{n}$ for every $n \in \mathbb{N}$. Since A and B are nowhere dense and each point p_{n} has the weak PriceSimon property in Z, for every $n \in \mathbb{N}$ there exist sequences $\left(U_{n k}\right)_{k=1}^{\infty}$ and $\left(V_{n k}\right)_{k=1}^{\infty}$ of nonempty open in X and Y sets $U_{n k}$ and $V_{n k}$ respectively such that $W_{n k}=U_{n k} \times$ $V_{n k} \underset{k \rightarrow \infty}{\rightarrow} p_{n}, U_{n k} \cap A=V_{n k} \cap B=\emptyset$ and $W_{n k} \subseteq G_{k}$ for every $k \in \mathbb{N}$. For every $n, k \in \mathbb{N}$ pick a point $z_{n k} \in W_{n k}$ and a continuous function $f_{n k}: Z \rightarrow[0,1]$ such that $f_{n k}\left(z_{n k}\right)=1$ and $f_{n k}(z)=0$ for any $z \in Z \backslash W_{n k}$. Show that the function $f: X \times Y \rightarrow[0,+\infty)$, $f(x, y)=\sum_{n=1}^{\infty} \sum_{k=n}^{\infty} f_{n k}(x, y)$, has the desired properties.

For every $n \in \mathbb{N}$ put $W_{n}=Z \backslash \bar{G}_{n}$. Since $\left.f_{i k}\right|_{W_{n}}=0$ for all $i \in \mathbb{N}$ and $k \geq n$, $\left.f\right|_{W_{n}}=\left.\sum_{i=1}^{\infty} \sum_{k=i}^{\infty} f_{i k}\right|_{W_{n}}=\left.\sum_{i=1}^{n} \sum_{k=i}^{n} f_{i k}\right|_{W_{n}}$. Therefore f is continuous at every point of the set $\bigcup_{n=1}^{\infty} W_{n}=Z \backslash E$.

Besides, since $W_{n k} \cap((A \times Y) \cup(X \times B))=\emptyset$ for any $n, k \in \mathbb{N}, f^{a}=f_{b}=0$ for any $a \in A$ and $b \in B$. Therefore, in particular, f is a lower semi-continuous separately continuous function.

It remains to show that $E \subseteq D(f)$. Since $f\left(p_{n}\right)=0$ for each $n \in \mathbb{N}, f\left(z_{n k}\right) \geq$ $f_{n k}\left(z_{n k}\right)=1$ for each $k \geq n$ and $z_{n k} \rightarrow p_{k \rightarrow \infty}, p_{n} \in D(f)$, besides, $\omega_{f}\left(p_{n}\right) \geq 1$. Since $F=\left\{z \in Z: \omega_{f}(z) \geq 1\right\}$ is closed in Z and $F \subseteq D(f)$, we obtain $E=\bar{P} \subseteq F \subseteq D(f)$.

For a set which is the union of a sequence of zero sets we obtain the following solution to the inverse problem.
Theorem 2.2. Let X, Y be completely regular spaces, $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of separable projectively nowhere dense \bar{G}_{δ}-sets E_{n} in $X \times Y$ and $E=\bigcup_{n=1}^{\infty} E_{n}$, besides, every point of E has the weak Price-Simon property in $X \times Y$. Then there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ such that $D(f)=E$.
Proof. By Theorem 2.1 for every $n \in \mathbb{N}$ there exists a lower semi-continuous separately continuous function $g_{n}: X \times Y \rightarrow \mathbb{R}$ such that $D\left(g_{n}\right)=E_{n}$. Fix any strictly increasing homeomorphism $\varphi: \mathbb{R} \rightarrow(-1,1)$. Clearly, the functions $f_{n}: X \times Y \rightarrow(-1,1), f_{n}(x, y)=$ $\varphi\left(g_{n}(x, y)\right)$, are lower semi-continuous separately continuous and $D\left(f_{n}\right)=E_{n}$ for every $n \in \mathbb{N}$. By [12, Corollary 2.2.2] for a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$, $f(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} f_{n}(x, y)$, we have $D(f)=\bigcup_{n=1}^{\infty} D\left(f_{n}\right)=\bigcup_{n=1}^{\infty} E_{n}=E$.

The following result gives an affirmative answer to Question 1.2 under some additional conditions on E.
Theorem 2.3. Let X, Y be Čech complete spaces, $\left(E_{n}\right)_{n=1}^{\infty}$ be a sequence of separable compact perfect projectively nowhere dense G_{δ}-sets E_{n} in $X \times Y$ and $E=\bigcup_{n=1}^{\infty} E_{n}$. Then there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ such that $D(f)=E$.
Proof. Let \tilde{X}, \tilde{Y} be the Stone-Čech compactifications of X and Y respectively. Since X and Y are Čech complete spaces, X and Y are G_{δ}-sets in \tilde{X} and \tilde{Y} respectively. Therefore all the sets E_{n} are G_{δ}-sets in $\tilde{X} \times \tilde{Y}$. Every one-point subset of E_{n} is a G_{δ}-set in the perfect compact E_{n}. Thus every one-point subset of E is a G_{δ}-set in the compact space $\tilde{X} \times \tilde{Y}$. Hence every point $p \in E$ has a countable base of neighbourhoods in $\tilde{X} \times \tilde{Y}$. Then by Theorem 2.2 , there exists a separately continuous function $\tilde{f}: \tilde{X} \times \tilde{Y} \rightarrow \mathbb{R}$ such that $D(\tilde{f})=E$.

Put $f=\left.\tilde{f}\right|_{X \times Y}$. Clearly that f is a separately continuous function and $D(f) \subseteq E$. It remains to show that $E \subseteq D(f)$.

Pick a point $p=\left(x_{0}, y_{0}\right) \in E$, neighbourhoods U and V of x_{0} and y_{0} in X and Y respectively. Since X and Y are dense in \tilde{X} and \tilde{Y} respectively, $\tilde{U}=\bar{U}$ and $\tilde{V}=\bar{V}$ are neighbourhoods of x_{0} and y_{0} in \tilde{X} and \tilde{Y} respectively. Using the separate continuity of \tilde{f} we obtain that $\omega_{\tilde{f}}(\tilde{U} \times \tilde{V})=\omega_{\tilde{f}}(U \times V)=\omega_{f}(U \times V)$. Therefore $\omega_{f}(p)=\omega_{\tilde{f}}(p)>0$ and $p \in D(f)$.

Note that the Čech completeness of X and Y in Theorem 2.3 cannot be weakened to the complete regularity. Indeed, it was shown in [9, Theorem 1] that an analog of this theorem for completely regular spaces X, Y and one-point set E does not depend of the $Z F C$-axioms.

The method which we use to solve the weak inverse problem is similar to the method from [8]. The following proposition gives a possibility to remove the connection type conditions.

Proposition 2.4. Let X be a compact space, $A \subseteq X$ be a zero set in X which is not open in X. Then there exists a separately continuous function $f: X \rightarrow[0,1]$ such that $A=f^{-1}(0)$ and for every open in X set $G \supseteq A$ there exists $n_{0} \in \mathbb{N}$ such that $\left\{\frac{1}{2^{n}}: n \geq n_{0}\right\} \subseteq f(G)$.

Proof. Let $g: X \rightarrow[0,1]$ be a continuous function such that $A=g^{-1}(0)$. Since A is not open in $X, g^{-1}([0, \varepsilon)) \backslash A \neq \varnothing$ for every $\varepsilon>0$. Therefore there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of points $x_{n} \in X$ such that $g\left(x_{n+1}\right)<g\left(x_{n}\right)<1$ for every $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=0$. Pick any strictly increasing continuous function $\varphi:[0,1] \rightarrow[0,1]$ such that $\varphi\left(g\left(x_{n}\right)\right)=$ $\frac{1}{2^{n}}$. Put $f(x)=\varphi(g(x))$ for every $x \in X$. Clearly that $f: X \rightarrow[0,1]$ is a continuous function and $A=f^{-1}(0)$. For every $n \in \mathbb{N}$ put $G_{n}=f^{-1}\left(\left(\frac{1}{2^{n}}, 1\right]\right)$. Let G be an arbitrary open in X set with $A \subseteq G$. Choosing a finite subcover from the open cover $\{G\} \cup\left\{G_{n}: n \in \mathbb{N}\right\}$ of compact space X we obtain an $n_{0} \in \mathbb{N}$ such that $G \cup G_{n_{0}}=X$. Since $f\left(x_{n}\right)=\frac{1}{2^{n}} \leq \frac{1}{2^{n} n_{0}}$ for every $n \geq n_{0},\left\{\frac{1}{2^{n}}: n \geq n_{0}\right\}=\left\{f\left(x_{n}\right): n \geq n_{0}\right\} \subseteq G$.

The following theorem gives a positive answer to Question 1.5.
Theorem 2.5. Let X, Y be Čech complete spaces, $\left(A_{n}\right)_{n=1}^{\infty},\left(B_{n}\right)_{n=1}^{\infty}$ be sequences of nowhere dense compact G_{δ}-sets A_{n} and B_{n} in X and Y respectively, $A=\bigcup_{n=1}^{\infty} A_{n}$ and $B=\bigcup_{n=1}^{\infty} B_{n}$. Then there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ such that $\operatorname{pr}_{X} D(f)=A$ and $\operatorname{pr}_{Y} D(f)=B$.

Proof. Note that it is sufficient to prove this theorem for nowhere dense compact $G_{\boldsymbol{\delta}}$-sets A and B in compact spaces X and Y respectively and a lower semi-continuous separately continuous function f analogously as in the proof of Theorem 2.3.

Since A and B are zero sets in X and Y respectively, by Proposition 2.4 there exist continuous functions $g: X \rightarrow[0,1]$ and $h: Y \rightarrow[0,1]$ such that $A=g^{-1}(0), B=h^{-1}(0)$ and for every open sets $G_{1} \supseteq A$ and $G_{2} \supseteq B$ in X and Y respectively there exists an $n_{0} \in \mathbb{N}$ such that $\left\{\frac{1}{2^{n}}: n \geq n_{0}\right\} \subseteq g\left(G_{1}\right)$ and $\left\{\frac{1}{2^{n}}: n \geq n_{0}\right\} \subseteq h\left(G_{2}\right)$.

Consider the function

$$
f(x, y)=\left\{\begin{array}{rll}
\frac{2 g(x) h(y)}{g^{2}(x)+h^{2}(y)}, & \text { if } & (x, y) \notin A \times B \\
0, & \text { if } & (x, y) \in A \times B
\end{array}\right.
$$

It is easy to see that f is a lower semi-continuous separately continuous function and $D(f) \subseteq A \times B$.

Suppose that $\operatorname{pr}_{X} D(f) \neq A$, that is, there exists an $x_{0} \in A \backslash \operatorname{pr}_{X} D(f)$. Since f is continuous at every point of the compact set $\left\{x_{0}\right\} \times B$ and $f\left(x_{0}, y\right)=0$ for every $y \in B$, there exists a neighbourhood U of x_{0} in X and an open in Y set G such that $f(x, y)<\frac{4}{5}$ for any $x \in U$ and $y \in G$. It follows from the choice of h that there exists
an $n_{0} \in \mathbb{N}$ such that $\left\{\frac{1}{2^{n}}: n \geq n_{0}\right\} \subseteq h(G)$. Since $A=g^{-1}(0)$ is nowhere dense, $\left(g^{-1}\left(\left[0, \frac{1}{2^{n_{0}}}\right)\right) \cap U\right) \backslash A \neq \varnothing$, that is, there exists an $x_{1} \in U$ such that $g\left(x_{1}\right) \in\left(0, \frac{1}{2^{n_{0}}}\right)$. Choose an $n \geq n_{0}$ and a $y_{1} \in G$ such that $g\left(x_{1}\right) \in\left[\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right)$ and $h\left(y_{1}\right)=\frac{1}{2^{n}}$. Then

$$
f\left(x_{1}, y_{1}\right)=\frac{2 g\left(x_{1}\right) h\left(y_{1}\right)}{g^{2}\left(x_{1}\right)+h^{2}\left(y_{1}\right)} \geq \frac{2 \frac{1}{2^{n+1}} \frac{1}{2^{n}}}{\frac{1}{4^{n+1}}+\frac{1}{4^{n}}}=\frac{4}{5}
$$

but this contradicts the choice of U and G.
The equality $\operatorname{pr}_{Y} D(f)=B$ can be obtained analogously.
The reasoning similar to the one given after the proof of Theorem 2.3 shows that the Čech completeness of X and Y in Theorem 2.5 cannot be weaken to the complete regularity.

3. Separately continuous functions on the product of Eberlein compacts

In this section we construct an example which gives a negative answer to Question 1.3.
Recall that a compact space X which is homeomorphic to some weakly compact subset of a Banach space is called an Eberlein compact. The Amir-Lindenstraus theorem [13] states that a compact X is an Eberlein compact if and only if it is homeomorphic to some compact subset of the space $c_{0}(T)\left(c_{0}(T)\right.$ is the space of all functions $x: T \rightarrow \mathbb{R}$ such that for every $\varepsilon>0$ the set $\{t \in T:|x(t)| \geq \varepsilon\}$ is finite with the topology of pointwise convergence on T).

An idea of the corresponding space construction is closely related to the following simple fact.
Proposition 3.1. Let $f:[0,1]^{2} \rightarrow \mathbb{R}$ be a separately continuous function. Then there exist strictly decreasing sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ of reals $a_{n}, b_{n} \in(0,1]$ such that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$ and $\left|f\left(a_{n}, b_{m}\right)-f(0,0)\right|<\frac{1}{\min \{n, m\}}$ for every $n, m \in \mathbb{N}$.
Proof. Since f_{0} is continuous at 0 , there exists an $a_{1} \in(0,1)$ such that

$$
\left|f\left(a_{1}, 0\right)-f(0,0)\right|<\frac{1}{2}
$$

Using the continuity of f^{0} and $f^{a_{1}}$ at 0 we choose $b_{1} \in(0,1)$ such that

$$
\left|f\left(0, b_{1}\right)-f(0,0)\right|<\frac{1}{2} \quad \text { and } \quad\left|f\left(a_{1}, y\right)-f\left(a_{1}, 0\right)\right|<\frac{1}{2}
$$

for every $y \in\left[0, b_{1}\right]$. Further, using the continuity of f_{0} and $f_{b_{1}}$ at 0 choose an $a_{2} \in$ $\left(0, \min \left\{\frac{1}{2}, a_{1}\right\}\right)$ so that

$$
\left|f\left(a_{2}, 0\right)-f(0,0)\right|<\frac{1}{4} \quad \text { and } \quad\left|f\left(x, b_{1}\right)-f\left(0, b_{1}\right)\right|<\frac{1}{2}
$$

for every $x \in\left[0, a_{2}\right]$. Since f^{0} and $f^{a_{2}}$ are continuous at 0 , there exists $b_{2} \in\left(0, \min \left\{\frac{1}{2}, b_{1}\right\}\right)$ such that

$$
\left|f\left(0, b_{2}\right)-f(0,0)\right|<\frac{1}{4} \quad \text { and } \quad\left|f\left(a_{2}, y\right)-f\left(a_{2}, 0\right)\right|<\frac{1}{4}
$$

for every $y \in\left[0, b_{2}\right]$.
Continuing this procedure to infinity we obtain strictly decreasing sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ of reals $a_{n}, b_{n} \in(0,1]$ such that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$ and

$$
\begin{aligned}
\left|f\left(a_{n}, 0\right)-f(0,0)\right| & <\frac{1}{2 n}, & & \left|f\left(0, b_{n}\right)-f(0,0)\right|<\frac{1}{2 n} \\
\left|f\left(a_{n}, y\right)-f\left(a_{n}, 0\right)\right| & <\frac{1}{2 n} & \text { and } & \left|f\left(x, b_{n}\right)-f\left(0, b_{n}\right)\right|<\frac{1}{2 n}
\end{aligned}
$$

for every $y \in\left[0, b_{n}\right]$ and $x \in\left[0, a_{n+1}\right]$. Then for $m \geq n$ we have

$$
\begin{aligned}
\left|f\left(a_{n}, b_{m}\right)-f(0,0)\right| & \leq\left|f\left(a_{n}, b_{m}\right)-f\left(a_{n}, 0\right)\right|+\left|f\left(a_{n}, 0\right)-f(0,0)\right| \\
& <\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}
\end{aligned}
$$

And for $n>m$ we have

$$
\begin{aligned}
\left|f\left(a_{n}, b_{m}\right)-f(0,0)\right| & \leq\left|f\left(a_{n}, b_{m}\right)-f\left(0, b_{m}\right)\right|+\left|f\left(0, b_{m}\right)-f(0,0)\right| \\
& <\frac{1}{2 m}+\frac{1}{2 m}=\frac{1}{m}
\end{aligned}
$$

For the topological product $X=\prod_{s \in S} X_{s}$ of a family $\left(X_{s}: s \in S\right)$ of topological spaces X_{s} and a nonempty basic open set $U=\prod_{s \in S} U_{s}$ put $R(U)=\left\{s \in S: U_{s} \neq X_{s}\right\}$. Let, besides, Y be a subspace of X. An nonempty open in Y set V is called a basic open set if there exists a basic open set $U=\varphi(V)$ in X such that $V=U \cap Y$. For any nonempty basic open set V in Y we put $R(V)=R(\varphi(V))$.

The following theorem is the main result of this section.
Theorem 3.2. There exist Eberlein compacts X and Y and nowhere dense zero sets A and B in X and Y respectively such that $D(f) \neq A \times B$ for every separately continuous function $f: X \times Y \rightarrow \mathbb{R}$.

Proof. Denote the set of all strictly decreasing sequences $s=\left(\alpha_{n}\right)_{n=1}^{\infty}$ of reals $\alpha_{n} \in(0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$ by S_{0} and $S=\{0\} \cup S_{0}$. For every $s=\left(\alpha_{n}\right) \in S_{0}$ and $n \in \mathbb{N}_{0}=$ $\mathbb{N} \cup\{0\}$ the function $x(s, n) \in[0,1]^{S}$ is defined as follows: if $n \in \mathbb{N}$, then

$$
x(s, n)(t)= \begin{cases}1, & \text { if } \quad t=s \\ 0, & \text { if } \quad t \in S_{0} \backslash\{s\} \\ \alpha_{n}, & \text { if } \quad t=0\end{cases}
$$

and

$$
x(s, 0)(t)= \begin{cases}1, & \text { if } \quad t=s \\ 0, & \text { if } \quad t \in S \backslash\{s\} .\end{cases}
$$

Put $X_{0}=[0,1] \times\{0\}^{S_{0}}, X_{s}=\left\{x(s, n): n \in \mathbb{N}_{0}\right\}$ for every $s \in S_{0}$ and $X=\bigcup_{s \in S} X_{s}$. Show that X is a closed subspace of $Z=[0,1] \times\{0,1\}^{S_{0}}$.

Since for every $x \in X$ the set $\left\{s \in S_{0}: x(s)=1\right\}$ has at most one element, all functions $z \in \bar{X}$ have the same properties. Therefore it is sufficient to prove that for every $z \in Z \backslash X$ with $\left|\left\{s \in S_{0}: z(s)=1\right\}\right| \leq 1$ there exists an open neighbourhood U of z in Z such that $U \cap X=\varnothing$.

Pick $z_{0} \in Z \backslash X$ such that $\left|\left\{s \in S_{0}: z(s)=1\right\}\right| \leq 1$. Note that $\left|\left\{s \in S_{0}: z(s)=1\right\}\right|=$ 1. Indeed, if $z_{0}(s)=0$ for every $s \in S_{0}$ then $z_{0} \in X_{0}$ which contradicts the choice of z_{0}. Pick $s=\left(\alpha_{n}\right) \in S_{0}$ such that $z_{0}(s)=1$. Since $z_{0} \neq x(s, 0), z_{0}(0)>0$. Note $z_{0} \neq x(s, n)$ for every $n \in \mathbb{N}$, therefore $z_{0}(0) \neq \alpha_{n}$ for every $n \in \mathbb{N}$. Choose an open neighbourhood I of $z_{0}(0)$ in $[0,1]$ so that $0 \notin I$ and $\alpha_{n} \notin I$ for every $n \in \mathbb{N}$. For the open neighbourhood $U=\{z \in Z: z(0) \in I, z(s)=1\}$ of z_{0} in Z we have $U \cap X=\varnothing$.

Thus X is a compact. Since the supports of all functions $x \in X$ are finite, X is an Eberlein compact by [13].

Put $A=\{x \in X: x(0)=0\}$. Clearly that A is a zero set in X. Since $X_{s}=\overline{X_{s} \backslash A}$ for every $s \in S, X \backslash A$ is a dense in X set. Therefore A is a nowhere dense in X set.

Denote $Y=X, B=A$ and suppose that there exists a separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ such that $D(f)=A \times B$. Note that the function $\varphi:$ $X_{0} \rightarrow[0,1], \varphi(x)=x(0)$, is a homeomorphism, therefore the function $g:[0,1]^{2} \rightarrow \mathbb{R}$, $g(u, v)=f\left(\varphi^{-1}(u), \varphi^{-1}(v)\right)$, is separately continuous. By Proposition 3.1 there exist strictly decreasing sequences $\left(u_{n}\right)_{n=1}^{\infty}$ and $\left(v_{n}\right)_{n=1}^{\infty}$ of reals $u_{n}, v_{n} \in(0,1]$ such that $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} v_{n}=0$ and $\left|g\left(u_{n}, v_{m}\right)-g(0,0)\right|<\frac{1}{\min \{n, m\}}$ for every $n, m \in \mathbb{N}$.

For every $n \in \mathbb{N}$ put $x_{n}=\varphi^{-1}\left(u_{n}\right)$ and $y_{n}=\varphi^{-1}\left(v_{n}\right)$. Since for every $n, m \in \mathbb{N} f$ is a jointly continuous function at $\left(x_{n}, y_{m}\right)$, there exist basic open neighbourhoods $U_{n m}$ and $V_{n m}$ of x_{n} and y_{m} in X and Y respectively such that $\left|f(x, y)-f\left(x_{n}, y_{m}\right)\right|<\frac{1}{\min \{n, m\}}$ for every $x \in U_{n m}$ and $y \in V_{n m}$.

Consider an at most countable set $T=\bigcup_{n, m=1}^{\infty}\left(R\left(U_{n m}\right) \cup R\left(V_{n m}\right)\right)$. Since the set of all subsequences of some sequence has the cardinality $2^{\aleph_{0}}$, there exists an increasing sequence $\left(n_{k}\right)_{k=1}^{\infty}$ of $n_{k} \in \mathbb{N}$ such that $s=\left(\alpha_{k}\right)_{k=1}^{\infty}, t=\left(\beta_{k}\right)_{k=1}^{\infty} \notin T$, where $\alpha_{k}=u_{n_{k}}$ and $\beta_{k}=v_{n_{k}}$ for every $k \in \mathbb{N}$. Note that $x_{0}=x(s, 0) \in A$ and $y_{0}=x(t, 0) \in B$. Show that f is continuous at $\left(x_{0}, y_{0}\right)$, which is impossible.

Fix $\varepsilon>0$ and choose a number k_{0} such that $\frac{1}{n_{k_{0}}}<\frac{\varepsilon}{2}$. Note that the sets $U=$ $\left\{x \in X: x(s)=1, x(0) \leq \alpha_{k_{0}}\right\}=\left\{x(s, k): k=0 \quad\right.$ or $\left.\quad k \geq k_{0}\right\}$ and $V=\{y \in Y:$ $\left.y(t)=1, y(0) \leq \beta_{k_{0}}\right\}=\left\{x(t, k): k=0 \quad\right.$ or $\left.\left.\quad k \geq k_{0}\right\}\right\}$ are neighbourhoods of x_{0} and y_{0} in X and Y respectively. Pick $i, j \geq k_{0}$. It follows from $s \notin R\left(U_{n_{i} n_{j}}\right), t \notin R\left(V_{n_{i} n_{j}}\right)$, $x_{n_{i}}(0)=\alpha_{i}$ and $y_{n_{j}}(0)=\beta_{j}$, that $x(s, i) \in U_{n_{i} n_{j}}$ and $x(t, j) \in V_{n_{i} n_{j}}$. Therefore $\left|f(x(s, i), x(t, j))-f\left(x_{n_{i}}, y_{n_{j}}\right)\right|<\frac{1}{\min \left\{n_{i}, n_{j}\right\}}$. It follows from $f\left(x_{n_{i}}, y_{n_{j}}\right)=g\left(u_{n_{i}}, v_{n_{j}}\right)$ and the choosing of sequences $\left(u_{n}\right)_{n=1}^{\infty}$ and $\left(v_{n}\right)_{n=1}^{\infty}$ that

$$
|f(x(s, i), x(t, j))-g(0,0)|<\frac{2}{\min \left\{n_{i}, n_{j}\right\}}
$$

Since f is a separately continuous function, $x_{0}=\lim _{n \rightarrow \infty} x(s, n)$ and $y_{0}=\lim _{n \rightarrow \infty} x(t, n)$, $\left|f\left(x(s, i), y_{0}\right)-g(0,0)\right| \leq \frac{2}{n_{i}},\left|f\left(x_{0}, x(t, j)\right)-g(0,0)\right| \leq \frac{2}{n_{j}}$ and $f\left(x_{0}, y_{0}\right)=g(0,0)$. Thus $\left|f(x, y)-f\left(x_{0}, y_{0}\right)\right| \leq \frac{2}{n_{k_{0}}}<\varepsilon$ for every $(x, y) \in U \times V$.

4. Separately continuous functions on the products of separable Valdivia compacts

Recall that a compact space X is called a Corson compact if it is homeomorphic to a compact $Z \subseteq \mathbb{R}^{T}$ such that $|\operatorname{supp} z| \leq \aleph_{0}$ for every $z \in Z$, and a Valdivia compact if it is homeomorphic to a compact $Z \subseteq \mathbb{R}^{\bar{T}}$ such that the set $\left\{z \in Z:|\operatorname{supp} z| \leq \aleph_{0}\right\}$ is dense in Z. Clearly that any Corson compact is a Valdivia compact. Besides, it follows from [13] that any Eberlein compact is a Corson compact.

Since every separable subset of a Corson compact is metrizable, it follows from Theorem 2.3 that Question 1.4 has a positive answer for Corson compacts. Therefore it is naturally to establish whether is it true for Valdivia compacts.

In this section we show that in CH -assumption Question 1.4 has a negative answer even for separable Valdivia compacts.

The following notation is an important tool for the construction of the corresponding example.

Let $X \subseteq[0,1]^{S}, Y \subseteq[0,1]^{T}$ be arbitrary spaces, $s_{0} \in S, t_{0} \in T$ and $f: X \times Y \rightarrow \mathbb{R}$ be a function. We say that sequences $\left(u_{n}\right)_{n=1}^{\infty}$ and $\left(v_{n}\right)_{n=1}^{\infty}$ of reals $u_{n}, v_{n} \in(0,1]$ nullify f in the coordinates s_{0} and t_{0} if the following conditions hold:
$\left(1_{n}\right)$

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<\frac{1}{n}
$$

for every $n \in \mathbb{N}, x \in X$ with $x\left(s_{0}\right)=u_{n}, m \geq n, y_{1}, y_{2} \in Y$ with $y_{1}(t)=y_{2}(t)$ for $t \in T \backslash\left\{t_{0}\right\}, y_{1}\left(t_{0}\right)=v_{m}$ and $y_{2}\left(t_{0}\right)=0 ;$
$\left(2_{m}\right) \quad\left|f\left(x_{1}, y\right)-f\left(x_{2}, y\right)\right|<\frac{1}{m}$
for every $m \in \mathbb{N}, y \in Y$ with $y\left(t_{0}\right)=v_{m}, n>m, x_{1}, x_{2} \in X$ with $x_{1}(s)=x_{2}(s)$ for $s \in S \backslash\left\{s_{0}\right\}, x_{1}\left(s_{0}\right)=u_{n}$ and $x_{2}\left(s_{0}\right)=0$.

Proposition 4.1. Let $X \subseteq[0,1]^{S}, Y \subseteq[0,1]^{T}$ be compacts, $s_{0} \in S, t_{0} \in T$, $A=\{x \in$ $\left.X: x\left(s_{0}\right)=0\right\}, B=\left\{y \in Y: y\left(t_{0}\right)=0\right\},\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be strictly decreasing sequences of reals $a_{n}, b_{n} \in(0,1]$ with $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$ and $f: X \times Y \rightarrow \mathbb{R}$ be a function with $D(f) \subseteq A \times B$. Then there exist subsequences $\left(u_{n}\right)_{n=1}^{\infty}$ and $\left(v_{n}\right)_{n=1}^{\infty}$ of sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ respectively which nullify f in the coordinates s_{0} and t_{0}.

Proof. For every $n \in \mathbb{N}$ put $A_{n}=\left\{x \in X: x\left(s_{0}\right)=a_{n}\right\}$ and $B_{n}=\left\{y \in Y: y\left(t_{0}\right)=b_{n}\right\}$. Since f is jointly continuous at any point of compacts $A_{n} \times Y$, for every $n \in \mathbb{N}$ there exists $\varepsilon_{n}>0$ such that

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<\frac{1}{n}
$$

for any $x \in A_{n}, y_{1}, y_{2} \in Y$ with $y_{1}(t)=y_{2}(t)$ for $t \in T \backslash\left\{t_{0}\right\}$ and $\left|y_{1}\left(t_{0}\right)-y_{2}\left(t_{0}\right)\right|<\varepsilon_{n}$.
Analogously, for every $m \in \mathbb{N}$ the joint continuity of f on the compact $X \times B_{m}$ implies the existence of a $\delta_{m}>0$ such that

$$
\left|f\left(x_{1}, y\right)-f\left(x_{2}, y\right)\right|<\frac{1}{m}
$$

for any $y \in B_{m}, x_{1}, x_{2} \in X$ with $x_{1}(s)=x_{2}(s)$ for $s \in S \backslash\left\{s_{0}\right\}$ and $\left|x_{1}\left(s_{0}\right)-x_{2}\left(s_{0}\right)\right|<\delta_{m}$.
Denote $i_{1}=1$ and choose strictly increasing sequences $\left(i_{n}\right)_{n=2}^{\infty}$ and $\left(j_{n}\right)_{n=1}^{\infty}$ of numbers $i_{n}, j_{n} \in \mathbb{N}$ such that $b_{j_{n}}<\varepsilon_{i_{n}}$ and $a_{i_{n+1}}<\delta_{j_{n}}$ for every $n \in \mathbb{N}$.

It remains to put $u_{n}=a_{i_{n}}$ and $v_{n}=b_{j_{n}}$ for every $n \in \mathbb{N}$.
Now describe a method of the construction of Valdivia compacts.
Let \mathcal{A} be a system of sets $A \subseteq[0,1], S=\{0\} \cup \mathcal{A}, X_{0}=[0,1], X_{s}=\{0,1\}$ for every $s \in \mathcal{A}$ and $X=\prod_{s \in S} X_{s}$. For every finite set $T \subseteq \mathcal{A}$ put

$$
Z_{T}=\left\{x \in X: x(s)=1 \forall s \in T, x(s)=0 \forall s \in \mathcal{A} \backslash T, x(0) \in \bigcap_{A \in T} A\right\},
$$

if $T \neq \emptyset$, and

$$
Z_{\emptyset}=\{x \in X: x(s)=0 \forall s \in \mathcal{A}, x(0) \in \bigcup \mathcal{A}\}
$$

The compact subspace $X_{\mathcal{A}}=\overline{\cup\left\{Z_{T}: T \subseteq \mathcal{A}, T \text { is finite }\right\}}$ of the space X is called a compact generated by the system \mathcal{A}. Clearly that $X_{\mathcal{A}}$ is a Valdivia compact.

We use the following properties of compacts generated by systems.
Proposition 4.2. Let \mathcal{A} be a system of sets $A \subseteq[0,1), X=X_{\mathcal{A}}$ and $s_{0}=A_{0} \in \mathcal{A}$. Then for every $x \in X_{\mathcal{A}}$ if $x\left(s_{0}\right)=1$ then $x(0) \in \overline{A_{0}}$.

Proof. It follows from the definition of $X_{\mathcal{A}}$ that for every $x \in \cup\left\{Z_{T}: T \subseteq \mathcal{A}, T\right.$ is finite $\}$ if $x\left(s_{0}\right)=1$ then $x(0) \in A_{0}$. It remains to apply the closure operation.

Proposition 4.3. Let \mathcal{A} be a system of sets $A \subseteq[0,1)$ such that the set $A_{0}=\bigcup \mathcal{A}$ is at most countable. Then $X_{\mathcal{A}}$ is a separable compact.

Proof. Let $A_{0}=\left\{a_{n}: n \in \mathbb{N}\right\}$. For every $n \in \mathbb{N}$ put $\mathcal{A}_{n}=\left\{A \in \mathcal{A}: a_{n} \in A\right\}$ and $X_{n}=\left\{x \in X_{\mathcal{A}}: x(0)=a_{n}, x(s)=0 \forall s \in \mathcal{A} \backslash \mathcal{A}_{n}\right\}$. Note that for every finite set $T \subseteq \mathcal{A}_{n}$ the function

$$
x_{T}(s)= \begin{cases}a_{n}, & \text { if } \quad s=0 \\ 1, & \text { if } \quad s \in T \\ 0, & \text { if } \quad s \in \mathcal{A} \backslash T\end{cases}
$$

belongs to $X_{\mathcal{A}}$. Therefore $X_{n}=\left\{a_{n}\right\} \times \prod_{s \in \mathcal{A}_{n}}\{0,1\} \times \prod_{s \in \mathcal{A} \backslash \mathcal{A}_{n}}\{0\}$. Since $\left|\mathcal{A}_{n}\right| \leq 2^{\aleph_{0}}, X_{n}$ is a separable space by Hewitt-Marczewski-Pondiczery theorem [10, p. 133].

Since $Z_{T} \subseteq \bigcup_{n=1}^{\infty} X_{n}$ for any finite set $T \subseteq \mathcal{A}, X_{\mathcal{A}}=\bigcup_{n=1}^{\infty} X_{n}$. Thus $X_{\mathcal{A}}$ is a separable space.

Proposition 4.4. Let \mathcal{A} be a system of sets $A \subseteq[0,1)$ and $\mathcal{B} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{B}=\bigcup \mathcal{A}$. Then $\varphi\left(X_{\mathcal{A}}\right)=X_{\mathcal{B}}$ where $\varphi: X_{\mathcal{A}} \rightarrow \mathbb{R}^{\{0\} \cup \mathcal{B}}, \varphi(x)=\left.x\right|_{\{0\} \cup \mathcal{B}}$.

Proof. The inclusion $X_{\mathcal{B}} \subseteq \varphi\left(X_{\mathcal{A}}\right)$ follows immediately from the definition of a compact generated by a system.

Fix a finite subsystem $T \subseteq \mathcal{A}$. If $T \cap \mathcal{B}=\emptyset$, then $\bigcup \mathcal{B}=\bigcup \mathcal{A}$ implies $\varphi\left(Z_{T}\right) \subseteq X_{\mathcal{B}}$. If $T \cap \mathcal{B} \neq \varnothing$, then the inclusion $\varphi\left(Z_{T}\right) \subseteq X_{\mathcal{B}}$ follows from the definition of Z_{T}.

Since the set $\bigcup\left\{\varphi\left(Z_{T}\right): T \subseteq \mathcal{A}, T\right.$ is finite $\}$ is dense in $\varphi\left(X_{\mathcal{A}}\right), X_{\mathcal{B}}$ is dense in $\varphi\left(X_{\mathcal{A}}\right)$. Thus $\varphi\left(X_{\mathcal{A}}\right) \subseteq X_{\mathcal{B}}$.

We use also the following two facts.
Proposition 4.5. Let $\left(A_{n}\right)_{n=1}^{\infty}$ be a sequence of infinite sets $A_{n} \subseteq \mathbb{N}$ such that $\bigcap_{k=1}^{n} A_{k}$ is an infinite set for every $n \in \mathbb{N}$. Then there exists an infinite set $B \subseteq \mathbb{N}$ such that $\left|B \backslash A_{n}\right|<\aleph_{0}$ for every $n \in \mathbb{N}$.

Proof. It is sufficient to put $n_{1}=\min A_{1}, n_{k}=\min \left(\bigcap_{i=1}^{k+1} A_{i} \backslash\left\{n_{1}, \ldots, n_{k-1}\right\}\right)$ for every $k \geq 2$ and $B=\left\{n_{k}: k \in \mathbb{N}\right\}$.

Proposition 4.6. Let ω be the first ordinal of some infinite cardinality. Then there exists a bijection $\varphi:[1, \omega)^{2} \rightarrow[1, \omega)$ such that $\varphi(\xi, \eta) \geq \xi$ for every $\xi, \eta \in[1, \omega)$.
Proof. Note that $\left|[1, \omega)^{2}\right|=|[1, \omega)|$ by Hessenberg's theorem [14, p. 284], that is, there exists a bijection $\psi:[1, \omega) \rightarrow[1, \omega)^{2}$. For every $\xi \in[1, \omega)$ denote $\left(\alpha_{\xi}, \beta_{\xi}\right)=\psi(\xi)$.

Using the transfinite induction we construct a bijection $\tilde{\varphi}:[1, \omega) \rightarrow[1, \omega)$ such that $\tilde{\varphi}(\xi) \geq \alpha_{\xi}$ for every $\xi \in[1, \omega)$.

Put $\tilde{\varphi}(1)=\alpha_{1}$.
Assume that $\tilde{\varphi}(\eta)$ is defined for all $\eta \in[1, \xi)$ where $\xi \in(1, \omega)$. Put $\tilde{\varphi}(\xi)=\min \left(\left[\alpha_{\xi}, \omega\right) \backslash\right.$ $\{\tilde{\varphi}(\eta): 1 \leq \eta<\xi\})$.

Clearly that $\tilde{\varphi}$ is an injection and $\tilde{\varphi}(\xi) \geq \alpha_{\xi}$ for every $\xi \in[1, \omega)$. Show that $\tilde{\varphi}$ is a surjection.

Fix a $\xi \in[1, \omega)$. Choose an $\eta \in[1, \omega)$ such that $\psi(\eta)=(\xi, 1)$, that is $a_{\eta}=\xi$ and $b_{\eta}=1$. If $\tilde{\varphi}(\eta) \neq \xi$, then $\xi \in\{\tilde{\varphi}(\zeta): 1 \leq \zeta \leq \eta\}$.

It remains to put $\varphi=\tilde{\varphi} \circ \psi^{-1}$.
Let Z, S be arbitrary sets, $X \subseteq \mathbb{R}^{S}$ and $f: X \rightarrow Z$. We say that f depends upon a countable quantity of coordinates if there exists an at most countable set $T \subseteq S$ such that $f\left(x^{\prime}\right)=f\left(x^{\prime \prime}\right)$ for every $x^{\prime}, x^{\prime \prime} \in X$ with $\left.x^{\prime}\right|_{T}=\left.x^{\prime \prime}\right|_{T}$. It is easy to see that for any compact $X \subseteq \mathbb{R}^{S}$ every continuous function $f: X \rightarrow \mathbb{R}$ depends upon a countable quantity of coordinates. It follows from [7, Theorem 1] that if $X \subseteq \mathbb{R}^{S}$ and $Y \subseteq \mathbb{R}^{T}$ are separable compacts, then every separately continuous function $f: X \times Y \rightarrow \mathbb{R}$ depends upon countable quantity of coordinates as a mapping defined on $X \times Y$, that is there exist at most countable sets $S_{0} \subseteq S$ and $T_{0} \subseteq T$ such that $f\left(x^{\prime}, y^{\prime}\right)=f\left(x^{\prime \prime}, y^{\prime \prime}\right)$ for every $x^{\prime}, x^{\prime \prime} \in X$ with $\left.x^{\prime}\right|_{S_{0}}=\left.x^{\prime \prime}\right|_{S_{0}}$ and $y^{\prime}, y^{\prime \prime} \in Y$ with $\left.y^{\prime}\right|_{T_{0}}=\left.y^{\prime \prime}\right|_{T_{0}}$.

The following theorem is the main result of this section.
Theorem 4.7. (CH) There exist separable Valdivia compacts X and Y, nowhere dense separable zero sets E and F in X and Y respectively such that $D(f) \neq E \times F$ for every separately continuous function $f: X \times Y \rightarrow \mathbb{R}$.
Proof. Put $A_{0}=B_{0}=\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Using the transfinite induction we construct families $\left(A_{\xi}: 1 \leq \xi<\omega_{1}\right)$ and $\left(B_{\xi}: 1 \leq \xi<\omega_{1}\right)$ of sets $A_{\xi}=\{0\} \cup\left\{a_{n}^{(\xi)}: n \in \mathbb{N}\right\} \subseteq A_{0}$ and $B_{\xi}=\{0\} \cup\left\{b_{n}^{(\xi)}: n \in \mathbb{N}\right\} \subseteq B_{0}$ where $\left(a_{n}^{(\xi)}\right)_{n=1}^{\infty}$ and $\left(b_{n}^{(\xi)}\right)_{n=1}^{\infty}$ are strictly decreasing sequences which satisfy the following conditions:
(1) $A_{\xi} \backslash A_{\eta}$ and $B_{\xi} \backslash B_{\eta}$ are finite sets for every $0 \leq \eta<\xi<\omega_{1}$;
(2) for every $\xi \in\left[1, \omega_{1}\right)$ and separately continuous function $g: X_{\mathcal{A}_{\xi}} \times X_{\mathcal{B}_{\xi}} \rightarrow \mathbb{R}$ with $D(g) \subseteq E_{\xi} \times F_{\xi}$, where $\mathcal{A}_{\xi}=\left\{A_{\zeta}: 0 \leq \zeta<\xi\right\}, \mathcal{B}_{\xi}=\left\{B_{\zeta}: 0 \leq \zeta<\xi\right\}$, $E_{\xi}=\left\{x \in X_{\mathcal{A}_{\xi}}: x(0)=0\right\}$ and $F_{\xi}=\left\{y \in X_{\mathcal{B}_{\xi}}: y(0)=0\right\}$, there exists an $\eta \in\left[1, \omega_{1}\right)$ such that the sequences $\left(a_{n}^{(\eta)}\right)_{n=1}^{\infty}$ and $\left(b_{n}^{(\eta)}\right)_{n=1}^{\infty}$ nullify g in the coordinates $s_{0}=0$ and $t_{0}=0$.

Using Proposition 4.6 choose a bijection

$$
\left[1, \omega_{1}\right) \ni \xi \stackrel{\varphi}{\mapsto}\left(\varphi_{1}(\xi), \varphi_{2}(\xi)\right) \in\left[1, \omega_{1}\right)^{2}
$$

so that $\varphi_{1}(\xi) \leq \xi$ for every $\xi \in\left[1, \omega_{1}\right)$, in particular, $\varphi_{1}(1)=1$.
Since $X_{\mathcal{A}_{1}}$ and $X_{\mathcal{B}_{1}}$ are separable by Proposition 4.3, every separately continuous function $g: X_{\mathcal{A}_{1}} \times X_{\mathcal{B}_{1}} \rightarrow \mathbb{R}$ is determined by its values on some at most countable dense subset of $X_{\mathcal{A}_{1}} \times X_{\mathcal{R}_{1}}$. Therefore the system \mathcal{F}_{1} of all separately continuous functions $g: X_{\mathcal{A}_{1}} \times X_{\mathcal{B}_{1}} \rightarrow \mathbb{R}$ with $D(g) \subseteq E_{1} \times F_{1}$ has the cardinality $2^{\aleph_{0}}$, that is $\mathcal{F}_{1}=\left\{g_{(1, \eta)}\right.$: $\left.1 \leq \eta<\omega_{1}\right\}$. Using Proposition 4.1 choose subsequences $\left(a_{n}^{(1)}\right)_{n=1}^{\infty}$ and $\left(b_{n}^{(1)}\right)_{n=1}^{\infty}$ of the sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ which nullify $g_{\varphi(1)}$ in the coordinates $s_{0}=0$ and $t_{0}=0$.

Assume that the sets A_{η} and B_{η} for $1 \leq \eta<\xi<\omega_{1}$ are constructed such that condition (1) holds and for every $\eta \in[1, \xi)$ the sequences $\left(a_{n}^{(\eta)}\right)_{n=1}^{\infty}$ and $\left(b_{n}^{(\eta)}\right)_{n=1}^{\infty}$ nullify $g_{\varphi(\eta)}$ in the coordinates $s_{0}=0$ and $t_{0}=0$ where $\mathcal{F}_{\eta}=\left\{g_{(\eta, \zeta)}: 1 \leq \zeta<\omega_{1}\right\}$ is the system of all separately continuous functions $g: X_{\mathcal{A}_{\eta}} \times X_{\mathcal{B}_{\eta}} \rightarrow \mathbb{R}$ with $D(g) \subseteq E_{\eta} \times F_{\eta}$.

It follows from Proposition 4.3 that $X_{\mathcal{A}_{\xi}}$ and $X_{\mathcal{B}_{\xi}}$ are separable. Therefore the system \mathcal{F}_{ξ} of all separately continuous functions $g: X_{\mathcal{A}_{\xi}} \times X_{\mathcal{B}_{\xi}} \rightarrow \mathbb{R}$ with $D(g) \subseteq E_{\xi} \times F_{\xi}$ has the cardinality $2^{\aleph_{0}}$, that is $\mathcal{F}_{\xi}=\left\{g_{(\xi, \eta)}: 1 \leq \eta<\omega_{1}\right\}$. Besides, since $\varphi_{1}(\xi) \leq \xi$, we have $g_{\varphi(\xi)} \in \bigcup_{\eta=1}^{\xi} \mathcal{F}_{\eta}$. Using Proposition 4.5 choose strictly decreasing sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ of reals $a_{n}, b_{n} \in A_{0}$ such that for every $\eta \in[1, \xi)$ the sets $\left\{a_{n}: n \in \mathbb{N}\right\} \backslash A_{\eta}$ and $\left\{b_{n}: n \in \mathbb{N}\right\} \backslash B_{\eta}$ are finite. Now using Proposition 4.1 choose subsequences $\left(a_{n}^{(\xi)}\right)_{n=1}^{\infty}$ and $\left(b_{n}^{(\xi)}\right)_{n=1}^{\infty}$ of sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ respectively which nullify $g_{\varphi(\xi)}$ in the coordinates $s_{0}=0$ and $t_{0}=0$.

Clearly that the families $\left(A_{\xi}: 1 \leq \xi<\omega_{1}\right)$ and ($B_{\xi}: 1 \leq \xi<\omega_{1}$) satisfy (1). Show that the condition (2) holds.

Fix $\xi \in\left[1, \omega_{1}\right)$ and $g \in \mathcal{F}_{\xi}$. Then there exists a $\zeta \in\left[1, \omega_{1}\right)$ such that $g=g_{(\xi, \zeta)}$. Since φ is a bijection, there exists $\eta \in\left[1, \omega_{1}\right)$ such that $\varphi(\eta)=(\xi, \zeta)$. Then the sequences $\left(a_{n}^{(\eta)}\right)_{n=1}^{\infty}$ and $\left(b_{n}^{(\eta)}\right)_{n=1}^{\infty}$ nullify $g_{(\xi, \zeta)}$ in the coordinates $s_{0}=0$ and $t_{0}=0$.

Put $\mathcal{A}=\left\{A_{\xi}: 0 \leq \xi<\omega_{1}\right\}, \mathcal{B}=\left\{B_{\xi}: 0 \leq \xi<\omega_{1}\right\}, X=X_{\mathcal{A}}, Y=Y_{\mathcal{B}}, E=\{x \in X:$ $x(0)=0\}$ and $F=\{y \in Y: y(0)=0\}$. Note that compacts E and F are homeomorphic to $\{0,1\}^{\omega_{1}}$. Therefore E and F are separable. It easy to see that E and F are nowhere dense in X and Y respectively. Besides, by Proposition 4.4 for every $\xi \in\left[1, \omega_{1}\right)$ we have $\pi_{1}^{(\xi)}(X)=X_{\mathcal{A}_{\xi}}$ and $\pi_{2}^{(\xi)}(Y)=X_{\mathcal{B}_{\xi}}$ where $\pi_{1}^{(\xi)}: X \rightarrow \mathbb{R}^{\{0\} \cup \mathcal{A}_{\xi}}, \pi_{1}^{(\xi)}(x)=\left.x\right|_{\{0\} \cup \mathcal{A}_{\xi}}$, and $\pi_{2}^{(\xi)}: Y \rightarrow \mathbb{R}^{\{0\} \cup \mathcal{B}_{\xi}}, \pi_{2}^{(\xi)}(y)=\left.y\right|_{\{0\} \cup \mathcal{B}_{\xi}}$.

Suppose that $f: X \times Y \rightarrow \mathbb{R}$ is a separately continuous function with $D(f)=E \times F$. Since X and Y are separable, f depends upon a countable quantity of coordinates, that is, there exist a $\xi \in\left[1, \omega_{1}\right)$ and a function $g: X_{\mathcal{A}_{\xi}} \times X_{\mathcal{B}_{\xi}} \rightarrow \mathbb{R}$ such that $f(x, y)=$ $g\left(\pi_{1}^{(\xi)}(x), \pi_{2}^{(\xi)}(y)\right)$ for every $x \in X$ and $y \in Y$. Note that mappings $\pi_{1}^{(\xi)}$ and $\pi_{2}^{(\xi)}$ are perfect, therefore g is a separately continuous function and $D(g)=E_{\xi} \times F_{\xi}$ by $[7$, Proposition 2]. Thus, $g \in \mathcal{F}_{\xi}$. Using (2) choose an $\eta \in\left[\xi, \omega_{1}\right)$ such that the sequences $\left(a_{n}^{(\eta)}\right)_{n=1}^{\infty}$ and $\left(b_{n}^{(\eta)}\right)_{n=1}^{\infty}$ nullify g in the coordinates $s_{0}=0$ and $t_{0}=0$.

Put $s_{1}=A_{\eta}, t_{1}=B_{\eta}, u_{n}=a_{n}^{(\eta)}$ and $v_{n}=b_{n}^{(\eta)}$ for every $n \in \mathbb{N}$. Clearly that the sequences $\left(u_{n}\right)_{n=1}^{\infty}$ and $\left(v_{n}\right)_{n=1}^{\infty}$ nullify f in the coordinates $s_{0}=0$ and $t_{0}=0$.

It follows from Namioka's theorem [1] that for the separately continuous functions $h_{1}: E \times Y \rightarrow \mathbb{R}, h_{1}=\left.f\right|_{E \times Y}$, and $h_{2}: X \times F \rightarrow \mathbb{R}, h_{2}=\left.f\right|_{X \times F}$, there exist dense in E and F respectively G_{δ}-sets $E_{0} \subseteq E$ and $F_{0} \subseteq F$ such that h_{1} is jointly continuous at any point of $E_{0} \times Y$ and h_{2} is jointly continuous at any point of $X \times F_{0}$. Note that the sets $\left\{x \in E: x\left(s_{1}\right)=1\right\}$ and $\left\{y \in F: y\left(t_{1}\right)=1\right\}$ are open and nonempty in E and F respectively. Therefore there exist an $x_{0} \in E_{0}$ and a $y_{0} \in F_{0}$ such that $x_{0}\left(s_{1}\right)=1$ and $y_{0}\left(t_{1}\right)=1$.

Show that f is jointly continuous at $\left(x_{0}, y_{0}\right)$.

Fix $\varepsilon>0$ and $k \in \mathbb{N}$ so that $\frac{1}{k} \leq \frac{\varepsilon}{2}$. Using the continuity of h_{1} and h_{2} at $\left(x_{0}, y_{0}\right)$ choose $l \in \mathbb{N}, s_{2}, \ldots, s_{l} \in \mathcal{A}, t_{2}, \ldots, t_{l} \in \mathcal{B}$ and $\delta<\min \left\{u_{k}, v_{k}\right\}$ such that

$$
\left|f(x, y)-f\left(x_{0}, y_{0}\right)\right|<\frac{\varepsilon}{2}
$$

for every $(x, y) \in((U \cap E) \times V) \cup(U \times(V \cap F))$, where $U=\left\{x \in X: x(0)<\delta, x\left(s_{i}\right)=\right.$ $x_{0}\left(s_{i}\right)$ for $\left.1 \leq i \leq l\right\}$ and $V=\left\{y \in Y: y(0)<\delta, y\left(t_{i}\right)=y_{0}\left(t_{i}\right)\right.$ for $\left.1 \leq i \leq l\right\}$.

Show that $\left|f(x, y)-f\left(x_{0}, y_{0}\right)\right|<\varepsilon$ for every $x \in U$ and $y \in V$. Fix $x \in U$ and $y \in V$. Clearly that it is sufficient to consider the case of $x(0)>0$ and $y(0)>0$. Note that Proposition 4.2 implies $x(0) \in A_{\eta}$ and $y(0) \in B_{\eta}$. It follows from the choice of δ that there exist $n, m \geq k$ such that $x(0)=u_{n}$ and $y(0)=v_{m}$.

Assume that $m \geq n$. Since the function

$$
\tilde{y}(t)=\left\{\begin{array}{lll}
0, & \text { if } & t=0 \\
y(t), & \text { if } & t \in \mathcal{B}
\end{array}\right.
$$

belongs to $V \cap F$ and the sequences $\left(u_{i}\right)_{i=1}^{\infty}$ and $\left(v_{i}\right)_{i=1}^{\infty}$ nullify f in the coordinates $s_{0}=0$ and $t_{0}=0$, we have

$$
|f(x, y)-f(x, \tilde{y})|<\frac{1}{n} \leq \frac{1}{k} \leq \frac{\varepsilon}{2}
$$

Then

$$
\left|f(x, y)-f\left(x_{0}, y_{0}\right)\right| \leq\left|f\left(x, y_{0}\right)-f(x, \tilde{y})\right|+\left|f(x, \tilde{y})-f\left(x_{0}, y_{0}\right)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

If $n>m$, then we reason analogously.
Thus f is jointly continuous at $\left(x_{0}, y_{0}\right)$, which is impossible.

References

1. I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), no. 2, 515-531.
2. Z. Piotrowski, Separate and joint continuity, Real Anal. Exch. 11 (1985-1986), no. 2, 293-322.
3. V. K. Maslyuchenko, V. V. Mykhaylyuk, Separately continuous functions of many variables on the product of spaces which are the products of metrizable factors, Mat. Visnyk NTSh. 1 (2004), 77-84. (Ukrainian)
4. V. K. Maslyuchenko, V. V. Mykhaylyuk, Separately continuous functions on the products and its dependence upon \mathbf{n} variables, Ukrain. Mat. Zh. 47 (1995), no. 3, 344-350. (Ukrainian)
5. O. V. Maslyuchenko, The oscillation of separately continuous functions on the product of Eberlein compacts, Nauk. Visnyk Cherniv. Univ. Matematyka 76 (2000), 67-70. (Ukrainian)
6. A. V. Arhangel'skii, Topological function spaces, vol. 78, Kluwer Academic Publishers, Dordrecht, Mathematics and its Applications, 1992 (translated from Russian).
7. V. V. Mykhaylyuk, Onepoint discontinuity sets of separately continuous functions on the product of two compact spaces, Ukrain. Mat. Zh. 57 (2005), no. 1, 94-101. (Ukrainian)
8. V. K. Maslyuchenko, Connections between several characteristics of size of continuity points set of separately continuous mappings, Dep. at DNTB Ukraine, 10/01/94, 70-Uk94, 1994, 1-17. (Ukrainian)
9. T. O. Banakh, O. V. Maslyuchenko, V. V. Mykhaylyuk, Discontinuous separately continuous functions and near coherence of P-filters (to appear).
10. R. Engelking, General Topology, Mir, Moscow, 1986. (Russian)
11. V. K. Maslyuchenko, V. V. Mykhaylyuk, O. V. Sobchuk, Inverse problems of separately continuous mappings theory, Ukrain. Mat. Zh. 44 (1992), no. 9, 1209-1220. (Ukrainian)
12. V. K. Maslyuchenko, V. V. Mykhaylyuk, O. V. Sobchuk, Investigations on separately continuous mappings, Materialy mizhnarodnoji matematychnoji konferentsiji, prysv'achenoji pamjati Hansa Hana (1995), 192-246. (Ukrainian)
13. D. Amir, J. Lindenstraus, The structure of weakly compact set of Banach spaces, Ann. of Math. 88 (1986), 35-46. (Ukrainian)
14. K. Kuratowski, A. Mostowski, Set Theory, Mir, Moscow, 1970. (Russian)

Department of Mathematical Analysis, Chernivtsi National University, 2 Kotsjubyns'koho, Chernivtsi, 58012, Ukraine

E-mail address: mathan@chnu.cv.ua

[^0]: 2000 Mathematics Subject Classification. Primary 54C08, 54C30, 54D30.
 Key words and phrases. Separately continuous functions, compact space, Eberlein compacts, Valdivia compacts.

