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ABOUT ONE CLASS OF HILBERT SPACE UNCONDITIONAL
BASES

A. A. TARASENKO AND M. G. VOLKOVA

Abstract. Let a sequence {vk}+∞−∞ ∈ l2 and a real sequence {λk}+∞−∞ such thatn
λ−1

k

o+∞

−∞
∈ l2, and an orthonormal basis {ek}+∞−∞ of a Hilbert space be given. We

describe a sequence M = {µk}+∞−∞, M ∩ R = ∅, such that the families

fk =
X
j∈Z

vj (λj − µ̄k)−1ek, k ∈ Z

form an unconditional basis in H.

Let {λk}+∞
−∞ be a sequence of real numbers distinct from zero, with the unique limit

point ∞, and {vk}+∞
−∞ be some sequence (vk 6= 0, k ∈ Z) of complex numbers such that∑

j∈Z
|vj |2λ−2

j < ∞.

Let also {ek}+∞
−∞ be an orthonormal basis of the Hilbert space H. Consider in H a family

of vectors,

(1) fk =
∑
j∈Z

vj · ej

λj − µ̄k
, k ∈ Z,

where M := {µk}+∞
−∞ is a some complex-valued sequence such that M ∩ R = ∅ and M

does not have finite limit points. The problem is to describe sequences M for which family
(1) forms an unconditional basis in the space H. Let us recall that a family {fk}+∞

−∞ of
vectors, complete in H, is called an unconditional basis [1], if there is a constant C > 0
such that for an arbitrary finite sequence {ck},

C−1
∑

k

|ck|2‖fk‖2 6

∥∥∥∥∑
k

ckfk

∥∥∥∥2

6 C
∑

k

|ck|2‖fk‖2.

This setting contains the problem of the basis property for some important families of
functions. For example, if we assume, in addition, that

vj = 1 (j ∈ Z), inf
k
|Im µk| > 0, λj = j + α (j ∈ Z)

where α is a some number from the interval (0, 1), then we will come to the prob-
lem of unconditional basis property in the space L2(0, 2π) for the family of exponents
{exp (iµ̄kt) : µk ∈ M}. In fact, to see this, it is enough to expand every function exp (iµ̄kt)
with respect to the trigonometric system {exp i(k + α)t}, k ∈ Z, in the space L2(0, 2π).
In this paper, we consider families of the form (1), which are very differing from systems
of exponents in some sense. To study their basis property, we will use the de Brange
theory of spaces of entire functions [2] and results of paper [3].

Everywhere in the sequel, we assume the following:
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(1) {vj}+∞
−∞ ∈ l2;

(2) the sequence {λj}+∞
−∞ coincides with the set of all zeros of an entire function Q

of sine type [4];
(3) inf

k 6=j
|λk − λj | > 0.

Besides, we assume that the condition

hQ

(π

2

)
= hQ

(
−π

2

)
= σ > 0

holds. This is a normalization condition, (hQ is a growth indicator for the functionQ. In
this way if we consider Q(0) = 1, then we have the multiplicative representation

Q(z) = v.p.
∏
k∈Z

(
1− z

λk

)
.

By W 2
σ we denote the Wiener-Paley space of entire functions of exponential type g,

which are not greater then σ, with the norm

‖g‖2 =
∫
R

|g(x)|2dx < ∞.

We recall that the family of functions, {Q(z)/(z−λk) : k ∈ Z}, forms an unconditional
basis of the space W 2

σ [4] and, therefore, a unique solution of the interpolation problem

(2) g(λj) = cj , j ∈ Z, {cj}+∞
−∞ ∈ l2,

in the W 2
σ -class can be represented as the Lagrange series

g(z) =
∑
k∈Z

ck
Q(z)

Q′(λk)(z − λk)
.

Theorem 1. If a family of vectors forms an unconditional basis in the space H, then the
sequence of non-real numbers, M , coincides with the set of all zeros of the entire function

S(z) := Q(z) + zg(z),

where g ∈ W 2
σ and is a solution of problem (2) in which the interpolation data {ck}+∞

−∞
satisfies the additional conditions

(3) ck 6= 0,
{
ckv−1

k

}+∞
−∞ ∈ l2, 1 +

∑
k∈Z

ck(Q′(λk))−1 6= 0.

If we also assume that
sup
k∈Z

{
|λk||ck||v−1

k |
}

< ∞

then the elements of the sequence M can be represented as

µk = λk + bk, k ∈ Z, {bk}+∞
−∞ ∈ l2.

Thus, it is sufficient to restrict the consideration to the sequences of functions from
Theorem 1 when solving the basis property for family (1). Let us sketch the plan of the
proof of this theorem. If family (1) forms an unconditional basis in the space H, then
there is a bounded operator L such that

(4) Lfk = (µ̄k)−1fk, k ∈ Z.

Introduce the operator

Bh :=
∑
k∈Z

λ−1
k (h, ek)ek, h ∈ H,

and find a representation for L in the form L = B + V . Since the vectors fk are
represented by

fk = B(1− µ̄kB)−1v, v :=
∑
k∈Z

vkek,
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it follows from (4) that the image of the operator V is spanned by the vector Bv, i.e.,

V h = (h, u)Bv

for some u ∈ H. We also note that the spectrum of the operator K := L∗ is the closure
of the sequence µ−1

k and kerK = kerK∗ = {0}. Since

(5) Kh = Bh + (h, Bv)u, h ∈ H,

it is not difficult to compute that M is the same as the set of meromorphic roots of

(6) ϕ(z) = 1− z
(
B(1− zB)−1u, v

)
= 1− z

∑
k∈Z

ukv̄k

λj − z
,

where uk := (u, ek), k ∈ Z, and all uk 6= 0 in view of the fact that a family biorthogonal
to the family (1) has a basis property. Therefore, the function S := Qϕ is represented
by

S(z) = Q(z) + zg(z),
where g ∈ W 2

σ , and it solves the interpolation problem (2) with cj = Q′(λ)uj v̄j , j ∈ Z.
Therefore, first two conditions (3) are satisfied. The last condition (3) is represented as
1 + (u, v) 6= 0 and is equal to ker K = ker K∗ = {0}. The second statement of Theorem
1 follows, since S can be represented in this case as

S(z) = CQ(z) + g1(z), C := 1 + (u, v),

where g1 ∈ W 2
σ .

We will consider the entire function

(7)

E(z) := Q(z)(1− iz((1− zB)−1Bv, Bv)) = γQ(z) + i
∑
k∈Z

Q(z)|vk|2

(z − λk)
,

γ := 1 + i
∑
k∈Z

λ−1
k |vk|2.

It is not difficult to see that the function E satisfies the condition

|E(z̄)| < |E(z)|, z ∈ C+,

and, therefore, it generates a de Brange space H(E) with the reproducing kernel [2]

k(z, λ) :=
(
b(z)a(λ)− a(z)b(λ)

)
/π(z − λ̄),

where the entire functions a, b are defined by identities

(8) a(z) =
1
2

(
E(z̄) + E(z)

)
, b(z) =

1
zi

(
E(z̄) + E(z)

)
.

The next result reduces the basis property problem for families (1) to similar problems
for the families k(z, µn), µn ∈ M , of values of the reproducing kernel in the space H(E).
In its formulation, we assume that M is the same as the set of zeroes of some function
S from Theorem 1.

Theorem 2. There exists an isometric mapping U of space H onto the de Brange space
H(E) such that

Ufk =
√

πQ−1(µ̄k)k(z, µk), k ∈ Z.

We will briefly state the idea for proving this theorem. Since M is the same as zeros
of the function S, it is not difficult to build an operator K represented by (5), whose
spectrum is the same as the closure of the sequence µ−1

k , µk ∈ M . We note that

1
i
(K −K∗)h = −i(h, Bv)u + i(h, u)Bv.

The characteristic matrix-valued function of the operator K [5] is given by the formula

w(z) = E2 − iz∆(z)J,
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where E2 is the identity matrix,

∆(z) =
(

((1− zK)−1u, u) ((1− zK)−1Bv, u)
((1− zK)−1u, Bv) ((1− zK)−1Bv, Bv)

)
, J =

(
0 i
−i 0

)
.

Easy computations show that w can be represented by

w(z) =
1

S(z)

(
d(z) c(z)
−b(z) a(z)

)
,

where a, b are represented by formula (8), c, d are some entire functions taking real
values on the real axis. Also it is verified that S is associated with the space H(E) and
the matrix-valued function w(z) is perfect [2]. The spectrum of the bounded in H(E)
operator

(K̃f)(z) := (f(z)S(0)− S(z)f(0))/zS(0), f ∈ H(E)
is also the same as the closure of the sequence µ−1

n , µn ∈ M , moreover,
1
i
(K̃ − K̃∗)f = −i(f, l2)l1 + i(f, l1)l2, f ∈ H(E),

where the entire functions l1, l2 are computed by the formulas

l1(z) = (a(z)− S(z))
√

πz, l2(z) = b(z)/
√

πz.

Using results from [6], we can verify that the characteristic matrix-valued function of
the operator K̃ is equal to w(z). Since both operators do not have nontrivial self-adjoint
parts, from the theory of characteristic functions of not self-adjoint operators, it follows
that K and K̃ are unitary equivalent, and, moreover, [5]

U(1− z̄K∗)−1Bv = (1− z̄K̃∗)−1l2, z ∈ {µ̄−1
k },

where U is an isometry from H onto H(E). As a result of simple computations we get
the formulas

(1− zK∗)−1Bv =
(1− z̄B)−1Bv

ϕ(z̄)
, (1− z̄K̄∗)−1l2 =

√
π

k(λ, z)
S(z̄)

,

where the function ϕ is defined by formula (6). Therefore,

U(1− z̄B)−1Bv =
√

π (Q(z̄))−1
k(λ, z), z /∈ {λk}

from which the theorem follows for z = µn ∈ M .
Criteria for families {k(z, µn) : µn ∈ M} to have the unconditional basis property

in de Brange spaces are found in [3]. The next theorems are obtained applying using
these criteria to the basis property problem for family (1). We recall that the non-real
sequence M coincides with the roots of the entire function S(z) = Q(z)+ zg(z), g ∈ W 2

σ ,
and it solves some interpolation problem (2)–(3). We also recall that the function E is
defined by formula (7).

Theorem 3. If the weight v(x) := |S(x)/E(x)|2 satisfies Muckenhoupt A2-condition [7]
on R, then the family of vectors given by (1) forms an unconditional basis in the space
H. Conversely, with the additional assumption that

sup
µk∈C+

|E(µ̄k)/E(µk)| < 1, sup
µk∈C−

|E(µk)/E(µ̄k)| < 1

it follows from the unconditional basis property of system (1) that the weight v(x) satisfies
the A2-condition on the real axis.

Theorem 4. Let the interpolation data {ck}+∞
−∞ of problem (2)–(3) satisfy the condition

|ck| � |λk|−1|vk|2, k ∈ Z.

If the function S(x)/E(x) is uniformly continuous on R then the family of vectors (1)
forms an unconditional basis in the space H.
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We note that the roots γk of the function E lie in the lower half-plane C− and can be
represented as

γk = λk + dk, k ∈ Z, {dk} ∈ l2.

Theorem 5. Let a sequence {ck}+∞
−∞ be such that {λkv−1

k ck}+∞
−∞ ∈ l2. If the conditions

sup
k∈Z

(
|Im γk|−1|γk − µk|

)
< ∞, sup

k∈Z

(
|Im µk|−1|γk − µk|

)
< ∞

are verified, the the family of vectors (1) forms an unconditional basis in the space H.

In the proof of this theorem we used the fact that the set of functions
v̄k√
π

Q(z)
z − λk

, k ∈ Z

forms an orthonormal basis in the space H(E).
Let us consider one simple example of unconditional bases represented by (1). Assume

that the function g ∈ W 2
σ is a solution of the interpolation problem

g(λk) = wQ′(λk)|vk|2, k ∈ Z,

where w is an arbitrary non-real number. Beginning with some index, all the roots µk of
the function S(z) = Q(z)+zg(z) are simple. If all the roots µk are simple, then it follows
from Theorem 3 that the corresponding family of vectors (1) forms an unconditional basis
of the space H.
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