A DESCRIPTION OF CHARACTERS ON THE INFINITE WREATH PRODUCT

A. V. DUDKO AND N. I. NESSONOV

ABSTRACT. Let \mathfrak{S}_{∞} be the infinity permutation group and Γ an arbitrary group. Then \mathfrak{S}_{∞} admits a natural action on Γ^{∞} by automorphisms, so one can form a semidirect product $\Gamma^{\infty} \rtimes \mathfrak{S}_{\infty}$, known as the *wreath* product $\Gamma \wr \mathfrak{S}_{\infty}$ of Γ by \mathfrak{S}_{∞} . We obtain a full description of unitary II_1 -factor-representations of $\Gamma \wr \mathfrak{S}_{\infty}$ in terms of finite characters of Γ . Our approach is based on extending Okounkov's classification method for admissible representations of $\mathfrak{S}_{\infty} \times \mathfrak{S}_{\infty}$. Also, we discuss certain examples of representations of type III, where the *modular operator* of Tomita-Takesaki expresses naturally by the asymptotic operators, which are important in the theory of characters of \mathfrak{S}_{∞} .

1. INTRODUCTION

1.1. A definition of the wreath product. Let \mathbb{N} stand for the natural numbers. A bijection $s: \mathbb{N} \to \mathbb{N}$ is called *finite* if the set $\{i \in \mathbb{N} | s(i) \neq i\}$ is finite. Define \mathfrak{S}_{∞} as the group of all finite bijections $\mathbb{N} \to \mathbb{N}$ and set $\mathfrak{S}_n = \{s \in \mathfrak{S}_\infty | s(i) = i \forall i > n\}.$ For every group Γ , an element of Γ^n can always be written as an ordered collection $[\gamma_k]_{k=1}^n = (\gamma_1, \gamma_2, \dots, \gamma_n)$, where $\gamma_k \in \Gamma$. Let e be the unit of Γ . For any n > 1 we identify the element $(\gamma_1, \gamma_2, \dots, \gamma_{n-1}) \in \Gamma^{n-1}$ with $(\gamma_1, \gamma_2, \dots, \gamma_{n-1}, e) \in \Gamma^n$ and set $\Gamma_e^{\infty} = \varinjlim \Gamma^n$. One can view Γ_e^{∞} as a group of infinite ordered collections $[\gamma_k]_{k=1}^{\infty}$ such that there are finitely many elements γ_k not equal to e. The wreath product $\Gamma \wr \mathfrak{S}_n$ is the semidirect product $\Gamma^n \rtimes \mathfrak{S}_n$ for the natural permutation action of \mathfrak{S}_n on Γ^n (see [4]). In the same way, we define the group $\Gamma \wr \mathfrak{S}_{\infty} = \Gamma_e^{\infty} \rtimes \mathfrak{S}_{\infty}$. $\Gamma \wr \mathfrak{S}_{\infty}$ can be also viewed as the inductive limit $\varinjlim \Gamma \wr \mathfrak{S}_n$. Using the embedding $\gamma \in \Gamma^n \to (\gamma, \mathrm{id}) \in \Gamma \wr \mathfrak{S}_n$ and $s \in \mathfrak{S}_n \to (e^{(n)}, s) \in \Gamma \wr \mathfrak{S}_n$, where $e^{(n)} = (e, e, \dots, e)$ and id is the identical bijection, we may identify Γ^n and \mathfrak{S}_n with the corresponding subgroups in $\Gamma \wr \mathfrak{S}_n$. If Γ is a topological group, then we equip Γ^n with the natural product topology. Furthermore, we will always consider Γ_e^{∞} as a topological group with the inductive limit topology. As a set, $\Gamma \wr \mathfrak{S}_{\infty}$ is just $\Gamma_e^{\infty} \times \mathfrak{S}_{\infty}$. Therefore, we equip $\Gamma \wr \mathfrak{S}_{\infty}$ with the product topology, considering \mathfrak{S}_{∞} as a discrete topological space.

1.2. The results. In this paper we give a full classification of *indecomposable* characters (see Definitions (3)–(4)) on $\Gamma \wr \mathfrak{S}_{\infty}$ (Theorem 9). Our approach is based on the semigroup method of Olshanski [7] and the ideas of Okounkov used in the study of *admissible* representations of the groups related to \mathfrak{S}_{∞} (see [2],[3]). We have noticed that two double cosets containing the transposition or $\gamma \in \Gamma$ commute, as the elements of Olshanski semigroup. (see Lemma 17). This observation enables one to develop Okounkov's method for the group $\Gamma \wr \mathfrak{S}_{\infty}$ (see Section 5). In Section 3 we discuss certain examples of representations of type *III*. The corresponding positive definite functions (p.d.f.) φ are not

²⁰⁰⁰ Mathematics Subject Classification. 16G60, 20C15, 20C32, 46L10.

 $Key\ words\ and\ phrases.$ Wreath product, indecomposable characters, factor-representation, modular operator.

N.N.: Supported by the CRDF-grant UM1-254001

characters, but the following holds:

(1.1) $\varphi(sg) = \varphi(gs) \text{ for all } g \in \Gamma \wr \mathfrak{S}_{\infty} \text{ and } s \in \mathfrak{S}_{\infty}.$

Hence the restriction $\varphi|_{\mathfrak{S}_{\infty}}$ is a character. At that, the Okounkov's asymptotic operators (see (4.4)) are naturally connected to the Tomita-Takesaki modular operator (see subsection 3.3). In fact, this observation is common for p.d.f. with the property (1.1). For those, we are going to produce a complete classification in a subsequent paper.

1.3. The basic definition and the conjugacy classes. Let \mathcal{H} be a Hilbert space, $\mathcal{B}(\mathcal{H})$ an algebra of all bounded operators in \mathcal{H} , and $\mathcal{I}_{\mathcal{H}}$ the identity operator in \mathcal{H} . We denote by $\mathcal{U}(\mathcal{H})$ the unitary subgroup in $\mathcal{B}(\mathcal{H})$. By a unitary representation of the topological group G we always mean a *continuous* homomorphism of G into $\mathcal{U}(\mathcal{H})$, where $\mathcal{U}(\mathcal{H})$ is equipped with the strong operator topology.

Definition 1. A unitary representation $\pi : G \to \mathcal{U}(\mathcal{H})$ of G is called a factor-representation if the W^* -algebra $\pi(G)''$ generated by the operators $\pi(g)$ $(g \in G)$, is a factor.

Definition 2. A unitary representation π is called a factor-representation of finite type if $\pi(G)''$ is a factor of type II_1 .

Let \mathcal{M} be a factor of type II_1 and \mathcal{M} a subalgebra of $\mathcal{B}(\mathcal{H})$. If $\pi(G) \subset \mathcal{U}(\mathcal{M}) = \mathcal{M} \bigcap \mathcal{U}(\mathcal{H})$ and $\operatorname{tr}_{\mathcal{M}}$ is the unique normal, normalized $(\operatorname{tr}(I) = 1)$ trace on \mathcal{M} , then it determines a *character* $\phi_{\pi}^{\mathcal{M}}$ on G by $\phi_{\pi}^{\mathcal{M}}(g) = \operatorname{tr}_{\mathcal{M}}(\pi(g))$.

Definition 3. A continuous function ϕ on G is called a character if it satisfies the following properties:

- (a) ϕ is central, that is, $\phi(g_1g_2) = \phi(g_2g_1) \forall g_1, g_2 \in G$;
- (b) ϕ is positive definite, that is, for all g_1, g_2, \ldots, g_n the matrix $\left[\phi\left(g_j g_k^{-1}\right)\right]_{j,k=1}^n$ is non-negatively definite;
- (c) ϕ is normalized, that is, $\phi(e_G) = 1$, where e_G is the unit of G.

Definition 4. A character ϕ is called *indecomposable* if the group representation corresponding to ϕ (according to the GNS construction) is a factor-representation.

In this paper we obtain a complete description of indecomposable characters on $\Gamma \wr \mathfrak{S}_{\infty}$ in the case when Γ is a separable topological group.

First, let us describe the conjugacy classes in $\Gamma \wr \mathfrak{S}_{\infty}$. Recall that the conjugacy classes in \mathfrak{S}_{∞} are parametrized by non-increasing sequences $\lambda = (\lambda_1, \lambda_2, \ldots)$ of natural numbers such that there are finitely many elements λ_k not equal to 1. Namely, $\lambda_1, \lambda_2, \ldots$ are the orders of cycles of a permutation $s \in \mathfrak{S}_{\infty}$. Furthermore, an element $\Gamma \wr \mathfrak{S}_{\infty}$ can be written as a product of an element of \mathfrak{S}_{∞} and an element of Γ_e^{∞} , and the commutation rule between these two kinds of elements is as follows:

(1.2)
$$s \cdot \gamma = s \cdot (\gamma_1, \gamma_2, \ldots) = (\gamma_{s^{-1}(1)}, \gamma_{s^{-1}(2)}, \ldots) \cdot s,$$

where $s \in \mathfrak{S}_{\infty}, \gamma = (\gamma_1, \gamma_2, \ldots) \in \Gamma_e^{\infty}$.

By the analogy with the definition of a cycle in \mathfrak{S}_{∞} define the generalized cycle in $\Gamma \wr \mathfrak{S}_{\infty}$.

Definition 5. Say that element $g = s \cdot \gamma \in \Gamma \wr \mathfrak{S}_{\infty}$, where $\gamma = (\gamma_1, \gamma_2, \ldots)$ is generalized cycle if s is cycle and $\{i \mid \gamma_i \neq e\} \subset \{i \mid s(i) \neq i\}$.

Let s be any permutation. Denote \mathbb{N}/s the set of orbits of s on \mathbb{N} . Note that for $p \in \mathbb{N}/s$ the permutation s_p given by

$$s_p(k) = \begin{cases} s(k), & \text{if } k \in p, \\ k, & \text{otherwise,} \end{cases}$$

is a cycle of order |p|, where |p| stand for the cardinality of p. For $\gamma = (\gamma_1, \gamma_2, \ldots) \in \Gamma_e^{\infty}$ define the element $\gamma(p) = (\gamma_1(p), \gamma_2(p), \ldots) \in \Gamma_e^{\infty}$ as follows:

(1.3)
$$\gamma_k(p) = \begin{cases} \gamma_k, & \text{if } k \in p, \\ e, & \text{otherwise.} \end{cases}$$

Thus, using (1.2), we have the decomposition of $g = s \cdot \gamma$ onto generalized cycles

(1.4)
$$s \cdot \gamma = \prod_{p \in \mathbb{N} \neq s} s_p \cdot \gamma(p).$$

For an arbitrary group G denote by $\mathfrak{c}_G(g)$ the conjugacy class of $g \in G$. Let $g = s \cdot \gamma \in \Gamma \wr \mathfrak{S}_{\infty}$. Note that for any orbit $p \in \mathbb{N}/s$ and any $k_p \in p$ the conjugacy class $\mathfrak{c}_{\Gamma}(\gamma_{k_p} \cdot \gamma_{s(k_p)} \cdots \gamma_{s^{(l)}(k_p)} \cdots \gamma_{s^{(lp|-1)}(k_p)})$ does not depend on choice of k_p . Define the invariant $\mathfrak{i}(g)$ given by unordered ∞ -tuples of pairs $\{(|p|, \mathfrak{c}_{\Gamma}(\gamma_{k_p} \cdot \gamma_{s(k_p)} \cdots \gamma_{s^{(l)}(k_p)} \cdots \gamma_{s^{(lp|-1)}(k_p)})\}_{p \in \mathbb{N}/s}$, where $s^{(l)}$ is *l*-th iteration of *s* and k_p – any number from the orbit *p*. The following statement can be easily proved.

Proposition 6. Let g_1 and g_2 be elements of $\Gamma \wr \mathfrak{S}_{\infty}$. Then $\mathfrak{c}(g_1) = \mathfrak{c}(g_2)$ if and only if $\mathfrak{i}(g_1) = \mathfrak{i}(g_2)$.

For any $g = s \cdot \gamma \in \Gamma \wr \mathfrak{S}_{\infty}$ denote $\operatorname{supp}(g) = \{i \in \mathbb{N} | s(i) \neq i \text{ or } \gamma_i \neq e\}$ and call this set the *support* of g. Define for any $\iota \in \Gamma$ and $k \in \mathbb{N}$ the element $\iota(\{k\}) = (\iota_1(\{k\}), \iota_2(\{k\}), \ldots, \iota_l(\{k\}), \ldots) \in \Gamma_e^{\infty}$ as follows:

(1.5)
$$\iota_l(\{k\}) = \begin{cases} \iota, & \text{if } l = k, \\ e, & \text{otherwise} \end{cases}$$

1.4. The multiplicativity. The following claim gives a useful characterization of the class of indecomposable characters:

Proposition 7. The following assumptions on a character ϕ of $\Gamma \wr \mathfrak{S}_{\infty}$ are equivalent:

(a) ϕ is indecomposable; (b) $\phi(g) = \prod_{p \in \mathbb{N} \times s} \phi(s_p \cdot \gamma(p))$ for any $g = s \cdot \gamma = \prod_{p \in \mathbb{N} \times s} s_p \cdot \gamma(p)$ (see 1.4).

Proof. To prove the proposition, we consider the elements $g = s \cdot \gamma$ and $g' = s' \cdot \gamma'$ of $\Gamma \wr \mathfrak{S}_{\infty}$ such that $\operatorname{supp}(g) \cap \operatorname{supp}(g') = \emptyset$. Then by the properties of the group $\Gamma \wr \mathfrak{S}_{\infty}$ there exists a sequence $\{s_n\}_{n \in \mathbb{N}} \subset \mathfrak{S}_{\infty}$ such that

(1.6)
$$s_n \cdot g = g \cdot s_n$$
 and $s_n g' s_n^{-1} \cdot h = h \cdot s_n g' s_n^{-1}$ for all $h \in \Gamma \wr \mathfrak{S}_n$.

Suppose now that (a) holds. Using the GNS-construction, we produce the representation π_{ϕ} of $\Gamma \wr \mathfrak{S}_{\infty}$ which acts in a Hilbert space \mathcal{H}_{ϕ} with a cyclic vector ξ_{ϕ} such that

$$\phi(g) = (\pi_{\phi}(g) \xi_{\phi}, \xi_{\phi}).$$

Let $A = w - \lim_{n \to \infty} \pi_{\phi} \left(s_n \cdot g' s_n^{-1} \right)$ be a limit of the sequence $\pi_{\phi} \left(s_n \cdot g' s_n^{-1} \right)$ in the *weak* operator topology. Using (1.6), we deduce by Definition 4 that $A = a\mathcal{I}$, where \mathcal{I} is the identity operator in \mathcal{H}_{ϕ} and a a complex number. Therefore,

$$\phi\left(g\cdot g'\right) = \lim_{n \to \infty} \phi\left(g \cdot s_n \cdot g' \cdot s_n^{-1}\right) = \phi(g) \cdot \lim_{n \to \infty} \phi\left(s_n \cdot g' \cdot s_n^{-1}\right) = \phi(g) \cdot \phi\left(g'\right).$$

Thus (b) follows from (a).

Conversely, suppose that (b) holds. For any subset S of $\mathcal{B}(\mathcal{H})$, define its commutant as follows:

$$\mathcal{S}' = \left\{ T \in \mathcal{B}(\mathcal{H}) \, \middle| ST = TS \text{ for all } S \in \mathcal{S} \right\}.$$

If $\pi_{\phi} (\Gamma \wr \mathfrak{S}_{\infty})' \bigcap \pi_{\phi} (\Gamma \wr \mathfrak{S}_{\infty})'' = \mathcal{Z}$ is larger than the scalars, then it contains a pair of orthogonal projections E and F with the properties

(1.7)
$$\phi(E) \neq 0, \quad \phi(F) \neq 0 \quad \text{and} \quad E \cdot F = 0.$$

By the von Neumann Double Commutant Theorem, for any $\varepsilon > 0$ there exist $g_k^E, g_k^F \in \Gamma \wr \mathfrak{S}_n \subset \Gamma \wr \mathfrak{S}_\infty$ $(n < \infty)$ and complex numbers c_k^E, c_k^F $(k = 1, 2, \dots, N < \infty)$ such that

(1.8)
$$\left\| \sum_{k=1}^{N} c_{k}^{E} \pi_{\phi} \left(g_{k}^{E} \right) \xi_{\phi} - E \xi_{\phi} \right\| < \varepsilon \phi(E),$$
$$\left\| \sum_{k=1}^{N} c_{k}^{F} \pi_{\phi} \left(g_{k}^{F} \right) \xi_{\phi} - F \xi_{\phi} \right\| < \varepsilon \phi(F).$$

Consider the bijection

$$\tau(j) = \begin{cases} j+n, & \text{if } j \le n, \\ j-n, & \text{if } n < j \le 2n, \\ j, & \text{otherwise.} \end{cases}$$

By Definition (3), use (1.8) to obtain

(1.9)
$$\left\| \sum_{k=1}^{N} c_{k}^{E} \pi_{\phi} \left(\tau g_{k}^{E} \tau \right) \xi_{\phi} - E \xi_{\phi} \right\| < \varepsilon \phi(E),$$
$$\left\| \sum_{k=1}^{N} c_{k}^{F} \pi_{\phi} \left(\tau g_{k}^{F} \tau \right) \xi_{\phi} - F \xi_{\phi} \right\| < \varepsilon \phi(F).$$

Now, using (b), (1.7), (1.8) and (1.9), we have

$$\begin{split} \varepsilon \sqrt{\phi(E)\phi(F)} \left(\varepsilon \sqrt{\phi(E)\phi(F)} + \sqrt{\phi(E)} + \sqrt{\phi(F)} \right) \\ > \left| \left(\sum_{k=1}^{N} c_{k}^{E} \pi_{\phi} \left(\tau g_{k}^{E} \tau \right) \cdot \sum_{k=1}^{N} c_{k}^{F} \pi_{\phi} \left(g_{k}^{F} \right) \xi_{\phi}, \xi_{\phi} \right) \right| \\ > \left| \left(\sum_{k=1}^{N} c_{k}^{E} \pi_{\phi} \left(\tau g_{k}^{E} \tau \right) \xi_{\phi}, \xi_{\phi} \right) \cdot \left(\sum_{k=1}^{N} c_{k}^{F} \pi_{\phi} \left(\tau g_{k}^{F} \tau \right) \xi_{\phi}, \xi_{\phi} \right) \right| \\ > \phi(E)\phi(F)(\varepsilon+1)^{2}. \end{split}$$

Hence

$$\varepsilon > \left[\frac{1 - \sqrt{\phi(F)}}{\sqrt{\phi(F)}} + \frac{1 - \sqrt{\phi(E)}}{\sqrt{\phi(E)}}\right]^{-1}$$

Then, comparing this to (1.7), we get a contradiction.

1.5. The main result. In [5], E. Thoma obtained the following remarkable description of all *indecomposable* characters of \mathfrak{S}_{∞} . The characters of \mathfrak{S}_{∞} are labeled by pairs of non-increasing positive sequences of numbers $\{\alpha_k\}, \{\beta_k\}$ $(k \in \mathbb{N})$ (which are called the Thoma parameters) such that

(1.10)
$$\sum_{k=1}^{\infty} \alpha_k + \sum_{k=1}^{\infty} \beta_k \le 1.$$

The value of the corresponding character on a permutation with a single cycle of length l is

$$\sum_{k=1}^{\infty} \alpha_k^l + (-1)^{l-1} \sum_{k=1}^{\infty} \beta_k^l$$

304

305

Its value on a permutation with several disjoint cycles equals the product of values on each cycle.

Let $g = s \cdot \gamma$, $p \in \mathbb{N}/s$ be one of the orbits of s. Then put

(1.11)
$$\tilde{\gamma}(p) = \gamma_k \cdot \gamma_{s^{-1}(k)} \cdots \gamma_{s^{(-l)}(k)} \cdots \gamma_{s^{(-|p|+1)}(k)}, \text{ where } (k \in p).$$

Now we define an analog of Thoma parameters for characters of the group $\Gamma \wr \mathfrak{S}_{\infty}$. Namely, let us call *Thoma parameters* the collection ϱ^0 , $\{\varrho^{\alpha_k}\}$, $\{\varrho^{\beta_k}\}$, $\{\alpha_k\}$, $\{\beta_k\}$, where ϱ^0 is the representation of Γ of *finite* type, $\alpha = \{\alpha_k\}$, $\beta = \{\beta_k\}$ are non-increasing finite or infinite sequences of positive numbers, $\varrho^{\alpha} = \{\varrho^{\alpha_k}\}$ and $\varrho^{\beta} = \{\varrho^{\beta_k}\}$ are sequences of finite-dimensional irreducible representations of Γ such that $\sum_k (\alpha_k \cdot \dim \varrho^{\alpha_k} + \beta_k \cdot \dim \varrho^{\beta_k}) \leq 1$.

For Thoma parameters ϱ^0 , $\{\varrho^{\alpha_k}\}$, $\{\varrho^{\beta_k}\}$, $\{\alpha_k\}$, $\{\beta_k\}$ we define a function $\phi = \phi_{\varrho^0, \, \varrho^{\alpha}, \, \varrho^{\beta}, \, \alpha, \, \beta}$ by the next three properties:

(1) for $g = s \cdot \gamma \in \Gamma \wr \mathfrak{S}_{\infty}$ one has

$$\phi(g) = \prod_{p \in \mathbb{N} \neq s} \phi\left(s(p) \cdot \gamma(p)\right) \quad (\text{see } (1.2) - (1.3));$$

(2) for the generalized cycle $g = s \cdot \gamma$ (see definition 5) with p = supp(g) and $s \neq \text{id}$ one has

$$\phi(g) = \sum_{k=1}^{\infty} \left(\alpha_k^{|p|} \cdot \operatorname{Tr} \left(\varrho^{\alpha_k} \left(\tilde{\gamma}(p) \right) \right) + (-1)^{|p|-1} \beta_k^{|p|} \cdot \operatorname{Tr} \left(\varrho^{\beta_k} \left(\tilde{\gamma}(p) \right) \right) \right);$$

(3) for each $\iota \in \Gamma$ and $n \in \mathbb{N}$ one has

$$\phi(\iota(\{n\})) = \sum_{k=1}^{\infty} \left(\alpha_k \cdot \operatorname{Tr} \left(\varrho^{\alpha_k} \left(\iota \right) \right) + \beta_k \cdot \operatorname{Tr} \left(\varrho^{\beta_k} \left(\iota \right) \right) \right) \\ + \left(1 - \sum_{k \in \mathbb{N}} \left(\alpha_k \cdot \dim \varrho^{\alpha_k} + \beta_k \cdot \dim \varrho^{\beta_k} \right) \right) \operatorname{tr}_0(\iota) \quad (\text{see } (1.5)),$$

where Tr is the ordinary trace and tr₀ is the normalized character of the representation ρ^0 .

Proposition 8. The function $\phi_{\varrho^0, \varrho^{\alpha}, \varrho^{\beta}, \alpha, \beta}$ is an indecomposable character (see definition 3).

Proof. The realizations of the corresponding factor-representations we give in the section 2. $\hfill \Box$

Here is our main result.

Theorem 9. If ϕ is an indecomposable character on $\Gamma \wr \mathfrak{S}_{\infty}$, then there exist Thoma parameters ϱ^0 , $\{\varrho^{\alpha_k}\}$, $\{\varrho^{\beta_k}\}$, $\{\alpha_k\}$, $\{\beta_k\}$, such that $\phi = \phi_{\varrho^0, \varrho^{\alpha}, \varrho^{\beta}, \alpha, \beta}$.

2. Realizations of II_1 -factor-representations

A complete family of II_1 -factor-representations of $\Gamma \wr \mathfrak{S}_{\infty}$ can be constructed using the Vershik-Kerov [8], Olshanski [7] realizations or Okunkov methods (so called mixtures of representations) [3], found for the II_1 -factor-representations of the infinite symmetric group \mathfrak{S}_{∞} . We follow the approach developed by Olshanski as it leads to less spadework. 2.1. A construction of representations. Let $\{\alpha_k\}_{k\in\mathbb{N}}, \{\beta_k\}_{k\in\mathbb{N}}$ be two finite or infinite sets of the positive numbers from (0,1) and let ρ^{α_k} and ρ^{β_k} be unitary irreducible finite-dimensional representations of Γ that act in the Hilbert spaces \mathcal{H}^{α_k} and \mathcal{H}^{β_k} correspondingly. We assume, that

$$\sum_{k} \alpha_k \cdot \dim \varrho^{\alpha_k} + \sum_{k} \beta_k \cdot \varrho^{\beta_k} \le 1.$$

We set

$$\delta = 1 - \sum_{k} \alpha_k \cdot \dim \varrho^{\alpha_k} - \sum_{k} \beta_k \cdot \varrho^{\beta_k}.$$

Let \mathcal{H}^0 stand for the Hilbert space, where acts the unitary representation of a finite type ϱ^0 of Γ . Then the formula $\operatorname{tr}^0(\gamma) = \left(\varrho^0(\gamma)\xi^{(0)},\xi^{(0)}\right)_{\mathcal{H}^0}$ defines the character on Γ . We denote by $(\varrho^{0k}, \mathcal{H}^{0k}, \xi^{(0k)})$ the k-th copy of the triplet $(\varrho^0, \mathcal{H}^0, \xi^{(0)})$.

Let $\left\{ e_{j}^{(\alpha_{k})} \right\}_{1 \leq j \leq \dim \mathcal{H}^{\alpha_{k}}}$ be an orthonormal basis in $\mathcal{H}^{\alpha_{k}}$. Let

$$\mathbf{H} = \left(\left(\bigoplus_{k} \mathcal{H}^{\alpha_{k}} \right) \oplus \left(\bigoplus_{k} \mathcal{H}^{\beta_{k}} \right) \oplus \left(\bigoplus_{k} \mathcal{H}^{0k} \right) \right) \otimes \left(\left(\bigoplus_{k} \mathcal{H}^{\alpha_{k}} \right) \oplus \left(\bigoplus_{k} \mathcal{H}^{\beta_{k}} \right) \oplus \left(\bigoplus_{k} \mathcal{H}^{0k} \right) \right)$$

and let

$$\eta^{(m)} = \sum_{k} \sqrt{\alpha_k} \left(\sum_{j} e_j^{(\alpha_k)} \otimes e_j^{(\alpha_k)} \right) + \sum_{k} \sqrt{\beta_k} \left(\sum_{j} e_j^{(\beta_k)} \otimes e_j^{(\beta_k)} \right) + \sqrt{\delta} \xi^{(0m)} \otimes \xi^{(0m)}.$$

Define the unitary representation ρ of Γ in **H** as follows

(2.1)
$$\varrho = \left(\left(\bigoplus_{k} \varrho^{\alpha_{k}} \right) \oplus \left(\bigoplus_{k} \varrho^{\beta_{k}} \right) \oplus \left(\bigoplus_{k} \varrho^{0k} \right) \right) \otimes I,$$

We will identify $\mathcal{H}^{\alpha_k} \otimes \mathcal{H}^{\alpha_k}$, $\mathcal{H}^{\beta_k} \otimes \mathcal{H}^{\beta_k}$ and $\left(\bigoplus_k \mathcal{H}^{0k}\right) \otimes \left(\bigoplus_k \mathcal{H}^{0k}\right)$ with their images with respect in the natural embedding to **H**. Denote by \mathbf{H}^{m} the *m*-th copy of the Hilbert space **H** and consider the infinite tensor product

$$\stackrel{\smile}{\mathbf{H}} = \bigotimes_{m} \left(\mathbf{H}^{m}, \eta^{(m)} \right)$$

It is convenient to represent \mathbf{H} as the closure of the linear span of the vectors of the form

$$\zeta_1 \otimes \zeta_2 \otimes \cdots \otimes \zeta_{m-1} \otimes \eta^{(m)} \otimes \eta^{(m+1)} \otimes \cdots$$
, where ζ_j is an any vector from \mathbf{H}^j .

We extend the set $\left\{ e_{j}^{(\alpha_{k})} \right\}_{j=1}^{\dim \mathcal{H}^{\alpha_{k}}} \bigcup \left\{ e_{j}^{(\beta_{k})} \right\}_{j=1}^{\dim \mathcal{H}^{\beta_{k}}}$ to an orthonormal basis \mathfrak{A} in $\left(\bigoplus_{k}\mathcal{H}^{\alpha_{k}}\right)\oplus\left(\bigoplus_{k}\mathcal{H}^{\beta_{k}}\right)\oplus\left(\bigoplus_{k}\mathcal{H}^{0k}\right)$. Now we fix the orthonormal basis $\mathfrak{B} = \{ \mathbf{e}_i \otimes \mathbf{e}_l : \mathbf{e}_i, \mathbf{e}_l \in \mathfrak{A} \}$

in **H** and we assume below $\zeta_j \in \mathfrak{B}$. Let components of the vector $\check{\zeta} = \zeta_1 \otimes \zeta_2 \otimes$ $\cdots \otimes \zeta_{m-1} \otimes \cdots$ be of the form $\zeta_j = v_j \otimes \tau_j$. Define for $\mathfrak{s} \in \mathfrak{S}_{\infty}$ the vector $\mathfrak{s}(\zeta) =$ $\vartheta_1 \otimes \vartheta_2 \otimes \cdots \otimes \vartheta_{m-1} \otimes \cdots$ as follows:

$$\vartheta_j = \upsilon_{s^{-1}(j)} \otimes \tau_j$$

Now build the sequence $j(\breve{\zeta}) = \{j_1 < j_2 < \cdots\}$ such, that

$$\zeta_{j_l} = \mathrm{e}_m^{(eta_k)} \otimes \mathrm{f} \quad ext{for some} \quad eta_k \quad ext{and} \quad m_k$$

Let \mathfrak{t} be a permutation for which $\mathfrak{s}((j_{\mathfrak{t}(1)})) < \mathfrak{s}((j_{\mathfrak{t}(2)})) < \cdots < \mathfrak{s}((j_{\mathfrak{t}(l)})) < \cdots$. Finally, we set $\psi(\mathfrak{s}, \zeta) = \operatorname{sgn}(\mathfrak{t})$. The corresponding representation π of $\Gamma \wr \mathfrak{S}_{\infty}$ can be realized in Hilbert space ${\bf H}$ as follows:

(2.2)
$$\pi(\gamma) \left(\zeta_1 \otimes \zeta_2 \otimes \cdots \otimes \zeta_{m-1} \otimes \eta^{(m)} \otimes \cdots \right) = \varrho(\gamma_1) \zeta_1 \otimes \varrho(\gamma_2) \zeta_2 \otimes \cdots \otimes \varrho(\gamma_{m-1}) \zeta_{m-1} \otimes \varrho(\gamma_m) \eta^{(m)} \otimes \cdots$$
and for $\mathfrak{s} \in \mathfrak{S}_{\infty}$ $\pi(\mathfrak{s}) \left(\zeta_1 \otimes \zeta_2 \otimes \cdots \otimes \zeta_{m-1} \otimes \cdots \right) = \psi\left(\mathfrak{s}, \widecheck{\zeta}\right) \mathfrak{s}\left(\widecheck{\zeta} \right).$

2.2. The character's formula. Set $\check{\eta} = \bigotimes_{m} \eta^{(m)}$. Assume that \mathfrak{s} is the cycle $(1 \rightarrow m)$ $2 \to 3 \to \cdots \to k-1 \to k$), where k > 1. Let $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_k, e_{\Gamma}, e_{\Gamma}, \dots)$. Routine calculations provide that

(2.3)
$$\left(\pi\left(\mathfrak{s}\gamma\right)\breve{\eta},\breve{\eta}\right) = \sum_{j} \alpha_{j}^{k} \operatorname{Tr}\left(\varrho^{\alpha_{j}}\left(\gamma_{1}\gamma_{2}\cdots\gamma_{k}\right)\right) + \sum_{j} \beta_{j}^{k} \operatorname{Tr}\left(\varrho^{\beta_{j}}\left(\gamma_{1}\gamma_{2}\cdots\gamma_{k}\right)\right),$$

where $\operatorname{Tr}(\varrho^r(\gamma)) = \sum_{j=1}^{\dim \varrho^r} \varrho^r_{j\,j}(\gamma).$ It is obvious, that

$$\left(\pi\left(\gamma\right)\breve{\eta},\breve{\eta}\right) = \prod_{j=1}^{\kappa} \left(\sum_{i} \alpha_{i} \operatorname{Tr}\left(\varrho^{\alpha_{i}}\left(\gamma_{j}\right)\right) + \sum_{i} \beta_{i} \operatorname{Tr}\left(\varrho^{\beta_{i}}\left(\gamma_{j}\right)\right) + \left(\varrho^{0}\left(\gamma_{j}\right)\xi^{(0)},\xi^{(0)}\right)\right).$$

Since tr^0 is a character on Γ , one can use (2.3) and the multiplicativity property (see Proposition 7) to obtain the following

Corollary 10. Let $\chi(g) = (\pi(g) \, \breve{\eta}, \breve{\eta})$. Then χ is an indecomposable character on $\Gamma\wr\mathfrak{S}_{\infty}.$

3. Other examples

In this section we construct examples of *infinite* type representations of $\mathbb{Z}_2 \wr \mathfrak{S}_{\infty}$. The corresponding positive definite functions are not characters. On the other hand they satisfy the following condition:

$$\varphi(sg) = \varphi(gs) \quad \text{for all} \quad g \in G = \Gamma \wr \mathfrak{S}_{\infty} \quad \text{and} \quad s \in \mathfrak{S}_{\infty}.$$

In the generic case the representation π_{φ} built by GNS-construction from φ is of type III. Furthermore, the state φ on the W^* -algebra $\pi_{\varphi}(G)''$ is faithful. These properties allow one to construct the Tomita-Takesaki modular operator Δ_{φ} . Surprisingly, Δ_{φ} is naturally related to the Okounkov operator \mathcal{O}_k (see (4.4)), which is an important object in the representation theory of symmetric group (see [2], [3]).

3.1. A construction. Let $X_i = \mathbb{Z}_2 \times \mathbb{Z}_2 = \{0, 1\} \times \{0, 1\}$. Define a probability measure ν_i on X_i by $\nu_i((k, l)) = p_{kl}$. Let $(X, \mu) = \prod_i (X_i, \nu_i)$ and $x = (x_i) \in X$, where $x_i = \sum_i (X_i, \nu_i)$ $\left(x_{i}^{(0)}, x_{i}^{(1)}\right) \in X_{i}, x_{i}^{(k)} \in \{0, 1\}.$ Define an action \mathfrak{a} of $g = (s_{0}, s_{1}) \in \mathfrak{S}_{\infty} \times \mathfrak{S}_{\infty}$ on (X, μ) as follows:

$$(\mathfrak{a}_g(x))_i^{(k)} = x_{s_k(i)}^{(k)} \quad (k = 0, 1).$$

Remark 1. The measure μ is $\mathfrak{G}_{\infty} \times \mathfrak{G}_{\infty}$ -quasiinvariant if and only if $p_{ij} \neq 0$ for all i, j = 0, 1.

We are about to construct a unitary representation π_{μ} of $G \times G$ in $L^{2}(X,\mu)$. With $\varsigma \in L^{2}(X,\mu)$ set

(3.1)

$$(\pi_{\mu}\left((s_{0},s_{1})\right)\varsigma)(x) = \left(\frac{d\mu\left(\mathfrak{a}_{g}(x)\right)}{d\mu\left(x\right)}\right)^{\frac{1}{2}}\varsigma\left(\mathfrak{a}_{g}(x)\right),$$

$$(\pi_{\mu}\left(\left(\gamma^{(0)},\gamma^{(1)}\right)\right)\varsigma\right)(x) = (-1)^{\left(\sum_{i,k}\gamma_{i}^{(k)}x_{i}^{(k)}\right)}\varsigma(x),$$

where $\gamma^{(0)} = \left(\gamma_i^{(0)}\right) \in \mathbb{Z}_2^{\infty}, \ \gamma^{(1)} = \left(\gamma_i^{(1)}\right) \in \mathbb{Z}_2^{\infty}, \ \text{and} \ \left(\gamma^{(0)}, \gamma^{(1)}\right) \in \mathbb{Z}_2^{\infty} \times \mathbb{Z}_2^{\infty}.$ Let $\pi^{(0)}_{\mu}(g) = \pi_{\mu}\left((g, e_G)\right) \ \text{and} \ \pi^{(1)}_{\mu}(g) = \pi_{\mu}\left((e_G, g)\right).$

Proposition 11. π_{μ} is irreducible. Hence, $\pi_{\mu}^{(0)}$ and $\pi_{\mu}^{(1)}$ are factor-representations of $\Gamma \wr \mathfrak{S}_{\infty}$.

Proof. Obvious.

3.2. A cyclic separating vector. Let \mathbb{I} be an element of $L^{2}(X, \mu)$ given by the function identically equal to 1.

Theorem 12. If det $[p_{ij}] \neq 0$, then \mathbb{I} is a cyclic separating vector for $\pi^{(0)}_{\mu}(G)''$ and $\pi^{(1)}_{\mu}(G)''$. That is,

$$\left[\pi_{\mu}^{(0)}(G)''\mathbb{I}\right] = \left[\pi_{\mu}^{(1)}(G)''\mathbb{I}\right] = L^{2}(X,\mu).$$

Proof. Let (k, l) be a transposition from \mathfrak{S}_{∞} . First notice that the operator

$$\mathcal{O}_{k}^{(j)} = \lim_{n \to \infty} \frac{1}{n} \sum_{l=1}^{n} \pi_{\mu}^{(j)} \left((k, l) \right) \quad (\text{see } (4.4))$$

belongs to $\pi^{(j)}_{\mu}(G)^{\prime\prime}$ (j = 0, 1). Since

$$\left(L^{2}\left(X,\mu\right),\mathbb{I}\right)=\bigotimes_{i=1}^{\infty}\left(L^{2}\left(X_{i},\nu_{i}\right),\mathbb{I}\right)$$

one can apply the law of large numbers to deduce that

$$\mathcal{O}_i^{(j)} = I \otimes I \otimes \cdots \otimes \mathcal{O}_i^{(j,i)} \otimes I \otimes \cdots$$

Furthermore, if $\chi_{kl}^{(i)}$ is the indicator of the point $(k,l) \in X_i = \mathbb{Z}_2 \times \mathbb{Z}_2$, the matrices of $\mathcal{O}_i^{(0,i)}$ and $\mathcal{O}_i^{(1,i)}$ in the orthonormal basis $\left\{ e_{kl}^{(i)} = \frac{\chi_{kl}^{(i)}}{\sqrt{p_{kl}}} \right\}_{k,l=0,1}$ are as follows:

$$\mathcal{O}_{i}^{(0,i)} \leftrightarrow \begin{bmatrix} p_{00} + p_{01} & 0 & \sqrt{p_{00} p_{10}} + \sqrt{p_{01} p_{11}} & 0 \\ 0 & p_{00} + p_{01} & 0 & \sqrt{p_{00} p_{10}} + \sqrt{p_{01} p_{11}} \\ \sqrt{p_{00} p_{10}} + \sqrt{p_{01} p_{11}} & 0 & p_{10} + p_{11} & 0 \\ 0 & \sqrt{p_{00} p_{10}} + \sqrt{p_{01} p_{11}} & 0 & p_{10} + p_{11} \end{bmatrix},$$
(3.2)

$$\mathcal{O}_{i}^{(1,i)} \leftrightarrow \begin{bmatrix} \frac{p_{00}+p_{10}}{\sqrt{p_{00}p_{01}}+\sqrt{p_{10}p_{11}}} & 0 & 0\\ \sqrt{p_{00}p_{01}}+\sqrt{p_{10}p_{11}} & p_{01}+p_{11} & 0 & 0\\ 0 & 0 & p_{00}+p_{10} & \sqrt{p_{00}p_{01}}+\sqrt{p_{10}p_{11}}\\ 0 & 0 & \sqrt{p_{00}p_{01}}+\sqrt{p_{10}p_{11}} & p_{01}+p_{11} \end{bmatrix}$$

By the construction,

$$\pi_{\mu}^{(k)}\left(\gamma^{(k)}\right) = \bigotimes_{i=1}^{\infty} \pi_{\mu}^{(k,i)}\left(\gamma_{i}^{(k)}\right),$$

where $\pi_{\mu}^{(0,i)}\left(\gamma_{i}^{(0)}\right)$ and $\pi_{\mu}^{(1,i)}\left(\gamma_{i}^{(1)}\right)$ are determined by the matrices

$$(3.3) \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & (-1)^{\gamma_i^{(0)}} & 0 \\ 0 & 0 & 0 & (-1)^{\gamma_i^{(0)}} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & (-1)^{\gamma_i^{(1)}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & (-1)^{\gamma_i^{(1)}} \end{bmatrix}.$$

Use the map

(3.4)
$$\mathfrak{I}_i: \sum_{m,n=0,1} a_{mn} \mathbf{e}_{mn}^{(i)} \to \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix},$$

to identify $L^{2}(X_{i},\nu_{i})$ to the full matrix algebra $M_{2}(\mathbb{C})$, so that

$$\Im_i(\mathbb{I}) = \begin{bmatrix} \sqrt{p_{00}} & \sqrt{p_{01}} \\ \sqrt{p_{10}} & \sqrt{p_{11}} \end{bmatrix}.$$

Equip $M_2(\mathbb{C})$ with the Hermitian form

$$\langle a,b\rangle_i = \operatorname{Tr}\left(b^*a\right),$$

then \mathfrak{I}_i is a unitary and $\mathfrak{I}_i L^2(X_i, \nu_i) = M_2(\mathbb{C})$. Now as an elementary consequence of (3.2) and (3.3) one has:

$$\Im_i \mathcal{O}_i^{(0,i)} \Im_i^{-1} a = \begin{bmatrix} p_{00} + p_{01} & \sqrt{p_{00} p_{10}} + \sqrt{p_{01} p_{11}} \\ \sqrt{p_{00} p_{10}} + \sqrt{p_{01} p_{11}} & p_{10} + p_{11} \end{bmatrix} a,$$

$$\Im_i \mathcal{O}_i^{(1,i)} \Im_i^{-1} a = a \begin{bmatrix} p_{00} + p_{10} & \sqrt{p_{00}p_{01}} + \sqrt{p_{10}p_{11}} \\ \sqrt{p_{00}p_{01}} + \sqrt{p_{10}p_{11}} & p_{01} + p_{11} \end{bmatrix}$$

(3.5)

$$\mathfrak{I}_i \pi^{(0,i)}_\mu \left(\gamma^{(0)}_i\right) \mathfrak{I}_i^{-1} a = \begin{bmatrix} 1 & 0 \\ 0 & (-1)^{\gamma^{(0)}_i} \end{bmatrix} a,$$

$$\mathfrak{I}_{i}\pi_{\mu}^{(1,i)}\left(\gamma_{i}^{(1)}\right)\mathfrak{I}_{i}^{-1}a = a \begin{bmatrix} 1 & 0\\ 0 & (-1)\gamma_{i}^{(1)} \end{bmatrix}, \quad \text{where} \quad a \in M_{2}(\mathbb{C}).$$

Thus, in view of Remark 1 (see p. 307), the algebra \mathfrak{M}_{i}^{k} generated by the operators $\mathfrak{I}_{i}\mathcal{O}_{i}^{(k,i)}\mathfrak{I}_{i}^{-1}$ and $\mathfrak{I}_{i}\pi_{\mu}^{(0,i)}\left(\gamma_{i}^{(k)}\right)\mathfrak{I}_{i}^{-1}$ is just $M_{2}(\mathbb{C})$. Since det $(\mathfrak{I}_{i}(\mathbb{I})) \neq 0$, one has finally $\mathfrak{M}_{i}^{i}\mathfrak{I}_{i}(\mathbb{I}) = \mathfrak{M}_{i}^{1}\mathfrak{I}_{i}(\mathbb{I}) = M_{2}(\mathbb{C})$.

3.3. The modular operator. Consider the Hilbert space $\mathfrak{H} = \bigotimes_{i=1}^{\infty} (M_2(\mathbb{C}), \langle \rangle_i, \mathfrak{I}_i(\mathbb{I})).$ It is convenient to represent \mathfrak{H} as the closure of the linear span of the vectors $a_1 \otimes a_2 \otimes \cdots \otimes a_i \otimes \mathfrak{I}_{i+1}(\mathbb{I}) \otimes \mathfrak{I}_{i+2}(\mathbb{I}) \cdots$, where $a_i \in M_2(\mathbb{C})$. If $\mathfrak{I} = \bigotimes_{i=1}^{\infty} \mathfrak{I}_i$, one has by Theorem 12

$$\Im L^{2}\left(X,\mu\right) =\mathfrak{H}.$$

Let $\mathcal{L}(\mathfrak{H})$ and $\mathcal{R}(\mathfrak{H})$ be the W^* -algebras generated in \mathfrak{H} by the operators of left and right multiplication by elements of the form

 $a_1 \otimes a_2 \otimes \cdots \otimes a_i \otimes I_2 \otimes I_2 \otimes \cdots$, where $a_i \in M_2(\mathbb{C})$, $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Proposition 13. $\pi^{(0)}_{\mu}(G)'' = \Im^{-1}\mathcal{L}(\mathfrak{H})\mathfrak{I} \text{ and } \pi^{(1)}_{\mu}(G)'' = \Im^{-1}\mathcal{R}(\mathfrak{H})\mathfrak{I}.$

Proof. Let $\mathfrak{A}_{n}^{(j)}$ stand for the W^* -algebra generated by the operators $\left\{\mathcal{O}_{i}^{(j)}\right\}_{i=1}^{n}$ and $\left\{\pi_{\mu}^{(j)}\left(\Gamma^{n}\right)\right\}$ (j = 0, 1). In view of (3.5), $\mathfrak{A}_{n}^{(j)}$ is isomorphic $\bigotimes_{i=1}^{n} M_{2}(\mathbb{C})$. Therefore, $\pi_{\mu}^{(j)}(\mathfrak{S}_{n}) \subset \mathfrak{A}_{n}^{(j)}$. Finally, use (3.5) deduce $\mathfrak{A}_{n}^{(0)} \subset \mathcal{L}(\mathfrak{H})$ and $\mathfrak{A}_{n}^{(1)} \subset \mathcal{R}(\mathfrak{H})$.

Let $\xi = \mathfrak{I}_1(\mathbb{I}) \otimes \mathfrak{I}_2(\mathbb{I}) \otimes \cdots \otimes \mathfrak{I}_{i+2}(\mathbb{I}) \otimes \cdots$. Since the vector ξ is cyclic and separating for $\mathcal{L}(\mathfrak{H})$ (Theorem 12), one can construct the modular operator Δ_{ξ} (see [9]). Namely, if S and F are closures of antilinear operators given by

 $S(a\xi) = a^*\xi$ for all $a \in \mathcal{L}(\mathfrak{H})$ and $F(\xi a') = \xi (a')^*$ for all $a' \in \mathcal{R}(\mathfrak{H})$,

then

$$F = S^*$$
 and $\Delta_{\xi} = FS$

Hence, with $a = a_1 \otimes a_2 \otimes \cdots \otimes a_i \otimes I_2 \otimes I_2 \otimes \cdots$ one has

$$a^*\xi = \xi \cdot \left(\bigotimes_{j=1}^i \mathfrak{I}_j(\mathbb{I})\right)^{-1} \otimes I_2 \otimes I_2 \otimes \cdots \otimes a^* \cdot \left(\bigotimes_{j=1}^i \mathfrak{I}_j(\mathbb{I})\right) \otimes I_2 \otimes I_2 \otimes \cdots \otimes I_2 \otimes \cup \cup \otimes I_2 \otimes \cup O_2 \otimes \cup O_2 \otimes \cup \otimes O_2 \otimes \cup \otimes O_2 \otimes \cup \otimes O_2 \otimes \cup O_$$

Therefore,

$$\Delta_{\xi}(a\xi) = F(a^{*}\xi) = \xi \cdot \left(\bigotimes_{j=1}^{i} \mathfrak{I}_{j}(\mathbb{I})\right)^{*} \otimes I_{2} \otimes \cdots \otimes a \cdot \left(\bigotimes_{j=1}^{i} (\mathfrak{I}_{j}(\mathbb{I}))^{*}\right)^{-1} \otimes I_{2} \otimes \cdots$$

Finally, use the relation $\mathfrak{I}_{j}(\mathbb{I}) (\mathfrak{I}_{j}(\mathbb{I}))^{*} = \mathfrak{I}_{j} \mathcal{O}_{j}^{(0,j)} \mathfrak{I}_{j}^{-1}$ (see (3.5)) to obtain

(3.6)
$$\Delta_{\xi} (a\xi) = \bigotimes_{j=1}^{i} \left(\Im_{j} \mathcal{O}_{j}^{(0,j)} \Im_{j}^{-1} \right) a \left(\bigotimes_{j=1}^{i} \Im_{j} \mathcal{O}_{j}^{(0,j)} \Im_{j}^{-1} \right)^{-1} \otimes \Im_{i+1}(\mathbb{I}) \otimes \Im_{i+2}(\mathbb{I}) \otimes \cdots .$$

Thus the modular operator Δ_{ξ} is defined in a natural way by the Okounkov operator \mathcal{O}_j (see (4.4), [2], [3]).

4. The characters of G and spherical functions of the pair $(G \times G, \text{diag } G)$

In what follows, $(\pi_{\phi}, \mathcal{H}_{\phi}, \xi_{\phi})$ is the unitary representation of $G = \Gamma \wr \mathfrak{S}_{\infty}$ that corresponds by GNS-construction to the character ϕ . In particular, the operators $\pi(G)$ act in \mathcal{H}_{ϕ} with cyclic separating vector ξ_{ϕ} . That is,

(4.1)
$$\left[\pi_{\phi}\left(G\right)\xi_{\phi}\right] = \left[\pi_{\phi}\left(G\right)'\xi_{\phi}\right] = \mathcal{H}_{\phi},$$

where [S] stands for the closed subspace in \mathcal{H}_{ϕ} generated by S. Moreover $\phi(g) = (\pi_{\phi}(g)\xi_{\phi},\xi_{\phi})$ for all $g \in G$.

The property (4.1) allows one to produce a unitary spherical representation $\pi_{\phi}^{(2)}$ of the Olshanski pair $(G \times G, K)$, where $K = \text{diag } G = \{(g,g)\}_{g \in G}$. Namely,

(4.2)
$$\pi_{\phi}^{(2)}(g_1, g_2) x \xi_{\phi} = \pi_{\phi}(g_1) x \pi_{\phi}(g_2)^* \xi_{\phi} \text{ for all } x \in \pi_{\phi}(G)''.$$

Let

$$G_n(\infty) = \left\{ g = s \cdot \gamma \in G \middle| s(l) = l \text{ and } \gamma_l = e \text{ for all } l = 1, 2, \dots, n \right\},$$

$$K_n(\infty) = K \cap \left(G_n(\infty) \times G_n(\infty) \right), \quad G_n = \Gamma \wr \mathfrak{S}_n, \quad K_n = \left(G_n \times G_n \right) \cap K$$

It follows from the definition that $G_0(\infty) = G_\infty = G$, $K_0(\infty) = K_\infty = K$. Set

$$\mathcal{H}_{\phi}^{K_{n}(\infty)} = \left\{ \eta \in \mathcal{H}_{\phi} \middle| \pi_{\phi}^{(2)}(g) \eta = \eta \text{ for all } g \in K_{n}(\infty) \right\},\$$

and let P_n be the orthogonal projection onto $\mathcal{H}_{\phi}^{K_n(\infty)}$.

Lemma 14. $\bigcup_{n=0}^{\infty} \mathcal{H}_{\phi}^{K_n(\infty)}$ is a dense subspace in \mathcal{H}_{ϕ} . In different terms, $\lim_{n \to \infty} P_n = \mathcal{I}_{\mathcal{H}_{\phi}}$ in the strong operator topology.

Proof. It follows from the definition of $\pi_{\phi}^{(2)}$ (see (4.2)) that

(4.3)
$$[\pi_{\phi}(G_n)\xi_{\phi}] \subset \mathcal{H}_{\phi}^{K_n(\infty)}.$$

On the other hand, ξ_{ϕ} is a cyclic vector. That is, $\left[\bigcup_{n=1}^{\infty} \pi_{\phi}(G_n)\xi_{\phi}\right] = \mathcal{H}_{\phi}$. Now our statement follows from (4.3).

Remind a construction of asymptotic operators which appears in [2], [3]. Consider the transposition $(i, n) \in \mathfrak{S}_{\infty}$ and the operator

(4.4)
$$\mathcal{O}_k = \lim_{n \to \infty} \frac{1}{n} \sum_{l=1}^n \pi_\phi\left((k,l)\right)$$

The limit exists in the strong operator topology.

Lemma 15. Let i(p) be an element of $p \in \mathbb{N} \times s$. Given any $\gamma = (\gamma_1, \gamma_2, \cdots, \gamma_n, \cdots) \in \Gamma_e^{\infty}$, there exists $\tilde{\gamma} \in \Gamma_e^{\infty}$ with the property $\tilde{\gamma} \cdot s \cdot \gamma \cdot \tilde{\gamma}^{-1} = s \cdot \gamma'$, where

$$\gamma_{s^{(l-1)}(i(p))}' = e_{\Gamma} \quad for \ all \quad l = 1, 2, \dots, \quad |p| - 1 \quad and \quad p \in \mathbb{N} / s,$$
$$\gamma_{s^{(|p|-1)}(i(p))}' = \gamma_{s^{(|p|-1)}(i(p))} \cdot \gamma_{s^{(|p|-2)}(i(p))} \cdots \gamma_{i(p)}.$$

Proof. Let the $\tilde{\gamma}$ be defined as follows:

$$\tilde{\gamma}_{i(p)} = e_{\Gamma}, \tilde{\gamma}_{s(i(p))} = \gamma_{i(p)}^{-1}, \tilde{\gamma}_{s^{(2)}(i(p))} = \gamma_{i(p)}^{-1} \cdot \gamma_{s(i(p))}^{-1}, \cdots,$$

$$\tilde{\gamma}_{s^{(|p|-1)}(i(p))} = \gamma_{i(p)}^{-1} \cdot \gamma_{s(i(p))}^{-1} \cdots \gamma_{s^{(|p|-2)}(i(p))} \text{ for all } p \in \mathbb{N} \neq s.$$

Now our statement can be readily verified.

Lemma 16. Let s be a cycle from \mathfrak{S}_{∞} . Suppose that for $\beta, \gamma \in \Gamma_e^{\infty}$ the following relations hold:

$$\beta_k = \gamma_k = e_{\Gamma} \quad for \ all \quad k \in \left\{ j \in \mathbb{N} \middle| \ s(j) = j \right\}$$

If $s\beta$ and $s\gamma$ are in the same conjugate class, then there exists $\tilde{\gamma} \in \Gamma_e^{\infty}$ such that $s\gamma = \tilde{\gamma} \cdot s\beta \cdot \tilde{\gamma}^{-1}$.

Proof. One may assume without loss of generality that

s(k) = k + 1 for k = 1, 2, ..., m - 1, s(m) = 1 and s(l) = l for all l > m.

By Lemma 15 there exist $\tilde{\gamma}, \tilde{\beta} \in \Gamma_e^\infty$ with the properties

(4.5)
$$\tilde{\gamma} \cdot s \cdot \gamma \cdot \tilde{\gamma}^{-1} = s \cdot \gamma', \ \tilde{\beta} \cdot s \cdot \beta \cdot \tilde{\beta}^{-1} = s \cdot \beta', \text{ where } \\ \gamma'_k = \beta'_k = e_{\Gamma} \text{ for } k = 1, 2, \dots, m-1, m+1, \dots .$$

Let $s \in \mathfrak{S}_{\infty}$ and $\delta \in \Gamma_e^{\infty}$ be such that

$$(t\delta) s\gamma' (t\delta)^{-1} = s\beta'.$$

One has the following relations:

(4.6)

$$\begin{aligned}
\delta_2 \gamma'_1 &= \beta'_{t(1)} \delta_1 \\
\delta_3 \gamma'_2 &= \beta'_{t(2)} \delta_2 \\
\vdots &\vdots \\
\delta_m \gamma'_{m-1} &= \beta'_{t(m-1)} \delta_{m-1} \\
\delta_1 \gamma'_m &= \beta'_{t(m)} \delta_m.
\end{aligned}$$

By assumptions of the Lemma, $t(\{1, 2, ..., m\}) = \{1, 2, ..., m\}$, and we may assume that t(k) = k for all k > m. Hence, there exists a map f from \mathbb{N} to \mathbb{N} such that

$$t(k) = s^{f(k)}(k)$$
 for $k \in \mathbb{N}$.

Now use the relation ts = st to obtain

(4.7)
$$f(k) = l$$
 for $k = 1, 2, ..., m$.

Since s^m is the identity, it suffices to consider the case $l \in \{1, 2, ..., m-1\}$.

Use (4.6) to obtain

$$\delta_1 = \dots = \delta_{m-l}, \quad \delta_{m-l+1} = \dots = \delta_m,$$

$$\beta'_m = \delta_m \delta_1^{-1}, \quad \gamma'_m = \delta_1^{-1} \delta_m.$$

These relations together with (4.5) yield the following relation:

$$\delta' s\gamma' (\delta')^{-1} = s\beta', \text{ where } \delta' = \left(\delta_m^{-1}\delta_1, \delta_m^{-1}\delta_1, \dots, \delta_m^{-1}\delta_1, \dots\right).$$

5. A proof of the main result

The proof of Theorem 9 splits into a few lemmas.

For each *indecomposable* character ϕ let $(\pi_{\phi}, \mathcal{H}_{\phi}, \xi_{\phi})$ denote the cyclic representation of the group $\Gamma \wr \mathfrak{S}_{\infty}$ associated to ϕ via the GNS-construction.

Lemma 17. If a W^* -algebra \mathfrak{A} is generated by the operators $\pi_{\phi}(\Gamma_e^{\infty})$, $\{\mathcal{O}_j\}_{j\in\mathbb{N}}$, and $\mathcal{C}(\mathfrak{A})$ is a center of \mathfrak{A} , then $\{\mathcal{O}_j\}_{j\in\mathbb{N}} \subset \mathcal{C}(\mathfrak{A})$.

Proof. The relation $\mathcal{O}_k \cdot \mathcal{O}_l = \mathcal{O}_l \cdot \mathcal{O}_k$ allows an easy verification by definition (4.4) (see [2] or [3]).

Now prove the relation

(5.1)
$$\mathcal{O}_l \cdot \pi_{\phi}(\gamma) = \pi_{\phi}(\gamma) \cdot \mathcal{O}_l \text{ for all } \gamma \in \Gamma_e^{\infty} \text{ and } l \in \mathbb{N}.$$

Let $K_n^{\mathfrak{S}}(\infty) = K_n(\infty) \cap (\mathfrak{S}_{\infty} \times \mathfrak{S}_{\infty})$ and $K_n^{\mathfrak{S}}(m) = K_n^{\mathfrak{S}}(\infty) \cap (G_m \times G_m)$, where m > n. If $P_n^{\mathfrak{S}}$ stands for the orthogonal projection onto $\mathcal{H}_{\phi}^{K_n^{\mathfrak{S}}(\infty)}$, then

(5.2)
$$P_n^{\mathfrak{S}} = \lim_{m \to \infty} \frac{1}{(m-n)!} \sum_{g \in K_n^{\mathfrak{S}}(m)} \pi_{\phi}^{(2)}(g)$$

in the strong operator topology and $P_n^{\mathfrak{S}} \geq P_n^{-1}$. Hence, using (4.4) and (5.2), we obtain for $i \leq n < k$

(5.3)
$$P_n^{\mathfrak{S}}\mathcal{O}_i P_n^{\mathfrak{S}} = P_n^{\mathfrak{S}} \pi_{\phi}\left((i,k)\right) P_n^{\mathfrak{S}} \text{ and } P_n \mathcal{O}_i P_n = P_n \pi_{\phi}\left((i,k)\right) P_n.$$

In the case when $\gamma_l = e$ the equality (5.1) easily follows from (4.4). Therefore, it suffices to prove (5.1) for the elements $\gamma = \gamma(\{l\})$ (see (1.3)).

¹See the page 311 (4.3) for definition of P_n

313

If $i \leq n < k$, then, using (4.4), we have

$$P_{n}\pi_{\phi}(\gamma(\{i\})) \mathcal{O}_{i}P_{n}^{\{P_{n}^{\mathfrak{S}} \ge P_{n}\}} P_{n}P_{n}^{\mathfrak{S}}\pi_{\phi}(\gamma(\{i\})) \mathcal{O}_{i}P_{n}^{\mathfrak{S}}P_{n}$$

$$\stackrel{\{(4.4),(5.2)\}}{=} P_{n}\pi_{\phi}(\gamma(\{i\})) P_{n}^{\mathfrak{S}}\pi_{\phi}((i,k)) P_{n}^{\mathfrak{S}}P_{n}$$

$$= P_{n}P_{n}^{\mathfrak{S}}\pi_{\phi}((i,k)) \pi_{\phi}(\gamma(\{k\})) P_{n}^{\mathfrak{S}}P_{n}$$

$$= P_{n}P_{n}^{\mathfrak{S}}\pi_{\phi}((i,k)) \pi_{\phi}(\gamma(\{k\})) \pi_{\phi}^{(2)}\left(\left(\gamma(\{k\})^{-1},\gamma(\{k\})^{-1}\right)\right) P_{n}$$

$$\stackrel{(4.2)}{=} P_{n}P_{n}^{\mathfrak{S}}\pi_{\phi}^{(2)}\left(\left(e,\gamma(\{k\})^{-1}\right)\right) \pi_{\phi}((i,k)) P_{n}$$

$$= P_{n}\pi_{\phi}^{(2)}\left(\left(\gamma(\{k\}),\gamma(\{k\})\right)\right) \pi_{\phi}^{(2)}\left(\left(e,\gamma(\{k\})^{-1}\right)\right) \pi_{\phi}((i,k)) P_{n}$$

$$= P_{n}\pi_{\phi}\left(\gamma(\{k\})\right) \pi_{\phi}\left((i,k)\right) P_{n} = P_{n}\pi_{\phi}\left(\gamma(\{i\})\right) P_{n}$$

$$\stackrel{(4.4)}{=} P_{n}\mathcal{O}_{i}\pi_{\phi}\left(\gamma(\{i\})\right) P_{n}.$$

Since $\lim_{n \to \infty} P_n = \mathcal{I}_{\mathcal{H}_{\phi}}$ (see Lemma 14), the relation

$$\pi_{\phi}\left(\gamma(\{i\})\right)\mathcal{O}_{i}=\mathcal{O}_{i}\pi_{\phi}\left(\gamma(\{i\})\right)$$

follows.

We use the notation $(i_0, i_1, \ldots, i_{q-1})$ for the cyclic permutation s which acts as follows

$$s(i) = \begin{cases} i_{k+1 \pmod{q}}, & \text{if } i = i_k \in \{i_0, i_1, \dots, i_{q-1}\}, \\ i, & \text{otherwise.} \end{cases}$$

Lemma 18. If \mathcal{O}_i is defined as in (4.4) and

$$\mathbb{D}(m,n,q) = \left\{ \overrightarrow{k} = (k_1,k_2,\ldots,k_q) \in \mathbb{N} \middle| k_i \neq k_j \text{ and } m < k_i \leq n \ \forall i,j=1,\ldots,q \right\},\$$

then for every positive integer m

$$\mathcal{O}_i^q = \lim_{n \to \infty} \frac{1}{n^q} \sum_{\vec{k} \in \mathbb{D}(m,n,q)} \pi_\phi \left((k_q, k_{q-1}, \dots, k_1, i) \right)$$

Proof. If we notice that

$$(i, k_1) \cdot (i, k_2) \cdots (i, k_q) = (k_q, k_{q-1}, \dots, k_1, i)$$

for pairwise different i, k_1, k_2, \ldots, k_q and $\operatorname{Card}(\mathbb{D}(m, n)) = \prod_{j=0}^{q-1} (n-m-j)$, the proof becomes obvious.

Lemma 19. Let $g = \prod_{p \in \mathbb{N} \neq s} s_p \cdot \gamma(p)$ be a decomposition of $g = s \cdot \gamma \in \Gamma \wr \mathfrak{S}_{\infty}$ (see (1.4)) and i(p) any element from $p \in \mathbb{N} \neq s$. Define $\gamma^{(i(p))} \in \Gamma_e^{\infty}$ as follows:

$$(5.4)\gamma_k^{(i(p))} = \begin{cases} \gamma_{i(p)} \cdot \gamma_{s^{-1}(i(p))} \cdots \gamma_{s^{(-|p|+2)}(i(p))} \cdot \gamma_{s^{(-|p|+1)}(i(p))}, & \text{if } k = i(p), \\ e, & \text{otherwise.} \end{cases}$$

If ϕ is an indecomposable character on $\Gamma \wr \mathfrak{S}_{\infty}$, then

(5.5)
$$\left(\pi_{\phi}\left(s\cdot\gamma\right)\prod_{j}\mathcal{O}_{j}^{r_{j}}\xi_{\phi},\xi_{\phi}\right)=\prod_{p\in\mathbb{N}\nearrow s}\left(\pi_{\phi}\left(\gamma^{(i(p))}\right)\mathcal{O}_{i(p)}^{|p|-1+\sum\limits_{j\in p}r_{j}}\xi_{\phi},\xi_{\phi}\right).$$

Proof. By Proposition 7 we have

(5.6)
$$\left(\pi_{\phi} \left(s \cdot \gamma \right) \prod_{j} \mathcal{O}_{j}^{r_{j}} \xi_{\phi}, \xi_{\phi} \right) = \prod_{p \in \mathbb{N} \neq s} \left(\pi_{\phi} \left(s_{p} \cdot \gamma(p) \right) \prod_{j \in p} \mathcal{O}_{j}^{r_{j}} \xi_{\phi}, \xi_{\phi} \right).$$

Therefore it suffices to prove (5.5) in the case when s is a single cycle and $\gamma = \gamma(p)$, where $p \in \mathbb{N}/s$ and |p| > 1. Let $s = (i_1, i_2, \ldots, i_{|p|})$. By a virtue of Lemma 16, we find $\tilde{\gamma} \in \Gamma_e^{\infty}$ such that

(5.7)
$$\tilde{\gamma} \cdot s \cdot \gamma \cdot \tilde{\gamma}^{-1} = s \cdot \gamma^{(i_1)}.$$

Thus, by Lemma 17,

(5.8)
$$\left(\pi_{\phi}\left(s\cdot\gamma\right)\prod_{j\in p}\mathcal{O}_{j}^{r_{j}}\xi_{\phi},\xi_{\phi}\right) = \left(\pi_{\phi}\left(\gamma^{(i_{1})}\right)\pi_{\phi}\left(s\right)\prod_{j\in p}\mathcal{O}_{j}^{r_{j}}\xi_{\phi},\xi_{\phi}\right).$$

Let

$$\mathfrak{S}_{\infty}^{j} = \left\{ \tau \in \mathfrak{S}_{\infty} \middle| \tau(j) = j \right\}.$$

Now use Lemma 18 to obtain

$$\begin{pmatrix} \pi_{\phi}(\gamma^{(i_{1})})\pi_{\phi}(s)\prod_{j\in p}\mathcal{O}_{j}^{r_{j}}\xi_{\phi},\xi_{\phi} \end{pmatrix}$$

$$= \lim_{n\to\infty}\frac{1}{n^{q}}\sum_{\vec{k}\in\mathbb{D}(m,n,q)} \left(\pi_{\phi}(\gamma^{(i_{1})})\pi_{\phi}\left(\left(k_{r_{i_{1}}}^{(i_{1})},k_{r_{i_{1}}-1}^{(i_{1})},\ldots,k_{1}^{(i_{1})},i_{2},k_{r_{i_{2}}}^{(i_{2})},\ldots,k_{1}^{(i_{2})},\ldots,k_{1}^{(i_{2})},\ldots,k_{1}^{(i_{p})},\ldots,\ldots,k_{1}^{(i_{p})},\ldots,\ldots,k_{1}^{(i_{p})},\ldots$$

where

$$\vec{k} = \left(k_{r_{i_1}}^{(i_1)}, k_{r_{i_1}-1}^{(i_1)}, \dots, k_1^{(i_1)}, k_{r_{i_2}}^{(i_2)}, \dots, k_1^{(i_2)}, \dots, k_{r_{i_{|p|}}}^{(i_{|p|})}, \dots, k_1^{(i_{|p|})}\right), \quad q = \sum_{j \in p} r_j.$$

Hence, by the relation $\tau \cdot \gamma^{(i_1)} \tau^{-1} = \gamma^{(i_1)} \ (\tau \in \mathfrak{S}_{\infty}^{i_1})$, we have

$$\begin{pmatrix} \pi_{\phi}(\gamma^{(i_{1})})\pi_{\phi}(s)\prod_{j\in p}\mathcal{O}_{j}^{r_{j}}\xi_{\phi},\xi_{\phi} \end{pmatrix}$$

$$=\lim_{n\to\infty}\frac{1}{n^{q'}}\sum_{\vec{k}\in\mathbb{D}(m,n,q')}\left(\pi_{\phi}\left(\gamma^{(i_{1})}\right)\pi_{\phi}\left(\left(k_{r_{i_{1}}}^{(i_{1})},k_{r_{i_{1}}-1}^{(i_{1})},\ldots,k_{1}^{(i_{1})},i_{2},k_{r_{i_{2}}}^{(i_{2})},\ldots,k_{1}^{(i_{2})},i_{3},\ldots,i_{|p|},k_{r_{i_{|p|}}}^{(i_{|p|})},\ldots,k_{1}^{(i_{|p|})},i_{1}\right)\right)\xi_{\phi},\xi_{\phi} \end{pmatrix},$$

where

$$\vec{k} = \left(k_{r_{i_1}}^{(i_1)}, k_{r_{i_1}-1}^{(i_1)}, \dots, k_1^{(i_1)}, i_2, k_{r_{i_2}}^{(i_2)}, \dots, k_1^{(i_2)}, i_3, \dots, i_{|p|}, k_{r_{i_{|p|}}}^{(i_{|p|})}, \dots, k_1^{(i_{|p|})}\right),$$
$$q' = |p| - 1 + \sum_{j \in p} r_j.$$

This relation, in view of Lemma 18, implies the statement of Lemma 19.

We use the notation \mathfrak{A}_{j} for the W^{*} -algebra generated by $\pi_{\phi}(\gamma), \gamma = (e, \dots, e, \gamma_{j}, e, \dots),$ and \mathcal{O}_{j} . Given an operator A from \mathfrak{A}_{j} , denote by $A^{(k)}$ its copy in \mathfrak{A}_{k} :

$$A^{(k)} = \pi_{\phi}((j,k)) A \pi_{\phi}((j,k)) \quad (A^{(j)} = A).$$

The next assertion follows from Lemma 19.

Lemma 20. Let s, i(p) be the same as in Lemma 19. If $A_j, B_j \in \mathfrak{A}_j$, then

(5.9)
$$\begin{pmatrix} \pi_{\phi}(s) \prod_{j} A_{j}\xi_{\phi}, \prod_{j} B_{j}\xi_{\phi} \end{pmatrix} \\ = \prod_{p \in \mathbb{N} \neq s} \left(A_{i(p)}^{(i(p))} \left(B_{i(p)}^{(i(p))} \right)^{*} A_{s^{-1}(i(p))}^{(i(p))} \left(B_{s^{-1}(i(p))}^{(i(p))} \right) \\ \cdots A_{s^{1-|p|}(i(p))}^{(i(p))} \left(B_{s^{1-|p|}(i(p))}^{(i(p))} \right)^{*} \mathcal{O}_{i(p)}^{|p|-1}\xi_{\phi}, \xi_{\phi} \end{pmatrix}.$$

The following lemma is an analogue of Theorem 1 from [3].

Lemma 21. Let $\Delta = [a, b]$ be an interval in [-1, 0] or in [0, 1] with the property $\min\{|a|, |b|\} > \varepsilon > 0$. If $E_{\Delta}^{(i)}$ is a spectral projection of \mathcal{O}_i corresponding to Δ , then for any orthogonal projection E from \mathfrak{A}_i one has $\left(EE_{\Delta}^{(i)}\xi_{\phi},\xi_{\phi}\right)^2 \ge \varepsilon\left(EE_{\Delta}^{(i)}\xi_{\phi},\xi_{\phi}\right)$.

Proof. Using Lemmas 17 and 20, we have

(5.10)
$$\left| \left(\pi_{\phi} \left((i, i+1) \right) E E_{\Delta}^{(i)} \xi_{\phi}, E E_{\Delta}^{(i)} \xi_{\phi} \right) \right|$$
$$= \left| \left(\mathcal{O}_{i} E E_{\Delta}^{(i)} \xi_{\phi}, E E_{\Delta}^{(i)} \xi_{\phi} \right) \right| > \varepsilon \left| \left(E E_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi} \right) \right|.$$

On the other hand, under the assumption $E^{(i+1)} = \pi_{\phi} \left((i, i+1) \right) E \pi_{\phi} \left((i, i+1) \right)$, one has

$$EE_{\Delta}^{(i)} \cdot E^{(i+1)}E_{\Delta}^{(i+1)} \cdot \pi_{\phi}\left((i,i+1)\right) = \pi_{\phi}\left((i,i+1)\right) \cdot EE_{\Delta}^{(i)} \cdot E^{(i+1)}E_{\Delta}^{(i+1)}.$$

Therefore,

$$\begin{split} \left| \left(\pi_{\phi} \left((i, i+1) \right) EE_{\Delta}^{(i)} \xi_{\phi}, EE_{\Delta}^{(i)} \xi_{\phi} \right) \right| \\ &= \left| \left(\pi_{\phi} \left((i, i+1) \right) E^{(i+1)} E_{\Delta}^{(i+1)} EE_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi} \right) \right| \\ &\leq \left| \left(E^{(i+1)} E_{\Delta}^{(i+1)} EE_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi} \right) \right| \stackrel{(\text{Prop. 7})}{=} \left(EE_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi} \right)^{2}. \end{split}$$

Hence, using (5.10), we obtain our statement.

The following statement is well known (see [3]) and also follows from Lemma 21.

Corollary 22. There exists at most countable set of numbers α_i , β_i from (0,1) and a set of pairwise orthogonal projections $\{E^{(k)}(\alpha_i), E^{(k)}(\beta_i)\} \subset \mathfrak{A}_k$ such that

(5.11)
$$\mathcal{O}_{k} = \sum \alpha_{i} E^{(k)} \left(\alpha_{i} \right) - \sum \beta_{i} E^{(k)} \left(\beta_{i} \right)$$

The following assertion is an analogue of Theorem 2 from [3].

Lemma 23. Let r be a number from $\{\alpha_i, \beta_i\}$ and let E be any projection from \mathfrak{A}_k . If $(E \cdot E^{(k)}(r)\xi_{\phi}, \xi_{\phi}) = r\nu(r) \neq 0$, then $\nu(r) \in \mathbb{Z}$.

Proof. For completeness of the proof, we use the arguments of Kerov, Olshanski, Vershik and Okounkov from [1] and [3].

For any $m \in \mathbb{N}$, define the projection $e_m(r)$ as follows:

$$e_m(r) = \prod_{j=1}^m E^{(j)} \cdot E^{(j)}(r), \quad \text{where}$$
$$E^{(j)} = \pi_\phi\left((j,k)\right) E\pi_\phi\left((j,k)\right), \quad E^{(j)}(r) = \pi_\phi\left((j,k)\right) E^{(k)}(r)\pi_\phi\left((j,k)\right).$$

Let $\mathbb{P}_m(s)$ be the set of orbits s on $\{1, 2, \ldots, m\}$. If $s \in \mathfrak{S}_m$, then by Lemma 20 we obtain

(5.12)
$$(\pi_{\phi}(s)e_m(r)\xi_{\phi}, e_m(r)\xi_{\phi}) = \nu(r)^{|\mathbb{P}_m(s)|} \prod_{p \in \mathbb{P}_m(s)} r^{|p|}.$$

315

Set $\phi_r(s) = \frac{(\pi_{\phi}(s)e_m(r)\xi_{\phi}, e_m(r)\xi_{\phi})}{(e_m(r)\xi_{\phi}, e_m(r)\xi_{\phi})}$. Using (5.12), we have

(5.13)
$$\phi_r(s) = \frac{\nu(r)^{|\mathbb{P}_m(s)|}}{\nu(r)^m}.$$

Therefore, ϕ_r is an indecomposable character on \mathfrak{S}_{∞} in view of Proposition 7.

We following G. Olshanski (see [6]) in expounding the proof of the following formula:

(5.14)
$$\sum_{s \in \mathfrak{S}_m} \operatorname{sgn}(s) t^{|\mathbb{P}_m(s)|} = t(t-1)\cdots(t-m+1).$$

For that, we consider the canonical projection $p_{m,m-1}$ from \mathfrak{S}_m onto \mathfrak{S}_{m-1}

$$(p_{m,m-1}(s))(i) = \begin{cases} s(i), & \text{if } s(i) < m, \\ s(m), & \text{if } s(i) = m. \end{cases}$$

Since $|\mathbb{P}_{m-1}(p_{m,m-1}(s))| = |\mathbb{P}_m(s)|$ when $s \notin \mathfrak{S}_{m-1}$, and $|\mathbb{P}_{m-1}(p_{m,m-1}(s))| = |\mathbb{P}_m(s)| - 1$ when $s \in \mathfrak{S}_{m-1}$, then

$$\sum_{s \in \mathfrak{S}_m} \operatorname{sgn}(s) t^{|\mathbb{P}_m(s)|} = \sum_{s \in \mathfrak{S}_{m-1}} \sum_{\tilde{s} \in \mathfrak{S}_m: \ p_{m,m-1}(\tilde{s})=s} \operatorname{sgn}(s) t^{|\mathbb{P}_m(s)|}$$
$$= t \cdot \sum_{s \in \mathfrak{S}_{m-1}} t^{|\mathbb{P}_m(s)|} - (m-1) \cdot \sum_{s \in \mathfrak{S}_{m-1}} t^{|\mathbb{P}_m(s)|} = (t-m+1) \sum_{s \in \mathfrak{S}_{m-1}} t^{|\mathbb{P}_m(s)|}.$$

Hence (5.14) is now accessible by an elementary induction argument.

We follow the idea of A. Okounkov in considering the orthogonal projection

$$\operatorname{Alt}_r(m) = \frac{1}{m!} \sum_{s \in \mathfrak{S}_m} \operatorname{sgn}(s) \pi_{\phi_r}(s)$$

Since $\sum_{s \in \mathfrak{S}_m} \operatorname{sgn}(s) \phi_r(s) \ge 0$, then, using (5.13) and (5.14), we obtain for r > 0

$$\nu(r) \cdot (\nu(r) - 1) \cdots (\nu(r) - m + 1) \ge 0 \quad \text{for all} \quad m \in \mathbb{N}.$$

Thus, we get a contradiction in the case $\nu(r) > 0$. The opposite case $\nu(r) < 0$ can be considered in a similar way. For that, one should use the formula

$$\sum_{s \in \mathfrak{S}_m} t^{|\mathbb{P}_m(s)|} = t(t+1)\cdots(t+m-1) \quad (\text{see } [6])$$

and consider the projection

$$\operatorname{Sym}_{r}(m) = \frac{1}{m!} \sum_{s \in \mathfrak{S}_{m}} \pi_{\phi_{r}}(s).$$

Proof of Theorem 9. Let $E_k(r)$ be the spectral projection of \mathcal{O}_k (see (4.4), (5.11)). By Lemma 23, for $r \neq 0$ the W^* -algebra $E_k(r)\mathfrak{A}_k$ (see p. 314) is finite-dimensional. On the other hand, use Lemma 17 to obtain the unitary representation $\left(E_k(r)\pi_{\phi}\Big|_{\Gamma}, E_k(r)\mathcal{H}_{\phi}\right)$ of the group Γ in the space $E_k(r)\mathcal{H}_{\phi}$. Thus, the representations ϱ^r for $r \neq 0$ as in Theorem 9 are the irreducible components of $\left(E_k(r)\pi_{\phi}\Big|_{\Gamma}, E_k(r)\mathcal{H}_{\phi}\right)$. The formula for characters follows from Lemmas 17 and 20. Finally, for each character as in Theorem 9 we construct the realization as in Section 2.

References

- S. Kerov, G. Olshanski, A. Vershik, Harmonic analysis on the infinite symmetric group, RT-0312270.
- A. Okounkov, The Thoma theorem and representation of the infinite bisymmetric group, Funct. Anal. Appl. 28 (1994), no. 2, 100–107.
- 3. A. Okounkov, On the representation of the infinite symmetric group, RT-9803037.
- P. Etingof and S. Montarani, Finite dimensional representations of symplectic reflection algebras associated to wreath products, math. RT-0403250.
- E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe, Math. Zeitschr. 85 (1964), no. 1, 40–61.
- G. Olshanski, An introduction to harmonic analysis on the infinite symmetric group, RT-0311369.
- G. Olshanski, Unitary representations of (G, K)-pairs connected with the infinite symmetric group S(∞), Algebra i Analiz 1 (1989), no. 4, 178–209. (Russian); English transl. in Leningrad Math. J. 1 (1990), no. 4, 983–1014.
- A. Vershik and S. Kerov, Characters and factor representations of the infinite symmetric group, Soviet Math. Dokl. 23 (1981), no. 2, 389–392.
- O. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 1. C*and W*-Algebras. Symmetry Groups. Decomposition of States, 2nd revised edition, Springer-Verlag, Berlin—Heidelberg—New York, 1987.
- Yu. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford Univ. Pr., 1996.
- R. Boyer, Character theory of infinite wreath product, Int. J. Math. and Math. Sci. 9 (2005), 1365–1379.
- 12. A. Dudko, N. Nessonov, A description of characters on the infinite wreath product, RT-0510597.

KHARKIV NATIONAL UNIVERSITY, KHARKIV, UKRAINE *E-mail address*: artemdudko@rambler.ru

DEPARTMENT OF MATHEMATICS, INSTITUTE FOR LOW TEMPERATURE PHYSICS AND ENGINEERING, 47 LENIN AVENUE, KHARKIV, UKRAINE

E-mail address: nessonov@ilt.kharkov.ua

Received 10/09/2006