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A DESCRIPTION OF CHARACTERS ON THE INFINITE WREATH
PRODUCT

A. V. DUDKO AND N. I. NESSONOV

ABSTRACT. Let G~ be the infinity permutation group and I' an arbitrary group.
Then G~ admits a natural action on I'*° by automorphisms, so one can form a
semidirect product I'° X G, known as the wreath product I'! S of I by 6. We
obtain a full description of unitary II; —factor-representations of I' ! S in terms of
finite characters of I". Our approach is based on extending Okounkov’s classification
method for admissible representations of G X G. Also, we discuss certain exam-
ples of representations of type III, where the modular operator of Tomita-Takesaki
expresses naturally by the asymptotic operators, which are important in the theory
of characters of Go.

1. INTRODUCTION

1.1. A definition of the wreath product. Let N stand for the natural numbers.
A Dbijection s : N — N is called finite if the set {i € N|s(¢) # i} is finite. Define S
as the group of all finite bijections N — N and set &,, = {s € G| s(i) =i Vi > n}.
For every group I', an element of I'” can always be written as an ordered collection
Velr—y = (v1,72,---,7), where 7, € I'. Let e be the unit of I'. For any n > 1 we
identify the element (y1,72,...,Yn—1) € I with (y1,72,...,7m-1,€) € '™ and set
I'e® = limI™. One can view I'2® as a group of infinite ordered collections [Vpe; such
that there are finitely many elements v; not equal to e. The wreath product I'! S, is the
semidirect product I'" x &,, for the natural permutation action of &,, on I'" (see [4]).
In the same way, we define the group 't 6o =I'® X Go. 't G can be also viewed
as the inductive limit limI"? &,,. Using the embedding v € I'" — (v,id) e T &, and
se€ 6, — (e("), 5) € IS, where e™ = (e,e, ..., e) and id is the identical bijection, we
may identify I'" and &,, with the corresponding subgroups in " &,,. If ' is a topological
group, then we equip I'" with the natural product topology. Furthermore, we will always
consider I'S® as a topological group with the inductive limit topology. As a set, I'1 G, is
just I'® x G. Therefore, we equip I' 1 G with the product topology, considering &,
as a discrete topological space.

1.2. The results. In this paper we give a full classification of indecomposable characters
(see Definitions (3)—(4)) on I''G s (Theorem 9). Our approach is based on the semigroup
method of Olshanski [7] and the ideas of Okounkov used in the study of admissible rep-
resentations of the groups related to G (see [2],[3]). We have noticed that two double
cosets containing the transposition or v € I' commute, as the elements of Olshanski semi-
group. (see Lemma 17). This observation enables one to develop Okounkov’s method
for the group I't & (see Section 5). In Section 3 we discuss certain examples of repre-
sentations of type III. The corresponding positive definite functions (p.d.f.) ¢ are not
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characters, but the following holds:
(1.1) o(sg) = p(gs) forall geTl 16, and sé€ 6.

Hence the restriction go‘ Su is a character. At that, the Okounkov’s asymptotic opera-
tors (see (4.4)) are naturally connected to the Tomita-Takesaki modular operator (see
subsection 3.3). In fact, this observation is common for p.d.f. with the property (1.1).
For those, we are going to produce a complete classification in a subsequent paper.

1.3. The basic definition and the conjugacy classes. Let H be a Hilbert space,
B (H) an algebra of all bounded operators in H, and Z3 the identity operator in H.
We denote by U (H) the unitary subgroup in B (H). By a unitary representation of the
topological group G we always mean a continuous homomorphism of G into U (H), where
U (H) is equipped with the strong operator topology.

Definition 1. A unitary representation 7 : G — U (H) of G is called a factor-representa-
tion if the W*—algebra 7(G)"” generated by the operators w(g) (g € G), is a factor.

Definition 2. A unitary representation 7 is called a factor-representation of finite type
if 7(G)" is a factor of type II;.

Let M be a factor of type II; and M a subalgebra of B(H). If n(G) C U(M) =
MOU(H) and trg is the unique normal, normalized (tr(I) = 1) trace on M, then it
determines a character ' on G by ¢M(g) = traq (7(9))-

Definition 3. A continuous function ¢ on G is called a character if it satisfies the
following properties:

(a) ¢ is central, that is, ¢ (9192) = ¢ (9291) ¥ 91,92 € G .
(b) ¢ is positive definite, that is, for all g1, gs, ..., g, the matrix [¢ (gjglzl)b,kzl is
non-negatively definite;

(c) ¢ is normalized, that is, ¢ (eq) = 1, where e¢ is the unit of G.

Definition 4. A character ¢ is called indecomposable if the group representation corres-
ponding to ¢ (according to the GNS construction) is a factor-representation.

In this paper we obtain a complete description of indecomposable characters on 'S,
in the case when I is a separable topological group.

First, let us describe the conjugacy classes in [''G,. Recall that the conjugacy classes
in 6, are parametrized by non-increasing sequences A = (A1, \a, . ..) of natural numbers
such that there are finitely many elements Ar not equal to 1. Namely, A1, Ao,... are
the orders of cycles of a permutation s € G,. Furthermore, an element I' ! &, can be
written as a product of an element of G, and an element of I'S°, and the commutation
rule between these two kinds of elements is as follows:

(12) Sy =5- ('Yla’Y% e ) = (75’1(1)773*1(2)7' i ) S,

where s € G0, v = (71,72,...) €.
By the analogy with the definition of a cycle in &, define the generalized cycle in
' 6.

Definition 5. Say that element g = s-v € I'1 S, where v = (71,72, .. .) is generalized
cycle if s is cycle and {i|~v; # e} C {i]s(i) #1i}.

Let s be any permutation. Denote N, s the set of orbits of s on N. Note that for
p € N/s the permutation s, given by

| s(k), ifkep,
sp(k) = { k, otherwise,
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is a cycle of order |p|, where |p| stand for the cardinality of p. For v = (v1,72,...) € I'®
define the element vy(p) = (71(p), 2(p),...) € 'S as follows:

_ Yk if k € b,
(1.3) W (p) = { e, otherwise.

Thus, using (1.2), we have the decomposition of g = s -+ onto generalized cycles

(1.4) scy= ][ s
peEN/s
For an arbitrary group G denote by ¢, (g) the conjugacy class of g € G. Let g =
57 € I' 1 6. Note that for any orbit p € N/s and any k, € p the conjugacy class
[ ('ykp “Vslhp) T Vs (ky) T "YS(\p\—l)(kp)) does not depend on choice of k,. Define the
invariant i(g) given by unordered oo-tuples of pairs {(|p|, ¢. (Vk, - Vo(k,) - Vs (k) T
rys(‘pl_l)(kp)))}peN/s’ where s is [-th iteration of s and kp, — any number from the
orbit p. The following statement can be easily proved.

Proposition 6. Let g1 and g2 be elements of T'1S,. Then ¢ (g1) = ¢(g2) if and only if
i(g1) =1(g2)-

For any ¢ = s-+v € I' 1 64 denote supp (g) = {i € N|s(i) # ¢ or v; # e} and call
this set the support of g. Define for any ¢ € T and k € N the element (({k}) =
(t1({k}), ea({k}), .-, u({k}),...) € T as follows:

(15) u({k}) = { b L=k

e, otherwise.

1.4. The multiplicativity. The following claim gives a useful characterization of the
class of indecomposable characters:

Proposition 7. The following assumptions on a character ¢ of ' 1 6, are equivalent:

(a) ¢ is indecomposable;

(b) #(g) = 11 ¢ (sp-v(p)) foranyg=s-v= T s, -v(p) (see 1.4).

peEN/ s peN/s

Proof. To prove the proposition, we consider the elements g = s -~ and ¢’ = s’ -4/ of
't &4 such that supp (g) Nsupp (¢g’) = 0. Then by the properties of the group I' !l G
there exists a sequence {s,},.y C Go such that

(16) sp-g=g-s, and s,¢'s.'-h="h-s,g's," forall hel16,.

Suppose now that (@) holds. Using the GNS-construction, we produce the representation
7y of I't G which acts in a Hilbert space H, with a cyclic vector £, such that

?(g) = (7 (9) §6, ) -

Let A =w— lim 7y (sn -g’s;l) be a limit of the sequence 7y (sn ~g's;1) in the weak
n—oo

operator topology. Using (1.6), we deduce by Definition 4 that A = aZ, where 7 is the
identity operator in Hy4 and a a complex number. Therefore,

¢(g-9) = lim ¢(g-s,-g - s.") =(g) lim ¢ (sn-g - s5.") =(g) d(g).

Thus (b) follows from (a).
Conversely, suppose that (b) holds. For any subset S of B (H), define its commutant
as follows:

S ={TeB(H)|ST =TS forall S € S}.



304 A. V. DUDKO AND N. I. NESSONOV

If 74 (T 164) N7g ([164)" = Z is larger than the scalars, then it contains a pair of
orthogonal projections F and F' with the properties
(1.7) P(E)#0, ¢(F)#0 and E-F=0.

By the von Neumann Double Commutant Theorem for any £ > 0 there exist g7, gf" €
'S, CT16s (n < oo) and complex numbers ¢, cf” (k=1,2,..., N < c0) such that

Z iy (98) €6 — Béy|| < ep(E),
(1.8) =t

ch% 9r) & — Fés|| < o(F).

k=

Consider the bijection
j+n, if j<n,
T(j)=4 j—mn, if n<j<2n,
j,  otherwise.

By Definition (3), use (1.8) to obtain

N
> cfims (TgfT) & — BE|| < ed(E),
k=1

(1.9) N
D ek (gk T) Lo — F&y|| < £d(F).
k=1

Now, using (b), (1.7), (1.8) and (1. ) we have

VHE)S(F) (cVAENSF) +/3(E) + Vo))
N N
>’(ch7¢ TgRT) ch% 91 ) €es 5@5)’

N N
(St ) (St ) 05)
k=1

k=1
> ¢(E)p(F)(e +1)*.

Hence
1—Vo(F)  1-/¢(E)
e > +
Vo(F) Vo(E)
Then, comparing this to (1.7), we get a contradiction. O

1.5. The main result. In [5], E. Thoma obtained the following remarkable description
of all indecomposable characters of G,. The characters of G, are labeled by pairs of
non-increasing positive sequences of numbers {ax}, {8k} (k € N) (which are called the
Thoma parameters) such that

(1.10) o+ Be<l
k= k=1

The value of the corresponding character on a permutation with a single cycle of length

l1is
ok + (1) 8L
k=1

k=1
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Its value on a permutation with several disjoint cycles equals the product of values on
each cycle.
Let g = s -, p € N/s be one of the orbits of s. Then put

(L11)  A(P) = Yk - Vs—1(k) " Vs(=D (k) " Vs(—lpl+ (), Where (k € p).

Now we define an analog of Thoma parameters for characters of the group NS .. Namely,

let us call Thoma parameters the collection o°, {0%*}, {gﬁ’c} ,A{ar}, {8k}, where ¢ is

the representation of T' of finite type, o = {ax}, 8 = {fr} are non-increasing finite or

infinite sequences of positive numbers, 0® = {0**} and ¢’ = {¢% } are sequences of finite-

dimensional irreducible representations of I' such that 3 (ay, - dim o™ + 8, - dim o) < 1.
k

For Thoma parameters o°, {0**}, {0"}, {ow}, {B} we define a function
@ = Gp0, oo, 08, o, 3 Dy the next three properties:

(1) for g =s-v €TI'1 6 one has
é(9)= T @(sw) 7)) (see (1.2) = (1.3));
peEN/s

(2) for the generalized cycle g = s -~y (see definition 5) with p = supp (g) and s # id
one has

o(9) = Y (- Tr (o™ (G)) + (~1)7 G T (o™ (1)) )
k=1
(3) for each ¢ € T and n € N one has

o0

o((nh) = 3 (- Tr (0™ (1) + By - Tr (0™ (1))
k=1
i (1 — 3 (ag - dim o™ + By - dim o*) ) tro (1) (see (1.5)),

keN
where Tr is the ordinary trace and trg is the normalized character of the representation V.

Proposition 8. The function ¢y po o6 o 5 95 an indecomposable character (see defini-
tion 3).

Proof. The realizations of the corresponding factor-representations we give in the sec-
tion 2. |

Here is our main result.

Theorem 9. If ¢ is an indecomposable character on I' ! &, then there exist Thoma
parameters ¥, {0**}, {Q’Bk} cAar}, {8k}, such that ¢ = ¢y so o8 o 8-

2. REALIZATIONS OF [I]{—FACTOR-REPRESENTATIONS

A complete family of II; —factor-representations of I'{ ©,, can be constructed using
the Vershik-Kerov [8], Olshanski [7] realizations or Okunkov methods (so called mixtures
of representations) [3], found for the IT; —factor-representations of the infinite symmetric
group S,.. We follow the approach developed by Olshanski as it leads to less spadework.
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2.1. A construction of representations. Let {au}; oy, {8k )1y be two finite or infi-
nite sets of the positive numbers from (0,1) and let ¢®* and o’* be unitary irreducible
finite-dimensional representations of I that act in the Hilbert spaces H®* and H?* cor-
respondingly. We assume, that

Zak-dimgo"“ +Zﬁk-gﬁ’“ <l1.
k k

We set
§=1- ar-dimg™ — > f - o™,
k

k

Let H° stand for the Hilbert space, where acts the unitary representation of a finite type
0° of . Then the formula tr%(y) = (o° (’y)f(o),f(o))Ho defines the character on I'. We

denote by (0%, HO%,£(O%)) the k-th copy of the triplet (0%, HO,¢(®).

Let {e(ak)}
J 1<j<dim Hk

H = <(%H%) o (%H"k) o (%HOk)> ® ((%H“k) @(%Hﬁk) o (eEHO’“))

ym =3 m(g:egak) . egak)) 'y @(Zegﬁk) @ egm)) 4 V/5e0m) g ¢(0m).
; j k j

Define the unitary representation ¢ of I' in H as follows

2 o=((ge) e (o) (g0%)) o1,

We will identify H* @ HY, H* @ HP* and (EB H0k> ® (EB HOk) with their images
k k

with respect in the natural embedding to H. Denote by H™ the m—th copy of the
Hilbert space H and consider the infinite tensor product

H — m))
= @ ()

be an orthonormal basis in H**. Let

It is convenient to represent H as the closure of the linear span of the vectors of the form
QRGO @1 @™ @n™Y @ ... where ¢; is an any vector from HY.
(o) dim H*k (Be) dim HPk ) )
We extend the set {ej * } U {ej * } to an orthonormal basis 2 in
j=1 j=1
(69 Ho‘k> &) ( D Hﬂ’“) D (69 H0k>. Now we fix the orthonormal basis
k k k

B={e;®e: ej,e €A}

in H and we assume below (; € B. Let components of the vector ( = (1 ® (2 ®

“+ ® Gn-1 ® --- be of the form (; = v; ® 7;. Define for s € &, the vector s (C) =
RV RQ - RVVyp1 ® -+ as follows:

19j = Vg-1(5) @ Tj.

N

Now build the sequence j (C) = {j1 < ja <---} such, that

le:e%")@)f for some B and m.
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Let t be a permutation for which s ((jt(l))) < 5((]}@))) < --- <5 ((jt(l))) < .-

~

Finally, we set ¢ (5, ¢ ) = sgn(t). The corresponding representation 7 of I' { G, can be

realized in Hilbert space I:I as follows:
) (© 6o Bl en™ o)

(2.2) =0(M)G®0(12) L@ ®0(Ym-1)Cn-1®0(Ym) "™ @+

and for s¢€ G w(s)(C1®C2®---®Cm—1®---)=¢(5,C>5(C>-

2.2. The character’s formula. Set ﬁ = ®n'™. Assume that s is the cycle (1 —

m
23— —>k—1-—k), where k > 1. Let v = (v1,72,--,Vk, €1, €T, - . .). Routine
calculations provide that

(2.3) (W (57) 7, 5) = Z ol Tr (0% (v ) + Z BT (0% (v w)) s

It is obvious, that
k
(r)mn) =TT (e Tr(e® () + 32 B: T (0 (99) + (0 (25) 6.6,
j=1 " i i
Since tr° is a character on I, one can use (2.3) and the multiplicativity property (see
Proposition 7) to obtain the following

Corollary 10. Let x(g9) = (71' (g)ﬁ,ﬁ) Then x is an indecomposable character on
TN 6w

3. OTHER EXAMPLES

In this section we construct examples of infinite type representations of Zg{ &o. The
corresponding positive definite functions are not characters. On the other hand they
satisfy the following condition:

o(sg) =p(gs) forall geG=T16, and s€ G.

In the generic case the representation 7, built by GNS-construction from ¢ is of type III.
Furthermore, the state ¢ on the W*—algebra m, (G)" is faithful. These properties allow
one to construct the Tomita-Takesaki modular operator A,. Surprisingly, A, is naturally
related to the Okounkov operator Oy (see (4.4)), which is an important object in the
representation theory of symmetric group (see [2], [3]).

3.1. A construction. Let X; = Zy x Zo = {0,1} x {0, 1}. Define a probability measure
v; on X; by vi((k,1)) = pu. Let (X,p) = [[(Xi,vs) and © = (z;) € X, where z; =
i
xEO),x£1)> € X, mgk) € {0,1}. Define an action a of g = (sg,51) € Guoo X G on (X, p1)
as follows:

(ag(x) = 2

®, (kE=01).

Remark 1. The measure p is & x G—quasiinvariant if and only if p;; # 0 for all
i, =0,1.
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We are about to construct a unitary representation 7, of G x G in L? (X, u). With
€ L?*(X,p) set

(7 (50, 51)) ) (@) = (

[ (104) 1o

where 7(0) = (%(0)) € Ze, vV = (%(1)) € Zg, and (y\9,7W) € ZF x Z3°. Let
(1)

W,(LO) (9) =7mu((9,ec)) and 7,

(3.1)

(9) = mu ((ec, 9))-

(0)
°w

Proposition 11. m, is irreducible. Hence, 7~ and ﬂﬁl) are factor-representations of

N 6«.

Proof. Obvious. O

3.2. A cyclic separating vector. Let I be an element of L? (X, u1) given by the function
identically equal to 1.

"

Theorem 12. If det[p;;] # 0, then I is a cyclic separating vector for 7TI(L0)<G) and

ﬂﬁl) (G)'. That is,
[Wm)

12

(G)”]I] - [ﬁgﬂ(c:)"n} = L2(X, ).

Proof. Let (k,1) be a transposition from &.,. First notice that the operator

A R
oY) = Jim_— ;ﬁg) ((k,1))  (see (4.4))

belongs to wﬁj)(G)” (j =0,1). Since
(22 (X, ),1) = @) (L* (X, ) 1)
i=1

one can apply the law of large numbers to deduce that

OV =100 - 009 0Ie---

i—th

Furthermore, if X,(fl) is the indicator of the point (k,l) € X; = Za X Zo, the matrices of
)

0,i 1,4) . . ;
0% and O in the orthonormal basis {e,(;l) = Xl } are as follows:
VPEL ) | 1=0,1
Poo+po1 0 V/PooP10++/Po1P11 0 T
O(OJ) JEN 0 Poo~+po1 0 V/P00P10++/Po1P11
i v/PooP1o++/Po1P11 0 piotpi1 0
L 0 V/PooP10++/Po1P11 0 p1o+pi1
(3.2)
Poo+P10 v/PooPo1++/P1opP11 0 0 T
O(Li) «, | VPooPor++/ProP11 Po1+p11 0 0
@ 0 0 Poo~+P10 V/PooPo1++/P1oP11
L 0 0 v/PooPo1++/P1oP11 po1tp11

By the construction,

[ee) . X
7 (1) = @ fe) (1),
=1
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where Wﬁo’i) (%(0)) and w&l’i) (’yf”) are determined by the matrices

10 0 0 1 0 0 0
0 1 0 0 0 (_1)7,(1) 0 0
B3 o o0 C1p® o and g g1 g
o0 0o (-1 0o 0 0 (-nu’
Use the map
~ . (i) aoo Aol
(34) Ji: ng_O 1am”em" - [alo a11:| ’

to identify L? (X;,1;) to the full matrix algebra My (C), so that

0= Vol

Equip M3 (C) with the Hermitian form
(a,b), =Tr (b%a),

then J; is a unitary and J;L? (X;,v;) = M, (C). Now as an elementary consequence of
(3.2) and (3.3) one has:

5.00D5-1, Doo + Po1 \/PooP1o + +/Po1P11
3:0;777; a,
\/pooplo + /Po1P11 P10 + P11
300051 = g Poo + P10 v/PooPo1 + +/P1op11 ’
v/PooPo1 + v/P1op11 Po1 + D11

(3.5)

, 1 0
jml(},l) (’Yi(l)) Jla=a [0 (_1)%@} ,  where a € M(C).

Thus, in view of Remark 1 (see p. 307), the algebra OM¥ generated by the operators
Si(’)gk’i)Sfl and jiw,go’i) ( z(k)) 371 is just My(C). Since det (J; (I)) # 0, one has finally
MYT; (I) = M;3; (I) = M>(C). O

3.3. The modular operator. Consider the Hilbert space $ = ® (M2(C),( ), ,3:(I)).
It is convenient to represent §) as the closure of the linear span of the vectors a1 ® as ®

- ®a; @Ti41(1) @ Tjp2(I) - - -, where a; € Ma(C). If T = ® J;, one has by Theorem 12
i=1

ILP (X, p) = $.

Let £(9) and R($) be the W*—algebras generated in $ by the operators of left and
right multiplication by elements of the form

1 0
a1 ®a® - ®a; L RIH® -+, where a; € My(C), 12{0 J-

Proposition 13. ﬂ(o)(G) =7371£(9)T and ﬂ,(Ll)(G’)” =J71R($)7.
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Proof. Let Ql(J ) stand for the W*—algebra generated by the operators {O(] )} ) and

{71'/(‘]) (F")} (j = 0,1). In view of (3.5), A is isomorphic ®M2(C). Therefore,

i=1

F&j) (Gn) C ngf) Finally, use (3.5) deduce QI%O) C L($) and ngbl) C R(9). O

Let £ =71 @To(I) ® - - @ Tja2(I) ® - - - . Since the vector £ is cyclic and separating
for £($) (Theorem 12), one can construct the modular operator Ag (see [9]). Namely, if
S and F are closures of antilinear operators given by

S(a¢) =a*¢ forall a€ L(H) and F(éd')=¢E(a)” forall o € R(H),
then
F=8" and A;=FS.
Hence, witha =01 ®as ® - - ®a; ® Is ® [ @ - -+ one has

a*§=¢- (éjj(ﬂ)>l®12®12®“' 'a*‘(éjj(ﬂ)> L.
Jj=1 j=1

Therefore,

Q %

Ag (al) = (®Jj >®12®....a.(‘ (jj(H))*)_l(g)]Q@...

Jj=1 j=1

Finally, use the relation J;(I) (J;(I))" = 3j0<o’j)7;1 (see (3.5)) to obtain

R - )

j=1
® Jit1(I) ® Figo(l )®"'

Thus the modular operator A; is defined in a natural way by the Okounkov operator
O; (see (4.4), [2], [3]).

4. THE CHARACTERS OF (G AND SPHERICAL FUNCTIONS OF THE PAIR (G x G,diag G)

In what follows, (mg, Hg, &) is the unitary representation of G = I'! S, that corre-
sponds by GNS-construction to the character ¢. In particular, the operators 7 (G) act
in Hy with cyclic separating vector £. That is,

(4.1) (75 (G) €] = [ (G) €5] = Hy,
where [S] stands for the closed subspace in H, generated by S. Moreover ¢(g) =

(mg (9) s, &p) for all g € G.
The property (4.1) allows one to produce a unitary spherical representation 7r((z,2) of

the Olshanski pair (G x G, K), where K = diag G = {(9,9)},c¢- Namely,

(4.2) 77((;) (91,92) x€s = Ty (1) Ty (g2) &g forall z €7y (G)".
Let

Gn(o0) ={g=s-" 7€G| (D=landy, =eforall=12,...,n},
K,(00) = KN (Gr(0) X Gp(0)), G,=T16,, K,=(G,xG,)NK

It follows from the definition that Go(00) = Goo = G, Ko(o0) = Koo = K.
Set

i) =Ly e Hy| 7 (g)n =1 for all g € Ku(o0) |,
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and let P, be the orthogonal projection onto Hg"(oo).

o0

Lemma 14. UO ’Hf"(oo) is a dense subspace in Hy. In different terms, RILH;O Py, =1y,
n=

in the strong operator topology.

Proof. Tt follows from the definition of 7r((ﬁ2) (see (4.2)) that

(4.3) (76 (Gn) €] € H ™.

On the other hand, §; is a cyclic vector. That is, | |J 7y (Gn)fqg} = Hy. Now our
n=1

statement follows from (4.3). O

Remind a construction of asymptotic operators which appears in [2], [3]. Consider the
transposition (i,n) € G4 and the operator

(4.4) Oy = lim % S g (1) -
=1

The limit exists in the strong operator topology.

Lemma 15. Let i(p) be an element of p € N/ s. Given any v = (y1,%2,"** sYn," ") €
[, there exists 7 € I'S° with the property 5 -s-v -7~ L = s-v', where

'7;0*1)(1‘(;))) =er forall 1=1,2,..., |p|—1 and peN/s,
Vatlpl=0(i(p)) = ValPl=D (i(p)) * Vslpl=2 (i(p)) """ Vilp)*
Proof. Let the 4 be defined as follows:

- ~ -1 z -1 -1
Ti(p) = €T Vs (i(p)) = Vi(p)r Vs@ (i(p)) = Yi(p) ~ Vs(i(p))? ™"

Fspl=1 (i(p)) = %-_(;) 'VS(%(I,)) T Yslrl-2(i(pyy  forall peN/s.

Now our statement can be readily verified. (]

Lemma 16. Let s be a cycle from G,. Suppose that for 3,7 € I'S® the following relations
hold:

Br==er forall ke{jeN|s()=j}.

If sp and sy are in the same conjugate class, then there exists ¥ € I'S® such that sy =
1

Y-sB-yT
Proof. One may assume without loss of generality that
s(k)=k+1 for k=1,2,....m—1, s(m)=1 and s(I)=1 forall I>m.

By Lemma 15 there exist 7, B e I's® with the properties

’7'3'7"7_1:3"71, 3'3'5'5_1:S'ﬁl, where

(4.5) , ,
Ve =0, =er for k=1,2...m—1m+1,....

Let s € 6, and § € I'® be such that

(t8) sy (t0) ™" = s/
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One has the following relations:

dom1 = 52(1)51
0373 = 52(2)52
(4.6) : : :
5m7;n—1 - ﬂz(m_l)ém—l
By assumptions of the Lemma, ¢ ({1,2,...,m}) = {1,2,...,m}, and we may assume

that t(k) = k for all k > m. Hence, there exists a map f from N to N such that
t(k) = s"® (k) for keN.

Now use the relation ts = st to obtain

(4.7) f(k)y=1 for k=1,2,...,m.

Since s™ is the identity, it suffices to consider the case [ € {1,2,...,m — 1}.
Use (4.6) to obtain

51:"':5m—la 6m,—l+1:"':5m;
ﬂ;n = §m§1_1a ’Y;n = 51_15m
These relations together with (4.5) yield the following relation:
& sy (6") ' =sp, where 8 = (6,181,065, 01, ..., 0, 81,...).

5. A PROOF OF THE MAIN RESULT

The proof of Theorem 9 splits into a few lemmas.
For each indecomposable character ¢ let (74, Hy, &p) denote the cyclic representation
of the group I' ! &, associated to ¢ via the GNS-construction.

Lemma 17. If o W*—algebra 2 is generated by the operators mg (I'2°), {Oj}jeN, and
C () is a center of A, then {0}, C C ().

Proof. The relation Oy - O; = O; - Oy, allows an easy verification by definition (4.4) (see

[2] or [3]).
Now prove the relation
(5.1) Op-m5(y)=mp(y)-Op forall yeI'y® and leN.
Let KS(00) = K,(00)N (G X Go) and K& (m) = K& (00)N (G X Go,), where m > n.
If PS stands for the orthogonal projection onto Hff(oo), then
(5.2) PS = lim % S 7P ()

m=ee (m=n)! S

in the strong operator topology and PS > P,!. Hence, using (4.4) and (5.2), we obtain
fori<n<k

(5:3)  PYOPY = PPms ((i,k) Py and - PuOiPy = Poms (i 5)) P
In the case when «; = e the equality (5.1) easily follows from (4.4). Therefore, it suffices
to prove (5.1) for the elements v = y({l}) (see (1.3)).

1See the page 311 (4.3) for definition of P,
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If i <n < k, then, using (4.4), we have
Puro (D) 0P, 2" B, (i1 0,22 P,
EAED Py (D) P (6, F)) PSPy
= PnPnG% (3, k) 76 (Y({K})) Py Pa
= PPy (i, k) mp (v({k}) 7 ((7({k})71ﬁ({k})71))Pt
PP (e () ) o (G
= P (VRN AR 7 (07 {k} 1) o (i, k) P
= Purg (v({k})) 7o ((i, k) P = Pamg (i, k) mo (Y({i})) P
" POy (1({) P
Since nlim P, = Iy, (see Lemma 14), the relation
7o (Y({i})) Oi = Oimg (v({3}))
follows. ]
We use the notation (ig, i1, .. .,%4—1) for the cyclic permutation s which acts as follows

()_ Z.k—‘,-l(modq)a if i =iy, 6{21072.13"'72.1171}3
S\ = i, otherwise
s .

Lemma 18. If O; is defined as in (4.4) and

D(m,n,q)z{?:(khl@,...,kq)eN|kﬁékj andm <ki<nVi,j=1,...,

then for every positive integer m
1
Of = lim — > w4 ((kgy kg1, k1,9)).
?ED(m,n,q)
Proof. If we notice that
(4, k1) - (i, ko) - - (4, kq) = (kg kg—1, ..., k1,9)

for pairwise different 4, k1, ks, ..., k; and Card (D(m,n)) = [[ (n —m — j), the proof

becomes obvious.

O

Lemma 19. Let g = [] sp-7v(p) be a decomposition of g=s-v €T 16 (see (1.4))

peEN/s
and i(p) any element from p € N/s. Define v*P)) € T as follows:

(5.4)7 ") = { Yilp) Vs~ (i(p) " Vs Ipl+2 (i(p)) * Va-lelnipy)s O k= i(p),

e otherwise.

)

If ¢ is an indecomposable character on I' 1 G, then
. . IpI=1+ 3. 7
(5.5) (% (s-7) Hoj]§¢7£¢> = I (= (’Y(l(”))) O 6,80 |-
J pEN/ s
Proof. By Proposition 7 we have

(5.6) (7% (S'V)HO;T@%) - 11 (% sp-1(0) [ O} s €¢)

peN/ s JEDP
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Therefore it suffices to prove (5.5) in the case when s is a single cycle and v = ~(p),
where p € N /s and |p| > 1. Let s = (il,ig, ... ,i‘p‘). By a virtue of Lemma 16, we find
74 € I'® such that

(5.7) Fosoqy-AT =g 400
Thus, by Lemma 17,

58 (me (s N[[076.6) = (me(r)mo () T 0 0 5).

Jj€p JEP
Let
= {T € GN’T(j) :j}.

Now use Lemma. 18 to obtain

(o (v ) mo () [T OF 660

JjEP
3 1 7 7 () ) .
= Jlim > (%(v(”) ((k(f)7k§$)1,...,k§”,22,
K eD(m,n,q)

k£f2)7 RV k§i2),i3, e ,i|p|,k‘£;‘:‘l), RN kﬁl'p‘), il)>€¢7€¢>7

where
¥ = (kﬁjﬂ,kﬁjill,...,kg“),kﬁjf,...,kﬁ”’,...,k,(,i";‘),...,kg “")), g=> 1
Jep
Hence, by the relation 7 - 41771 = 4(1) (7 € &), we have
(mo(r ™) o () [T 0} €00 60)
Jjep
1 . A , .
IR i YT BN (T I
k eD(m,n,q’)
k£z2)7 RN ]{;§12)77;3’ L. 77;\p|,k£i“:‘l)’ ey kg |PI)’ i1)>§¢,f¢> R
where
-5 7 i i . 7 (i2) - . ip| ip|
i = (khi),krl_l,...,ﬂ1>,12,k£; o KSR ..,z‘p‘,k,(im),...,kg )),
q':\p|—1+ZTj.
Jj€p
This relation, in view of Lemma 18, implies the statement of Lemma 19. (]

We use the notation 2, for the W*-algebra generated by w4 (7), y=(e,---,e,7;,€,---),
and O;. Given an operator A from 2;, denote by A®) its copy in Ap:

AW =7 ((j, k) Amg (5, k) (A9 = A).

The next assertion follows from Lemma 19.
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Lemma 20. Let s, i(p) be the same as in Lemma 19. If A;, Bj € ;, then

(7% () [T 456 11 ijqs)

_ (i(p) ( pi®P) (i(p)) pli®) .
(5.9) = 1I <Az<p> (BY") A0, (BE)
peEN/s
(i(p)) (i(p)) * olpl—1
AN o (B ) Ol o 5¢>'
The following lemma is an analogue of Theorem 1 from [3].
Lemma 21. Let A = [a,b] be an interval in [—1,0] or in [0,1] with the property
min {|a|,|b|} > e > 0. If E(AZ) is a spectral projection of O; corresponding to A, then
for any orthogonal projection E from 2A; one has (EEX)Q,,&/))Q > 5(EEX)§¢,§¢),
Proof. Using Lemmas 17 and 20, we have
[(ms (G + 1)) EE“>5¢, EE%) |
(et 20 - < (eren )]
On the other hand, under the assumption E(Z“) 7 (4,14 1)) Emy ((i,7+ 1)), one has
EEY . ECVETY r (i 4 1)) = 7y ((,i + 1)) - EEY . gD gD,

Therefore,

(5.10)

‘(% (5,0 +1)) EER &5, EEL¢y )‘
= |(mo (G + 1) BHVESTVEE g, ¢4 )|

i 4 (Prop. 7) i 2
( B+ E( +1) EE(A)£ £¢)‘ op (EE(A)§¢,£¢> )
Hence, using (5.10), we obtain our statement. O
The following statement is well known (see [3]) and also follows from Lemma 21.

Corollary 22. There exists at most countable set of numbers c«;, B; from (0,1) and a
set of pairwise orthogonal projections {E(k) (o), E(k) i } C 2y, such that

(5.11) Or =Y o EW (a;) = Y BEM (8:).

The following assertion is an analogue of Theorem 2 from [3].

Lemma 23. Let r be a number from {«a;,3;} and let E be any projection from . If
(E-E®(r)éy, &) = rv(r) # 0, then v(r) € Z.

Proof. For completeness of the proof, we use the arguments of Kerov, Olshanski, Vershik
and Okounkov from [1] and [3].
For any m € N, define the projection e,,(r) as follows:

em(r) = T[] EY) - EU)(r), where
j=1
ED =m0y (k) Brs ((5:)),  EO(r) =m0 (5, k) E® (r)m (5 k) -
Let P,,,(s) be the set of orbits s on {1,2,...,m}. If s € &,,, then by Lemma 20 we

obtain

(5.12) (76 (8)em(1)Ep, em(1)Eg) = v(r)/Fm()l H rivl

PEP,(5)
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(7T¢(S)em(7“)§¢, em(r)fd?)

Set ¢r.(s) = (e (Moo emEs) Using (5.12), we have
v(r)IPm ()l
(513) ¢)7-(3) = W

Therefore, ¢, is an indecomposable character on G, in view of Proposition 7.
We following G. Olshanski (see [6]) in expounding the proof of the following formula:

(5.14) > sgu(s) Gl =t —1) - (t = m+1).
s€G,,

For that, we consider the canonical projection py, ,,—1 from &,, onto &,,_;

(pm,m_l(s))(i):{ s(i), i s(i) < m,

s(m), if s(i) =m.

Since |Pp—1 Pm,m—1(5))] = |Pm(s)| when s ¢ &,,—1, and |Pp—1 (Pm,m—1(9))| =
[P (s)| — 1 when s € &,,—1, then

> sgn(s) (= 3" 3 sgn(s) ¢/Pm ()]

s€EG, S€EGm—15€G: Pm,m—1(5)=s
=t Z tIPm ()] _ (m—1)- Z tIPm(s)] — (t—m+1) Z tIPm ()]
SEG 1 s€EG,m_1 SEGm-_1

Hence (5.14) is now accessible by an elementary induction argument.
We follow the idea of A. Okounkov in considering the orthogonal projection

1
Alt,.(m) = o) Z sgn(s) me, (s).
T s5€G,

Since Y. sgn(s) ¢r(s) > 0, then, using (5.13) and (5.14), we obtain for r > 0
s€EG,

vir)-(w(r)—=1)---(v(r)—m+1) >0 forall meN.

Thus, we get a contradiction in the case v(r) > 0. The opposite case v(r) < 0 can be
considered in a similar way. For that, one should use the formula

SOl =t 1) (t+m—1) (see [6])
SEG,
and consider the projection
1
Sym,.(m) = o T, (8).
se€ES,,

O
Proof of Theorem 9. Let Ej(r) be the spectral projection of Oy, (see (4.4), (5.11)). By
Lemma 23, for r # 0 the W*—algebra Ey ()2 (see p. 314) is finite-dimensional. On the

r’ Ej, (T)H¢)
of the group I' in the space Ey(r)Hg. Thus, the representations o” for r # 0 as in

other hand, use Lemma 17 to obtain the unitary representation (Ek (r)me

Theorem 9 are the irreducible components of (E;c (r)w(z,‘r, Ek(T)H¢). The formula for

characters follows from Lemmas 17 and 20. Finally, for each character as in Theorem 9
we construct the realization as in Section 2. |
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