A DESCRIPTION OF CHARACTERS ON THE INFINITE WREATH PRODUCT

A．V．DUDKO AND N．I．NESSONOV

Abstract

Let \mathfrak{S}_{∞} be the infinity permutation group and Γ an arbitrary group． Then \mathfrak{S}_{∞} admits a natural action on Γ^{∞} by automorphisms，so one can form a semidirect product $\Gamma^{\infty} \rtimes \mathfrak{S}_{\infty}$ ，known as the wreath product Γ l \mathfrak{S}_{∞} of Γ by \mathfrak{S}_{∞} ．We obtain a full description of unitary I_{1}－factor－representations of Γ l \mathfrak{S}_{∞} in terms of finite characters of Γ ．Our approach is based on extending Okounkov＇s classification method for admissible representations of $\mathfrak{S}_{\infty} \times \mathfrak{S}_{\infty}$ ．Also，we discuss certain exam－ ples of representations of type III，where the modular operator of Tomita－Takesaki expresses naturally by the asymptotic operators，which are important in the theory of characters of \mathfrak{S}_{∞} ．

1．Introduction

1．1．A definition of the wreath product．Let \mathbb{N} stand for the natural numbers． A bijection $s: \mathbb{N} \rightarrow \mathbb{N}$ is called finite if the set $\{i \in \mathbb{N} \mid s(i) \neq i\}$ is finite．Define \mathfrak{S}_{∞} as the group of all finite bijections $\mathbb{N} \rightarrow \mathbb{N}$ and set $\mathfrak{S}_{n}=\left\{s \in \mathfrak{S}_{\infty} \mid s(i)=i \forall i>n\right\}$ ． For every group Γ ，an element of Γ^{n} can always be written as an ordered collection $\left[\gamma_{k}\right]_{k=1}^{n}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ ，where $\gamma_{k} \in \Gamma$ ．Let e be the unit of Γ ．For any $n>1$ we identify the element $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}\right) \in \Gamma^{n-1}$ with $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}, e\right) \in \Gamma^{n}$ and set $\Gamma_{e}^{\infty}=\underset{\longrightarrow}{\lim } \Gamma^{n}$ ．One can view Γ_{e}^{∞} as a group of infinite ordered collections $\left[\gamma_{k}\right]_{k=1}^{\infty}$ such that there are finitely many elements γ_{k} not equal to e ．The wreath product $\Gamma \imath \mathfrak{S}_{n}$ is the semidirect product $\Gamma^{n} \rtimes \mathfrak{S}_{n}$ for the natural permutation action of \mathfrak{S}_{n} on Γ^{n}（see［4］）． In the same way，we define the group $\Gamma \imath \mathfrak{S}_{\infty}=\Gamma_{e}^{\infty} \rtimes \mathfrak{S}_{\infty} . \Gamma \imath \mathfrak{S}_{\infty}$ can be also viewed as the inductive limit $\underset{\longrightarrow}{\lim } \Gamma$ 积．Using the embedding $\gamma \in \Gamma^{n} \rightarrow(\gamma$ ，id $) \in \Gamma$ 亿 \mathfrak{S}_{n} and $s \in \mathfrak{S}_{n} \rightarrow\left(e^{(n)}, s\right) \in \Gamma \imath \mathfrak{S}_{n}$ ，where $e^{(n)}=(e, e, \ldots, e)$ and id is the identical bijection，we may identify Γ^{n} and \mathfrak{S}_{n} with the corresponding subgroups in Γ 亿 \mathfrak{S}_{n} ．If Γ is a topological group，then we equip Γ^{n} with the natural product topology．Furthermore，we will always consider Γ_{e}^{∞} as a topological group with the inductive limit topology．As a set，Γ Г \mathfrak{S}_{∞} is just $\Gamma_{e}^{\infty} \times \mathfrak{S}_{\infty}$ ．Therefore，we equip Γ 亿 \mathfrak{S}_{∞} with the product topology，considering \mathfrak{S}_{∞} as a discrete topological space．

1．2．The results．In this paper we give a full classification of indecomposable characters （see Definitions（3）－（4））on $\Gamma \imath \mathfrak{S}_{\infty}$（Theorem 9）．Our approach is based on the semigroup method of Olshanski［7］and the ideas of Okounkov used in the study of admissible rep－ resentations of the groups related to \mathfrak{S}_{∞}（see［2］，［3］）．We have noticed that two double cosets containing the transposition or $\gamma \in \Gamma$ commute，as the elements of Olshanski semi－ group．（see Lemma 17）．This observation enables one to develop Okounkov＇s method for the group $\Gamma \mathfrak{\mathfrak { S }} \mathfrak{S}_{\infty}$（see Section 5）．In Section 3 we discuss certain examples of repre－ sentations of type $I I I$ ．The corresponding positive definite functions（p．d．f．）φ are not

[^0]characters, but the following holds:
\[

$$
\begin{equation*}
\varphi(s g)=\varphi(g s) \quad \text { for all } \quad g \in \Gamma \imath \mathfrak{S}_{\infty} \quad \text { and } \quad s \in \mathfrak{S}_{\infty} \tag{1.1}
\end{equation*}
$$

\]

Hence the restriction $\left.\varphi\right|_{\mathfrak{S}_{\infty}}$ is a character. At that, the Okounkov's asymptotic operators (see (4.4)) are naturally connected to the Tomita-Takesaki modular operator (see subsection 3.3). In fact, this observation is common for p.d.f. with the property (1.1). For those, we are going to produce a complete classification in a subsequent paper.
1.3. The basic definition and the conjugacy classes. Let \mathcal{H} be a Hilbert space, $\mathcal{B}(\mathcal{H})$ an algebra of all bounded operators in \mathcal{H}, and $\mathcal{I}_{\mathcal{H}}$ the identity operator in \mathcal{H}. We denote by $\mathcal{U}(\mathcal{H})$ the unitary subgroup in $\mathcal{B}(\mathcal{H})$. By a unitary representation of the topological group G we always mean a continuous homomorphism of G into $\mathcal{U}(\mathcal{H})$, where $\mathcal{U}(\mathcal{H})$ is equipped with the strong operator topology.
Definition 1. A unitary representation $\pi: G \rightarrow \mathcal{U}(\mathcal{H})$ of G is called a factor-representation if the W^{*}-algebra $\pi(G)^{\prime \prime}$ generated by the operators $\pi(g)(g \in G)$, is a factor.

Definition 2. A unitary representation π is called a factor-representation of finite type if $\pi(G)^{\prime \prime}$ is a factor of type $I I_{1}$.

Let \mathcal{M} be a factor of type $I I_{1}$ and \mathcal{M} a subalgebra of $\mathcal{B}(\mathcal{H})$. If $\pi(G) \subset \mathcal{U}(\mathcal{M})=$ $\mathcal{M} \bigcap \mathcal{U}(\mathcal{H})$ and $\operatorname{tr}_{\mathcal{M}}$ is the unique normal, normalized $(\operatorname{tr}(I)=1)$ trace on \mathcal{M}, then it determines a character $\phi_{\pi}^{\mathcal{M}}$ on G by $\phi_{\pi}^{\mathcal{M}}(g)=\operatorname{tr}_{\mathcal{M}}(\pi(g))$.
Definition 3. A continuous function ϕ on G is called a character if it satisfies the following properties:
(a) ϕ is central, that is, $\phi\left(g_{1} g_{2}\right)=\phi\left(g_{2} g_{1}\right) \forall g_{1}, g_{2} \in G$;
(b) ϕ is positive definite, that is, for all $g_{1}, g_{2}, \ldots, g_{n}$ the matrix $\left[\phi\left(g_{j} g_{k}^{-1}\right)\right]_{j, k=1}^{n}$ is non-negatively definite;
(c) ϕ is normalized, that is, $\phi\left(e_{G}\right)=1$, where e_{G} is the unit of G.

Definition 4. A character ϕ is called indecomposable if the group representation corresponding to ϕ (according to the GNS construction) is a factor-representation.

In this paper we obtain a complete description of indecomposable characters on $\Gamma\left\langle\mathfrak{S}_{\infty}\right.$ in the case when Γ is a separable topological group.

First, let us describe the conjugacy classes in $\Gamma \mathfrak{S _ { \infty }}$. Recall that the conjugacy classes in \mathfrak{S}_{∞} are parametrized by non-increasing sequences $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ of natural numbers such that there are finitely many elements λ_{k} not equal to 1 . Namely, $\lambda_{1}, \lambda_{2}, \ldots$ are the orders of cycles of a permutation $s \in \mathfrak{S}_{\infty}$. Furthermore, an element Γ 亿 \mathfrak{S}_{∞} can be written as a product of an element of \mathfrak{S}_{∞} and an element of Γ_{e}^{∞}, and the commutation rule between these two kinds of elements is as follows:

$$
\begin{equation*}
s \cdot \gamma=s \cdot\left(\gamma_{1}, \gamma_{2}, \ldots\right)=\left(\gamma_{s^{-1}(1)}, \gamma_{s^{-1}(2)}, \ldots\right) \cdot s, \tag{1.2}
\end{equation*}
$$

where $s \in \mathfrak{S}_{\infty}, \gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right) \in \Gamma_{e}^{\infty}$.
By the analogy with the definition of a cycle in \mathfrak{S}_{∞} define the generalized cycle in $\Gamma\left\ulcorner\mathfrak{S}_{\infty}\right.$.
Definition 5. Say that element $g=s \cdot \gamma \in \Gamma \imath \mathfrak{S}_{\infty}$, where $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ is generalized cycle if s is cycle and $\left\{i \mid \gamma_{i} \neq e\right\} \subset\{i \mid s(i) \neq i\}$.

Let s be any permutation. Denote \mathbb{N} / s the set of orbits of s on \mathbb{N}. Note that for $p \in \mathbb{N} / s$ the permutation s_{p} given by

$$
s_{p}(k)=\left\{\begin{aligned}
s(k), & \text { if } k \in p, \\
k, & \text { otherwise },
\end{aligned}\right.
$$

is a cycle of order $|p|$, where $|p|$ stand for the cardinality of p. For $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right) \in \Gamma_{e}^{\infty}$ define the element $\gamma(p)=\left(\gamma_{1}(p), \gamma_{2}(p), \ldots\right) \in \Gamma_{e}^{\infty}$ as follows:

$$
\gamma_{k}(p)=\left\{\begin{align*}
\gamma_{k}, & \text { if } k \in p \tag{1.3}\\
e, & \text { otherwise }
\end{align*}\right.
$$

Thus, using (1.2), we have the decomposition of $g=s \cdot \gamma$ onto generalized cycles

$$
\begin{equation*}
s \cdot \gamma=\prod_{p \in \mathbb{N} / s} s_{p} \cdot \gamma(p) \tag{1.4}
\end{equation*}
$$

For an arbitrary group G denote by $\mathfrak{c}_{G}(g)$ the conjugacy class of $g \in G$. Let $g=$ $s \cdot \gamma \in \Gamma \succ \mathfrak{S}_{\infty}$. Note that for any orbit $p \in \mathbb{N} / s$ and any $k_{p} \in p$ the conjugacy class $\mathfrak{c}_{\Gamma}\left(\gamma_{k_{p}} \cdot \gamma_{s\left(k_{p}\right)} \cdots \gamma_{s^{(l)}\left(k_{p}\right)} \cdots \gamma_{s(|p|-1)\left(k_{p}\right)}\right)$ does not depend on choice of k_{p}. Define the invariant $\mathfrak{i}(g)$ given by unordered ∞-tuples of pairs $\left\{\left(|p|, \mathfrak{c}_{\Gamma}\left(\gamma_{k_{p}} \cdot \gamma_{s\left(k_{p}\right)} \cdots \gamma_{s(l)\left(k_{p}\right)} \cdots\right.\right.\right.$ $\left.\left.\left.\gamma_{s(|p|-1)\left(k_{p}\right)}\right)\right)\right\}_{p \in \mathbb{N} / s}$, where $s^{(l)}$ is l-th iteration of s and k_{p} - any number from the orbit p. The following statement can be easily proved.

Proposition 6. Let g_{1} and g_{2} be elements of Γ \mathfrak{S}_{∞}. Then $\mathfrak{c}\left(g_{1}\right)=\mathfrak{c}\left(g_{2}\right)$ if and only if $\mathfrak{i}\left(g_{1}\right)=\mathfrak{i}\left(g_{2}\right)$.

For any $g=s \cdot \gamma \in \Gamma\left\{\mathfrak{S}_{\infty}\right.$ denote $\operatorname{supp}(g)=\left\{i \in \mathbb{N} \mid s(i) \neq i\right.$ or $\left.\gamma_{i} \neq e\right\}$ and call this set the support of g. Define for any $\iota \in \Gamma$ and $k \in \mathbb{N}$ the element $\iota(\{k\})=$ $\left(\iota_{1}(\{k\}), \iota_{2}(\{k\}), \ldots, \iota_{l}(\{k\}), \ldots\right) \in \Gamma_{e}^{\infty}$ as follows:

$$
\iota_{l}(\{k\})= \begin{cases}\iota, & \text { if } l=k \tag{1.5}\\ e, & \text { otherwise }\end{cases}
$$

1.4. The multiplicativity. The following claim gives a useful characterization of the class of indecomposable characters:

Proposition 7. The following assumptions on a character ϕ of $\Gamma \mathfrak{\mathfrak { S } _ { \infty }}$ are equivalent:
(a) ϕ is indecomposable;
(b) $\phi(g)=\prod_{p \in \mathbb{N} / s} \phi\left(s_{p} \cdot \gamma(p)\right)$ for any $g=s \cdot \gamma=\prod_{p \in \mathbb{N} / s} s_{p} \cdot \gamma(p) \quad$ (see 1.4).

Proof. To prove the proposition, we consider the elements $g=s \cdot \gamma$ and $g^{\prime}=s^{\prime} \cdot \gamma^{\prime}$ of $\Gamma \imath \mathfrak{S}_{\infty}$ such that $\operatorname{supp}(g) \cap \operatorname{supp}\left(g^{\prime}\right)=\emptyset$. Then by the properties of the group $\Gamma \imath \mathfrak{S}_{\infty}$ there exists a sequence $\left\{s_{n}\right\}_{n \in \mathbb{N}} \subset \mathfrak{S}_{\infty}$ such that

$$
\begin{equation*}
s_{n} \cdot g=g \cdot s_{n} \quad \text { and } \quad s_{n} g^{\prime} s_{n}^{-1} \cdot h=h \cdot s_{n} g^{\prime} s_{n}^{-1} \quad \text { for all } \quad h \in \Gamma \imath \mathfrak{S}_{n} \tag{1.6}
\end{equation*}
$$

Suppose now that (a) holds. Using the GNS-construction, we produce the representation π_{ϕ} of $\Gamma \imath \mathfrak{S}_{\infty}$ which acts in a Hilbert space \mathcal{H}_{ϕ} with a cyclic vector ξ_{ϕ} such that

$$
\phi(g)=\left(\pi_{\phi}(g) \xi_{\phi}, \xi_{\phi}\right)
$$

Let $A=w-\lim _{n \rightarrow \infty} \pi_{\phi}\left(s_{n} \cdot g^{\prime} s_{n}^{-1}\right)$ be a limit of the sequence $\pi_{\phi}\left(s_{n} \cdot g^{\prime} s_{n}^{-1}\right)$ in the weak operator topology. Using (1.6), we deduce by Definition 4 that $A=a \mathcal{I}$, where \mathcal{I} is the identity operator in \mathcal{H}_{ϕ} and a a complex number. Therefore,

$$
\phi\left(g \cdot g^{\prime}\right)=\lim _{n \rightarrow \infty} \phi\left(g \cdot s_{n} \cdot g^{\prime} \cdot s_{n}^{-1}\right)=\phi(g) \cdot \lim _{n \rightarrow \infty} \phi\left(s_{n} \cdot g^{\prime} \cdot s_{n}^{-1}\right)=\phi(g) \cdot \phi\left(g^{\prime}\right)
$$

Thus (b) follows from (a).
Conversely, suppose that (b) holds. For any subset \mathcal{S} of $\mathcal{B}(\mathcal{H})$, define its commutant as follows:

$$
\mathcal{S}^{\prime}=\{T \in \mathcal{B}(\mathcal{H}) \mid S T=T S \text { for all } S \in \mathcal{S}\}
$$

If $\pi_{\phi}\left(\Gamma \imath \mathfrak{S}_{\infty}\right)^{\prime} \bigcap \pi_{\phi}\left(\Gamma \imath \mathfrak{S}_{\infty}\right)^{\prime \prime}=\mathcal{Z}$ is larger than the scalars, then it contains a pair of orthogonal projections E and F with the properties

$$
\begin{equation*}
\phi(E) \neq 0, \quad \phi(F) \neq 0 \quad \text { and } \quad E \cdot F=0 \tag{1.7}
\end{equation*}
$$

By the von Neumann Double Commutant Theorem, for any $\varepsilon>0$ there exist $g_{k}^{E}, g_{k}^{F} \in$ $\Gamma \imath \mathfrak{S}_{n} \subset \Gamma \imath \mathfrak{S}_{\infty}(n<\infty)$ and complex numbers $c_{k}^{E}, c_{k}^{F}(k=1,2, \ldots, N<\infty)$ such that

$$
\begin{align*}
& \left\|\sum_{k=1}^{N} c_{k}^{E} \pi_{\phi}\left(g_{k}^{E}\right) \xi_{\phi}-E \xi_{\phi}\right\|<\varepsilon \phi(E) \\
& \left\|\sum_{k=1}^{N} c_{k}^{F} \pi_{\phi}\left(g_{k}^{F}\right) \xi_{\phi}-F \xi_{\phi}\right\|<\varepsilon \phi(F) \tag{1.8}
\end{align*}
$$

Consider the bijection

$$
\tau(j)=\left\{\begin{aligned}
j+n, & \text { if } j \leq n \\
j-n, & \text { if } n<j \leq 2 n \\
j, & \text { otherwise }
\end{aligned}\right.
$$

By Definition (3), use (1.8) to obtain

$$
\begin{align*}
& \left\|\sum_{k=1}^{N} c_{k}^{E} \pi_{\phi}\left(\tau g_{k}^{E} \tau\right) \xi_{\phi}-E \xi_{\phi}\right\|<\varepsilon \phi(E) \tag{1.9}\\
& \left\|\sum_{k=1}^{N} c_{k}^{F} \pi_{\phi}\left(\tau g_{k}^{F} \tau\right) \xi_{\phi}-F \xi_{\phi}\right\|<\varepsilon \phi(F)
\end{align*}
$$

Now, using (b), (1.7), (1.8) and (1.9), we have

$$
\begin{aligned}
& \varepsilon \sqrt{\phi(E) \phi(F)}(\varepsilon \sqrt{\phi(E) \phi(F)}+\sqrt{\phi(E)}+\sqrt{\phi(F)}) \\
& \quad>\left|\left(\sum_{k=1}^{N} c_{k}^{E} \pi_{\phi}\left(\tau g_{k}^{E} \tau\right) \cdot \sum_{k=1}^{N} c_{k}^{F} \pi_{\phi}\left(g_{k}^{F}\right) \xi_{\phi}, \xi_{\phi}\right)\right| \\
& \quad>\left|\left(\sum_{k=1}^{N} c_{k}^{E} \pi_{\phi}\left(\tau g_{k}^{E} \tau\right) \xi_{\phi}, \xi_{\phi}\right) \cdot\left(\sum_{k=1}^{N} c_{k}^{F} \pi_{\phi}\left(\tau g_{k}^{F} \tau\right) \xi_{\phi}, \xi_{\phi}\right)\right| \\
& \quad>\phi(E) \phi(F)(\varepsilon+1)^{2} .
\end{aligned}
$$

Hence

$$
\varepsilon>\left[\frac{1-\sqrt{\phi(F)}}{\sqrt{\phi(F)}}+\frac{1-\sqrt{\phi(E)}}{\sqrt{\phi(E)}}\right]^{-1}
$$

Then, comparing this to (1.7), we get a contradiction.
1.5. The main result. In [5], E. Thoma obtained the following remarkable description of all indecomposable characters of \mathfrak{S}_{∞}. The characters of \mathfrak{S}_{∞} are labeled by pairs of non-increasing positive sequences of numbers $\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}(k \in \mathbb{N})$ (which are called the Thoma parameters) such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \alpha_{k}+\sum_{k=1}^{\infty} \beta_{k} \leq 1 \tag{1.10}
\end{equation*}
$$

The value of the corresponding character on a permutation with a single cycle of length l is

$$
\sum_{k=1}^{\infty} \alpha_{k}^{l}+(-1)^{l-1} \sum_{k=1}^{\infty} \beta_{k}^{l}
$$

Its value on a permutation with several disjoint cycles equals the product of values on each cycle.

Let $g=s \cdot \gamma, p \in \mathbb{N} / s$ be one of the orbits of s. Then put

$$
\begin{equation*}
\tilde{\gamma}(p)=\gamma_{k} \cdot \gamma_{s^{-1}(k)} \cdots \gamma_{s^{(-l)}(k)} \cdots \gamma_{s^{(-|p|+1)}(k)}, \quad \text { where } \quad(k \in p) \tag{1.11}
\end{equation*}
$$

Now we define an analog of Thoma parameters for characters of the group Γ l \mathfrak{S}_{∞}. Namely, let us call Thoma parameters the collection $\varrho^{0},\left\{\varrho^{\alpha_{k}}\right\},\left\{\varrho^{\beta_{k}}\right\},\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}$, where ϱ^{0} is the representation of Γ of finite type, $\alpha=\left\{\alpha_{k}\right\}, \beta=\left\{\beta_{k}\right\}$ are non-increasing finite or infinite sequences of positive numbers, $\varrho^{\alpha}=\left\{\varrho^{\alpha_{k}}\right\}$ and $\varrho^{\beta}=\left\{\varrho^{\beta_{k}}\right\}$ are sequences of finitedimensional irreducible representations of Γ such that $\sum_{k}\left(\alpha_{k} \cdot \operatorname{dim} \varrho^{\alpha_{k}}+\beta_{k} \cdot \operatorname{dim} \varrho^{\beta_{k}}\right) \leq 1$.
For Thoma parameters $\varrho^{0},\left\{\varrho^{\alpha_{k}}\right\},\left\{\varrho^{\beta_{k}}\right\},\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}$ we define a function $\phi=\phi_{\varrho^{0}, \varrho^{\alpha}, \varrho^{\beta}, \alpha, \beta}$ by the next three properties:
(1) for $g=s \cdot \gamma \in \Gamma \imath \mathfrak{S}_{\infty}$ one has

$$
\phi(g)=\prod_{p \in \mathbb{N} / s} \phi(s(p) \cdot \gamma(p)) \quad(\text { see }(1.2)-(1.3))
$$

(2) for the generalized cycle $g=s \cdot \gamma$ (see definition 5) with $p=\operatorname{supp}(g)$ and $s \neq \mathrm{id}$ one has

$$
\phi(g)=\sum_{k=1}^{\infty}\left(\alpha_{k}^{|p|} \cdot \operatorname{Tr}\left(\varrho^{\alpha_{k}}(\tilde{\gamma}(p))\right)+(-1)^{|p|-1} \beta_{k}^{|p|} \cdot \operatorname{Tr}\left(\varrho^{\beta_{k}}(\tilde{\gamma}(p))\right)\right)
$$

(3) for each $\iota \in \Gamma$ and $n \in \mathbb{N}$ one has

$$
\begin{aligned}
\phi(\iota(\{n\})) & =\sum_{k=1}^{\infty}\left(\alpha_{k} \cdot \operatorname{Tr}\left(\varrho^{\alpha_{k}}(\iota)\right)+\beta_{k} \cdot \operatorname{Tr}\left(\varrho^{\beta_{k}}(\iota)\right)\right) \\
& +\left(1-\sum_{k \in \mathbb{N}}\left(\alpha_{k} \cdot \operatorname{dim} \varrho^{\alpha_{k}}+\beta_{k} \cdot \operatorname{dim} \varrho^{\beta_{k}}\right)\right) \operatorname{tr}_{0}(\iota) \quad(\operatorname{see}(1.5))
\end{aligned}
$$

where Tr is the ordinary trace and tr_{0} is the normalized character of the representation ϱ^{0}.
Proposition 8. The function $\phi_{\varrho^{0}}, \varrho^{\alpha}, \varrho^{\beta}, \alpha, \beta$ is an indecomposable character (see definition 3).

Proof. The realizations of the corresponding factor-representations we give in the section 2.

Here is our main result.
Theorem 9. If ϕ is an indecomposable character on $\Gamma\urcorner \mathfrak{S}_{\infty}$, then there exist Thoma parameters $\varrho^{0},\left\{\varrho^{\alpha_{k}}\right\},\left\{\varrho^{\beta_{k}}\right\},\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}$, such that $\phi=\phi_{\varrho^{0}}, \varrho^{\alpha}, \varrho^{\beta}, \alpha, \beta$.

2. REALIZATIONS OF $I I_{1}$-FACTOR-REPRESENTATIONS

A complete family of $I I_{1}$-factor-representations of $\Gamma \imath \mathfrak{S}_{\infty}$ can be constructed using the Vershik-Kerov [8], Olshanski [7] realizations or Okunkov methods (so called mixtures of representations) [3], found for the $I I_{1}$-factor-representations of the infinite symmetric group \mathfrak{S}_{∞}. We follow the approach developed by Olshanski as it leads to less spadework.
2.1. A construction of representations. Let $\left\{\alpha_{k}\right\}_{k \in \mathbb{N}},\left\{\beta_{k}\right\}_{k \in \mathbb{N}}$ be two finite or infinite sets of the positive numbers from $(0,1)$ and let $\varrho^{\alpha_{k}}$ and $\varrho^{\beta_{k}}$ be unitary irreducible finite-dimensional representations of Γ that act in the Hilbert spaces $\mathcal{H}^{\alpha_{k}}$ and $\mathcal{H}^{\beta_{k}}$ correspondingly. We assume, that

$$
\sum_{k} \alpha_{k} \cdot \operatorname{dim} \varrho^{\alpha_{k}}+\sum_{k} \beta_{k} \cdot \varrho^{\beta_{k}} \leq 1
$$

We set

$$
\delta=1-\sum_{k} \alpha_{k} \cdot \operatorname{dim} \varrho^{\alpha_{k}}-\sum_{k} \beta_{k} \cdot \varrho^{\beta_{k}}
$$

Let \mathcal{H}^{0} stand for the Hilbert space, where acts the unitary representation of a finite type ϱ^{0} of Γ. Then the formula $\operatorname{tr}^{0}(\gamma)=\left(\varrho^{0}(\gamma) \xi^{(0)}, \xi^{(0)}\right)_{\mathcal{H}^{0}}$ defines the character on Γ. We denote by $\left(\varrho^{0 k}, \mathcal{H}^{0 k}, \xi^{(0 k)}\right)$ the k-th copy of the triplet $\left(\varrho^{0}, \mathcal{H}^{0}, \xi^{(0)}\right)$.

Let $\left\{\mathrm{e}_{j}^{\left(\alpha_{k}\right)}\right\}_{1 \leq j \leq \operatorname{dim} \mathcal{H}^{\alpha_{k}}}$ be an orthonormal basis in $\mathcal{H}^{\alpha_{k}}$. Let

$$
\mathbf{H}=\left(\left(\underset{k}{\oplus} \mathcal{H}^{\alpha_{k}}\right) \oplus\left(\underset{k}{\oplus} \mathcal{H}^{\beta_{k}}\right) \oplus\left(\underset{k}{\oplus} \mathcal{H}^{0 k}\right)\right) \otimes\left(\left(\underset{k}{\oplus} \mathcal{H}^{\alpha_{k}}\right) \oplus\left(\underset{k}{\oplus} \mathcal{H}^{\beta_{k}}\right) \oplus\left(\underset{k}{\oplus} \mathcal{H}^{0 k}\right)\right)
$$

and let
$\eta^{(m)}=\sum_{k} \sqrt{\alpha_{k}}\left(\sum_{j} \mathrm{e}_{j}^{\left(\alpha_{k}\right)} \otimes \mathrm{e}_{j}^{\left(\alpha_{k}\right)}\right)+\sum_{k} \sqrt{\beta_{k}}\left(\sum_{j} \mathrm{e}_{j}^{\left(\beta_{k}\right)} \otimes \mathrm{e}_{j}^{\left(\beta_{k}\right)}\right)+\sqrt{\delta} \xi^{(0 m)} \otimes \xi^{(0 m)}$.
Define the unitary representation ϱ of Γ in \mathbf{H} as follows

$$
\begin{equation*}
\varrho=\left(\left(\underset{k}{\oplus} \varrho^{\alpha_{k}}\right) \oplus\left(\underset{k}{\oplus} \varrho^{\beta_{k}}\right) \oplus\left(\underset{k}{\oplus} \varrho^{0 k}\right)\right) \otimes I \tag{2.1}
\end{equation*}
$$

We will identify $\mathcal{H}^{\alpha_{k}} \otimes \mathcal{H}^{\alpha_{k}}, \mathcal{H}^{\beta_{k}} \otimes \mathcal{H}^{\beta_{k}}$ and $\left(\underset{k}{\oplus} \mathcal{H}^{0 k}\right) \otimes\left(\underset{k}{\oplus} \mathcal{H}^{0 k}\right)$ with their images with respect in the natural embedding to \mathbf{H}. Denote by \mathbf{H}^{m} the m-th copy of the Hilbert space \mathbf{H} and consider the infinite tensor product

$$
\breve{\mathbf{H}}=\bigotimes_{m}\left(\mathbf{H}^{m}, \eta^{(m)}\right)
$$

It is convenient to represent $\breve{\mathbf{H}}$ as the closure of the linear span of the vectors of the form $\zeta_{1} \otimes \zeta_{2} \otimes \cdots \otimes \zeta_{m-1} \otimes \eta^{(m)} \otimes \eta^{(m+1)} \otimes \cdots$, where ζ_{j} is an any vector from \mathbf{H}^{j}.
We extend the set $\left\{\mathrm{e}_{j}^{\left(\alpha_{k}\right)}\right\}_{j=1}^{\operatorname{dim} \mathcal{H}^{\alpha_{k}}} \cup\left\{\mathrm{e}_{j}^{\left(\beta_{k}\right)}\right\}_{j=1}^{\operatorname{dim} \mathcal{H}^{\beta_{k}}}$ to an orthonormal basis \mathfrak{A} in $\left(\underset{k}{\oplus} \mathcal{H}^{\alpha_{k}}\right) \oplus\left(\underset{k}{\oplus} \mathcal{H}^{\beta_{k}}\right) \oplus\left(\underset{k}{\oplus} \mathcal{H}^{0 k}\right)$. Now we fix the orthonormal basis

$$
\mathfrak{B}=\left\{\mathrm{e}_{j} \otimes \mathrm{e}_{l}: \mathrm{e}_{j}, \mathrm{e}_{l} \in \mathfrak{A}\right\}
$$

in \mathbf{H} and we assume below $\zeta_{j} \in \mathfrak{B}$. Let components of the vector $\breve{\zeta}=\zeta_{1} \otimes \zeta_{2} \otimes$ $\cdots \otimes \zeta_{m-1} \otimes \cdots$ be of the form $\zeta_{j}=v_{j} \otimes \tau_{j}$. Define for $\mathfrak{s} \in \mathfrak{S}_{\infty}$ the vector $\mathfrak{s}(\zeta)=$ $\vartheta_{1} \otimes \vartheta_{2} \otimes \cdots \otimes \vartheta_{m-1} \otimes \cdots$ as follows:

$$
\vartheta_{j}=v_{s^{-1}(j)} \otimes \tau_{j}
$$

Now build the sequence $\mathfrak{j}(\breve{\zeta})=\left\{j_{1}<j_{2}<\cdots\right\}$ such, that

$$
\zeta_{j_{l}}=\mathrm{e}_{m}^{\left(\beta_{k}\right)} \otimes \mathrm{f} \quad \text { for some } \quad \beta_{k} \quad \text { and } \quad m
$$

Let \mathfrak{t} be a permutation for which $\mathfrak{s}\left(\left(j_{\mathfrak{t}(1)}\right)\right)<\mathfrak{s}\left(\left(j_{\mathfrak{t}(2)}\right)\right)<\cdots<\mathfrak{s}\left(\left(j_{\mathfrak{t}(l)}\right)\right)<\cdots$. Finally, we set $\psi(\mathfrak{s}, \breve{\zeta})=\operatorname{sgn}(\mathfrak{t})$. The corresponding representation π of $\Gamma \imath \mathfrak{S}_{\infty}$ can be realized in Hilbert space $\breve{\mathbf{H}}$ as follows:

$$
\begin{align*}
& \pi(\gamma)\left(\zeta_{1} \otimes \zeta_{2} \otimes \cdots \otimes \zeta_{m-1} \otimes \eta^{(m)} \otimes \cdots\right) \\
& \quad=\varrho\left(\gamma_{1}\right) \zeta_{1} \otimes \varrho\left(\gamma_{2}\right) \zeta_{2} \otimes \cdots \otimes \varrho\left(\gamma_{m-1}\right) \zeta_{m-1} \otimes \varrho\left(\gamma_{m}\right) \eta^{(m)} \otimes \cdots \tag{2.2}\\
& \text { and for } \quad \mathfrak{s} \in \mathfrak{S}_{\infty} \quad \pi(\mathfrak{s})\left(\zeta_{1} \otimes \zeta_{2} \otimes \cdots \otimes \zeta_{m-1} \otimes \cdots\right)=\psi(\mathfrak{s}, \breve{\zeta}) \mathfrak{s}(\breve{\zeta})
\end{align*}
$$

2.2. The character's formula. Set $\breve{\eta}=\bigotimes_{m} \eta^{(m)}$. Assume that \mathfrak{s} is the cycle $(1 \rightarrow$ $2 \rightarrow 3 \rightarrow \cdots \rightarrow k-1 \rightarrow k)$, where $k>1$. Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}, e_{\Gamma}, e_{\Gamma}, \ldots\right)$. Routine calculations provide that

$$
\begin{equation*}
(\pi(\mathfrak{s} \gamma) \breve{\eta}, \breve{\eta})=\sum_{j} \alpha_{j}^{k} \operatorname{Tr}\left(\varrho^{\alpha_{j}}\left(\gamma_{1} \gamma_{2} \cdots \gamma_{k}\right)\right)+\sum_{j} \beta_{j}^{k} \operatorname{Tr}\left(\varrho^{\beta_{j}}\left(\gamma_{1} \gamma_{2} \cdots \gamma_{k}\right)\right) \tag{2.3}
\end{equation*}
$$

where $\operatorname{Tr}\left(\varrho^{r}(\gamma)\right)=\sum_{j=1}^{\operatorname{dim} \varrho^{r}} \varrho_{j j}^{r}(\gamma)$.
It is obvious, that

$$
(\pi(\gamma) \breve{\eta}, \breve{\eta})=\prod_{j=1}^{k}\left(\sum_{i} \alpha_{i} \operatorname{Tr}\left(\varrho^{\alpha_{i}}\left(\gamma_{j}\right)\right)+\sum_{i} \beta_{i} \operatorname{Tr}\left(\varrho^{\beta_{i}}\left(\gamma_{j}\right)\right)+\left(\varrho^{0}\left(\gamma_{j}\right) \xi^{(0)}, \xi^{(0)}\right)\right)
$$

Since tr^{0} is a character on Γ, one can use (2.3) and the multiplicativity property (see Proposition 7) to obtain the following

Corollary 10. Let $\chi(g)=(\pi(g) \breve{\eta}, \breve{\eta})$. Then χ is an indecomposable character on $\Gamma \backslash \mathfrak{S}_{\infty}$.

3. Other examples

In this section we construct examples of infinite type representations of $\mathbb{Z}_{2} \imath \mathfrak{S}_{\infty}$. The corresponding positive definite functions are not characters. On the other hand they satisfy the following condition:

$$
\varphi(s g)=\varphi(g s) \quad \text { for all } \quad g \in G=\Gamma \imath \mathfrak{S}_{\infty} \quad \text { and } \quad s \in \mathfrak{S}_{\infty}
$$

In the generic case the representation π_{φ} built by GNS-construction from φ is of type III. Furthermore, the state φ on the W^{*}-algebra $\pi_{\varphi}(G)^{\prime \prime}$ is faithful. These properties allow one to construct the Tomita-Takesaki modular operator Δ_{φ}. Surprisingly, Δ_{φ} is naturally related to the Okounkov operator \mathcal{O}_{k} (see (4.4)), which is an important object in the representation theory of symmetric group (see [2], [3]).
3.1. A construction. Let $X_{i}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{0,1\} \times\{0,1\}$. Define a probability measure ν_{i} on X_{i} by $\nu_{i}((k, l))=p_{k l}$. Let $(X, \mu)=\prod_{i}\left(X_{i}, \nu_{i}\right)$ and $x=\left(x_{i}\right) \in X$, where $x_{i}=$ $\left(x_{i}^{(0)}, x_{i}^{(1)}\right) \in X_{i}, x_{i}^{(k)} \in\{0,1\}$. Define an action \mathfrak{a} of $g=\left(s_{0}, s_{1}\right) \in \mathfrak{S}_{\infty} \times \mathfrak{S}_{\infty}$ on (X, μ) as follows:

$$
\left(\mathfrak{a}_{g}(x)\right)_{i}^{(k)}=x_{s_{k}(i)}^{(k)} \quad(k=0,1)
$$

Remark 1. The measure μ is $\mathfrak{G}_{\infty} \times \mathfrak{G}_{\infty}$-quasiinvariant if and only if $p_{i j} \neq 0$ for all $i, j=0,1$.

We are about to construct a unitary representation π_{μ} of $G \times G$ in $L^{2}(X, \mu)$. With $\varsigma \in L^{2}(X, \mu)$ set

$$
\begin{align*}
& \left(\pi_{\mu}\left(\left(s_{0}, s_{1}\right)\right) \varsigma\right)(x)=\left(\frac{d \mu\left(\mathfrak{a}_{g}(x)\right)}{d \mu(x)}\right)^{\frac{1}{2}} \varsigma\left(\mathfrak{a}_{g}(x)\right) \\
& \left(\pi_{\mu}\left(\left(\gamma^{(0)}, \gamma^{(1)}\right)\right) \varsigma\right)(x)=(-1)^{\left(\sum_{i, k} \gamma_{i}^{(k)} x_{i}^{(k)}\right)} \varsigma(x) \tag{3.1}
\end{align*}
$$

where $\gamma^{(0)}=\left(\gamma_{i}^{(0)}\right) \in \mathbb{Z}_{2}^{\infty}, \gamma^{(1)}=\left(\gamma_{i}^{(1)}\right) \in \mathbb{Z}_{2}^{\infty}$, and $\left(\gamma^{(0)}, \gamma^{(1)}\right) \in \mathbb{Z}_{2}^{\infty} \times \mathbb{Z}_{2}^{\infty}$. Let $\pi_{\mu}^{(0)}(g)=\pi_{\mu}\left(\left(g, e_{G}\right)\right)$ and $\pi_{\mu}^{(1)}(g)=\pi_{\mu}\left(\left(e_{G}, g\right)\right)$.
Proposition 11. π_{μ} is irreducible. Hence, $\pi_{\mu}^{(0)}$ and $\pi_{\mu}^{(1)}$ are factor-representations of $\Gamma \imath \mathfrak{S}_{\infty}$.

Proof. Obvious.
3.2. A cyclic separating vector. Let \mathbb{I} be an element of $L^{2}(X, \mu)$ given by the function identically equal to 1 .

Theorem 12. If $\operatorname{det}\left[p_{i j}\right] \neq 0$, then \mathbb{I} is a cyclic separating vector for $\pi_{\mu}^{(0)}(G)^{\prime \prime}$ and $\pi_{\mu}^{(1)}(G)^{\prime \prime}$. That is,

$$
\left[\pi_{\mu}^{(0)}(G)^{\prime \prime} \mathbb{I}\right]=\left[\pi_{\mu}^{(1)}(G)^{\prime \prime} \mathbb{I}\right]=L^{2}(X, \mu)
$$

Proof. Let (k, l) be a transposition from \mathfrak{S}_{∞}. First notice that the operator

$$
\mathcal{O}_{k}^{(j)}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{l=1}^{n} \pi_{\mu}^{(j)}((k, l)) \quad(\text { see }(4.4))
$$

belongs to $\pi_{\mu}^{(j)}(G)^{\prime \prime}(j=0,1)$. Since

$$
\left(L^{2}(X, \mu), \mathbb{I}\right)=\bigotimes_{i=1}^{\infty}\left(L^{2}\left(X_{i}, \nu_{i}\right), \mathbb{I}\right)
$$

one can apply the law of large numbers to deduce that

$$
\mathcal{O}_{i}^{(j)}=I \otimes I \otimes \cdots \otimes \underset{i-t h}{\mathcal{O}_{i}^{(j, i)}} \otimes I \otimes \cdots
$$

Furthermore, if $\chi_{k l}^{(i)}$ is the indicator of the point $(k, l) \in X_{i}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, the matrices of $\mathcal{O}_{i}^{(0, i)}$ and $\mathcal{O}_{i}^{(1, i)}$ in the orthonormal basis $\left\{\mathrm{e}_{k l}^{(i)}=\frac{\chi_{k l}^{(i)}}{\sqrt{p_{k l}}}\right\}_{k, l=0,1}$ are as follows:

$$
\begin{gather*}
\mathcal{O}_{i}^{(0, i)} \leftrightarrow\left[\begin{array}{cccc}
p_{00}+p_{01} & 0 & \sqrt{p_{00} p_{10}}+\sqrt{p_{01} p_{11}} & 0 \\
0 & p_{00}+p_{01} & 0 & \sqrt{p_{00} p_{10}}+\sqrt{p_{01} p_{11}} \\
\sqrt{p_{00} p_{10}}+\sqrt{p_{01} p_{11}} & 0 & p_{10}+p_{11} & 0 \\
0 & \sqrt{p_{00} p_{10}}+\sqrt{p_{01} p_{11}} & 0 & p_{10}+p_{11}
\end{array}\right], \tag{3.2}\\
\mathcal{O}_{i}^{(1, i)} \leftrightarrow\left[\begin{array}{cccc}
p_{00}+p_{10} & \sqrt{p_{00} p_{01}}+\sqrt{p_{10} p_{11}} & 0 & 0 \\
\sqrt{p_{00} p_{01}+\sqrt{p_{10} p_{11}}} \begin{array}{c}
p_{01}+p_{11} \\
0
\end{array} 0 & 0 & 0 \\
0 & 0 & \sqrt{p_{00} p_{01}}+\sqrt{p_{10} p_{11}} & p_{01}+p_{11}
\end{array}\right]
\end{gather*}
$$

By the construction,

$$
\pi_{\mu}^{(k)}\left(\gamma^{(k)}\right)=\bigotimes_{i=1}^{\infty} \pi_{\mu}^{(k, i)}\left(\gamma_{i}^{(k)}\right)
$$

where $\pi_{\mu}^{(0, i)}\left(\gamma_{i}^{(0)}\right)$ and $\pi_{\mu}^{(1, i)}\left(\gamma_{i}^{(1)}\right)$ are determined by the matrices

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3.3}\\
0 & 1 & 0 & 0 \\
0 & 0 & (-1)^{\gamma_{i}^{(0)}} & 0 \\
0 & 0 & 0 & (-1)^{\gamma_{i}^{(0)}}
\end{array}\right] \text { and }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & (-1)^{\gamma_{i}^{(1)}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & (-1)^{\gamma_{i}^{(1)}}
\end{array}\right]
$$

Use the map

$$
\mathfrak{I}_{i}: \sum_{m, n=0,1} a_{m n} \mathrm{e}_{m n}^{(i)} \rightarrow\left[\begin{array}{ll}
a_{00} & a_{01} \tag{3.4}\\
a_{10} & a_{11}
\end{array}\right]
$$

to identify $L^{2}\left(X_{i}, \nu_{i}\right)$ to the full matrix algebra $M_{2}(\mathbb{C})$, so that

$$
\Im_{i}(\mathbb{I})=\left[\begin{array}{ll}
\sqrt{p_{00}} & \sqrt{p_{01}} \\
\sqrt{p_{10}} & \sqrt{p_{11}}
\end{array}\right]
$$

Equip $M_{2}(\mathbb{C})$ with the Hermitian form

$$
\langle a, b\rangle_{i}=\operatorname{Tr}\left(b^{*} a\right)
$$

then \mathfrak{I}_{i} is a unitary and $\mathfrak{I}_{i} L^{2}\left(X_{i}, \nu_{i}\right)=M_{2}(\mathbb{C})$. Now as an elementary consequence of (3.2) and (3.3) one has:

$$
\begin{aligned}
& \mathfrak{I}_{i} \mathcal{O}_{i}^{(0, i)} \mathfrak{I}_{i}^{-1} a=\left[\begin{array}{cc}
p_{00}+p_{01} & \sqrt{p_{00} p_{10}}+\sqrt{p_{01} p_{11}} \\
\sqrt{p_{00} p_{10}}+\sqrt{p_{01} p_{11}} & p_{10}+p_{11}
\end{array}\right] a, \\
& \mathfrak{I}_{i} \mathcal{O}_{i}^{(1, i)} \mathfrak{I}_{i}^{-1} a=a\left[\begin{array}{cc}
p_{00}+p_{10} & \sqrt{p_{00} p_{01}}+\sqrt{p_{10} p_{11}} \\
\sqrt{p_{00} p_{01}}+\sqrt{p_{10} p_{11}} & p_{01}+p_{11}
\end{array}\right], \\
& \mathfrak{I}_{i} \pi_{\mu}^{(0, i)}\left(\gamma_{i}^{(0)}\right) \mathfrak{I}_{i}^{-1} a=\left[\begin{array}{cc}
1 & 0 \\
0 & (-1)^{\gamma_{i}^{(0)}}
\end{array}\right] a, \\
& \mathfrak{I}_{i} \pi_{\mu}^{(1, i)}\left(\gamma_{i}^{(1)}\right) \mathfrak{I}_{i}^{-1} a=a\left[\begin{array}{cc}
1 & 0 \\
0 & (-1)^{\gamma_{i}^{(1)}}
\end{array}\right], \quad \text { where } \quad a \in M_{2}(\mathbb{C}) .
\end{aligned}
$$

Thus, in view of Remark 1 (see p. 307), the algebra \mathfrak{M}_{i}^{k} generated by the operators $\mathfrak{I}_{i} \mathcal{O}_{i}^{(k, i)} \mathfrak{I}_{i}^{-1}$ and $\mathfrak{I}_{i} \pi_{\mu}^{(0, i)}\left(\gamma_{i}^{(k)}\right) \mathfrak{I}_{i}^{-1}$ is just $M_{2}(\mathbb{C})$. Since $\operatorname{det}\left(\mathfrak{I}_{i}(\mathbb{I})\right) \neq 0$, one has finally $\mathfrak{M}_{i}^{0} \mathfrak{I}_{i}(\mathbb{I})=\mathfrak{M}_{i}^{1} \mathfrak{I}_{i}(\mathbb{I})=M_{2}(\mathbb{C})$.
3.3. The modular operator. Consider the Hilbert space $\mathfrak{H}=\bigotimes_{i=1}^{\infty}\left(M_{2}(\mathbb{C}),\langle \rangle_{i}, \mathfrak{I}_{i}(\mathbb{I})\right)$. It is convenient to represent \mathfrak{H} as the closure of the linear span of the vectors $a_{1} \otimes a_{2} \otimes$ $\cdots \otimes a_{i} \otimes \mathfrak{I}_{i+1}(\mathbb{I}) \otimes \mathfrak{I}_{i+2}(\mathbb{I}) \cdots$, where $a_{i} \in M_{2}(\mathbb{C})$. If $\mathfrak{I}=\bigotimes_{i=1}^{\infty} \mathfrak{I}_{i}$, one has by Theorem 12

$$
\mathfrak{I} L^{2}(X, \mu)=\mathfrak{H}
$$

Let $\mathcal{L}(\mathfrak{H})$ and $\mathcal{R}(\mathfrak{H})$ be the W^{*}-algebras generated in \mathfrak{H} by the operators of left and right multiplication by elements of the form $a_{1} \otimes a_{2} \otimes \cdots \otimes a_{i} \otimes I_{2} \otimes I_{2} \otimes \cdots, \quad$ where $\quad a_{i} \in M_{2}(\mathbb{C}), \quad I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Proposition 13. $\pi_{\mu}^{(0)}(G)^{\prime \prime}=\mathfrak{I}^{-1} \mathcal{L}(\mathfrak{H}) \mathfrak{I}$ and $\pi_{\mu}^{(1)}(G)^{\prime \prime}=\mathfrak{I}^{-1} \mathcal{R}(\mathfrak{H}) \mathfrak{I}$.

Proof. Let $\mathfrak{A}_{n}^{(j)}$ stand for the W^{*}-algebra generated by the operators $\left\{\mathcal{O}_{i}^{(j)}\right\}_{i=1}^{n}$ and $\left\{\pi_{\mu}^{(j)}\left(\Gamma^{n}\right)\right\}(j=0,1)$. In view of (3.5), $\mathfrak{A}_{n}^{(j)}$ is isomorphic $\bigotimes_{i=1}^{n} M_{2}(\mathbb{C})$. Therefore, $\pi_{\mu}^{(j)}\left(\mathfrak{S}_{n}\right) \subset \mathfrak{A}_{n}^{(j)}$. Finally, use (3.5) deduce $\mathfrak{A}_{n}^{(0)} \subset \mathcal{L}(\mathfrak{H})$ and $\mathfrak{A}_{n}^{(1)} \subset \mathcal{R}(\mathfrak{H})$.

Let $\xi=\mathfrak{I}_{1}(\mathbb{I}) \otimes \mathfrak{I}_{2}(\mathbb{I}) \otimes \cdots \otimes \mathfrak{I}_{i+2}(\mathbb{I}) \otimes \cdots$. Since the vector ξ is cyclic and separating for $\mathcal{L}(\mathfrak{H})$ (Theorem 12), one can construct the modular operator Δ_{ξ} (see [9]). Namely, if S and F are closures of antilinear operators given by

$$
S(a \xi)=a^{*} \xi \quad \text { for all } \quad a \in \mathcal{L}(\mathfrak{H}) \quad \text { and } \quad F\left(\xi a^{\prime}\right)=\xi\left(a^{\prime}\right)^{*} \quad \text { for all } \quad a^{\prime} \in \mathcal{R}(\mathfrak{H})
$$

then

$$
F=S^{*} \quad \text { and } \quad \Delta_{\xi}=F S
$$

Hence, with $a=a_{1} \otimes a_{2} \otimes \cdots \otimes a_{i} \otimes I_{2} \otimes I_{2} \otimes \cdots$ one has

$$
a^{*} \xi=\xi \cdot\left(\bigotimes_{j=1}^{i} \mathfrak{I}_{j}(\mathbb{I})\right)^{-1} \otimes I_{2} \otimes I_{2} \otimes \cdots \cdot a^{*} \cdot\left(\bigotimes_{j=1}^{i} \mathfrak{I}_{j}(\mathbb{I})\right) \otimes I_{2} \otimes I_{2} \otimes \cdots
$$

Therefore,

$$
\Delta_{\xi}(a \xi)=F\left(a^{*} \xi\right)=\xi \cdot\left(\bigotimes_{j=1}^{i} \mathfrak{I}_{j}(\mathbb{I})\right)^{*} \otimes I_{2} \otimes \cdots \cdot a \cdot\left(\bigotimes_{j=1}^{i}\left(\mathfrak{I}_{j}(\mathbb{I})\right)^{*}\right)^{-1} \otimes I_{2} \otimes \cdots
$$

Finally, use the relation $\mathfrak{I}_{j}(\mathbb{I})\left(\mathfrak{I}_{j}(\mathbb{I})\right)^{*}=\mathfrak{I}_{j} \mathcal{O}_{j}^{(0, j)} \mathfrak{I}_{j}^{-1}$ (see (3.5)) to obtain

$$
\begin{align*}
\Delta_{\xi}(a \xi) & =\bigotimes_{j=1}^{i}\left(\mathfrak{I}_{j} \mathcal{O}_{j}^{(0, j)} \mathfrak{I}_{j}^{-1}\right) a\left(\bigotimes_{j=1}^{i} \mathfrak{I}_{j} \mathcal{O}_{j}^{(0, j)} \mathfrak{I}_{j}^{-1}\right)^{-1} \tag{3.6}\\
& \otimes \mathfrak{I}_{i+1}(\mathbb{I}) \otimes \mathfrak{I}_{i+2}(\mathbb{I}) \otimes \cdots
\end{align*}
$$

Thus the modular operator Δ_{ξ} is defined in a natural way by the Okounkov operator \mathcal{O}_{j} (see (4.4), [2], [3]).
4. The characters of G and spherical functions of the pair $(G \times G$, $\operatorname{diag} G)$

In what follows, $\left(\pi_{\phi}, \mathcal{H}_{\phi}, \xi_{\phi}\right)$ is the unitary representation of $G=\Gamma$ 亿 \mathfrak{S}_{∞} that corresponds by GNS-construction to the character ϕ. In particular, the operators $\pi(G)$ act in \mathcal{H}_{ϕ} with cyclic separating vector ξ_{ϕ}. That is,

$$
\begin{equation*}
\left[\pi_{\phi}(G) \xi_{\phi}\right]=\left[\pi_{\phi}(G)^{\prime} \xi_{\phi}\right]=\mathcal{H}_{\phi} \tag{4.1}
\end{equation*}
$$

where $[\mathcal{S}]$ stands for the closed subspace in \mathcal{H}_{ϕ} generated by \mathcal{S}. Moreover $\phi(g)=$ $\left(\pi_{\phi}(g) \xi_{\phi}, \xi_{\phi}\right)$ for all $g \in G$.

The property (4.1) allows one to produce a unitary spherical representation $\pi_{\phi}^{(2)}$ of the Olshanski pair $(G \times G, K)$, where $K=\operatorname{diag} G=\{(g, g)\}_{g \in G}$. Namely,

$$
\begin{equation*}
\pi_{\phi}^{(2)}\left(g_{1}, g_{2}\right) x \xi_{\phi}=\pi_{\phi}\left(g_{1}\right) x \pi_{\phi}\left(g_{2}\right)^{*} \xi_{\phi} \quad \text { for all } \quad x \in \pi_{\phi}(G)^{\prime \prime} \tag{4.2}
\end{equation*}
$$

Let

$$
\begin{gathered}
G_{n}(\infty)=\left\{g=s \cdot \gamma \in G \mid s(l)=l \text { and } \gamma_{l}=e \text { for all } l=1,2, \ldots, n\right\} \\
K_{n}(\infty)=K \cap\left(G_{n}(\infty) \times G_{n}(\infty)\right), \quad G_{n}=\Gamma \imath \mathfrak{S}_{n}, \quad K_{n}=\left(G_{n} \times G_{n}\right) \cap K .
\end{gathered}
$$

It follows from the definition that $G_{0}(\infty)=G_{\infty}=G, K_{0}(\infty)=K_{\infty}=K$.
Set

$$
\mathcal{H}_{\phi}^{K_{n}(\infty)}=\left\{\eta \in \mathcal{H}_{\phi} \mid \pi_{\phi}^{(2)}(g) \eta=\eta \text { for all } g \in K_{n}(\infty)\right\}
$$

and let P_{n} be the orthogonal projection onto $\mathcal{H}_{\phi}^{K_{n}(\infty)}$.
Lemma 14. $\bigcup_{n=0}^{\infty} \mathcal{H}_{\phi}^{K_{n}(\infty)}$ is a dense subspace in \mathcal{H}_{ϕ}. In different terms, $\lim _{n \rightarrow \infty} P_{n}=\mathcal{I}_{\mathcal{H}_{\phi}}$ in the strong operator topology.

Proof. It follows from the definition of $\pi_{\phi}^{(2)}$ (see (4.2)) that

$$
\begin{equation*}
\left[\pi_{\phi}\left(G_{n}\right) \xi_{\phi}\right] \subset \mathcal{H}_{\phi}^{K_{n}(\infty)} \tag{4.3}
\end{equation*}
$$

On the other hand, ξ_{ϕ} is a cyclic vector. That is, $\left[\bigcup_{n=1}^{\infty} \pi_{\phi}\left(G_{n}\right) \xi_{\phi}\right]=\mathcal{H}_{\phi}$. Now our statement follows from (4.3).

Remind a construction of asymptotic operators which appears in [2], [3]. Consider the transposition $(i, n) \in \mathfrak{S}_{\infty}$ and the operator

$$
\begin{equation*}
\mathcal{O}_{k}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{l=1}^{n} \pi_{\phi}((k, l)) . \tag{4.4}
\end{equation*}
$$

The limit exists in the strong operator topology.
Lemma 15. Let $i(p)$ be an element of $p \in \mathbb{N} / s$. Given any $\gamma=\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}, \cdots\right) \in$ Γ_{e}^{∞}, there exists $\tilde{\gamma} \in \Gamma_{e}^{\infty}$ with the property $\tilde{\gamma} \cdot s \cdot \gamma \cdot \tilde{\gamma}^{-1}=s \cdot \gamma^{\prime}$, where

$$
\begin{gathered}
\gamma_{s^{(l-1)}(i(p))}^{\prime}=e_{\Gamma} \quad \text { for all } \quad l=1,2, \ldots, \quad|p|-1 \quad \text { and } \quad p \in \mathbb{N} / s, \\
\gamma_{s(|p|-1)(i(p))}^{\prime}=\gamma_{s(|p|-1)(i(p))} \cdot \gamma_{s(|p|-2)(i(p))} \cdots \gamma_{i(p)}
\end{gathered}
$$

Proof. Let the $\tilde{\gamma}$ be defined as follows:

$$
\begin{gathered}
\tilde{\gamma}_{i(p)}=e_{\Gamma}, \tilde{\gamma}_{s(i(p))}=\gamma_{i(p)}^{-1}, \tilde{\gamma}_{s(2)}(i(p))=\gamma_{i(p)}^{-1} \cdot \gamma_{s(i(p))}^{-1}, \cdots \\
\tilde{\gamma}_{s(|p|-1)}(i(p))=\gamma_{i(p)}^{-1} \cdot \gamma_{s(i(p))}^{-1} \cdots \gamma_{s(|p|-2)(i(p))} \quad \text { for all } p \in \mathbb{N} / s
\end{gathered}
$$

Now our statement can be readily verified.
Lemma 16. Let s be a cycle from \mathfrak{S}_{∞}. Suppose that for $\beta, \gamma \in \Gamma_{e}^{\infty}$ the following relations hold:

$$
\beta_{k}=\gamma_{k}=e_{\Gamma} \quad \text { for all } \quad k \in\{j \in \mathbb{N} \mid s(j)=j\}
$$

If $s \beta$ and s γ are in the same conjugate class, then there exists $\tilde{\gamma} \in \Gamma_{e}^{\infty}$ such that s $\gamma=$ $\tilde{\gamma} \cdot s \beta \cdot \tilde{\gamma}^{-1}$.

Proof. One may assume without loss of generality that
$s(k)=k+1 \quad$ for $\quad k=1,2, \ldots, m-1, \quad s(m)=1 \quad$ and $\quad s(l)=l \quad$ for all $\quad l>m$.
By Lemma 15 there exist $\tilde{\gamma}, \tilde{\beta} \in \Gamma_{e}^{\infty}$ with the properties

$$
\begin{align*}
& \tilde{\gamma} \cdot s \cdot \gamma \cdot \tilde{\gamma}^{-1}=s \cdot \gamma^{\prime}, \tilde{\beta} \cdot s \cdot \beta \cdot \tilde{\beta}^{-1}=s \cdot \beta^{\prime}, \quad \text { where } \\
& \gamma_{k}^{\prime}=\beta_{k}^{\prime}=e_{\Gamma} \quad \text { for } \quad k=1,2, \ldots, m-1, m+1, \ldots \tag{4.5}
\end{align*}
$$

Let $s \in \mathfrak{S}_{\infty}$ and $\delta \in \Gamma_{e}^{\infty}$ be such that

$$
(t \delta) s \gamma^{\prime}(t \delta)^{-1}=s \beta^{\prime}
$$

One has the following relations:

$$
\begin{array}{ccc}
\delta_{2} \gamma_{1}^{\prime} & = & \beta_{t(1)}^{\prime} \delta_{1} \\
\delta_{3} \gamma_{2}^{\prime} & = & \beta_{t(2)}^{\prime} \delta_{2} \tag{4.6}\\
\vdots & \vdots & \vdots \\
\delta_{m} \gamma_{m-1}^{\prime} & = & \beta_{t(m-1)}^{\prime} \delta_{m-1} \\
\delta_{1} \gamma_{m}^{\prime} & = & \beta_{t(m)}^{\prime} \delta_{m} .
\end{array}
$$

By assumptions of the Lemma, $t(\{1,2, \ldots, m\})=\{1,2, \ldots, m\}$, and we may assume that $t(k)=k$ for all $k>m$. Hence, there exists a map f from \mathbb{N} to \mathbb{N} such that

$$
t(k)=s^{f(k)}(k) \quad \text { for } \quad k \in \mathbb{N}
$$

Now use the relation $t s=s t$ to obtain

$$
\begin{equation*}
f(k)=l \quad \text { for } \quad k=1,2, \ldots, m \tag{4.7}
\end{equation*}
$$

Since s^{m} is the identity, it suffices to consider the case $l \in\{1,2, \ldots, m-1\}$.
Use (4.6) to obtain

$$
\begin{aligned}
\delta_{1}=\cdots & =\delta_{m-l}, \quad \delta_{m-l+1}=\cdots=\delta_{m} \\
\beta_{m}^{\prime} & =\delta_{m} \delta_{1}^{-1}, \quad \gamma_{m}^{\prime}=\delta_{1}^{-1} \delta_{m} .
\end{aligned}
$$

These relations together with (4.5) yield the following relation:

$$
\delta^{\prime} s \gamma^{\prime}\left(\delta^{\prime}\right)^{-1}=s \beta^{\prime}, \quad \text { where } \quad \delta^{\prime}=\left(\delta_{m}^{-1} \delta_{1}, \delta_{m}^{-1} \delta_{1}, \ldots, \delta_{m}^{-1} \delta_{1}, \ldots\right)
$$

5. A proof of the main result

The proof of Theorem 9 splits into a few lemmas.
For each indecomposable character ϕ let $\left(\pi_{\phi}, \mathcal{H}_{\phi}, \xi_{\phi}\right)$ denote the cyclic representation of the group $\Gamma \mathfrak{\imath} \mathfrak{S}_{\infty}$ associated to ϕ via the GNS-construction.
Lemma 17. If a W^{*}-algebra \mathfrak{A} is generated by the operators $\pi_{\phi}\left(\Gamma_{e}^{\infty}\right),\left\{\mathcal{O}_{j}\right\}_{j \in \mathbb{N}}$, and $\mathcal{C}(\mathfrak{A})$ is a center of \mathfrak{A}, then $\left\{\mathcal{O}_{j}\right\}_{j \in \mathbb{N}} \subset \mathcal{C}(\mathfrak{A})$.

Proof. The relation $\mathcal{O}_{k} \cdot \mathcal{O}_{l}=\mathcal{O}_{l} \cdot \mathcal{O}_{k}$ allows an easy verification by definition (4.4) (see [2] or [3]).

Now prove the relation

$$
\begin{equation*}
\mathcal{O}_{l} \cdot \pi_{\phi}(\gamma)=\pi_{\phi}(\gamma) \cdot \mathcal{O}_{l} \quad \text { for all } \quad \gamma \in \Gamma_{e}^{\infty} \quad \text { and } \quad l \in \mathbb{N} \tag{5.1}
\end{equation*}
$$

Let $K_{n}^{\mathfrak{S}}(\infty)=K_{n}(\infty) \cap\left(\mathfrak{S}_{\infty} \times \mathfrak{S}_{\infty}\right)$ and $K_{n}^{\mathfrak{S}}(m)=K_{n}^{\mathfrak{S}}(\infty) \cap\left(G_{m} \times G_{m}\right)$, where $m>n$. If $P_{n}^{\mathfrak{G}}$ stands for the orthogonal projection onto $\mathcal{H}_{\phi}^{K_{n}^{\mathfrak{G}}(\infty)}$, then

$$
\begin{equation*}
P_{n}^{\mathfrak{S}}=\lim _{m \rightarrow \infty} \frac{1}{(m-n)!} \sum_{g \in K_{n}^{\mathfrak{G}}(m)} \pi_{\phi}^{(2)}(g) \tag{5.2}
\end{equation*}
$$

in the strong operator topology and $P_{n}^{\mathfrak{S}} \geq P_{n}{ }^{1}$. Hence, using (4.4) and (5.2), we obtain for $i \leq n<k$

$$
\begin{equation*}
P_{n}^{\mathfrak{S}} \mathcal{O}_{i} P_{n}^{\mathfrak{S}}=P_{n}^{\mathfrak{S}} \pi_{\phi}((i, k)) P_{n}^{\mathfrak{S}} \quad \text { and } \quad P_{n} \mathcal{O}_{i} P_{n}=P_{n} \pi_{\phi}((i, k)) P_{n} \tag{5.3}
\end{equation*}
$$

In the case when $\gamma_{l}=e$ the equality (5.1) easily follows from (4.4). Therefore, it suffices to prove (5.1) for the elements $\gamma=\gamma(\{l\})$ (see (1.3)).

[^1]If $i \leq n<k$, then, using (4.4), we have

$$
\begin{aligned}
& P_{n} \pi_{\phi}(\gamma(\{i\})) \mathcal{O}_{i} P_{n} \stackrel{\left\{P_{n}^{\mathfrak{G}} \geq P_{n}\right\}}{=} P_{n} P_{n}^{\mathfrak{S}} \pi_{\phi}(\gamma(\{i\})) \mathcal{O}_{i} P_{n}^{\mathfrak{S}} P_{n} \\
&\{(4.4),(5.2)\} \\
&=P_{n} \pi_{\phi}(\gamma(\{i\})) P_{n}^{\mathfrak{S}} \pi_{\phi}((i, k)) P_{n}^{\mathfrak{S}} P_{n} \\
&=P_{n} P_{n}^{\mathfrak{S}} \pi_{\phi}((i, k)) \pi_{\phi}(\gamma(\{k\})) P_{n}^{\mathfrak{S}} P_{n} \\
&=P_{n} P_{n}^{\mathfrak{S}} \pi_{\phi}((i, k)) \pi_{\phi}(\gamma(\{k\})) \pi_{\phi}^{(2)}\left(\left(\gamma(\{k\})^{-1}, \gamma(\{k\})^{-1}\right)\right) P_{n} \\
& \stackrel{(4.2)}{=} P_{n} P_{n}^{\mathfrak{G}} \pi_{\phi}^{(2)}\left(\left(e, \gamma(\{k\})^{-1}\right)\right) \pi_{\phi}((i, k)) P_{n} \\
&=P_{n} \pi_{\phi}^{(2)}((\gamma(\{k\}), \gamma(\{k\}))) \pi_{\phi}^{(2)}\left(\left(e, \gamma(\{k\})^{-1}\right)\right) \pi_{\phi}((i, k)) P_{n} \\
&=P_{n} \pi_{\phi}(\gamma(\{k\})) \pi_{\phi}((i, k)) P_{n}=P_{n} \pi_{\phi}((i, k)) \pi_{\phi}(\gamma(\{i\})) P_{n} \\
& \stackrel{(4.4)}{=} P_{n} \mathcal{O}_{i} \pi_{\phi}(\gamma(\{i\})) P_{n} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} P_{n}=\mathcal{I}_{\mathcal{H}_{\phi}}($ see Lemma 14 $)$, the relation

$$
\pi_{\phi}(\gamma(\{i\})) \mathcal{O}_{i}=\mathcal{O}_{i} \pi_{\phi}(\gamma(\{i\}))
$$

follows.
We use the notation $\left(i_{0}, i_{1}, \ldots, i_{q-1}\right)$ for the cyclic permutation s which acts as follows

$$
s(i)=\left\{\begin{aligned}
i_{k+1(\bmod q)}, & \text { if } i=i_{k} \in\left\{i_{0}, i_{1}, \ldots, i_{q-1}\right\} \\
i, & \text { otherwise }
\end{aligned}\right.
$$

Lemma 18. If \mathcal{O}_{i} is defined as in (4.4) and
$\mathbb{D}(m, n, q)=\left\{\vec{k}=\left(k_{1}, k_{2}, \ldots, k_{q}\right) \in \mathbb{N} \mid k_{i} \neq k_{j}\right.$ and $\left.m<k_{i} \leq n \forall i, j=1, \ldots, q\right\}$,
then for every positive integer m

$$
\mathcal{O}_{i}^{q}=\lim _{n \rightarrow \infty} \frac{1}{n^{q}} \sum_{\vec{k} \in \mathbb{D}(m, n, q)} \pi_{\phi}\left(\left(k_{q}, k_{q-1}, \ldots, k_{1}, i\right)\right)
$$

Proof. If we notice that

$$
\left(i, k_{1}\right) \cdot\left(i, k_{2}\right) \cdots\left(i, k_{q}\right)=\left(k_{q}, k_{q-1}, \ldots, k_{1}, i\right)
$$

for pairwise different $i, k_{1}, k_{2}, \ldots, k_{q}$ and $\operatorname{Card}(\mathbb{D}(m, n))=\prod_{j=0}^{q-1}(n-m-j)$, the proof becomes obvious.

Lemma 19. Let $g=\prod_{p \in \mathbb{N} / s} s_{p} \cdot \gamma(p)$ be a decomposition of $g=s \cdot \gamma \in \Gamma \imath \mathfrak{S}_{\infty}$ (see (1.4)) and $i(p)$ any element from $p \in \mathbb{N} / s$. Define $\gamma^{(i(p))} \in \Gamma_{e}^{\infty}$ as follows:
$(5.4) \gamma_{k}^{(i(p))}=\left\{\begin{aligned} & \gamma_{i(p)} \cdot \gamma_{s^{-1}(i(p))} \cdots \gamma_{s}^{(-|p|+2)(i(p))} \cdot \gamma_{s^{(-|p|+1)}(i(p))}, \\ & e, \text { if } k=i(p), \\ & \text { otherwise. }\end{aligned}\right.$
If ϕ is an indecomposable character on $\Gamma \mathfrak{\mathfrak { S } _ { \infty }}$, then

$$
\begin{equation*}
\left(\pi_{\phi}(s \cdot \gamma) \prod_{j} \mathcal{O}_{j}^{r_{j}} \xi_{\phi}, \xi_{\phi}\right)=\prod_{p \in \mathbb{N} / s}\left(\pi_{\phi}\left(\gamma^{(i(p))}\right) \mathcal{O}_{i(p)}^{|p|-1+\sum_{j \in p} r_{j}} \xi_{\phi}, \xi_{\phi}\right) \tag{5.5}
\end{equation*}
$$

Proof. By Proposition 7 we have

$$
\begin{equation*}
\left(\pi_{\phi}(s \cdot \gamma) \prod_{j} \mathcal{O}_{j}^{r_{j}} \xi_{\phi}, \xi_{\phi}\right)=\prod_{p \in \mathbb{N} / s}\left(\pi_{\phi}\left(s_{p} \cdot \gamma(p)\right) \prod_{j \in p} \mathcal{O}_{j}^{r_{j}} \xi_{\phi}, \xi_{\phi}\right) \tag{5.6}
\end{equation*}
$$

Therefore it suffices to prove (5.5) in the case when s is a single cycle and $\gamma=\gamma(p)$, where $p \in \mathbb{N} / s$ and $|p|>1$. Let $s=\left(i_{1}, i_{2}, \ldots, i_{|p|}\right)$. By a virtue of Lemma 16 , we find $\tilde{\gamma} \in \Gamma_{e}^{\infty}$ such that

$$
\begin{equation*}
\tilde{\gamma} \cdot s \cdot \gamma \cdot \tilde{\gamma}^{-1}=s \cdot \gamma^{\left(i_{1}\right)} \tag{5.7}
\end{equation*}
$$

Thus, by Lemma 17,

$$
\begin{equation*}
\left(\pi_{\phi}(s \cdot \gamma) \prod_{j \in p} \mathcal{O}_{j}^{r_{j}} \xi_{\phi}, \xi_{\phi}\right)=\left(\pi_{\phi}\left(\gamma^{\left(i_{1}\right)}\right) \pi_{\phi}(s) \prod_{j \in p} \mathcal{O}_{j}^{r_{j}} \xi_{\phi}, \xi_{\phi}\right) \tag{5.8}
\end{equation*}
$$

Let

$$
\mathfrak{S}_{\infty}^{j}=\left\{\tau \in \mathfrak{S}_{\infty} \mid \tau(j)=j\right\}
$$

Now use Lemma 18 to obtain

$$
\begin{aligned}
& \left(\pi_{\phi}\left(\gamma^{\left(i_{1}\right)}\right) \pi_{\phi}(s) \prod_{j \in p} \mathcal{O}_{j}^{r_{j}} \xi_{\phi}, \xi_{\phi}\right) \\
& \quad=\lim _{n \rightarrow \infty} \frac{1}{n^{q}} \sum_{\vec{k} \in \mathbb{D}(m, n, q)}\left(\pi _ { \phi } (\gamma ^ { (i _ { 1 }) }) \pi _ { \phi } \left(\left(k_{r_{i_{1}}}^{\left(i_{1}\right)}, k_{r_{i_{1}-1}}^{\left(i_{1}\right)}, \ldots, k_{1}^{\left(i_{1}\right)}, i_{2},\right.\right.\right. \\
& \left.\left.\left.\quad k_{r_{i_{2}}}^{\left(i_{2}\right)}, \ldots, k_{1}^{\left(i_{2}\right)}, i_{3}, \ldots, i_{|p|}, k_{r_{i_{|p|} \mid}}^{\left(i_{|p|}\right)}, \ldots, k_{1}^{\left(i_{|p|}\right)}, i_{1}\right)\right) \xi_{\phi}, \xi_{\phi}\right)
\end{aligned}
$$

where

$$
\vec{k}=\left(k_{r_{i_{1}}}^{\left(i_{1}\right)}, k_{r_{i_{1}}-1}^{\left(i_{1}\right)}, \ldots, k_{1}^{\left(i_{1}\right)}, k_{r_{i_{2}}}^{\left(i_{2}\right)}, \ldots, k_{1}^{\left(i_{2}\right)}, \ldots, k_{r_{i_{|p|} \mid}}^{\left(i_{|p|}\right)}, \ldots, k_{1}^{\left(i_{|p|}\right)}\right), \quad q=\sum_{j \in p} r_{j}
$$

Hence, by the relation $\tau \cdot \gamma^{\left(i_{1}\right)} \tau^{-1}=\gamma^{\left(i_{1}\right)}\left(\tau \in \mathfrak{S}_{\infty}^{i_{1}}\right)$, we have

$$
\begin{aligned}
& \left(\pi_{\phi}\left(\gamma^{\left(i_{1}\right)}\right) \pi_{\phi}(s) \prod_{j \in p} \mathcal{O}_{j}^{r_{j}} \xi_{\phi}, \xi_{\phi}\right) \\
& \quad=\lim _{n \rightarrow \infty} \frac{1}{n^{q^{\prime}}} \sum_{\vec{k} \in \mathbb{D}\left(m, n, q^{\prime}\right)}\left(\pi _ { \phi } (\gamma ^ { (i _ { 1 }) }) \pi _ { \phi } \left(\left(k_{r_{i_{1}}}^{\left(i_{1}\right)}, k_{r_{i_{1}}-1}^{\left(i_{1}\right)}, \ldots, k_{1}^{\left(i_{1}\right)}, i_{2},\right.\right.\right. \\
& \left.\left.\left.\quad k_{r_{i_{2}}}^{\left(i_{2}\right)}, \ldots, k_{1}^{\left(i_{2}\right)}, i_{3}, \ldots, i_{|p|}, k_{r_{i|p|}}^{\left(i_{|p|}\right)}, \ldots, k_{1}^{\left(i_{|p|}\right)}, i_{1}\right)\right) \xi_{\phi}, \xi_{\phi}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\vec{k}=\left(k_{r_{i_{1}}}^{\left(i_{1}\right)}, k_{r_{i_{1}}-1}^{\left(i_{1}\right)}, \ldots, k_{1}^{\left(i_{1}\right)}, i_{2}, k_{r_{i_{2}}}^{\left(i_{2}\right)}, \ldots, k_{1}^{\left(i_{2}\right)}, i_{3}, \ldots, i_{|p|}, k_{r_{i_{|p|} \mid}}^{\left(i_{|p|}\right)}, \ldots, k_{1}^{\left(i_{|p|}\right)}\right) \\
q^{\prime}=|p|-1+\sum_{j \in p} r_{j} .
\end{gathered}
$$

This relation, in view of Lemma 18, implies the statement of Lemma 19.
We use the notation \mathfrak{A}_{j} for the W^{*}-algebra generated by $\pi_{\phi}(\gamma), \gamma=\left(e, \cdots, e, \gamma_{j}, e, \cdots\right)$, and \mathcal{O}_{j}. Given an operator A from \mathfrak{A}_{j}, denote by $A^{(k)}$ its copy in \mathfrak{A}_{k} :

$$
A^{(k)}=\pi_{\phi}((j, k)) A \pi_{\phi}((j, k)) \quad\left(A^{(j)}=A\right)
$$

The next assertion follows from Lemma 19.

Lemma 20. Let $s, i(p)$ be the same as in Lemma 19. If $A_{j}, B_{j} \in \mathfrak{A}_{j}$, then

$$
\begin{align*}
& \left(\pi_{\phi}(s) \prod_{j} A_{j} \xi_{\phi}, \prod_{j} B_{j} \xi_{\phi}\right) \\
& \quad=\prod_{p \in \mathbb{N} / s}\left(A_{i(p)}^{(i(p))}\left(B_{i(p)}^{(i(p))}\right)^{*} A_{s^{-1}(i(p))}^{(i(p))}\left(B_{s^{-1}(i(p))}^{(i(p))}\right)^{*}\right. \tag{5.9}\\
& \left.\quad \cdots A_{s^{1-|p|}(i(p))}^{(i(p))}\left(B_{s^{1-|p|(i(p))}}^{(i(p))}\right)^{*} \mathcal{O}_{i(p)}^{|p|-1} \xi_{\phi}, \xi_{\phi}\right) .
\end{align*}
$$

The following lemma is an analogue of Theorem 1 from [3].
Lemma 21. Let $\Delta=[a, b]$ be an interval in $[-1,0]$ or in $[0,1]$ with the property $\min \{|a|,|b|\}>\varepsilon>0$. If $E_{\Delta}^{(i)}$ is a spectral projection of \mathcal{O}_{i} corresponding to Δ, then for any orthogonal projection E from \mathfrak{A}_{i} one has $\left(E E_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi}\right)^{2} \geq \varepsilon\left(E E_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi}\right)$.
Proof. Using Lemmas 17 and 20, we have

$$
\begin{align*}
& \left|\left(\pi_{\phi}((i, i+1)) E E_{\Delta}^{(i)} \xi_{\phi}, E E_{\Delta}^{(i)} \xi_{\phi}\right)\right| \tag{5.10}\\
& \quad=\left|\left(\mathcal{O}_{i} E E_{\Delta}^{(i)} \xi_{\phi}, E E_{\Delta}^{(i)} \xi_{\phi}\right)\right|>\varepsilon\left|\left(E E_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi}\right)\right| .
\end{align*}
$$

On the other hand, under the assumption $E^{(i+1)}=\pi_{\phi}((i, i+1)) E \pi_{\phi}((i, i+1))$, one has

$$
E E_{\Delta}^{(i)} \cdot E^{(i+1)} E_{\Delta}^{(i+1)} \cdot \pi_{\phi}((i, i+1))=\pi_{\phi}((i, i+1)) \cdot E E_{\Delta}^{(i)} \cdot E^{(i+1)} E_{\Delta}^{(i+1)}
$$

Therefore,

$$
\begin{aligned}
& \left|\left(\pi_{\phi}((i, i+1)) E E_{\Delta}^{(i)} \xi_{\phi}, E E_{\Delta}^{(i)} \xi_{\phi}\right)\right| \\
& \quad=\left|\left(\pi_{\phi}((i, i+1)) E^{(i+1)} E_{\Delta}^{(i+1)} E E_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi}\right)\right| \\
& \quad \leq\left|\left(E^{(i+1)} E_{\Delta}^{(i+1)} E E_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi}\right)\right| \stackrel{(\text { Prop. 7) }}{=}\left(E E_{\Delta}^{(i)} \xi_{\phi}, \xi_{\phi}\right)^{2}
\end{aligned}
$$

Hence, using (5.10), we obtain our statement.
The following statement is well known (see [3]) and also follows from Lemma 21.
Corollary 22. There exists at most countable set of numbers α_{i}, β_{i} from $(0,1)$ and a set of pairwise orthogonal projections $\left\{E^{(k)}\left(\alpha_{i}\right), E^{(k)}\left(\beta_{i}\right)\right\} \subset \mathfrak{A}_{k}$ such that

$$
\begin{equation*}
\mathcal{O}_{k}=\sum \alpha_{i} E^{(k)}\left(\alpha_{i}\right)-\sum \beta_{i} E^{(k)}\left(\beta_{i}\right) \tag{5.11}
\end{equation*}
$$

The following assertion is an analogue of Theorem 2 from [3].
Lemma 23. Let r be a number from $\left\{\alpha_{i}, \beta_{i}\right\}$ and let E be any projection from \mathfrak{A}_{k}. If $\left(E \cdot E^{(k)}(r) \xi_{\phi}, \xi_{\phi}\right)=r \nu(r) \neq 0$, then $\nu(r) \in \mathbb{Z}$.
Proof. For completeness of the proof, we use the arguments of Kerov, Olshanski, Vershik and Okounkov from [1] and [3].

For any $m \in \mathbb{N}$, define the projection $e_{m}(r)$ as follows:

$$
\begin{gathered}
e_{m}(r)=\prod_{j=1}^{m} E^{(j)} \cdot E^{(j)}(r), \quad \text { where } \\
E^{(j)}=\pi_{\phi}((j, k)) E \pi_{\phi}((j, k)), \quad E^{(j)}(r)=\pi_{\phi}((j, k)) E^{(k)}(r) \pi_{\phi}((j, k))
\end{gathered}
$$

Let $\mathbb{P}_{m}(s)$ be the set of orbits s on $\{1,2, \ldots, m\}$. If $s \in \mathfrak{S}_{m}$, then by Lemma 20 we obtain

$$
\begin{equation*}
\left(\pi_{\phi}(s) e_{m}(r) \xi_{\phi}, e_{m}(r) \xi_{\phi}\right)=\nu(r)^{\left|\mathbb{P}_{m}(s)\right|} \prod_{p \in \mathbb{P}_{m}(s)} r^{|p|} \tag{5.12}
\end{equation*}
$$

Set $\phi_{r}(s)=\frac{\left(\pi_{\phi}(s) e_{m}(r) \xi_{\phi}, e_{m}(r) \xi_{\phi}\right)}{\left(e_{m}(r) \xi_{\phi}, e_{m}(r) \xi_{\phi}\right)}$. Using (5.12), we have

$$
\begin{equation*}
\phi_{r}(s)=\frac{\nu(r)^{\left|\mathbb{P}_{m}(s)\right|}}{\nu(r)^{m}} \tag{5.13}
\end{equation*}
$$

Therefore, ϕ_{r} is an indecomposable character on \mathfrak{S}_{∞} in view of Proposition 7.
We following G. Olshanski (see [6]) in expounding the proof of the following formula:

$$
\begin{equation*}
\sum_{s \in \mathfrak{S}_{m}} \operatorname{sgn}(s) t^{\left|\mathbb{P}_{m}(s)\right|}=t(t-1) \cdots(t-m+1) \tag{5.14}
\end{equation*}
$$

For that, we consider the canonical projection $p_{m, m-1}$ from \mathfrak{S}_{m} onto \mathfrak{S}_{m-1}

$$
\left(p_{m, m-1}(s)\right)(i)=\left\{\begin{aligned}
s(i), & \text { if } s(i)<m \\
s(m), & \text { if } s(i)=m
\end{aligned}\right.
$$

Since $\left|\mathbb{P}_{m-1}\left(p_{m, m-1}(s)\right)\right|=\left|\mathbb{P}_{m}(s)\right|$ when $s \notin \mathfrak{S}_{m-1}$, and $\left|\mathbb{P}_{m-1}\left(p_{m, m-1}(s)\right)\right|=$ $\left|\mathbb{P}_{m}(s)\right|-1$ when $s \in \mathfrak{S}_{m-1}$, then

$$
\begin{aligned}
& \sum_{s \in \mathfrak{S}_{m}} \operatorname{sgn}(s) t^{\left|\mathbb{P}_{m}(s)\right|}=\sum_{s \in \mathfrak{S}_{m-1} \tilde{s} \in \mathfrak{S}_{m}:} \sum_{p_{m, m-1}(\tilde{s})=s} \operatorname{sgn}(s) t^{\left|\mathbb{P}_{m}(s)\right|} \\
& \quad=t \cdot \sum_{s \in \mathfrak{S}_{m-1}} t^{\left|\mathbb{P}_{m}(s)\right|}-(m-1) \cdot \sum_{s \in \mathfrak{S}_{m-1}} t^{\left|\mathbb{P}_{m}(s)\right|}=(t-m+1) \sum_{s \in \mathfrak{S}_{m-1}} t^{\left|\mathbb{P}_{m}(s)\right|}
\end{aligned}
$$

Hence (5.14) is now accessible by an elementary induction argument.
We follow the idea of A. Okounkov in considering the orthogonal projection

$$
\operatorname{Alt}_{r}(m)=\frac{1}{m!} \sum_{s \in \mathfrak{S}_{m}} \operatorname{sgn}(s) \pi_{\phi_{r}}(s)
$$

Since $\sum_{s \in \mathfrak{S}_{m}} \operatorname{sgn}(s) \phi_{r}(s) \geq 0$, then, using (5.13) and (5.14), we obtain for $r>0$

$$
\nu(r) \cdot(\nu(r)-1) \cdots(\nu(r)-m+1) \geq 0 \quad \text { for all } \quad m \in \mathbb{N}
$$

Thus, we get a contradiction in the case $\nu(r)>0$. The opposite case $\nu(r)<0$ can be considered in a similar way. For that, one should use the formula

$$
\sum_{s \in \mathfrak{S}_{m}} t^{\left|\mathbb{P}_{m}(s)\right|}=t(t+1) \cdots(t+m-1) \quad(\text { see }[6])
$$

and consider the projection

$$
\operatorname{Sym}_{r}(m)=\frac{1}{m!} \sum_{s \in \mathfrak{S}_{m}} \pi_{\phi_{r}}(s)
$$

Proof of Theorem 9. Let $E_{k}(r)$ be the spectral projection of \mathcal{O}_{k} (see (4.4), (5.11)). By Lemma 23, for $r \neq 0$ the W^{*}-algebra $E_{k}(r) \mathfrak{A}_{k}$ (see p. 314) is finite-dimensional. On the other hand, use Lemma 17 to obtain the unitary representation $\left(\left.E_{k}(r) \pi_{\phi}\right|_{\Gamma}, E_{k}(r) \mathcal{H}_{\phi}\right)$ of the group Γ in the space $E_{k}(r) \mathcal{H}_{\phi}$. Thus, the representations ϱ^{r} for $r \neq 0$ as in Theorem 9 are the irreducible components of $\left(\left.E_{k}(r) \pi_{\phi}\right|_{\Gamma}, E_{k}(r) \mathcal{H}_{\phi}\right)$. The formula for characters follows from Lemmas 17 and 20. Finally, for each character as in Theorem 9 we construct the realization as in Section 2.

References

1. S. Kerov, G. Olshanski, A. Vershik, Harmonic analysis on the infinite symmetric group, RT0312270.
2. A. Okounkov, The Thoma theorem and representation of the infinite bisymmetric group, Funct. Anal. Appl. 28 (1994), no. 2, 100-107.
3. A. Okounkov, On the representation of the infinite symmetric group, RT-9803037.
4. P. Etingof and S. Montarani, Finite dimensional representations of symplectic reflection algebras associated to wreath products, math. RT-0403250.
5. E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe, Math. Zeitschr. 85 (1964), no. 1, 40-61.
6. G. Olshanski, An introduction to harmonic analysis on the infinite symmetric group, RT0311369.
7. G. Olshanski, Unitary representations of (G, K)-pairs connected with the infinite symmetric group $S(\infty)$, Algebra i Analiz 1 (1989), no. 4, 178-209. (Russian); English transl. in Leningrad Math. J. 1 (1990), no. 4, 983-1014.
8. A. Vershik and S. Kerov, Characters and factor representations of the infinite symmetric group, Soviet Math. Dokl. 23 (1981), no. 2, 389-392.
9. O. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 1. C*and W^{*}-Algebras. Symmetry Groups. Decomposition of States, 2nd revised edition, SpringerVerlag, Berlin-Heidelberg-New York, 1987.
10. Yu. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford Univ. Pr., 1996.
11. R. Boyer, Character theory of infinite wreath product, Int. J. Math. and Math. Sci. 9 (2005), 1365-1379.
12. A. Dudko, N. Nessonov, A description of characters on the infinite wreath product, RT-0510597.

Kharkiv National University, Kharkiv, Ukraine
E-mail address: artemdudko@rambler.ru
Department of Mathematics, Institute For Low Temperature Physics and Engineering, 47 Lenin Avenue, Kharkiv, Ukraine

E-mail address: nessonov@ilt.kharkov.ua

[^0]: 2000 Mathematics Subject Classification．16G60，20C15，20C32，46L10．
 Key words and phrases．Wreath product，indecomposable characters，factor－representation，modular operator．

 N．N．：Supported by the CRDF－grant UM1－2548．${ }^{3}$

[^1]: ${ }^{1}$ See the page 311 (4.3) for definition of P_{n}

