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A DESCRIPTION OF CHARACTERS ON THE INFINITE WREATH
PRODUCT

A. V. DUDKO AND N. I. NESSONOV

Abstract. Let S∞ be the infinity permutation group and Γ an arbitrary group.
Then S∞ admits a natural action on Γ∞ by automorphisms, so one can form a
semidirect product Γ∞o S∞, known as the wreath product Γ oS∞ of Γ by S∞. We
obtain a full description of unitary II1−factor-representations of Γ oS∞ in terms of
finite characters of Γ. Our approach is based on extending Okounkov’s classification
method for admissible representations of S∞ ×S∞. Also, we discuss certain exam-
ples of representations of type III, where the modular operator of Tomita-Takesaki
expresses naturally by the asymptotic operators, which are important in the theory
of characters of S∞.

1. Introduction

1.1. A definition of the wreath product. Let N stand for the natural numbers.
A bijection s : N → N is called finite if the set {i ∈ N|s(i) 6= i} is finite. Define S∞
as the group of all finite bijections N → N and set Sn = {s ∈ S∞| s(i) = i ∀ i > n}.
For every group Γ, an element of Γn can always be written as an ordered collection
[γk]nk=1 = (γ1, γ2, . . . , γn), where γk ∈ Γ. Let e be the unit of Γ. For any n > 1 we
identify the element (γ1, γ2, . . . , γn−1) ∈ Γn−1 with (γ1, γ2, . . . , γn−1, e) ∈ Γn and set
Γ∞e = lim−→Γn. One can view Γ∞e as a group of infinite ordered collections [γk]∞k=1 such
that there are finitely many elements γk not equal to e. The wreath product Γ oSn is the
semidirect product Γn o Sn for the natural permutation action of Sn on Γn (see [4]).
In the same way, we define the group Γ oS∞ = Γ∞e o S∞. Γ oS∞ can be also viewed
as the inductive limit lim−→Γ o Sn. Using the embedding γ ∈ Γn → (γ, id) ∈ Γ o Sn and
s ∈ Sn →

(
e(n), s

)
∈ ΓoSn, where e(n) = (e, e, . . . , e) and id is the identical bijection, we

may identify Γn and Sn with the corresponding subgroups in Γ oSn. If Γ is a topological
group, then we equip Γn with the natural product topology. Furthermore, we will always
consider Γ∞e as a topological group with the inductive limit topology. As a set, Γ oS∞ is
just Γ∞e ×S∞. Therefore, we equip Γ oS∞ with the product topology, considering S∞
as a discrete topological space.

1.2. The results. In this paper we give a full classification of indecomposable characters
(see Definitions (3)–(4)) on Γ oS∞ (Theorem 9). Our approach is based on the semigroup
method of Olshanski [7] and the ideas of Okounkov used in the study of admissible rep-
resentations of the groups related to S∞ (see [2],[3]). We have noticed that two double
cosets containing the transposition or γ ∈ Γ commute, as the elements of Olshanski semi-
group. (see Lemma 17). This observation enables one to develop Okounkov’s method
for the group Γ oS∞ (see Section 5). In Section 3 we discuss certain examples of repre-
sentations of type III. The corresponding positive definite functions (p.d.f.) ϕ are not
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characters, but the following holds:

ϕ(sg) = ϕ(gs) for all g ∈ Γ oS∞ and s ∈ S∞.(1.1)

Hence the restriction ϕ
∣∣
S∞

is a character. At that, the Okounkov’s asymptotic opera-
tors (see (4.4)) are naturally connected to the Tomita-Takesaki modular operator (see
subsection 3.3). In fact, this observation is common for p.d.f. with the property (1.1).
For those, we are going to produce a complete classification in a subsequent paper.

1.3. The basic definition and the conjugacy classes. Let H be a Hilbert space,
B (H) an algebra of all bounded operators in H, and IH the identity operator in H.
We denote by U (H) the unitary subgroup in B (H). By a unitary representation of the
topological group G we always mean a continuous homomorphism of G into U (H), where
U (H) is equipped with the strong operator topology.

Definition 1. A unitary representation π : G→ U (H) of G is called a factor-representa-
tion if the W ∗−algebra π(G)′′ generated by the operators π(g) (g ∈ G), is a factor.

Definition 2. A unitary representation π is called a factor-representation of finite type
if π(G)′′ is a factor of type II1.

Let M be a factor of type II1 and M a subalgebra of B(H). If π(G) ⊂ U(M) =
M
⋂
U(H) and trM is the unique normal, normalized (tr(I) = 1) trace on M, then it

determines a character φMπ on G by φMπ (g) = trM (π(g)).

Definition 3. A continuous function φ on G is called a character if it satisfies the
following properties:

(a) φ is central, that is, φ (g1g2) = φ (g2g1) ∀ g1, g2 ∈ G;
(b) φ is positive definite, that is, for all g1, g2, . . . , gn the matrix

[
φ
(
gjg

−1
k

)]n
j,k=1

is
non-negatively definite;

(c) φ is normalized, that is, φ (eG) = 1, where eG is the unit of G.

Definition 4. A character φ is called indecomposable if the group representation corres-
ponding to φ (according to the GNS construction) is a factor-representation.

In this paper we obtain a complete description of indecomposable characters on Γ oS∞
in the case when Γ is a separable topological group.

First, let us describe the conjugacy classes in Γ oS∞. Recall that the conjugacy classes
in S∞ are parametrized by non-increasing sequences λ = (λ1, λ2, . . .) of natural numbers
such that there are finitely many elements λk not equal to 1. Namely, λ1, λ2, . . . are
the orders of cycles of a permutation s ∈ S∞. Furthermore, an element Γ oS∞ can be
written as a product of an element of S∞ and an element of Γ∞e , and the commutation
rule between these two kinds of elements is as follows:

(1.2) s · γ = s · (γ1, γ2, . . .) =
(
γs−1(1), γs−1(2), . . .

)
· s,

where s ∈ S∞, γ = (γ1, γ2, . . .) ∈ Γ∞e .
By the analogy with the definition of a cycle in S∞ define the generalized cycle in

Γ oS∞.

Definition 5. Say that element g = s · γ ∈ Γ oS∞, where γ = (γ1, γ2, . . .) is generalized
cycle if s is cycle and {i | γi 6= e} ⊂ {i | s(i) 6= i} .

Let s be any permutation. Denote N�s the set of orbits of s on N. Note that for
p ∈ N�s the permutation sp given by

sp(k) =
{
s(k), if k ∈ p,
k, otherwise,
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is a cycle of order |p|, where |p| stand for the cardinality of p. For γ = (γ1, γ2, . . .) ∈ Γ∞e
define the element γ(p) = (γ1(p), γ2(p), . . .) ∈ Γ∞e as follows:

(1.3) γk(p) =
{
γk, if k ∈ p,
e, otherwise.

Thus, using (1.2), we have the decomposition of g = s · γ onto generalized cycles

(1.4) s · γ =
∏

p∈N�s

sp · γ(p).

For an arbitrary group G denote by c
G
(g) the conjugacy class of g ∈ G. Let g =

s · γ ∈ Γ o S∞. Note that for any orbit p ∈ N/s and any kp ∈ p the conjugacy class
cΓ

(
γkp · γs(kp) · · · γs(l)(kp) · · · γs(|p|−1)(kp)

)
does not depend on choice of kp. Define the

invariant i(g) given by unordered ∞-tuples of pairs
{(
|p|, cΓ

(
γkp · γs(kp) · · · γs(l)(kp) · · ·

γs(|p|−1)(kp)

))}
p∈N�s

, where s(l) is l-th iteration of s and kp – any number from the
orbit p. The following statement can be easily proved.

Proposition 6. Let g1 and g2 be elements of Γ oS∞. Then c (g1) = c (g2) if and only if
i (g1) = i (g2).

For any g = s · γ ∈ Γ o S∞ denote supp (g) = {i ∈ N| s(i) 6= i or γi 6= e} and call
this set the support of g. Define for any ι ∈ Γ and k ∈ N the element ι({k}) =
(ι1({k}), ι2({k}), . . . , ιl({k}), . . .) ∈ Γ∞e as follows:

ιl({k}) =
{

ι, if l = k,
e, otherwise.(1.5)

1.4. The multiplicativity. The following claim gives a useful characterization of the
class of indecomposable characters:

Proposition 7. The following assumptions on a character φ of Γ oS∞ are equivalent:
(a) φ is indecomposable;
(b) φ(g) =

∏
p∈N�s

φ (sp · γ(p)) for any g = s · γ =
∏

p∈N�s

sp · γ(p) (see 1.4).

Proof. To prove the proposition, we consider the elements g = s · γ and g′ = s′ · γ′ of
Γ oS∞ such that supp (g) ∩ supp (g′) = ∅. Then by the properties of the group Γ oS∞
there exists a sequence {sn}n∈N ⊂ S∞ such that

sn · g = g · sn and sn g
′s−1

n · h = h · sn g
′s−1

n for all h ∈ Γ oSn.(1.6)

Suppose now that (a) holds. Using the GNS-construction, we produce the representation
πφ of Γ oS∞ which acts in a Hilbert space Hφ with a cyclic vector ξφ such that

φ(g) = (πφ (g) ξφ, ξφ) .

Let A = w − lim
n→∞

πφ

(
sn · g′s−1

n

)
be a limit of the sequence πφ

(
sn · g′s−1

n

)
in the weak

operator topology. Using (1.6), we deduce by Definition 4 that A = aI, where I is the
identity operator in Hφ and a a complex number. Therefore,

φ (g · g′) = lim
n→∞

φ
(
g · sn · g′ · s−1

n

)
= φ(g) · lim

n→∞
φ
(
sn · g′ · s−1

n

)
= φ(g) · φ (g′) .

Thus (b) follows from (a).
Conversely, suppose that (b) holds. For any subset S of B (H), define its commutant

as follows:

S ′ =
{
T ∈ B (H)

∣∣ST = TS for all S ∈ S
}
.
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If πφ (Γ oS∞)′
⋂
πφ (Γ oS∞)′′ = Z is larger than the scalars, then it contains a pair of

orthogonal projections E and F with the properties

φ (E) 6= 0, φ (F ) 6= 0 and E · F = 0.(1.7)

By the von Neumann Double Commutant Theorem, for any ε > 0 there exist gE
k , g

F
k ∈

Γ oSn ⊂ Γ oS∞ (n <∞) and complex numbers cEk , c
F
k (k = 1, 2, . . . , N <∞) such that∣∣∣∣∣

∣∣∣∣∣
N∑

k=1

cEk πφ

(
gE

k

)
ξφ − Eξφ

∣∣∣∣∣
∣∣∣∣∣ < εφ(E),∣∣∣∣∣

∣∣∣∣∣
N∑

k=1

cFk πφ

(
gF

k

)
ξφ − Fξφ

∣∣∣∣∣
∣∣∣∣∣ < εφ(F ).

(1.8)

Consider the bijection

τ(j) =

 j + n, if j ≤ n,
j − n, if n < j ≤ 2n,

j, otherwise.

By Definition (3), use (1.8) to obtain∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

cEk πφ

(
τgE

k τ
)
ξφ − Eξφ

∣∣∣∣∣
∣∣∣∣∣ < εφ(E),∣∣∣∣∣

∣∣∣∣∣
N∑

k=1

cFk πφ

(
τgF

k τ
)
ξφ − Fξφ

∣∣∣∣∣
∣∣∣∣∣ < εφ(F ).

(1.9)

Now, using (b), (1.7), (1.8) and (1.9), we have

ε
√
φ(E)φ(F )

(
ε
√
φ(E)φ(F ) +

√
φ(E) +

√
φ(F )

)
>

∣∣∣∣( N∑
k=1

cEk πφ

(
τgE

k τ
)
·

N∑
k=1

cFk πφ

(
gF

k

)
ξφ, ξφ

)∣∣∣∣
>

∣∣∣∣( N∑
k=1

cEk πφ

(
τgE

k τ
)
ξφ, ξφ

)
·
( N∑

k=1

cFk πφ

(
τgF

k τ
)
ξφ, ξφ

)∣∣∣∣
> φ(E)φ(F )(ε+ 1)2.

Hence

ε >

[
1−

√
φ(F )√

φ(F )
+

1−
√
φ(E)√

φ(E)

]−1

.

Then, comparing this to (1.7), we get a contradiction. �

1.5. The main result. In [5], E. Thoma obtained the following remarkable description
of all indecomposable characters of S∞. The characters of S∞ are labeled by pairs of
non-increasing positive sequences of numbers {αk}, {βk} (k ∈ N) (which are called the
Thoma parameters) such that

∞∑
k=1

αk +
∞∑

k=1

βk ≤ 1.(1.10)

The value of the corresponding character on a permutation with a single cycle of length
l is

∞∑
k=1

αl
k + (−1)l−1

∞∑
k=1

βl
k.
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Its value on a permutation with several disjoint cycles equals the product of values on
each cycle.

Let g = s · γ, p ∈ N/s be one of the orbits of s. Then put

γ̃(p) = γk · γs−1(k) · · · γs(−l)(k) · · · γs(−|p|+1)(k), where (k ∈ p).(1.11)

Now we define an analog of Thoma parameters for characters of the group ΓoS∞. Namely,
let us call Thoma parameters the collection %0, {%αk} ,

{
%βk
}
, {αk} , {βk} , where %0 is

the representation of Γ of finite type, α = {αk}, β = {βk} are non-increasing finite or
infinite sequences of positive numbers, %α = {%αk} and %β =

{
%βk
}

are sequences of finite-
dimensional irreducible representations of Γ such that

∑
k

(
αk · dim %αk +βk · dim %βk

)
≤ 1.

For Thoma parameters %0, {%αk} ,
{
%βk
}
, {αk} , {βk} we define a function

φ = φ%0, %α, %β , α, β by the next three properties:

(1) for g = s · γ ∈ Γ oS∞ one has

φ(g) =
∏

p∈N�s

φ (s(p) · γ(p)) (see (1.2)− (1.3));

(2) for the generalized cycle g = s · γ (see definition 5) with p = supp (g) and s 6= id
one has

φ(g) =
∞∑

k=1

(
α
|p|
k · Tr (%αk (γ̃(p))) + (−1)|p|−1β

|p|
k · Tr

(
%βk (γ̃(p))

))
;

(3) for each ι ∈ Γ and n ∈ N one has

φ(ι({n})) =
∞∑

k=1

(
αk · Tr (%αk (ι)) + βk · Tr

(
%βk (ι)

))
+
(

1−
∑
k∈N

(
αk · dim %αk + βk · dim %βk

))
tr0 (ι) (see (1.5)),

where Tr is the ordinary trace and tr0 is the normalized character of the representation %0.

Proposition 8. The function φ%0, %α, %β , α, β is an indecomposable character (see defini-
tion 3).

Proof. The realizations of the corresponding factor-representations we give in the sec-
tion 2. �

Here is our main result.

Theorem 9. If φ is an indecomposable character on Γ o S∞, then there exist Thoma
parameters %0, {%αk} ,

{
%βk
}
, {αk} , {βk} , such that φ = φ%0, %α, %β , α, β.

2. Realizations of II1−factor-representations

A complete family of II1−factor-representations of Γ oS∞ can be constructed using
the Vershik-Kerov [8], Olshanski [7] realizations or Okunkov methods (so called mixtures
of representations) [3], found for the II1−factor-representations of the infinite symmetric
group S∞. We follow the approach developed by Olshanski as it leads to less spadework.
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2.1. A construction of representations. Let {αk}k∈N, {βk}k∈N be two finite or infi-
nite sets of the positive numbers from (0, 1) and let %αk and %βk be unitary irreducible
finite-dimensional representations of Γ that act in the Hilbert spaces Hαk and Hβk cor-
respondingly. We assume, that∑

k

αk · dim %αk +
∑

k

βk · %βk ≤ 1.

We set

δ = 1−
∑

k

αk · dim %αk −
∑

k

βk · %βk .

Let H0 stand for the Hilbert space, where acts the unitary representation of a finite type
%0 of Γ. Then the formula tr0(γ) =

(
%0(γ)ξ(0), ξ(0)

)
H0 defines the character on Γ. We

denote by
(
%0k,H0k, ξ(0k)

)
the k-th copy of the triplet

(
%0,H0, ξ(0)

)
.

Let
{

e(αk)
j

}
1≤j≤dimHαk

be an orthonormal basis in Hαk . Let

H =
((

⊕
k
Hαk

)
⊕
(
⊕
k
Hβk

)
⊕
(
⊕
k
H0k

))
⊗
((

⊕
k
Hαk

)
⊕
(
⊕
k
Hβk

)
⊕
(
⊕
k
H0k

))
and let

η(m) =
∑

k

√
αk

(∑
j

e(αk)
j ⊗ e(αk)

j

)
+
∑

k

√
βk

(∑
j

e(βk)
j ⊗ e(βk)

j

)
+
√
δξ(0m) ⊗ ξ(0m).

Define the unitary representation % of Γ in H as follows

% =
((

⊕
k
%αk

)
⊕
(
⊕
k
%βk

)
⊕
(
⊕
k
%0k
))

⊗ I,(2.1)

.
We will identify Hαk ⊗Hαk , Hβk ⊗Hβk and

(
⊕
k
H0k

)
⊗
(
⊕
k
H0k

)
with their images

with respect in the natural embedding to H. Denote by Hm the m−th copy of the
Hilbert space H and consider the infinite tensor product

`
H =

⊗
m

(
Hm, η(m)

)
.

It is convenient to represent
`
H as the closure of the linear span of the vectors of the form

ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζm−1 ⊗ η(m) ⊗ η(m+1) ⊗ · · · , where ζj is an any vector from Hj .

We extend the set
{

e(αk)
j

}dimHαk

j=1

⋃{
e(βk)
j

}dimHβk

j=1
to an orthonormal basis A in(

⊕
k
Hαk

)
⊕
(
⊕
k
Hβk

)
⊕
(
⊕
k
H0k

)
. Now we fix the orthonormal basis

B = {ej ⊗ el : ej , el ∈ A}

in H and we assume below ζj ∈ B. Let components of the vector
`
ζ = ζ1 ⊗ ζ2 ⊗

· · · ⊗ ζm−1 ⊗ · · · be of the form ζj = υj ⊗ τj . Define for s ∈ S∞ the vector s
(`
ζ
)

=
ϑ1 ⊗ ϑ2 ⊗ · · · ⊗ ϑm−1 ⊗ · · · as follows:

ϑj = υs−1(j) ⊗ τj .

Now build the sequence j
(`
ζ
)

= {j1 < j2 < · · · } such, that

ζj l
= e(βk)

m ⊗ f for some βk and m.
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Let t be a permutation for which s
((
jt(1)

))
< s

((
jt(2)

))
< · · · < s

((
jt(l)

))
< · · · .

Finally, we set ψ
(
s,

`
ζ
)

= sgn(t). The corresponding representation π of Γ oS∞ can be

realized in Hilbert space
`
H as follows:

π(γ)
(
ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζm−1 ⊗ η(m) ⊗ · · ·

)
= % (γ1) ζ1 ⊗ % (γ2) ζ2 ⊗ · · · ⊗ % (γm−1) ζm−1 ⊗ % (γm) η(m) ⊗ · · ·

and for s ∈ S∞ π(s) (ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζm−1 ⊗ · · · ) = ψ
(
s,

`
ζ
)

s
(`
ζ
)
.

(2.2)

2.2. The character’s formula. Set
`
η =

⊗
m
η(m). Assume that s is the cycle (1 →

2 → 3 → · · · → k − 1 → k), where k > 1. Let γ = (γ1, γ2, . . . , γk, eΓ, eΓ, . . .). Routine
calculations provide that(

π (sγ)
`
η,

`
η
)

=
∑

j

αk
j Tr (%αj (γ1γ2 · · · γk)) +

∑
j

βk
j Tr

(
%βj (γ1γ2 · · · γk)

)
,(2.3)

where Tr (%r(γ)) =
dim %r∑

j=1

%r
j j(γ).

It is obvious, that(
π (γ)

`
η,

`
η
)

=
k∏

j=1

(∑
i

αi Tr (%αi (γj)) +
∑

i

βi Tr
(
%βi (γj)

)
+
(
%0 (γj) ξ(0), ξ(0)

))
.

Since tr0 is a character on Γ, one can use (2.3) and the multiplicativity property (see
Proposition 7) to obtain the following

Corollary 10. Let χ(g) =
(
π (g)

`
η,

`
η
)
. Then χ is an indecomposable character on

Γ oS∞.

3. Other examples

In this section we construct examples of infinite type representations of Z2 oS∞. The
corresponding positive definite functions are not characters. On the other hand they
satisfy the following condition:

ϕ(sg) = ϕ(gs) for all g ∈ G = Γ oS∞ and s ∈ S∞.

In the generic case the representation πϕ built by GNS-construction from ϕ is of type III.
Furthermore, the state ϕ on the W ∗−algebra πϕ (G)′′ is faithful. These properties allow
one to construct the Tomita-Takesaki modular operator ∆ϕ. Surprisingly, ∆ϕ is naturally
related to the Okounkov operator Ok (see (4.4)), which is an important object in the
representation theory of symmetric group (see [2], [3]).

3.1. A construction. Let Xi = Z2×Z2 = {0, 1}×{0, 1}. Define a probability measure
νi on Xi by νi((k, l)) = pkl. Let (X,µ) =

∏
i

(Xi, νi) and x = (xi) ∈ X, where xi =(
x

(0)
i , x

(1)
i

)
∈ Xi, x

(k)
i ∈ {0, 1}. Define an action a of g = (s0, s1) ∈ S∞ ×S∞ on (X,µ)

as follows:

(ag(x))
(k)
i = x

(k)
sk(i) (k = 0, 1).

Remark 1. The measure µ is G∞ × G∞−quasiinvariant if and only if pij 6= 0 for all
i, j = 0, 1.



308 A. V. DUDKO AND N. I. NESSONOV

We are about to construct a unitary representation πµ of G × G in L2 (X,µ). With
ς ∈ L2 (X,µ) set

(πµ ((s0, s1)) ς) (x) =
(
dµ (ag(x))
dµ (x)

) 1
2

ς (ag(x)) ,

(
πµ

((
γ(0), γ(1)

))
ς
)
(x) = (−1)

(P
i,k

γ
(k)
i x

(k)
i

)
ς(x),

(3.1)

where γ(0) =
(
γ

(0)
i

)
∈ Z∞2 , γ(1) =

(
γ

(1)
i

)
∈ Z∞2 , and

(
γ(0), γ(1)

)
∈ Z∞2 × Z∞2 . Let

π
(0)
µ (g) = πµ ((g, eG)) and π(1)

µ (g) = πµ ((eG, g)).

Proposition 11. πµ is irreducible. Hence, π(0)
µ and π

(1)
µ are factor-representations of

Γ oS∞.

Proof. Obvious. �

3.2. A cyclic separating vector. Let I be an element of L2 (X,µ) given by the function
identically equal to 1.

Theorem 12. If det [pi j ] 6= 0, then I is a cyclic separating vector for π(0)
µ (G)′′ and

π
(1)
µ (G)′′. That is, [

π(0)
µ (G)′′I

]
=
[
π(1)

µ (G)′′I
]

= L2 (X,µ) .

Proof. Let (k, l) be a transposition from S∞. First notice that the operator

O(j)
k = lim

n→∞

1
n

n∑
l=1

π(j)
µ ((k, l)) (see (4.4))

belongs to π(j)
µ (G)′′ (j = 0, 1). Since(

L2 (X,µ) , I
)

=
∞⊗

i=1

(
L2 (Xi, νi) , I

)
one can apply the law of large numbers to deduce that

O(j)
i = I ⊗ I ⊗ · · · ⊗ O(j,i)

i
i−th

⊗ I ⊗ · · ·

Furthermore, if χ(i)
kl is the indicator of the point (k, l) ∈ Xi = Z2 × Z2, the matrices of

O(0,i)
i and O(1,i)

i in the orthonormal basis
{

e(i)
kl = χ

(i)
kl√
pkl

}
k,l=0,1

are as follows:

O(0,i)
i ↔

 p00+p01 0
√

p00p10+
√

p01p11 0

0 p00+p01 0
√

p00p10+
√

p01p11√
p00p10+

√
p01p11 0 p10+p11 0

0
√

p00p10+
√

p01p11 0 p10+p11

 ,

O(1,i)
i ↔

 p00+p10
√

p00p01+
√

p10p11 0 0√
p00p01+

√
p10p11 p01+p11 0 0

0 0 p00+p10
√

p00p01+
√

p10p11

0 0
√

p00p01+
√

p10p11 p01+p11

 .
(3.2)

By the construction,

π(k)
µ

(
γ(k)

)
=

∞⊗
i=1

π(k,i)
µ

(
γ

(k)
i

)
,
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where π(0,i)
µ

(
γ

(0)
i

)
and π(1,i)

µ

(
γ

(1)
i

)
are determined by the matrices

1 0 0 0
0 1 0 0
0 0 (−1)γ

(0)
i 0

0 0 0 (−1)γ
(0)
i

 and


1 0 0 0
0 (−1)γ

(1)
i 0 0

0 0 1 0
0 0 0 (−1)γ

(1)
i

 .(3.3)

Use the map

Ii :
∑

m,n=0,1

amne(i)
mn →

[
a00 a01

a10 a11

]
,(3.4)

to identify L2 (Xi, νi) to the full matrix algebra M2 (C), so that

Ii(I) =
[√

p00
√
p01√

p10
√
p11

]
.

Equip M2 (C) with the Hermitian form

〈a, b〉i = Tr (b∗a) ,

then Ii is a unitary and IiL
2 (Xi, νi) = M2 (C). Now as an elementary consequence of

(3.2) and (3.3) one has:

IiO(0,i)
i I−1

i a =
[

p00 + p01
√
p00p10 +

√
p01p11√

p00p10 +
√
p01p11 p10 + p11

]
a,

IiO(1,i)
i I−1

i a = a

[
p00 + p10

√
p00p01 +

√
p10p11√

p00p01 +
√
p10p11 p01 + p11

]
,

Iiπ
(0,i)
µ

(
γ

(0)
i

)
I−1

i a =
[
1 0
0 (−1)γ

(0)
i

]
a,

Iiπ
(1,i)
µ

(
γ

(1)
i

)
I−1

i a = a

[
1 0
0 (−1)γ

(1)
i

]
, where a ∈M2(C).

(3.5)

Thus, in view of Remark 1 (see p. 307), the algebra Mk
i generated by the operators

IiO(k,i)
i I−1

i and Iiπ
(0,i)
µ

(
γ

(k)
i

)
I−1

i is just M2(C). Since det (Ii (I)) 6= 0, one has finally

M0
i Ii (I) = M1

i Ii (I) = M2(C). �

3.3. The modular operator. Consider the Hilbert space H =
∞⊗

i=1

(M2(C), 〈 〉i , Ii(I)).

It is convenient to represent H as the closure of the linear span of the vectors a1 ⊗ a2 ⊗
· · · ⊗ ai ⊗ Ii+1(I)⊗ Ii+2(I) · · · , where ai ∈M2(C). If I =

∞⊗
i=1

Ii, one has by Theorem 12

IL2 (X,µ) = H.

Let L(H) and R(H) be the W ∗−algebras generated in H by the operators of left and
right multiplication by elements of the form

a1 ⊗ a2 ⊗ · · · ⊗ ai ⊗ I2 ⊗ I2 ⊗ · · · , where ai ∈M2(C), I2 =
[
1 0
0 1

]
.

Proposition 13. π(0)
µ (G)′′ = I−1L(H)I and π(1)

µ (G)′′ = I−1R(H)I.
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Proof. Let A
(j)
n stand for the W ∗−algebra generated by the operators

{
O(j)

i

}n

i=1
and{

π
(j)
µ (Γn)

}
(j = 0, 1). In view of (3.5), A

(j)
n is isomorphic

n⊗
i=1

M2(C). Therefore,

π
(j)
µ (Sn) ⊂ A

(j)
n . Finally, use (3.5) deduce A

(0)
n ⊂ L(H) and A

(1)
n ⊂ R(H). �

Let ξ = I1(I)⊗ I2(I)⊗ · · · ⊗ Ii+2(I)⊗ · · · . Since the vector ξ is cyclic and separating
for L(H) (Theorem 12), one can construct the modular operator ∆ξ (see [9]). Namely, if
S and F are closures of antilinear operators given by

S(aξ) = a∗ξ for all a ∈ L(H) and F (ξa′) = ξ (a′)∗ for all a′ ∈ R(H),

then

F = S∗ and ∆ξ = FS.

Hence, with a = a1 ⊗ a2 ⊗ · · · ⊗ ai ⊗ I2 ⊗ I2 ⊗ · · · one has

a∗ξ = ξ ·
( i⊗

j=1

Ij(I)
)−1

⊗ I2 ⊗ I2 ⊗ · · · · a∗ ·
( i⊗

j=1

Ij(I)
)
⊗ I2 ⊗ I2 ⊗ · · · .

Therefore,

∆ξ (aξ) = F (a∗ξ) = ξ ·
( i⊗

j=1

Ij(I)
)∗
⊗ I2 ⊗ · · · · a ·

( i⊗
j=1

(Ij(I))∗
)−1

⊗ I2 ⊗ · · · .

Finally, use the relation Ij(I) (Ij(I))∗ = IjO(0,j)
j I−1

j (see (3.5)) to obtain

∆ξ (aξ) =
i⊗

j=1

(
IjO(0,j)

j I−1
j

)
a
( i⊗

j=1

IjO(0,j)
j I−1

j

)−1

⊗ Ii+1(I)⊗ Ii+2(I)⊗ · · · .

(3.6)

Thus the modular operator ∆ξ is defined in a natural way by the Okounkov operator
Oj (see (4.4), [2], [3]).

4. The characters of G and spherical functions of the pair (G×G,diag G)

In what follows, (πφ,Hφ, ξφ) is the unitary representation of G = Γ oS∞ that corre-
sponds by GNS-construction to the character φ. In particular, the operators π (G) act
in Hφ with cyclic separating vector ξφ. That is,

[πφ (G) ξφ] =
[
πφ (G)′ ξφ

]
= Hφ,(4.1)

where [S] stands for the closed subspace in Hφ generated by S. Moreover φ(g) =
(πφ (g) ξφ, ξφ) for all g ∈ G.

The property (4.1) allows one to produce a unitary spherical representation π
(2)
φ of

the Olshanski pair (G×G,K), where K = diag G = {(g, g)}g∈G. Namely,

π
(2)
φ (g1, g2)xξφ = πφ (g1)xπφ (g2)

∗
ξφ for all x ∈ πφ (G)′′ .(4.2)

Let

Gn(∞) =
{
g = s · γ ∈ G

∣∣ s(l) = l and γl = e for all l = 1, 2, . . . , n
}
,

Kn(∞) = K ∩ (Gn(∞)×Gn(∞)) , Gn = Γ oSn, Kn = (Gn ×Gn) ∩K.
It follows from the definition that G0(∞) = G∞ = G, K0(∞) = K∞ = K.

Set

HKn(∞)
φ =

{
η ∈ Hφ

∣∣ π(2)
φ (g) η = η for all g ∈ Kn(∞)

}
,
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and let Pn be the orthogonal projection onto HKn(∞)
φ .

Lemma 14.
∞⋃

n=0
HKn(∞)

φ is a dense subspace in Hφ. In different terms, lim
n→∞

Pn = IHφ

in the strong operator topology.

Proof. It follows from the definition of π(2)
φ (see (4.2)) that

[πφ (Gn) ξφ] ⊂ HKn(∞)
φ .(4.3)

On the other hand, ξφ is a cyclic vector. That is,
[ ∞⋃

n=1
πφ (Gn) ξφ

]
= Hφ. Now our

statement follows from (4.3). �

Remind a construction of asymptotic operators which appears in [2], [3]. Consider the
transposition (i, n) ∈ S∞ and the operator

Ok = lim
n→∞

1
n

n∑
l=1

πφ ((k, l)) .(4.4)

The limit exists in the strong operator topology.

Lemma 15. Let i(p) be an element of p ∈ N�s. Given any γ = (γ1, γ2, · · · , γn, · · · ) ∈
Γ∞e , there exists γ̃ ∈ Γ∞e with the property γ̃ · s · γ · γ̃−1 = s · γ′, where

γ′
s(l−1)(i(p))

= eΓ for all l = 1, 2, . . . , |p| − 1 and p ∈ N�s,

γ′
s(|p|−1)(i(p))

= γs(|p|−1)(i(p)) · γs(|p|−2)(i(p)) · · · γi(p).

Proof. Let the γ̃ be defined as follows:

γ̃i(p) = eΓ, γ̃s(i(p)) = γ−1
i(p), γ̃s(2)(i(p)) = γ−1

i(p) · γ
−1
s(i(p)), · · · ,

γ̃s(|p|−1)(i(p)) = γ−1
i(p) · γ

−1
s(i(p)) · · · γs(|p|−2)(i(p)) for all p ∈ N�s.

Now our statement can be readily verified. �

Lemma 16. Let s be a cycle from S∞. Suppose that for β, γ ∈ Γ∞e the following relations
hold:

βk = γk = eΓ for all k ∈
{
j ∈ N

∣∣ s(j) = j
}
.

If sβ and sγ are in the same conjugate class, then there exists γ̃ ∈ Γ∞e such that sγ =
γ̃ · sβ · γ̃−1.

Proof. One may assume without loss of generality that

s(k) = k + 1 for k = 1, 2, . . . ,m− 1, s(m) = 1 and s(l) = l for all l > m.

By Lemma 15 there exist γ̃, β̃ ∈ Γ∞e with the properties

γ̃ · s · γ · γ̃−1 = s · γ′, β̃ · s · β · β̃−1 = s · β′, where

γ′k = β′k = eΓ for k = 1, 2, . . . ,m− 1,m+ 1, . . . .
(4.5)

Let s ∈ S∞ and δ ∈ Γ∞e be such that

(tδ) sγ′ (tδ)−1 = sβ′.



312 A. V. DUDKO AND N. I. NESSONOV

One has the following relations:

δ2γ
′
1 = β′t(1)δ1

δ3γ
′
2 = β′t(2)δ2

...
...

...
δmγ

′
m−1 = β′t(m−1)δm−1

δ1γ
′
m = β′t(m)δm.

(4.6)

By assumptions of the Lemma, t ({1, 2, . . . ,m}) = {1, 2, . . . ,m}, and we may assume
that t(k) = k for all k > m. Hence, there exists a map f from N to N such that

t(k) = sf(k)(k) for k ∈ N.

Now use the relation ts = st to obtain

f(k) = l for k = 1, 2, . . . ,m.(4.7)

Since sm is the identity, it suffices to consider the case l ∈ {1, 2, . . . ,m− 1}.
Use (4.6) to obtain

δ1 = · · · = δm−l, δm−l+1 = · · · = δm,

β′m = δmδ
−1
1 , γ′m = δ−1

1 δm.

These relations together with (4.5) yield the following relation:

δ′ sγ′ (δ′)−1 = sβ′, where δ′ =
(
δ−1
m δ1, δ

−1
m δ1, . . . , δ

−1
m δ1, . . .

)
.

�

5. A proof of the main result

The proof of Theorem 9 splits into a few lemmas.
For each indecomposable character φ let (πφ,Hφ, ξφ) denote the cyclic representation

of the group Γ oS∞ associated to φ via the GNS-construction.

Lemma 17. If a W ∗−algebra A is generated by the operators πφ (Γ∞e ), {Oj}j∈N, and
C (A) is a center of A, then {Oj}j∈N ⊂ C (A).

Proof. The relation Ok · Ol = Ol · Ok allows an easy verification by definition (4.4) (see
[2] or [3]).

Now prove the relation

Ol · πφ (γ) = πφ (γ) · Ol for all γ ∈ Γ∞e and l ∈ N.(5.1)

Let KS
n (∞) = Kn(∞)∩(S∞ ×S∞) and KS

n (m) = KS
n (∞)∩(Gm ×Gm), where m > n.

If PS
n stands for the orthogonal projection onto HKS

n (∞)
φ , then

PS
n = lim

m→∞

1
(m− n)!

∑
g∈KS

n (m)

π
(2)
φ (g)(5.2)

in the strong operator topology and PS
n ≥ Pn

1. Hence, using (4.4) and (5.2), we obtain
for i ≤ n < k

PS
n OiP

S
n = PS

n πφ ((i, k))PS
n and PnOiPn = Pnπφ ((i, k))Pn.(5.3)

In the case when γl = e the equality (5.1) easily follows from (4.4). Therefore, it suffices
to prove (5.1) for the elements γ = γ({l}) (see (1.3)).

1See the page 311 (4.3) for definition of Pn
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If i ≤ n < k, then, using (4.4), we have

Pnπφ (γ({i}))OiPn

{P S
n ≥Pn}
= PnP

S
n πφ (γ({i}))OiP

S
n Pn

{(4.4),(5.2)}
= Pnπφ (γ({i}))PS

n πφ ((i, k))PS
n Pn

= PnP
S
n πφ ((i, k))πφ (γ({k}))PS

n Pn

= PnP
S
n πφ ((i, k))πφ (γ({k}))π(2)

φ

((
γ({k})−1, γ({k})−1

))
Pn

(4.2)
= PnP

S
n π

(2)
φ

((
e, γ({k})−1

))
πφ ((i, k))Pn

= Pnπ
(2)
φ ((γ({k}), γ({k})))π(2)

φ

((
e, γ({k})−1

))
πφ ((i, k))Pn

= Pnπφ (γ({k}))πφ ((i, k))Pn = Pnπφ ((i, k))πφ (γ({i}))Pn

(4.4)
= PnOiπφ (γ({i}))Pn.

Since lim
n→∞

Pn = IHφ
(see Lemma 14), the relation

πφ (γ({i}))Oi = Oiπφ (γ({i}))

follows. �

We use the notation (i0, i1, . . . , iq−1) for the cyclic permutation s which acts as follows

s (i) =
{
ik+1(mod q), if i = ik ∈ {i0, i1, . . . , iq−1} ,

i, otherwise.

Lemma 18. If Oi is defined as in (4.4) and

D(m,n, q) =
{−→
k = (k1, k2, . . . , kq) ∈ N

∣∣ki 6= kj and m < ki ≤ n ∀i, j = 1, . . . , q
}
,

then for every positive integer m

Oq
i = lim

n→∞

1
nq

∑
−→
k ∈D(m,n,q)

πφ ((kq, kq−1, . . . , k1, i)) .

Proof. If we notice that

(i, k1) · (i, k2) · · · (i, kq) = (kq, kq−1, . . . , k1, i)

for pairwise different i, k1, k2, . . . , kq and Card (D(m,n)) =
q−1∏
j=0

(n − m − j), the proof

becomes obvious. �

Lemma 19. Let g =
∏

p∈N�s

sp · γ(p) be a decomposition of g = s · γ ∈ Γ oS∞ (see (1.4))

and i(p) any element from p ∈ N�s. Define γ(i(p)) ∈ Γ∞e as follows:

γ
(i(p))
k =

{
γi(p) · γs−1(i(p)) · · · γs(−|p|+2)(i(p)) · γs(−|p|+1)(i(p)), if k = i(p),

e, otherwise.
(5.4)

If φ is an indecomposable character on Γ oS∞, then(
πφ (s · γ)

∏
j

Orj

j ξφ, ξφ

)
=

∏
p∈N�s

(
πφ

(
γ(i(p))

)
O
|p|−1+

P
j∈p

rj

i(p) ξφ, ξφ

)
.(5.5)

Proof. By Proposition 7 we have(
πφ (s · γ)

∏
j

Orj

j ξφ, ξφ

)
=

∏
p∈N�s

(
πφ (sp · γ(p))

∏
j∈p

Orj

j ξφ, ξφ

)
.(5.6)
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Therefore it suffices to prove (5.5) in the case when s is a single cycle and γ = γ(p),
where p ∈ N�s and |p| > 1. Let s =

(
i1, i2, . . . , i|p|

)
. By a virtue of Lemma 16, we find

γ̃ ∈ Γ∞e such that

γ̃ · s · γ · γ̃−1 = s · γ(i1).(5.7)

Thus, by Lemma 17,(
πφ (s · γ)

∏
j∈p

Orj

j ξφ, ξφ

)
=
(
πφ

(
γ(i1)

)
πφ (s)

∏
j∈p

Orj

j ξφ, ξφ

)
.(5.8)

Let

Sj
∞ =

{
τ ∈ S∞

∣∣τ(j) = j
}
.

Now use Lemma 18 to obtain(
πφ

(
γ(i1)

)
πφ (s)

∏
j∈p

Orj

j ξφ, ξφ

)

= lim
n→∞

1
nq

∑
−→
k ∈D(m,n,q)

(
πφ

(
γ(i1)

)
πφ

((
k(i1)

ri1
, k

(i1)
ri1−1, . . . , k

(i1)
1 , i2,

k(i2)
ri2

, . . . , k
(i2)
1 , i3, . . . , i|p|, k

(i|p|)
ri|p|

, . . . , k
(i|p|)
1 , i1

))
ξφ, ξφ

)
,

where

−→
k =

(
k(i1)

ri1
, k

(i1)
ri1−1, . . . , k

(i1)
1 , k(i2)

ri2
, . . . , k

(i2)
1 , . . . , k

(i|p|)
ri|p|

, . . . , k
(i|p|)
1

)
, q =

∑
j∈p

rj .

Hence, by the relation τ · γ(i1)τ−1 = γ(i1)
(
τ ∈ Si1

∞
)
, we have(

πφ

(
γ(i1)

)
πφ (s)

∏
j∈p

Orj

j ξφ, ξφ

)

= lim
n→∞

1
nq′

∑
−→
k ∈D(m,n,q′)

(
πφ

(
γ(i1)

)
πφ

((
k(i1)

ri1
, k

(i1)
ri1−1, . . . , k

(i1)
1 , i2,

k(i2)
ri2

, . . . , k
(i2)
1 , i3, . . . , i|p|, k

(i|p|)
ri|p|

, . . . , k
(i|p|)
1 , i1

))
ξφ, ξφ

)
,

where

−→
k =

(
k

(i1)
ri1

, k
(i1)
ri1−1, . . . , k

(i1)
1 , i2, k

(i2)
ri2

, . . . , k
(i2)
1 , i3, . . . , i|p|, k

(i|p|)
ri|p|

, . . . , k
(i|p|)
1

)
,

q′ = |p| − 1 +
∑
j∈p

rj .

This relation, in view of Lemma 18, implies the statement of Lemma 19. �

We use the notation Aj for the W ∗-algebra generated by πφ (γ), γ=(e, · · ·, e, γj , e, · · · ),
and Oj . Given an operator A from Aj , denote by A(k) its copy in Ak:

A(k) = πφ ((j, k))Aπφ ((j, k))
(
A(j) = A

)
.

The next assertion follows from Lemma 19.
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Lemma 20. Let s, i(p) be the same as in Lemma 19. If Aj , Bj ∈ Aj, then(
πφ (s)

∏
j

Ajξφ,
∏
j

Bjξφ

)
=

∏
p∈N�s

(
A

(i(p))
i(p)

(
B

(i(p))
i(p)

)∗
A

(i(p))
s−1(i(p))

(
B

(i(p))
s−1(i(p))

)∗
· · ·A(i(p))

s1−|p|(i(p))

(
B

(i(p))

s1−|p|(i(p))

)∗
O|p|−1

i(p) ξφ, ξφ

)
.

(5.9)

The following lemma is an analogue of Theorem 1 from [3].

Lemma 21. Let ∆ = [a, b] be an interval in [−1, 0] or in [0, 1] with the property
min {|a|, |b|} > ε > 0. If E(i)

∆ is a spectral projection of Oi corresponding to ∆, then
for any orthogonal projection E from Ai one has

(
EE

(i)
∆ ξφ, ξφ

)2 ≥ ε
(
EE

(i)
∆ ξφ, ξφ

)
.

Proof. Using Lemmas 17 and 20, we have∣∣∣(πφ ((i, i+ 1))EE(i)
∆ ξφ, EE

(i)
∆ ξφ

)∣∣∣
=
∣∣∣(OiEE

(i)
∆ ξφ, EE

(i)
∆ ξφ

)∣∣∣ > ε
∣∣∣(EE(i)

∆ ξφ, ξφ

)∣∣∣ .(5.10)

On the other hand, under the assumption E(i+1) = πφ ((i, i+ 1))Eπφ ((i, i+ 1)), one has

EE
(i)
∆ · E(i+1)E

(i+1)
∆ · πφ ((i, i+ 1)) = πφ ((i, i+ 1)) · EE(i)

∆ · E(i+1)E
(i+1)
∆ .

Therefore, ∣∣∣(πφ ((i, i+ 1))EE(i)
∆ ξφ, EE

(i)
∆ ξφ

)∣∣∣
=
∣∣∣(πφ ((i, i+ 1))E(i+1)E

(i+1)
∆ EE

(i)
∆ ξφ, ξφ

)∣∣∣
≤
∣∣∣(E(i+1)E

(i+1)
∆ EE

(i)
∆ ξφ, ξφ

)∣∣∣ (Prop. 7)
=

(
EE

(i)
∆ ξφ, ξφ

)2

.

Hence, using (5.10), we obtain our statement. �

The following statement is well known (see [3]) and also follows from Lemma 21.

Corollary 22. There exists at most countable set of numbers αi, βi from (0, 1) and a
set of pairwise orthogonal projections

{
E(k) (αi) , E(k) (βi)

}
⊂ Ak such that

Ok =
∑

αiE
(k) (αi)−

∑
βiE

(k) (βi) .(5.11)

The following assertion is an analogue of Theorem 2 from [3].

Lemma 23. Let r be a number from {αi, βi} and let E be any projection from Ak. If(
E · E(k)(r)ξφ, ξφ

)
= rν(r) 6= 0, then ν(r) ∈ Z.

Proof. For completeness of the proof, we use the arguments of Kerov, Olshanski, Vershik
and Okounkov from [1] and [3].

For any m ∈ N, define the projection em(r) as follows:

em(r) =
m∏

j=1

E(j) · E(j)(r), where

E(j) = πφ ((j, k))Eπφ ((j, k)) , E(j)(r) = πφ ((j, k))E(k)(r)πφ ((j, k)) .

Let Pm(s) be the set of orbits s on {1, 2, . . . ,m}. If s ∈ Sm, then by Lemma 20 we
obtain (

πφ(s)em(r)ξφ, em(r)ξφ
)

= ν(r)|Pm(s)|
∏

p∈Pm(s)

r|p|.(5.12)
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Set φr(s) =
(πφ(s)em(r)ξφ, em(r)ξφ)

(em(r)ξφ, em(r)ξφ)
. Using (5.12), we have

(5.13) φr(s) =
ν(r)|Pm(s)|

ν(r)m
.

Therefore, φr is an indecomposable character on S∞ in view of Proposition 7.
We following G. Olshanski (see [6]) in expounding the proof of the following formula:

(5.14)
∑

s∈Sm

sgn(s) t|Pm(s)| = t(t− 1) · · · (t−m+ 1).

For that, we consider the canonical projection pm,m−1 from Sm onto Sm−1

(pm,m−1(s)) (i) =
{

s(i), if s(i) < m,
s(m), if s(i) = m.

Since |Pm−1 (pm,m−1(s))| = |Pm(s)| when s /∈ Sm−1, and |Pm−1 (pm,m−1(s))| =
|Pm(s)| − 1 when s ∈ Sm−1, then∑

s∈Sm

sgn(s) t|Pm(s)| =
∑

s∈Sm−1

∑
s̃∈Sm: pm,m−1(s̃)=s

sgn(s) t|Pm(s)|

= t ·
∑

s∈Sm−1

t|Pm(s)| − (m− 1) ·
∑

s∈Sm−1

t|Pm(s)| = (t−m+ 1)
∑

s∈Sm−1

t|Pm(s)|.

Hence (5.14) is now accessible by an elementary induction argument.
We follow the idea of A. Okounkov in considering the orthogonal projection

Altr(m) =
1
m!

∑
s∈Sm

sgn(s) πφr (s).

Since
∑

s∈Sm

sgn(s) φr(s) ≥ 0, then, using (5.13) and (5.14), we obtain for r > 0

ν(r) · (ν(r)− 1) · · · (ν(r)−m+ 1) ≥ 0 for all m ∈ N.

Thus, we get a contradiction in the case ν(r) > 0. The opposite case ν(r) < 0 can be
considered in a similar way. For that, one should use the formula∑

s∈Sm

t|Pm(s)| = t(t+ 1) · · · (t+m− 1) (see [6])

and consider the projection

Symr(m) =
1
m!

∑
s∈Sm

πφr
(s).

�

Proof of Theorem 9. Let Ek(r) be the spectral projection of Ok (see (4.4), (5.11)). By
Lemma 23, for r 6= 0 the W ∗−algebra Ek(r)Ak (see p. 314) is finite-dimensional. On the
other hand, use Lemma 17 to obtain the unitary representation

(
Ek(r)πφ

∣∣∣
Γ
, Ek(r)Hφ

)
of the group Γ in the space Ek(r)Hφ. Thus, the representations %r for r 6= 0 as in

Theorem 9 are the irreducible components of
(
Ek(r)πφ

∣∣∣
Γ
, Ek(r)Hφ

)
. The formula for

characters follows from Lemmas 17 and 20. Finally, for each character as in Theorem 9
we construct the realization as in Section 2. �
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