OPERATOR-VALUED INTEGRAL OF A VECTOR-FUNCTION AND BASES

M. H. FAROUGHI

ABSTRACT. In the present paper we are going to introduce an operator-valued integral of a square modulus weakly integrable mappings the ranges of which are Hilbert spaces, as bounded operators. Then, we shall show that each operator-valued integrable mapping of the index set of an orthonormal basis of a Hilbert space H into Hcan be written as a multiple of a sum of three orthonormal bases.

1. Introduction

Throughout this paper (X, μ) will be a measure space and H will be a Hilbert space over \mathbb{C} , where H, in general, is not assumed to be separable. We shall denote the closed unit ball of H by H_1 .

Definition 1.1. Let $L^2(X,H)$ be the class of all measurable mappings $f:X\to H$ such that

$$||f||_2^2 = \int_X ||f(x)||^2 d\mu < \infty.$$

By the polar identity we conclude that for each $f,g\in L^2(X,H)$, the mapping $x\mapsto$ $\langle f(x), g(x) \rangle$ of X to C is measurable, and it can be proved that $L^2(X, H)$ is a Hilbert space with the inner product defined by

$$\langle f, g \rangle_{L^2} = \int_Y \langle f(x), g(x) \rangle d\mu.$$

We shall write $L^2(X)$ when $H = \mathbb{C}$.

The following lemmas can be found in operator theory textbooks.

Lemma 1.2. Let $u: K \to H$ be a bounded operator with closed range \mathcal{R}_u . Then there exists a bounded operator $u^{\dagger}: H \to K$ for which

$$uu^{\dagger}f = f, \quad f \in \mathcal{R}_u.$$

Also, $u^*: H \to K$ has closed range and $(u^*)^{\dagger} = (u^{\dagger})^*$.

Lemma 1.3. Let $u: K \to H$ be a bounded surjective operator. Given $y \in H$, the equation ux = y has a unique solution of minimal norm, namely, $x = u^{\dagger}y$.

The operator u^{\dagger} is called the pseudo-inverse of u.

Lemma 1.4. Let $u: H \to K$ be a bounded operator. Then

- (i) ||u|| = ||u*|| and ||uu*|| = ||u||².
 (ii) R_u is closed, if and only if, R_{u*} is closed.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46G12; Secondary 46C05.

Key words and phrases. Lebesque integral, Hilbert space, Banach space, C^* -algebra.

This work was supported by the University of Tabriz.

(iii) u is surjective, if and only if, there exists c > 0 such that for each $h \in H$ $c||h|| < ||u^*h||.$

Lemma 1.5. Let H be a Hilbert space. Then

- (i) Every bounded and invertible operator $u: H \to H$ has a unique representation u = wp, where w is unitary and p is positive.
- (ii) Every positive operator p on H with ||p|| < 1 can be written $p = 2^{-1}(w + w^*)$, where w is an unitary operator.

Lemma 1.6. Let u be a self-adjoint bounded operator on H. Let

$$m_u = \inf_{\|h\|=1} \langle uh, h \rangle$$
 and $M_u = \sup_{\|h\|=1} \langle uh, h \rangle$.

Then, $m_u, M_u \in \sigma(u)$.

2. A SURVEY OF THE OPERATOR-VALUED INTEGRAL OF VECTOR-FUNCTION

In this section we shall introduce the concept of operator-valued integrability of vectorfunctions of X to H. Then, we shall define their operator-valued integrals as bounded operators of the Hilbert space $L^2(X)$ to H.

Definition 2.1. Let $f: X \to H$ be a mapping. We say that f is weakly measurable if for each $h \in H$ the mapping $x \mapsto \langle h, f(x) \rangle$ of X to $\mathbb C$ is measurable.

Definition 2.2. Let $f: X \to H$ be weakly measurable. We say that f is operator-valued integrable over X if

$$\sup_{h\in H_1}\int_X |\langle h,f(x)\rangle|^2 d\mu <\infty.$$

The class of all operator-valued integrable mappings of X to H will be denoted by $\mathcal{L}(X,H)$. It is clear that $L^2(X,H)\subseteq\mathcal{L}(X,H)$. Also, $\mathcal{L}(X,H)$ is a normed space with the norm defined by

$$||f||_{\mathcal{L}}^2 = \sup_{h \in H_1} \int_X |\langle h, f(x) \rangle|^2 d\mu.$$

In the normed space $\mathcal{L}(X,H)$, f is a null function if for each $h \in H$

$$\langle h, f \rangle = 0$$
 a.e.

Let $f \in \mathcal{L}(X, H)$ and let the mapping $F_f : L^2(X) \to H$ be defined by

(2.1)
$$\langle F_f(g), h \rangle = \int_X g(x) \langle f(x), h \rangle d\mu, \quad h \in H, \quad g \in L^2(X).$$

It is evident that F_f is well defined and linear. For each $g \in L^2(X)$ and $h \in H$, we have

$$||F_f(g)|| = \sup_{h \in H_1} |\langle F_f(g), h \rangle|$$

$$\leq \left(\int_X |g(x)|^2 d\mu \right)^{1/2} \sup_{h \in H_1} \left(\int_X |\langle f(x), h \rangle|^2 d\mu \right)^{1/2} \leq ||g||_2 ||f||_{\mathcal{L}}.$$

Hence, F_f is bounded.

For each $g \in L^2(X)$ and $h \in H$ we have

$$\langle F_f^*(h), g \rangle = \langle h, F_f(g) \rangle = \overline{\langle F_f(g), h \rangle} = \int_X \overline{g}(x) \langle h, f(x) \rangle \, d\mu = \langle \langle h, f \rangle, g \rangle_{L^2}.$$

Thus

$$(2.2) F_f^*(h) = \langle h, f \rangle.$$

Also, for each $h \in H$

(2.3)
$$||F_f^*(h)||^2 = \langle F_f^*(h), F_f^*(h) \rangle = \int_X |\langle f(x), h \rangle|^2 d\mu.$$

Therefore

(2.4)
$$||F_f|| = ||F_f^*|| = \left(\sup_{h \in H_1} \int_X |\langle f(x), h \rangle|^2 d\mu\right)^{1/2} = ||f||_{\mathcal{L}}.$$

Definition 2.3. Let (X, μ) be a measure space and $f \in \mathcal{L}(X, H)$. The unique bounded linear operator $F_f : L^2(X) \to H$ defined by (2.1), will be denoted by

$$\int_{HL(X)} f \, d\mu,$$

and we shall say the operator-valued integral of f over X. Therefore, for each $g \in L^2(X)$, $\int_{HL(X)} f \, d\mu$ is defined by

$$\Big\langle \int_{HL(X)} f \, d\mu(g), h \Big\rangle = \int_X g(x) \langle f(x), h \rangle \, d\mu, \quad h \in H.$$

We shall denote the adjoint of $\int_{HL(X)} f d\mu$ by $\int_{HL(X)}^* f d\mu$, which by (2.2) for each $h \in H$

$$\int_{HL(X)}^{*} f \, d\mu(h) = \langle h, f \rangle.$$

Remark 2.4. By (2,3),(2.4), for each $f \in \mathcal{L}(X,H)$ we have

- (i) $\| \int_{HL(X)} f \, d\mu \| = \| f \|_{\mathcal{L}}$.
- (ii) Since, for each $h \in H$

$$\int_{X} |\langle f(x), h \rangle|^{2} d\mu = \left\langle \int_{HL(X)} f \, d\mu \int_{HL(X)}^{*} f \, d\mu(h), h \right\rangle = \left\| \int_{HL(X)}^{*} f \, d\mu(h) \right\|^{2},$$

$$\inf_{h \in H_1} \Big\| \int_{HL(X)}^* f \, d\mu(h) \Big\|^2 \leq \int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu \leq \sup_{h \in H_1} \Big\| \int_{HL(X)}^* f \, d\mu(h) \Big\|^2.$$

(iii) Let $H = \mathbb{C}$ and $f \in \mathcal{L}(X, \mathbb{C}) = L^2(X)$. Then, the operator-valued integral of f over X is the bounded linear mapping $\int_{HL(X)} f \, d\mu : L^2(X) \to \mathbb{C}$, defined by

$$\int_{HL(X)} f \, d\mu(g) = \int_X f(x)g(x) \, d\mu = \langle f, \overline{g} \rangle_{L^2}, \quad g \in L^2(X),$$

with $\|\int_{HL(X)} f \, d\mu\| = \|f\|_2$. Also, $\int_{HL(X)}^* f \, d\mu : \mathbb{C} \to L^2(X)$ is defined by

$$\int_{HL(X)}^{*} f \, d\mu(c) = c\overline{f}, \quad c \in \mathbb{C},$$

where

$$\left\| \int_{HL(X)}^* f \, d\mu(c) \right\| = |c| \, \|f\|_2, \quad c \in \mathbb{C}.$$

Thus, for each $f \in L^2(X)$, the mapping $\int_{HL(X)} f \, d\mu : L^2(X) \to \mathbb{C}$ is surjective.

Definition 2.5. Let $f, g \in \mathcal{L}(X, H)$. We say that f, g are weakly equal, if

$$\int_{HL(X)} f \, d\mu = \int_{HL(X)} g \, d\mu,$$

which is equivalent with

$$\langle h, f \rangle = \langle h, g \rangle$$
 a.e.

for each $h \in H$.

According to the definition of the normed space $\mathcal{L}(X, H)$, two members of $\mathcal{L}(X, H)$ are equal, if and only if, they are weakly equal.

Definition 2.6. Let $f, g \in \mathcal{L}(X, H)$. We say that f, g are strongly equal, if

$$\int_{HL(X)} f\,d\mu \int_{HL(X)}^* f\,d\mu = \int_{HL(X)} g\,d\mu \int_{HL(X)}^* g\,d\mu.$$

It is clear that each weakly equal mapping is also strongly equal, but its converse may be false.

Definition 2.7. Let H be a closed subspace of $L^2(X)$ and $f \in \mathcal{L}(X, H)$. We say that f is positive, if

$$\int_{HL(X)} f \, d\mu : L^2(X) \to L^2(X)$$

is a positive operator.

Lemma 2.8. Let H be a Hilbert space. Then

- (i) If dim $H < \infty$ then $L^2(X, H) = \mathcal{L}(X, H)$.
- (ii) If there exists $f \in L^2(X,H)$ with $\inf_{h \in H_1} \| \int_{HL(X)}^* f \, d\mu(h) \| > 0$ then

$$\dim H < \infty$$
.

Proof. Let $\{e_{\alpha}\}_{{\alpha}\in I}$ be an orthonormal basis for H and $\dim H < \infty$. Let $f \in \mathcal{L}(X, H)$. We have

$$\int_X ||f(x)||^2 d\mu = \int_X \sum_\alpha |\langle f(x), e_\alpha \rangle|^2 d\mu = \sum_\alpha \int_X |\langle f(x), e_\alpha \rangle|^2 d\mu.$$

Thus, we have

$$\inf_{h \in H_1} \left\| \int_{HL(X)}^* f \, d\mu(h) \right\|^2 \sum_{\alpha} \|e_{\alpha}\|^2 \le \int_X \|f(x)\|^2 d\mu$$

$$\le \sup_{h \in H_1} \left\| \int_{HL(X)}^* f \, d\mu(h) \right\|^2 \sum_{\alpha} \|e_{\alpha}\|^2.$$

So

(2.5)
$$\int_X \|f(x)\|^2 d\mu \le \sup_{h \in H_1} \left\| \int_{HL(X)}^* f \, d\mu(h) \right\|^2 \dim H,$$

and

(2.6)
$$\inf_{h \in H_1} \left\| \int_{HL(X)}^* f \, d\mu(h) \right\|^2 \dim H \le \int_X \|f(x)\|^2 d\mu.$$

Hence, by (2.5), $f \in L^2(X, H)$.

(ii) is clear by
$$(2.6)$$
.

Lemma 2.9. Let $f \in \mathcal{L}(X, H)$. Then the following assertions are equivalent:

- (i) The operator $\int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu$ is invertible.
- (ii)

$$\inf_{h \in H_1} \left\| \int_{HL(X)}^* f \, d\mu(h) \right\| > 0.$$

(iii) The operator $\int_{HL(X)} f d\mu$ is surjective.

Proof. (i) \Rightarrow (ii) Let $\int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu$ be invertible. We have

$$\begin{split} &\inf_{h\in H_1} \Big\| \int_{HL(X)}^* f \, d\mu(h) \Big\|^2 \\ &= \inf_{h\in H_1} \Big\langle \int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu(h), h \Big\rangle \in \sigma\Big(\int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu \Big). \end{split}$$

So, $\inf_{h \in H_1} \| \int_{HL(X)}^* f \, d\mu(h) \| > 0.$

(ii) \Rightarrow (iii) Let $\inf_{h \in H_1} \| \int_{HL(X)}^* f \, d\mu(h) \| > 0$. We have

$$\inf_{h\in H_1}\Big\|\int_{HL(X)}^*f\,d\mu(h)\Big\|\|h\|\leq \Big\|\int_{HL(X)}^*f\,d\mu(h)\Big\|,\quad h\in H.$$

Therefore, $\int_{HL(X)} f d\mu$ is surjective.

(iii) \Rightarrow (i) Let $\int_{HL(X)} f \, d\mu$ be surjective. Then, there exists A>0 such that

$$A\|h\| \le \Big\| \int_{HL(X)}^* f \, d\mu(h) \Big\|, \quad h \in H.$$

Hence

$$\inf_{h\in H_1}\Big\|\int_{HL(X)}^* f\,d\mu(h)\Big\|\geq A>0.$$

Lemma 2.10. Let H be a Hilbert space. Then

- (i) Let $f \in \mathcal{L}(X, H)$. Then $\int_{HL(X)} f \, d\mu = 0$, if and only if, f = 0 (weakly).
- (ii) Let $f_1, f_2 \in L^2(X, H)$ and let $\lambda_1, \lambda_2 \in \mathbb{C}$. Then

$$\int_{HL(X)} (\lambda_1 f_1 + \lambda_2 f_2) d\mu = \lambda_1 \int_{HL(X)} f_1 d\mu + \lambda_2 \int_{HL(X)} f_2 d\mu.$$

Proof. It is evident.

Lemma 2.11. Let K be a Hilbert space, $f \in \mathcal{L}(X,H)$ and $u : H \to K$ be a bounded linear mapping. Then

(i) $uf \in \mathcal{L}(X,K)$ and

$$u \int_{HL(X)} f \, d\mu = \int_{HL(X)} u f \, d\mu.$$

(ii) Let $\inf_{h \in H_1} \| \int_{HL(X)}^* f \, d\mu(h) \| > 0$. Then, $\inf_{h \in K_1} \| \int_{HL(X)}^* u f \, d\mu(h) \| > 0$, if and only if, u is surjective.

Proof. (i) Since

$$\sup_{h\in H_1} \int_X |\langle h, u(f(x))\rangle|^2 d\mu \leq \|u\|^2 \sup_{h\in H_1} \int_X |\langle h, f(x)\rangle|^2 d\mu,$$

so $uf \in \mathcal{L}(X,K)$. For each $g \in L^2(X)$, we have

$$\left\langle \int_{HL(X)} uf \, d\mu(g), k \right\rangle = \int_{X} g(x) \langle u(f(x)), k \rangle \, d\mu$$
$$= \int_{X} g(x) \langle f(x), u^{*}(k) \rangle \, d\mu = \left\langle u \int_{HL(X)} f \, d\mu(g), k \right\rangle.$$

So, $\int_{HL(X)} uf \, d\mu = u \int_{HL(X)} f \, d\mu$.

(ii) If u is surjective then by Lemma 2.11 (iii), $u \int_{HL(X)} f d\mu$ is surjective. So

$$\inf_{h \in K_1} \left\| \int_{HL(X)}^* uf \, d\mu(h) \right\| > 0.$$

Now, if $\inf_{h \in K_1} \| \int_{HL(X)}^* uf \, d\mu(h) \| > 0$ then $\int_{HL(X)} uf \, d\mu$ is surjective, so u is surjective.

Corollary 2.12. Let for each $\alpha \in I$, H_{α} be a Hilbert space and $\bigoplus_{\alpha \in I} H_{\alpha}$ be the orthogonal sum of $\{H_{\alpha}\}_{\alpha \in I}$. Let $f \in \mathcal{L}(X, \bigoplus_{\alpha \in I} H_{\alpha})$ and for each $\alpha \in I$, $f_{\alpha} = \pi_{\alpha} \circ f$. Then

- (i) For each $\alpha \in I, f_{\alpha} \in \mathcal{L}(X, H_{\alpha})$.
- (ii) $(\int_{HL(X)} f d\mu)_{\alpha} = \int_{HL(X)} f_{\alpha} d\mu$.

Proof. It is evident

3. Decomposition

In this section, we shall show more properties of operator-valued integrals of vectorfunctions.

Definition 3.1. Let $f \in \mathcal{L}(X, H)$ and $\mathcal{R} \int_{HL(X)} f d\mu$ be closed. We shall denote the pseudo-inverse of $\int_{HL(X)} f d\mu$ by $\int_{HL(X)}^{\dagger} f d\mu$. So for each $h \in \mathcal{R} \int_{HL(X)} f d\mu$

$$\int_{HL(X)} f \, d\mu \int_{HL(X)}^\dagger f \, d\mu(h) = h.$$

Theorem 3.2. Let $f \in \mathcal{L}(X, H)$ and $f \neq 0$ (weakly). We have

(i) If $g \in \mathcal{L}(X, H)$ then the mapping $U: X \times X \to \mathbb{C}$ defined by

$$U(x,y) = \langle f(x), g \rangle(y) = \langle f(x), g(y) \rangle,$$

defines a bounded operator on $L^2(X)$.

(ii) Let $U: X \times X \to \mathbb{C}$ defines a bounded operator $W: L^2(X) \to L^2(X)$ as (i). Let $g: X \to H$ be defined by

$$g(x) = \int_{HL(X)} f \, d\mu(U(x,.)).$$

Then g is defined for almost all $x \in X$ and $g \in \mathcal{L}(X, H)$. Let

$$\inf_{h \in H_1} \left\| \int_{HL(X)}^* f \, d\mu(h) \right\| > 0,$$

then $\inf_{h\in H_1} \|\int_{HL(X)}^* g \, d\mu(h)\| > 0$, if and only if, there exists c > 0 such that

$$\inf_{h \in H_1} \left\| \int_{HL(X)}^* f \, d\mu(h) \right\| \le c \inf_{h \in H_1} \left\| \int_{HL(X)}^* g \, d\mu(h) \right\|.$$

Proof. (i) Let $l \in L^2(X)$) and $x \in X$. We define

$$W_l(x) = \int_Y U(x, y) l(y) d\mu_y = \int_Y \langle f(x), g \rangle l d\mu_y.$$

Since, $f \in \mathcal{L}(X, H)$ and $\overline{W}_l(x) = \langle \int_{HL(X)} g \, d\mu(\overline{l}), f(x) \rangle$, W_l is measurable. Also, we have

$$\begin{split} \int_{X} |W_{l}(x)|^{2} d\mu_{x} &= \int_{X} \left| \left\langle \int_{HL(X)} g \, d\mu(\bar{l}), f(x) \right\rangle \right|^{2} d\mu_{x} \\ &\leq \left\| \int_{HL(X)} f \, d\mu \right\|^{2} \left\| \int_{HL(X)} g \, d\mu(\bar{l}) \right\|^{2} \\ &\leq \left\| \int_{HL(X)} f \, d\mu \right\|^{2} \left\| \int_{HL(X)} g \, d\mu \right\|^{2} \|l\|^{2}. \end{split}$$

Thus, $W: L^2(X) \to L^2(X)$ defined by $W(l) = W_l$ is a bounded operator.

(ii) Since

$$||W_l|| = \int_X |W_l(x)|^2 d\mu_x = \int_X \Big| \int_X U(x,y) l(y) \, d\mu_y \Big|^2 d\mu_x \le ||W|| ||l||,$$

for almost all $x \in X$, $U(x,.)l \in L^1(X)$. So, for almost all $x \in X$, $U(x,.) \in L^2(X)$. Hence, g is defined for almost all $x \in X$. Since

$$\langle h, g(x) \rangle = \int_X U(x, y) \langle f(y), h \rangle d\mu_y = W_{\langle h, f \rangle}(x),$$

g is weakly measurable. But

$$\int_X |\langle h, g(x) \rangle|^2 d\mu_x = \int_X |W_{\langle h, f \rangle}(x)|^2 d\mu_x \le ||W|| ||\langle h, f \rangle||.$$

So, $g \in \mathcal{L}(X, H)$. If $\inf_{h \in H_1} \| \int_{H_L(X)}^* g \, d\mu(h) \| > 0$ then

$$\begin{split} \left(\inf_{h\in H_{1}}\left\|\int_{HL(X)}^{*}g\,d\mu(h)\right\|^{2}/\sup_{h\in H_{1}}\left\|\int_{HL(X)}^{*}f\,d\mu(h)\right\|^{2}\right)\inf_{h\in H_{1}}\left\|\int_{HL(X)}^{*}f\,d\mu(h)\right\|^{2}\|h\|^{4}\\ &\leq\left(\inf_{h\in H_{1}}\left\|\int_{HL(X)}^{*}g\,d\mu(h)\right\|^{2}/\sup_{h\in H_{1}}\left\|\int_{HL(X)}^{*}f\,d\mu(h)\right\|^{2}\right)\left\|\int_{HL(X)}^{*}f\,d\mu\right\|^{2}\|h\|^{2}\\ &=\inf_{h\in H_{1}}\left\|\int_{HL(X)}^{*}g\,d\mu(h)\right\|^{2}\|h\|^{2}\leq\left\|\int_{HL(X)}^{*}g\,d\mu(h)\right\|^{2}. \end{split}$$

Thus

$$\inf_{h\in H_1} \Big\| \int_{HL(X)}^* f\,d\mu(h) \Big\| \leq c \inf_{h\in H_1} \Big\| \int_{HL(X)}^* g\,d\mu(h) \Big\|,$$

where

$$c = \left(\inf_{h \in H_1} \left\| \int_{HL(X)}^* g \, d\mu(h) \right\|^2 / \sup_{h \in H_1} \left\| \int_{HL(X)}^* f \, d\mu(h) \right\|^2 \right)^{-1/2} > 0.$$

The converse is clear.

Lemma 3.3. Let $f \in \mathcal{L}(X, H)$ and $\inf_{h \in H_1} \| \int_{HL(X)}^* f \, d\mu(h) \| > 0$. Let

$$u = \int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu.$$

Then

(i) Let $l \in L^2(X)$. If $h = \int_{HL(X)} f \, d\mu(l)$ then

$$||l||^2 = \int_X |\langle h, u^{-1} f(x) \rangle|^2 d\mu + \int_X |l(x) - \langle h, u^{-1} f(x) \rangle|^2 d\mu.$$

- (ii) For each $h \in H$, $\int_{HL(X)}^{\dagger} f \, d\mu(h) = \langle h, u^{-1} f \rangle$.
- (iii) $\|\int_{HL(X)}^{\dagger} f \, d\mu\|^{-2} = \inf_{h \in H_1} \|\int_{HL(X)}^* f \, d\mu(h)\|^2$.

Proof. (i) By the Lemma 2.11, $\int_{HL(X)} f \, d\mu (l - \langle h, u^{-1} f \rangle) = 0$. So

$$l - \langle h, u^{-1} f \rangle \in \ker \int_{HL(X)} f \, d\mu = \Big(\mathcal{R} \int_{HL(X)}^* f \, d\mu \Big)^\perp.$$

Since $\langle h, u^{-1} f \rangle \in \mathcal{R} \int_{HL(X)}^* f \, d\mu$,

$$||l||^2 = ||l - \langle h, u^{-1}f \rangle||_2^2 + ||\langle h, u^{-1}f \rangle||_2^2.$$

(ii) Since, $\int_{HL(X)}^{\uparrow} f d\mu(h)$ is the unique solution of minimal norm of

$$\int_{HL(X)} f \, d\mu(l) = h,$$

so

$$\int_{X} |\langle l(x) - \langle h, u^{-1} f(x) \rangle|^{2} d\mu = 0.$$

Hence $l = \langle h, u^{-1}f \rangle = \int_{HL(X)}^{\dagger} f \, d\mu(h)$.

(iii) Since, $\inf_{h\in H_1} \|\int_{HL(X)}^* f \, d\mu(h)\| > 0$, by the Lemma 2.11

$$\inf_{h \in H_1} \left\| \int_{HL(X)}^* u^{-1} f \, d\mu(h) \right\| > 0.$$

Therefore

$$\begin{split} \Big\| \int_{HL(X)}^\dagger f \, d\mu \Big\|^2 &= \sup_{h \in H_1} \int_X |\langle h, u^{-1} f(x) \rangle^2 d\mu = \Big\| \int_{HL(X)} u^{-1} f \, d\mu \int_{HL(X)}^* u^{-1} f \, d\mu \Big\| \\ &= \Big\| \Big(\int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu \Big)^{-1} \Big\| = \Big(\inf_{h \in H_1} \Big\| \int_{HL(X)}^* f \, d\mu (h) \Big\|^2 \Big)^{-1}. \end{split}$$

Definition 3.4. Let $f,g \in \mathcal{L}(X,H)$. We define $\langle f,g \rangle_{\mathcal{L}}: X \to L^2(X)$ by $\langle f, q \rangle_{\mathcal{L}}(x) = \langle f(x), q \rangle.$

Theorem 3.5. Let $f, g \in \mathcal{L}(X, H)$. Then

- (i) $\int_{HL(X)}^{*} g \, d\mu f = \langle f, g \rangle_{\mathcal{L}}.$
- (ii) $\langle f, g \rangle_{\mathcal{L}} \in \mathcal{L}(X, L^2(X))$. (iii) Let $\inf_{h \in H_1} \| \int_{H_L(X)}^* f \, d\mu(h) \| > 0$ and $K = \mathcal{R} \int_{H_L(X)}^* g \, d\mu$ be closed. Then

$$\inf_{h \in K_1} \Big\| \int_{HL(X)}^* \langle f, g \rangle_{\mathcal{L}} d\mu(h) \Big\| > 0$$

and there exists a surjective bounded operator $u: L^2(X) \to H$ such that g = $u\langle g,f\rangle_{\mathcal{L}}.$

Proof. (i) Let $l \in L^2(X)$. For each $x \in X$, we have

$$\begin{split} \left\langle l, \int_{HL(X)}^* g \, d\mu f(x) \right\rangle &= \left\langle \int_{HL(X)} g \, d\mu(l), f(x) \right\rangle = \int_X l(y) \langle g(y), f(x) \rangle \, d\mu_y \\ &= \int_X l(y) \langle f(x), g(y) \overline{\rangle} \, d\mu_y = \langle l, \langle f(x), g \rangle \rangle_{L^2} = \langle l, \langle f, g \rangle_{\mathcal{L}}(x) \rangle_{L^2}. \end{split}$$

Thus $\int_{HL(X)}^* g \, d\mu f = \langle f, g \rangle_{\mathcal{L}}$.

(ii) Let $l \in L^2(X)$. Since, the mapping

$$X \to \mathbb{C}, \quad x \mapsto \langle l, \langle f, g \rangle_{\mathcal{L}}(x) \rangle = \left\langle l, \int_{HL(X)}^{*} g \, d\mu f(x) \right\rangle = \left\langle \int_{HL(X)} g \, d\mu(l), f(x) \right\rangle$$

is measurable, $\langle f, g \rangle_{\mathcal{L}}$ is weakly measurable. Since

$$\int_{X} |\langle l, \langle f, g \rangle_{\mathcal{L}}(x)|^{2} d\mu = \int_{X} \left| \left\langle l, \int_{HL(X)}^{*} g \, d\mu(f(x)) \right\rangle \right|^{2} d\mu
= \int_{X} \left| \left\langle \int_{HL(X)} g \, d\mu(l), f(x) \right\rangle \right|^{2} d\mu \le \sup_{h \in H_{1}} \left\| \int_{HL(X)}^{*} f \, d\mu(h) \right\|^{2} \left\| \int_{HL(X)} g \, d\mu(l) \right\|^{2}
\le \left\| \int_{HL(X)} f \, d\mu \right\|^{2} \left\| \int_{HL(X)} g \, d\mu \right\|^{2} \|l\|^{2}.$$

So, $\langle f, g \rangle_{\mathcal{L}} \in \mathcal{L}(X, L^2(X))$.

(iii) For each $l \in \mathcal{R} \int_{HL(X)}^* g \, d\mu$, we have

$$\begin{split} \|l\| &= \Big\| \int_{HL(X)}^* g \, d\mu \Big(\int_{HL(X)}^* g \, d\mu \Big)^\dagger(l) \Big\| \\ &= \Big\| \Big(\Big(\int_{HL(X)}^* g \, d\mu \Big)^\dagger \Big)^* \Big(\int_{HL(X)} g \, d\mu(l) \Big) \Big\| \\ &\leq \Big\| \int_{HL(X)}^\dagger g \, d\mu \Big\| \Big\| \int_{HL(X)} g \, d\mu(l) \Big\|. \end{split}$$

Hence

$$\left\| \int_{HL(X)}^{\dagger} g \, d\mu \right\|^{-1} \|l\| \le \left\| \int_{HL(X)} g \, d\mu(l) \right\|.$$

Thus

$$\inf_{h \in H_{1}} \left\| \int_{HL(X)}^{*} f \, d\mu(h) \right\|^{2} \left\| \int_{HL(X)}^{\dagger} g \, d\mu \right\|^{-2} \|l\|^{2} \\
\leq \inf_{h \in H_{1}} \left\| \int_{HL(X)}^{*} f \, d\mu(h) \right\|^{2} \left\| \int_{HL(X)} g \, d\mu(l) \right\|^{2} \\
\leq \int_{X} \left| \left\langle \int_{HL(X)} g \, d\mu(l), f(x) \right\rangle \right|^{2} d\mu = \int_{X} |\langle l, \langle f, g \rangle_{\mathcal{L}}(x) \rangle|^{2} d\mu.$$

Hence

$$\inf_{l \in K_1} \Big\| \int_{HL(X)}^* \langle f, g \rangle_{\mathcal{L}} d\mu(l) \Big\| > 0.$$

We have the following retrieval formula

$$g = \left(\int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu\right)^{-1} \int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu g$$
$$= \left(\int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu\right)^{-1} \int_{HL(X)} f \, d\mu \langle g, f \rangle_{\mathcal{L}}.$$

So, $g = u\langle g, f\rangle_{\mathcal{L}}$, where, $u = (\int_{HL(X)} f d\mu \int_{HL(X)}^* f d\mu)^{-1} \int_{HL(X)} f d\mu$ is a bounded surjective operator of $L^2(X)$ to H.

Since, $\langle f, f \rangle_{\mathcal{L}} \in \mathcal{L}(X, L^2(X))$ is positive, we have the following corollary.

Corollary 3.6. Let $f \in \mathcal{L}(X, H)$ with $\inf_{h \in H_1} \| \int_{HL(X)}^* f \, d\mu(h) \| > 0$, and

$$K = \mathcal{R} \int_{HL(X)}^{*} f \, d\mu.$$

Then f can be written as f = ug, where $u : K \to H$ is a bounded operator, $g \in \mathcal{L}(X, K)$ is positive with $\inf_{h \in K_1} \| \int_{HL(X)}^* g \, d\mu(h) \| > 0$.

Theorem 3.7. Let $f \in \mathcal{L}(X,H)$ with $\inf_{h \in H_1} \| \int_{HL(X)}^* f \, d\mu(h) \| > 0$, and $g \in L^2(X)$. Let $u = \int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu$. Then, $h = \int_{HL(X)} u^{-1} f \, d\mu(g)$ is the unique vector in H which minimizes the mapping

$$H \to \mathbb{C}, \quad h \mapsto \int_X |g - \langle h, f \rangle|^2 d\mu.$$

Proof. Since, $\mathcal{R} \int_{HL(X)}^* f d\mu$ is closed and

$$\int_X |g - \langle h, f \rangle|^2 d\mu = \|g - \langle h, f \rangle\|_2^2,$$

it is enough to prove that the mapping

$$L^2(X) \to L^2(X), \quad g \mapsto \left\langle \int_{HL(X)} u^{-1} f \, d\mu(g), f \right\rangle$$

is the orthonormal projection of $L^2(X)$ onto $\mathcal{R} \int_{HL(X)}^* f \, d\mu$.

Let $g \in \mathcal{R} \int_{HL(X)}^* f \, d\mu^{\perp}$. Then

$$\Big\langle \int_{HL(X)} u^{-1} f \, d\mu(g), f \Big\rangle = \Big\langle u^{-1} \int_{HL(X)} f \, d\mu(g), f \Big\rangle = \Big\langle \int_{HL(X)} f \, d\mu(g), u^{-1} f \Big\rangle = 0.$$

Because, for each $x \in X$

$$\left\langle \int_{HL(X)} f \, d\mu(g), u^{-1} f \right\rangle (x) = \int_{X} g(y) \langle f(y), u^{-1} f(x) \rangle \, d\mu$$
$$= \langle g, \langle u^{-1} f(x), f \rangle \rangle_{L^{2}} = 0.$$

Now, let $g \in \mathcal{R} \int_{HL(X)}^* f \, d\mu$. So, there exists $h \in H$ with $g = \langle h, f \rangle$. We have,

$$\Big\langle \int_{HL(X)} u^{-1} f \, d\mu(g), f \Big\rangle = \Big\langle u^{-1} \int_{HL(X)} f \, d\mu \int_{HL(X)}^* f \, d\mu(h), f \Big\rangle = \langle h, f \rangle = g,$$

and the theorem is proved.

Theorem 3.8. Let $e = \{e_{\alpha}\}_{{\alpha} \in X}$ be an orthonormal basis for H. Let $\{\delta_{\alpha}\}_{{\alpha} \in X}$ be the canonical orthonormal basis for $l^2(X)$. Let $u: H \to l^2(X)$ be the isomorphism which maps e_{α} to δ_{α} . Then

(i) Let $f \in \mathcal{L}(X,H)$ and $0 < \epsilon < 1$. Then, there exist orthonormal bases $e^i = \{e^i_{\alpha}\}_{\alpha \in X}, i = 1, 2, 3 \text{ for } H \text{ such that }$

(3.1)
$$f = \frac{\| \int_{HL(X)} f \, d\mu \|}{1 - \epsilon} (e^1 + e^2 + e^3).$$

(ii) Let $f \in \mathcal{L}(X, H)$ be positive (i.e. $uf \in \mathcal{L}(X, l^2(X))$ is positive) and $0 < \epsilon < 1$. Then there exist orthonormal bases $e^i = \{e^i_\alpha\}_{\alpha \in X}, i = 1, 2 \text{ for } H \text{ such that}$

(3.2)
$$f = \frac{\|\int_{HL(X)} f \, d\mu\|}{2\epsilon} (e^1 + e^2).$$

Proof. (i) If $\|\int_{HL(X)} f \, d\mu\| = 0$ then f = 0 and (3.2) is satisfied. Now, let

$$\left\| \int_{HL(X)} f \, d\mu \right\| > 0.$$

Let $w: H \to H$ be defined by

$$w = \frac{1}{2}I + \frac{1 - \epsilon}{2} \frac{\int_{HL(X)} f \, d\mu u}{\|\int_{HL(X)} f \, d\mu\|}$$

Since ||I - w|| < 1, w is invertible. So, by using the polar decomposition we can write w = vp, where v is a unitary and p is a positive operator. But, ||p|| < 1, so we can write $p = \frac{1}{2}(z + z^*)$, where z, z^* are unitary operators. Thus

$$\int_{HL(X)} f \, d\mu u = \frac{\|\int_{HL(X)} f \, d\mu\|}{1-\epsilon} (vz + vz^* - I).$$

For each $h \in H$ we have

$$\left\langle \int_{HL(X)} f \, d\mu u(e_{\alpha}), h \right\rangle = \int_{X} \delta_{\alpha}(\beta) \langle f(\beta), h \rangle \, d\mu_{\beta} = \langle f(\alpha), h \rangle, \quad \alpha \in X.$$

Therefore

$$f = \int_{HL(X)} f \, d\mu u e = \frac{\| \int_{HL(X)} f \, d\mu \|}{1 - \epsilon} (vze + vz^*e - e).$$

Since, vz and vz^* are unitary operators, vze and vz^*e are orthonormal bases for H. Thus

$$f = \frac{\|\int_{HL(X)} f \, d\mu\|}{1 - \epsilon} (e^1 + e^2 + e^3),$$

where e^i , i = 1, 2, 3 are orthonormal bases for H.

(ii) Since $u \int_{HL(X)} f d\mu : l^2(X) \to l^2(X)$ is positive and u is a unitary,

$$\begin{split} u \int_{HL(X)} f \, d\mu &= \frac{\| \int_{HL(X)} u f \, d\mu \|}{2\epsilon} (w + w^*) \\ &= \frac{\| u \int_{HL(X)} f \, d\mu \|}{2\epsilon} (w + w^*) = \frac{\| \int_{HL(X)} f \, d\mu \|}{2\epsilon} (w + w^*), \end{split}$$

where w is an unitary operator. We have

$$f(\alpha) = \int_{HL(X)} f \, d\mu(\delta_{\alpha}) = \frac{\| \int_{HL(X)} f \, d\mu \|}{2\epsilon} (u^{-1} w(\delta_{\alpha}) + u^{-1} w^*(\delta_{\alpha})), \quad \alpha \in X.$$

Thus

$$f = \frac{\|\int_{HL(X)} f \, d\mu\|}{2\epsilon} (e^1 + e^2).$$

where e^i , i = 1, 2 are orthonormal bases for H.

Acknowledgments. The authors would like to thank the referee for his useful recommendations.

References

- Sterling K. Berberian, Lectures in Functional Analysis and Operator Theory, Graduate Texts in Mathematics, 15, Springer-Verlag, New York—Heidelberg, 1974.
- 2. Ole Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhauser Boston, Inc., Boston, 2003.
- 3. Harro G. Heuser, Functional Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1982.
- 4. Gert K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989.
- 5. W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, 1987.
- W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York—Dusseldorf—Johannesburg, 1973.
- S. Sakai, C*-algebras and W*-algebras, Reprint of the 1971 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1998.

Department of Mathematics, University of Tabriz, Tabriz, Iran $E\text{-}mail\ address\colon \mathtt{mhfaroughi@yahoo.com}$

Received 27/12/2006; Revised 28/03/2007