Methods of Functional Analysis and Topology
Vol. 13 (2007), no. 4, pp. 318-328

OPERATOR-VALUED INTEGRAL OF A VECTOR-FUNCTION AND
BASES

M. H. FAROUGHI

ABSTRACT. In the present paper we are going to introduce an operator-valued inte-
gral of a square modulus weakly integrable mappings the ranges of which are Hilbert
spaces, as bounded operators. Then, we shall show that each operator-valued inte-
grable mapping of the index set of an orthonormal basis of a Hilbert space H into H
can be written as a multiple of a sum of three orthonormal bases.

1. INTRODUCTION

Throughout this paper (X, ) will be a measure space and H will be a Hilbert space
over C, where H, in general, is not assumed to be separable. We shall denote the closed
unit ball of H by Hj.

Definition 1.1. Let L?(X, H) be the class of all measurable mappings f : X — H such
that

Hﬂ@:[Quumwu<m.

By the polar identity we conclude that for each f,g € L?*(X, H), the mapping z +
(f(z),g9(x)) of X to C is measurable, and it can be proved that L?(X, H) is a Hilbert
space with the inner product defined by

%ww:Ldmﬂ@Mw

We shall write L?(X) when H = C.
The following lemmas can be found in operator theory textbooks.

Lemma 1.2. Let u : K — H be a bounded operator with closed range R,,. Then there
exists a bounded operator vt : H — K for which

uqu =f, fE€Ru
Also, u* : H — K has closed range and (u*) = (ul)*.

Lemma 1.3. Let u : K — H be a bounded surjective operator. Given y € H, the
equation ux =y has a unique solution of minimal norm, namely, x = uly.

The operator u' is called the pseudo-inverse of w.

Lemma 1.4. Let u: H — K be a bounded operator. Then
() [Jull = llu*|l and [luw*(| = ||ul>.
(il) Ry is closed, if and only if, Ry~ is closed.
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(iil) u is surjective, if and only if, there exists ¢ > 0 such that for each h € H
cl[hll < [lu”n].

Lemma 1.5. Let H be a Hilbert space. Then

(i) Every bounded and invertible operator u : H — H has a unique representation
u = wp, where w is unitary and p is positive.

(i) Bwvery positive operator p on H with ||p|| < 1 can be written p = 27 (w + w*),
where w is an unitary operator.

Lemma 1.6. Let u be a self-adjoint bounded operator on H. Let

my, = inf (uh,h) and M, = sup {(uh,h).
llR]l=1 Ih||=1

Then, my, M, € o(u).

2. A SURVEY OF THE OPERATOR-VALUED INTEGRAL OF VECTOR-FUNCTION

In this section we shall introduce the concept of operator-valued integrability of vector-
functions of X to H. Then, we shall define their operator-valued integrals as bounded
operators of the Hilbert space L?(X) to H.

Definition 2.1. Let f: X — H be a mapping. We say that f is weakly measurable if
for each h € H the mapping x — (h, f(z)) of X to C is measurable.

Definition 2.2. Let f : X — H be weakly measurable. We say that f is operator-valued
integrable over X if

prﬂﬁf@M%u<w-

heH;

The class of all operator-valued integrable mappings of X to H will be denoted by
L(X,H). Tt is clear that L?(X, H) C L(X,H). Also, £L(X, H) is a normed space with
the norm defined by

1117 = sup/ |, f())]2dy.
heH, J X

In the normed space L(X, H), f is a null function if for each h € H

(h, f)=0 a.e.
Let f € £(X, H) and let the mapping Fy : L*(X) — H be defined by
(21) (Fyo) ) = [ g@)lf@)hydu heH. g€ LX)

It is evident that F is well defined and linear. For each g € L?(X) and h € H, we have

1E(9)]l = Sup (7 (9), b

1/2
/m Ban) " sup ([ 1)1 Pdn) " < el e
heH;

Hence, Fy is bounded.
For each g € L?(X) and h € H we have

(F7 (), 9) = (h, Fy(9)) = (Ff(9), h) = / g(x)(h, f(2)) dp = ((h, ), 9) L2

X
Thus

(2.2) Fy(h) = (h, f).
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Also, for each h € H

(2.3) |FF ()12 = (F3 (h / 1 (), k)
Therefore
(2.4) 17 =17 = (sup [ 170 Pdn) = e

Definition 2.3. Let (X, ) be a measure space and f € £(X, H). The unique bounded
linear operator Fy : L?(X) — H defined by (2.1), will be denoted by

/ I dp,
HL(X)

and we shall say the operator-valued integral of f over X. Therefore, for each g €
2 X),fHL(X f dp is defined by

</ fdu(g)7h> :/ 9(@){(f(z),h)dp, heH.
HL(X) X
We shall denote the adjoint of fHL(X) fduby f;IL(X) f du, which by (2.2) for each h € H

/ o Fdu(h) = (b f).
HL(X)

Remark 2.4. By (2,3),(2.4), for each f € L(X, H) we have

) 1 oo £ dull = 1]l
( ) Since, for each h € H

/| wlan={ [ g [ gamny=| [ g’
HL(X) HL(X) HL(X)

. * 2 * * 2

inf / s < [ gan [ pan< s | [ paum]

heH Il Jgr(x) HL(X) HL(X) heH: " JHL(X)

(iii) Let H = C and f € £(X,C) = L?(X). Then, the operator-valued integral of f
over X is the bounded linear mapping fHL(X) fdup: L*(X) — C, defined by

| tdute)= [ @@ dn=(Fae g€ LX),
HL(X)
with || [ f dull = || ]2 Also, fHL(X) fdp:C— L?(X) is defined by
| tdu=cf. cec
HL(X)
where .
| [ fdu@]=1difla cec
HL(X)
Thus, for each f € L?(X), the mapping fHL(X) fdup: L*(X) — C is surjective.
Definition 2.5. Let f,g € L(X, H). We say that f, g are weakly equal, if

/ fdp= / gdu,
HL(X) HL(X)

(h, [y =(h,g9) a.e.

which is equivalent with

for each h € H.
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According to the definition of the normed space £(X, H), two members of L(X, H)
are equal, if and only if, they are weakly equal.

Definition 2.6. Let f,g € L(X, H). We say that f, g are strongly equal, if

/ fdu/ fduz/ gdu/ g dp.
HL(X) HL(X) HL(X) HL(X)

It is clear that each weakly equal mapping is also strongly equal, but its converse may
be false.

Definition 2.7. Let H be a closed subspace of L?(X) and f € £(X, H). We say that f
is positive, if

/ fdu:L*(X) — L*(X)
HL(X)
is a positive operator.

Lemma 2.8. Let H be a Hilbert space. Then
(i) If dim H < oo then L?*(X,H) = L(X, H).
(ii) If there exists f € L*(X, H) with infrep, || I;IL(X) fdu(h)|| > 0 then

dim H < oo.

Proof. Let {es}aer be an orthonormal basis for H and dim H < oo. Let f € £(X, H).

We have
/an(x)u du=/X%:|<f(w)7ea>| duzg/xuf(x),em .

Thus, we have

L ram| el < [ isiea
in eall” < €T
hedy Il Jpr(x) a o X a
* 2
< sup / fduhH eall?.
s | [ Fan] el
So
* 2
(25) [P sw || [ raun)| amm,
X hem W JHL(X)
and
* 2
(2.6) inf / fdu(h)H dimﬂg/ £ ()2 dpe.
heH Il Jpr(x) X

Hence, by (2.5), f € L*(X, H).
(ii) is clear by (2.6). O

Lemma 2.9. Let f € L(X,H). Then the following assertions are equivalent:
(i) The operator fHL(X) fdu f;L(X) [ du is invertible.

(i) *
/ fdu(h)H > 0.
HL(X)

(iii) The operator fHL(X) fdu is surjective.

inf
heH,
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Proof. (i) = (ii) Let [}, x, f dn f;_;L(X) f du be invertible. We have

* 2
/ f du(h)H
HL(X)

:inf/ d/ dh,hea/ d du).
h€H1< HL(X)f H HL(X)f ) > ( HL(X)f : HL(X)f M)

So, infrem, || f;}L(X) fdu(h)| > 0.
(ii) = (iii) Let infpepy, || f;;L(X) fdu(h)|| > 0. We have

Lo P ini ] [ raun]|

Therefore, fHL(X) f du is surjective.
(iii) = (i) Let fHL(X f du be surjective. Then, there exists A > 0 such that

inf
heH;

inf h e H.

heH;

Al < H/ faum||, nem
Hence .
inf / fduthA>0.
heH; HL(X) ( )
O
Lemma 2.10. Let H be a Hilbert space. Then
(i) Let f € L(X,H). Then fHL(X) fdu =0, if and only if, f =0 (weakly).
(ii) Let f1, fo € L*(X, H) and let A, A2 € C. Then
/ (Arf1 + Aafa) dp = )\1/ Jidp + )\2/ Jadp.
HL(X) HL(X) HL(X)
Proof. Tt is evident. O

Lemma 2.11. Let K be a Hilbert space, f € L(X,H) and u : H — K be a bounded
linear mapping. Then

(i) uf € L(X,K) and

u/ fdu= / uf dpu.
HL(X) HL(X)

(i) Let infrecp, || f;L(X) fdu(h)|| > 0. Then, infheg, || f;‘,L(X) uf du(h)|| > 0, if and
only if, u is surjective.

Proof. (i) Since

sup/|hu D) Pdp < [l sup/lhf )2dp,

heH,
souf € L(X, K). For each g € L*(X), we have

</HL(X) deu(g),k> =/Xg(:c)<u(f(x)),k> du

- /X 9(@)(F (), u (k) da = (u /H o, 0K

So, fHL(X) uf dp= ufHL(X) fdu.
(ii) If u is surjective then by Lemma 2.11 (iii), ufHL(X) f dp is surjective. So

/* ufdu(h)H >0
HL(X)

inf
heK,




OPERATOR-VALUED INTEGRAL OF VECTOR-FUNCTION AND BASES 323

Now, if infre g, || f;L(X) uf du(h)|| > 0 then [}, ) uf dp is surjective, so u is surjective.
]

Corollary 2.12. Let for each o € I, H,, be a Hilbert space and @1 H,, be the orthogonal
sum of {Hu}acr. Let f € L(X,BacrHy) and for each o € I, fo, = wo 0 f. Then

(i) For each a €1, f, € L(X,Hy).
(fHL(X) fdu)a = fHL(X) fadllu

Proof. Tt is evident U

3. DECOMPOSITION

In this section, we shall show more properties of operator-valued integrals of vector-
functions.

Definition 3.1. Let f € L£(X, H) and RfHL(X) fdu be closed. We shall denote the
pseudo-inverse of fHL(X) fdu by f;L(X) fdu. So for each h € RfHL(X) fdu

T
[ gduf pdun =
HL(X) HL(X)

Theorem 3.2. Let f € L(X,H) and f # 0 (weakly). We have
(i) If g € L(X, H) then the mapping U : X x X — C defined by

Ulz,y) = (f(2), 9)(y) = {f(2),9(¥)),
defines a bounded operator on L?(X).

(ii) Let U : X x X — C defines a bounded operator W : L*(X) — L*(X) as (i). Let
g: X — H be defined by
s@) = [ FauU).
HL(X)
Then g is defined for almost all x € X and g € L(X,H). Let

a0 >0

then infyep, || fZ,L(X) gdu(h)|| > 0, if and only if, there exists ¢ > 0 such that

du(h)|| < ¢ inf / du(h)||.
/HL(X)f 1 )’ R HL(X)Q 1 )H

Proof. (i) Let | € L*(X)) and # € X. We define
Wia) = /X Ui) diy = [ (F(e).0)1d

Since, f € L(X, H) and W(x fHL )9 du(l), f(z)), W, is measurable. Also, we have

[P = ([ gdut).s)| d
X X HL(X)
2 _
<N s T 2]
<\ [ sl [ gan]
HL(X) HL(X)

Thus, W : L?(X) — L*(X) defined by W (l) = W, is a bounded operator.

inf
heH;

inf
heH,
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(ii) Since
2
will= [ W) P = [ | [ Ui dies < 01
X X X

for almost all z € X, U(z,.)l € LY(X). So, for almost all z € X, U(z,.) € L*(X).
Hence, g is defined for almost all z € X. Since

(@] = [ Ul (F).) duy =Wy, 5(2).

g is weakly measurable. But
/ [(h, g(x))Pdpz = / (W, (@) Pdpa < WA, P

So, g € L(X,H). If infpen, | fHL(X)gdu( )|| > 0 then

* 2 * 2
inf du(h H su / dyu(h H inf
(hGHl /HL(X)g wlh) /helgl HL(X)f ulh) heH,

* 2
[ st 1al
HL(X)

* 2 * 2 * 2
<\t | [ gawe /s | [ gaww|T)| [ ] e
heH IV Jrp(x) heH: W JHL(X) HL(X)
* 2 * 2
= inf / gduhH hQSH/ gd,uh”.
| Lo (h){| I~ L) (h)
Thus
inf / fdu(h ‘ <e¢ inf / gdu(h H
heH Il J g (x) ) heH: W Jgp(x) )
where
—1/2
in / d (h)HQ/ sup / fdu(h)H2 >0
c=| in gdp .
heHL IV L (x) her W JHL(X)
The converse is clear. O

Lemma 3.3. Let f € L(X,H) and infpen, || I;IL(X) fdu(h)|| > 0. Let

U = / fd,u/ fdu.
HL(X) HL(X)
Then

(i) Letle L*(X). Ifh:fHL fd,u(l) then
1 = [ 1t @+ [ i) = (ot (@) P

(ii) FO: each h € H, fHL(X) fdu(h) = (hyu=tf).
(iii) H fHL(X) fdﬂ||_2 = infren, || fHL(X) fd,u(h)
Proof. (i) By the Lemma 2.11, fHL(X) fdu(l —{(h,u=tf)) =0.So

[

L= (hu ' f) ¢ ker/HL(X)fd,u: (R/I:L(X)fdu)l.

Since (h,u"'f) € R f;}L(X) fdu,
212 = 1L = (w15 + [y w™" £)f5-
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(ii) Since, f;L(X) fdu(h) is the unique solution of minimal norm of

/ fdul) = b,
HL(X)

[ @) = e P =0
X

Hence [ = (h,u™1f) = f;{L(X) fdu(h).
(iil) Since, infpep, || f:IL(X) fdu(h)|| > 0, by the Lemma 2.11

/ u_lfdu(h)H > 0.
HL(X)

SO

inf
heH,

Therefore

| 7o = o soran=| [ actsan [
HL(X) heHy JXx HL(X) HL(X)
* —1 * 2\ —1

U
Definition 3.4. Let f,g € £(X, H). We define (f,g)z : X — L?(X) by
(fr9)c(@) = (f(x),9).

Theorem 3.5. Let f,g € L(X,H). Then
(i) f;IL(X)gd:uf: (f,9)c.

(i) {f.9)c € LY, L2(X)). *
(iii) Let infpem, | fHL(X) fdu(h)|| >0 and K = RfHL(X)gd,u be closed. Then

inf
heK;

[ isgeduti)| >0
HL(X)

and there exists a surjective bounded operator u : L*(X) — H such that g =

u<gvf>£-
Proof. (i) Let | € L?(X). For each z € X, we have

*

(] gtus@) = { [ odn), 1)
- /X L) (@), 9@) dity = (1, (F(@), g))za = (b (Fr ge () o

Thus f:IL(X) gdlu’f - <fa g>£
(ii) Let [ € L?(X). Since, the mapping

X wo 0o =t [ gai@)=([ g so)

is measurable, (f,g)c is weakly measurable. Since

/X|<l7<f,g>c(:v)l2du=/x <l,/HL(X)gdﬂ(f($))>
2 *
-/ < / gdu(l)7f(x)> |ty
X HL(X) HL(X)

2
/ fdp / gdp
HL(X) HL(X)

/ 1) 9(y), () disy
X

dp

2 2

dp < sup
heH,

/ gdu(l)
HL(X)

<

2
2
1=
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o, {f,9)c € L(X, L*(X)).
(111) For each [ € RfHL ) 9 dp, we have

/HL(X)gdu(/HL(X)gdu)T(l)H

*

(2 ) (o 00)]

121

<[ g [ g
HL(X) HL(X)
Hence
;
H/HL( gduH IIZII<H/ gdu(l)
Thus
nt /H L(X)fdu(h)HQH /T gduH”HuF
<t [/, sl /Hm d~<l>H2
<!/;‘</£L(X)gdua) du u/ (L, (f, 9) (@) *dp.
Hence .
A o et >0

We have the following retrieval formula

* -1 *
o= ([ raw[  gan) [ g fug
HL(X) HL(X) HL(X) HL(X)

* -1
- (/HL(X)fd'u HL(X)fd'u) /HL(X)fdMQ,fM.

So, g = w(g, f)z, where, u = (fHL(X)fduf:IL(X)fdu)*l fHL(X)fdﬂ is a bounded
surjective operator of L?(X) to H. O

Since, (f, f)z € L(X, L?(X)) is positive, we have the following corollary.
Corollary 3.6. Let f € L(X, H) with infpeq, || f;L(X) fdu(h)|| >0, and

K=R fdp.
HL(X)

Then f can be written as f = ug, where u: K — H is a bounded operator, g € L(X, K)
is positive with infrek, || f;}L(X) gdu(h)|| >0 .

Theorem 3.7. Let f € L(X, H) with infrecp, || f;L(X)fdu(h)H > 0, and g € L*(X).
Let u = fHL(X) fd,uf;}L(X) fdu. Then, h = fHL(X) u=tfdu(g) is the unique vector in

H which minimizes the mapping

H—C ol [ g f)Pdu
X
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Proof. Since, Rf;L(X) fdu is closed and

/X 19— (o, F)dp = llg — (s, FI,

it is enough to prove that the mapping
L*(X) — L*(X), gH</ U’lfdu(g),f>
HL(X)

is the orthonormal projection of L?(X) onto ’Rf;}L(X) fdu.
Let g € R [,,x) f du. Then

</HL(X) ujlfd'u(g)’f> - <u71 /HL(X) fdulg), f> = </HL(X) fd,u(g),u’lf> =0.

Because, for each z € X
([ saute)rus)w) = [ o). 1) da
HL(X) X

= (g, (u™" f(2), )12 = 0.
Now, let g € Rf:IL(X) fdu. So, there exists h € H with g = (h, f). We have,

</HL(X) ' f dulg). f) = <u—1/HL(X)fdu/}:L(X)fdu(h),f> —(hf) =g,

and the theorem is proved. (Il

Theorem 3.8. Let e = {e,}acx be an orthonormal basis for H . Let {04 }acx be the
canonical orthonormal basis for 1>(X). Let u : H — 1?(X) be the isomorphism which
maps e, to 6o. Then

(i) Let f € L(X,H) and 0 < € < 1. Then, there exist orthonormal bases ¢' =
{el Yoex,i=1,2,3 for H such that
| fHL(X) fdul|
f = s
—€
(ii) Let f € L(X, H) be positive (i.e. uf € L(X,1*(X)) is positive ) and 0 < € < 1.

Then there exist orthonormal bases €' = {e! }oex,i = 1,2 for H such that

d
(3.2) f= Wiz 7 d fHL(;(E’ fdu] (e +€2).

Proof. (i) If || fHL(X) fdull =0 then f =0 and (3.2) is satisfied. Now, let

[, 7] >0
HL(X)

(3.1) (er + e+ e%).

Let w: H — H be defined by

1. 1- fdpu
w14 efHL(X)

2 2 ”fHL(X)fd/JH.
Since ||I — wl|| < 1, w is invertible. So, by using the polar decomposition we can write
w = vp, where v is a unitary and p is a positive operator. But, ||p|| < 1, so we can write
p= %(2 + 2*), where z, z* are unitary operators. Thus

I fdpll
/ fd,uu:%(vszvz*—I).
HL(X) 1—e¢
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For each h € H we have

</HL<X)f dun(ea). ) = [ S (BB H) dus = () ), o€ X.

Therefore

| [l
f:/ fd,uue:%(vze—&—vz*e—e).
HL(X) 1—e

Since, vz and vz* are unitary operators, vze and vz*e are orthonormal bases for H. Thus

(el +e?+ 63),

[ fHL(X)fdMH
=
—€

where e’,i = 1, 2,3 are orthonormal bases for H.

(ii) Since ufHL(X) fdu:1?(X) — [2(X) is positive and u is a unitary,

) uf dpll
HL(X) €

:—(26) (w+w ):—(22 (w +w"),
where w is an unitary operator. We have
| fHL(X) full 1 1 s
fla) = fdu(dy) = 2—(u w(de) +u w"(ds)), a€ X.
HL(X) €
e | Sorpxs £l
i
f= Aglié%glgggg,(el4_62)
€
where e?,i = 1,2 are orthonormal bases for H. |
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