OPERATOR-VALUED INTEGRAL OF A VECTOR-FUNCTION AND BASES

M. H. FAROUGHI

Abstract

In the present paper we are going to introduce an operator-valued integral of a square modulus weakly integrable mappings the ranges of which are Hilbert spaces, as bounded operators. Then, we shall show that each operator-valued integrable mapping of the index set of an orthonormal basis of a Hilbert space H into H can be written as a multiple of a sum of three orthonormal bases.

1. Introduction

Throughout this paper (X, μ) will be a measure space and H will be a Hilbert space over \mathbb{C}, where H, in general, is not assumed to be separable. We shall denote the closed unit ball of H by H_{1}.

Definition 1.1. Let $L^{2}(X, H)$ be the class of all measurable mappings $f: X \rightarrow H$ such that

$$
\|f\|_{2}^{2}=\int_{X}\|f(x)\|^{2} d \mu<\infty
$$

By the polar identity we conclude that for each $f, g \in L^{2}(X, H)$, the mapping $x \mapsto$ $\langle f(x), g(x)\rangle$ of X to \mathbb{C} is measurable, and it can be proved that $L^{2}(X, H)$ is a Hilbert space with the inner product defined by

$$
\langle f, g\rangle_{L^{2}}=\int_{X}\langle f(x), g(x)\rangle d \mu .
$$

We shall write $L^{2}(X)$ when $H=\mathbb{C}$.
The following lemmas can be found in operator theory textbooks.
Lemma 1.2. Let $u: K \rightarrow H$ be a bounded operator with closed range \mathcal{R}_{u}. Then there exists a bounded operator $u^{\dagger}: H \rightarrow K$ for which

$$
u u^{\dagger} f=f, \quad f \in \mathcal{R}_{u} .
$$

Also, $u^{*}: H \rightarrow K$ has closed range and $\left(u^{*}\right)^{\dagger}=\left(u^{\dagger}\right)^{*}$.
Lemma 1.3. Let $u: K \rightarrow H$ be a bounded surjective operator. Given $y \in H$, the equation $u x=y$ has a unique solution of minimal norm, namely, $x=u^{\dagger} y$.

The operator u^{\dagger} is called the pseudo-inverse of u.
Lemma 1.4. Let $u: H \rightarrow K$ be a bounded operator. Then
(i) $\|u\|=\left\|u^{*}\right\|$ and $\left\|u u^{*}\right\|=\|u\|^{2}$.
(ii) \mathcal{R}_{u} is closed, if and only if, $\mathcal{R}_{u^{*}}$ is closed.

[^0](iii) u is surjective, if and only if, there exists $c>0$ such that for each $h \in H$
$$
c\|h\| \leq\left\|u^{*} h\right\|
$$

Lemma 1.5. Let H be a Hilbert space. Then
(i) Every bounded and invertible operator $u: H \rightarrow H$ has a unique representation $u=w p$, where w is unitary and p is positive.
(ii) Every positive operator p on H with $\|p\|<1$ can be written $p=2^{-1}\left(w+w^{*}\right)$, where w is an unitary operator.
Lemma 1.6. Let u be a self-adjoint bounded operator on H. Let

$$
m_{u}=\inf _{\|h\|=1}\langle u h, h\rangle \quad \text { and } \quad M_{u}=\sup _{\|h\|=1}\langle u h, h\rangle
$$

Then, $m_{u}, M_{u} \in \sigma(u)$.

2. A SURVEY OF THE OPERATOR-VALUED INTEGRAL OF VECTOR-FUNCTION

In this section we shall introduce the concept of operator-valued integrability of vectorfunctions of X to H. Then, we shall define their operator-valued integrals as bounded operators of the Hilbert space $L^{2}(X)$ to H.
Definition 2.1. Let $f: X \rightarrow H$ be a mapping. We say that f is weakly measurable if for each $h \in H$ the mapping $x \mapsto\langle h, f(x)\rangle$ of X to \mathbb{C} is measurable.

Definition 2.2. Let $f: X \rightarrow H$ be weakly measurable. We say that f is operator-valued integrable over X if

$$
\sup _{h \in H_{1}} \int_{X}|\langle h, f(x)\rangle|^{2} d \mu<\infty
$$

The class of all operator-valued integrable mappings of X to H will be denoted by $\mathcal{L}(X, H)$. It is clear that $L^{2}(X, H) \subseteq \mathcal{L}(X, H)$. Also, $\mathcal{L}(X, H)$ is a normed space with the norm defined by

$$
\|f\|_{\mathcal{L}}^{2}=\sup _{h \in H_{1}} \int_{X}|\langle h, f(x)\rangle|^{2} d \mu
$$

In the normed space $\mathcal{L}(X, H), f$ is a null function if for each $h \in H$

$$
\langle h, f\rangle=0 \quad \text { a.e. }
$$

Let $f \in \mathcal{L}(X, H)$ and let the mapping $F_{f}: L^{2}(X) \rightarrow H$ be defined by

$$
\begin{equation*}
\left\langle F_{f}(g), h\right\rangle=\int_{X} g(x)\langle f(x), h\rangle d \mu, \quad h \in H, \quad g \in L^{2}(X) \tag{2.1}
\end{equation*}
$$

It is evident that F_{f} is well defined and linear. For each $g \in L^{2}(X)$ and $h \in H$, we have

$$
\begin{aligned}
\left\|F_{f}(g)\right\| & =\sup _{h \in H_{1}}\left|\left\langle F_{f}(g), h\right\rangle\right| \\
& \leq\left(\int_{X}|g(x)|^{2} d \mu\right)^{1 / 2} \sup _{h \in H_{1}}\left(\int_{X}|\langle f(x), h\rangle|^{2} d \mu\right)^{1 / 2} \leq\|g\|_{2}\|f\|_{\mathcal{L}}
\end{aligned}
$$

Hence, F_{f} is bounded.
For each $g \in L^{2}(X)$ and $h \in H$ we have

$$
\left\langle F_{f}^{*}(h), g\right\rangle=\left\langle h, F_{f}(g)\right\rangle=\overline{\left\langle F_{f}(g), h\right\rangle}=\int_{X} \bar{g}(x)\langle h, f(x)\rangle d \mu=\langle\langle h, f\rangle, g\rangle_{L^{2}}
$$

Thus

$$
\begin{equation*}
F_{f}^{*}(h)=\langle h, f\rangle \tag{2.2}
\end{equation*}
$$

Also, for each $h \in H$

$$
\begin{equation*}
\left\|F_{f}^{*}(h)\right\|^{2}=\left\langle F_{f}^{*}(h), F_{f}^{*}(h)\right\rangle=\int_{X}|\langle f(x), h\rangle|^{2} d \mu \tag{2.3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left\|F_{f}\right\|=\left\|F_{f}^{*}\right\|=\left(\sup _{h \in H_{1}} \int_{X}|\langle f(x), h\rangle|^{2} d \mu\right)^{1 / 2}=\|f\|_{\mathcal{L}} \tag{2.4}
\end{equation*}
$$

Definition 2.3. Let (X, μ) be a measure space and $f \in \mathcal{L}(X, H)$. The unique bounded linear operator $F_{f}: L^{2}(X) \rightarrow H$ defined by (2.1), will be denoted by

$$
\int_{H L(X)} f d \mu
$$

and we shall say the operator-valued integral of f over X. Therefore, for each $g \in$ $L^{2}(X), \int_{H L(X} f d \mu$ is defined by

$$
\left\langle\int_{H L(X)} f d \mu(g), h\right\rangle=\int_{X} g(x)\langle f(x), h\rangle d \mu, \quad h \in H
$$

We shall denote the adjoint of $\int_{H L(X)} f d \mu$ by $\int_{H L(X)}^{*} f d \mu$, which by (2.2) for each $h \in H$

$$
\int_{H L(X)}^{*} f d \mu(h)=\langle h, f\rangle
$$

Remark 2.4. By $(2,3),(2.4)$, for each $f \in \mathcal{L}(X, H)$ we have
(i) $\left\|\int_{H L(X)} f d \mu\right\|=\|f\|_{\mathcal{L}}$.
(ii) Since, for each $h \in H$

$$
\begin{gathered}
\int_{X}|\langle f(x), h\rangle|^{2} d \mu=\left\langle\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu(h), h\right\rangle=\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}, \\
\quad \text { so } \\
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2} \leq \int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu \leq \sup _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2} .
\end{gathered}
$$

(iii) Let $H=\mathbb{C}$ and $f \in \mathcal{L}(X, \mathbb{C})=L^{2}(X)$. Then, the operator-valued integral of f over X is the bounded linear mapping $\int_{H L(X)} f d \mu: L^{2}(X) \rightarrow \mathbb{C}$, defined by

$$
\int_{H L(X)} f d \mu(g)=\int_{X} f(x) g(x) d \mu=\langle f, \bar{g}\rangle_{L^{2}}, \quad g \in L^{2}(X)
$$

with $\left\|\int_{H L(X)} f d \mu\right\|=\|f\|_{2}$. Also, $\int_{H L(X)}^{*} f d \mu: \mathbb{C} \rightarrow L^{2}(X)$ is defined by

$$
\int_{H L(X)}^{*} f d \mu(c)=c \bar{f}, \quad c \in \mathbb{C}
$$

where

$$
\left\|\int_{H L(X)}^{*} f d \mu(c)\right\|=|c|\|f\|_{2}, \quad c \in \mathbb{C} .
$$

Thus, for each $f \in L^{2}(X)$, the mapping $\int_{H L(X)} f d \mu: L^{2}(X) \rightarrow \mathbb{C}$ is surjective.
Definition 2.5. Let $f, g \in \mathcal{L}(X, H)$. We say that f, g are weakly equal, if

$$
\int_{H L(X)} f d \mu=\int_{H L(X)} g d \mu
$$

which is equivalent with

$$
\langle h, f\rangle=\langle h, g\rangle \quad \text { a.e. }
$$

for each $h \in H$.

According to the definition of the normed space $\mathcal{L}(X, H)$, two members of $\mathcal{L}(X, H)$ are equal, if and only if, they are weakly equal.
Definition 2.6. Let $f, g \in \mathcal{L}(X, H)$. We say that f, g are strongly equal, if

$$
\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu=\int_{H L(X)} g d \mu \int_{H L(X)}^{*} g d \mu
$$

It is clear that each weakly equal mapping is also strongly equal, but its converse may be false.

Definition 2.7. Let H be a closed subspace of $L^{2}(X)$ and $f \in \mathcal{L}(X, H)$. We say that f is positive, if

$$
\int_{H L(X)} f d \mu: L^{2}(X) \rightarrow L^{2}(X)
$$

is a positive operator.
Lemma 2.8. Let H be a Hilbert space. Then
(i) If $\operatorname{dim} H<\infty$ then $L^{2}(X, H)=\mathcal{L}(X, H)$.
(ii) If there exists $f \in L^{2}(X, H)$ with $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0$ then

$$
\operatorname{dim} H<\infty
$$

Proof. Let $\left\{e_{\alpha}\right\}_{\alpha \in I}$ be an orthonormal basis for H and $\operatorname{dim} H<\infty$. Let $f \in \mathcal{L}(X, H)$. We have

$$
\int_{X}\|f(x)\|^{2} d \mu=\int_{X} \sum_{\alpha}\left|\left\langle f(x), e_{\alpha}\right\rangle\right|^{2} d \mu=\sum_{\alpha} \int_{X}\left|\left\langle f(x), e_{\alpha}\right\rangle\right|^{2} d \mu
$$

Thus, we have

$$
\begin{aligned}
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2} \sum_{\alpha}\left\|e_{\alpha}\right\|^{2} & \leq \int_{X}\|f(x)\|^{2} d \mu \\
& \leq \sup _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2} \sum_{\alpha}\left\|e_{\alpha}\right\|^{2}
\end{aligned}
$$

So

$$
\begin{equation*}
\int_{X}\|f(x)\|^{2} d \mu \leq \sup _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2} \operatorname{dim} H \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2} \operatorname{dim} H \leq \int_{X}\|f(x)\|^{2} d \mu \tag{2.6}
\end{equation*}
$$

Hence, by (2.5), $f \in L^{2}(X, H)$.
(ii) is clear by (2.6).

Lemma 2.9. Let $f \in \mathcal{L}(X, H)$. Then the following assertions are equivalent:
(i) The operator $\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu$ is invertible.
(ii)

$$
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0
$$

(iii) The operator $\int_{H L(X)} f d \mu$ is surjective.

Proof. (i) \Rightarrow (ii) Let $\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu$ be invertible. We have

$$
\begin{aligned}
& \inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2} \\
& \quad=\inf _{h \in H_{1}}\left\langle\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu(h), h\right\rangle \in \sigma\left(\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu\right) .
\end{aligned}
$$

So, $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0$.
(ii) \Rightarrow (iii) Let $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0$. We have

$$
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|\|h\| \leq\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|, \quad h \in H .
$$

Therefore, $\int_{H L(X)} f d \mu$ is surjective.
(iii) \Rightarrow (i) Let $\int_{H L(X)} f d \mu$ be surjective. Then, there exists $A>0$ such that

$$
A\|h\| \leq\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|, \quad h \in H
$$

Hence

$$
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\| \geq A>0
$$

Lemma 2.10. Let H be a Hilbert space. Then
(i) Let $f \in \mathcal{L}(X, H)$. Then $\int_{H L(X)} f d \mu=0$, if and only if, $f=0$ (weakly).
(ii) Let $f_{1}, f_{2} \in L^{2}(X, H)$ and let $\lambda_{1}, \lambda_{2} \in \mathbb{C}$. Then

$$
\int_{H L(X)}\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right) d \mu=\lambda_{1} \int_{H L(X)} f_{1} d \mu+\lambda_{2} \int_{H L(X)} f_{2} d \mu
$$

Proof. It is evident.
Lemma 2.11. Let K be a Hilbert space, $f \in \mathcal{L}(X, H)$ and $u: H \rightarrow K$ be a bounded linear mapping. Then
(i) $u f \in \mathcal{L}(X, K)$ and

$$
u \int_{H L(X)} f d \mu=\int_{H L(X)} u f d \mu
$$

(ii) Let $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0$. Then, $\inf _{h \in K_{1}}\left\|\int_{H L(X)}^{*} u f d \mu(h)\right\|>0$, if and only if, u is surjective.

Proof. (i) Since

$$
\sup _{h \in H_{1}} \int_{X}|\langle h, u(f(x))\rangle|^{2} d \mu \leq\|u\|^{2} \sup _{h \in H_{1}} \int_{X}|\langle h, f(x)\rangle|^{2} d \mu
$$

so $u f \in \mathcal{L}(X, K)$. For each $g \in L^{2}(X)$, we have

$$
\begin{aligned}
\left\langle\int_{H L(X)} u f d \mu(g), k\right\rangle & =\int_{X} g(x)\langle u(f(x)), k\rangle d \mu \\
& =\int_{X} g(x)\left\langle f(x), u^{*}(k)\right\rangle d \mu=\left\langle u \int_{H L(X)} f d \mu(g), k\right\rangle
\end{aligned}
$$

So, $\int_{H L(X)} u f d \mu=u \int_{H L(X)} f d \mu$.
(ii) If u is surjective then by Lemma 2.11 (iii), $u \int_{H L(X)} f d \mu$ is surjective. So

$$
\inf _{h \in K_{1}}\left\|\int_{H L(X)}^{*} u f d \mu(h)\right\|>0
$$

Now, if $\inf _{h \in K_{1}}\left\|\int_{H L(X)}^{*} u f d \mu(h)\right\|>0$ then $\int_{H L(X)} u f d \mu$ is surjective, so u is surjective.

Corollary 2.12. Let for each $\alpha \in I, H_{\alpha}$ be a Hilbert space and $\oplus_{\alpha \in I} H_{\alpha}$ be the orthogonal sum of $\left\{H_{\alpha}\right\}_{\alpha \in I}$. Let $f \in \mathcal{L}\left(X, \oplus_{\alpha \in I} H_{\alpha}\right)$ and for each $\alpha \in I, f_{\alpha}=\pi_{\alpha} \circ f$. Then
(i) For each $\alpha \in I, f_{\alpha} \in \mathcal{L}\left(X, H_{\alpha}\right)$.
(ii) $\left(\int_{H L(X)} f d \mu\right)_{\alpha}=\int_{H L(X)} f_{\alpha} d \mu$.

Proof. It is evident

3. Decomposition

In this section, we shall show more properties of operator-valued integrals of vectorfunctions.

Definition 3.1. Let $f \in \mathcal{L}(X, H)$ and $\mathcal{R} \int_{H L(X)} f d \mu$ be closed. We shall denote the pseudo-inverse of $\int_{H L(X)} f d \mu$ by $\int_{H L(X)}^{\dagger} f d \mu$. So for each $h \in \mathcal{R} \int_{H L(X)} f d \mu$

$$
\int_{H L(X)} f d \mu \int_{H L(X)}^{\dagger} f d \mu(h)=h
$$

Theorem 3.2. Let $f \in \mathcal{L}(X, H)$ and $f \neq 0$ (weakly). We have
(i) If $g \in \mathcal{L}(X, H)$ then the mapping $U: X \times X \rightarrow \mathbb{C}$ defined by

$$
U(x, y)=\langle f(x), g\rangle(y)=\langle f(x), g(y)\rangle
$$

defines a bounded operator on $L^{2}(X)$.
(ii) Let $U: X \times X \rightarrow \mathbb{C}$ defines a bounded operator $W: L^{2}(X) \rightarrow L^{2}(X)$ as (i). Let $g: X \rightarrow H$ be defined by

$$
g(x)=\int_{H L(X)} f d \mu(U(x, .))
$$

Then g is defined for almost all $x \in X$ and $g \in \mathcal{L}(X, H)$. Let

$$
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0
$$

then $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|>0$, if and only if, there exists $c>0$ such that

$$
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\| \leq c \inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|
$$

Proof. (i) Let $\left.l \in L^{2}(X)\right)$ and $x \in X$. We define

$$
W_{l}(x)=\int_{X} U(x, y) l(y) d \mu_{y}=\int_{X}\langle f(x), g\rangle l d \mu_{y}
$$

Since, $f \in \mathcal{L}(X, H)$ and $\bar{W}_{l}(x)=\left\langle\int_{H L(X)} g d \mu(\bar{l}), f(x)\right\rangle, W_{l}$ is measurable. Also, we have

$$
\begin{aligned}
\int_{X}\left|W_{l}(x)\right|^{2} d \mu_{x} & =\int_{X}\left|\left\langle\int_{H L(X)} g d \mu(\bar{l}), f(x)\right\rangle\right|^{2} d \mu_{x} \\
& \leq\left\|\int_{H L(X)} f d \mu\right\|^{2}\left\|\int_{H L(X)} g d \mu(\bar{l})\right\|^{2} \\
& \leq\left\|\int_{H L(X)} f d \mu\right\|^{2}\left\|\int_{H L(X)} g d \mu\right\|^{2}\|l\|^{2} .
\end{aligned}
$$

Thus, $W: L^{2}(X) \rightarrow L^{2}(X)$ defined by $W(l)=W_{l}$ is a bounded operator.
(ii) Since

$$
\left\|W_{l}\right\|=\int_{X}\left|W_{l}(x)\right|^{2} d \mu_{x}=\int_{X}\left|\int_{X} U(x, y) l(y) d \mu_{y}\right|^{2} d \mu_{x} \leq\|W\|\|l\|
$$

for almost all $x \in X, U(x,). l \in L^{1}(X)$. So, for almost all $x \in X, U(x,.) \in L^{2}(X)$. Hence, g is defined for almost all $x \in X$. Since

$$
\langle h, g(x)\rangle=\int_{X} U(x, y)\langle f(y), h\rangle d \mu_{y}=W_{\langle h, f\rangle}(x)
$$

g is weakly measurable. But

$$
\int_{X}|\langle h, g(x)\rangle|^{2} d \mu_{x}=\int_{X}\left|W_{\langle h, f\rangle}(x)\right|^{2} d \mu_{x} \leq\|W\|\|\langle h, f\rangle\| .
$$

So, $g \in \mathcal{L}(X, H)$. If $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|>0$ then

$$
\begin{gathered}
\left(\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|^{2} / \sup _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}\right) \inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}\|h\|^{4} \\
\leq\left(\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|^{2} / \sup _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}\right)\left\|\int_{H L(X)}^{*} f d \mu\right\|^{2}\|h\|^{2} \\
=\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|^{2}\|h\|^{2} \leq\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|^{2}
\end{gathered}
$$

Thus

$$
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\| \leq c \inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|,
$$

where

$$
c=\left(\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|^{2} / \sup _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}\right)^{-1 / 2}>0
$$

The converse is clear.
Lemma 3.3. Let $f \in \mathcal{L}(X, H)$ and $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0$. Let

$$
u=\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu
$$

Then
(i) Let $l \in L^{2}(X)$. If $h=\int_{H L(X)} f d \mu(l)$ then

$$
\|l\|^{2}=\int_{X}\left|\left\langle h, u^{-1} f(x)\right\rangle\right|^{2} d \mu+\int_{X}\left|l(x)-\left\langle h, u^{-1} f(x)\right\rangle\right|^{2} d \mu
$$

(ii) For each $h \in H, \int_{H L(X)}^{\dagger} f d \mu(h)=\left\langle h, u^{-1} f\right\rangle$.
(iii) $\left\|\int_{H L(X)}^{\dagger} f d \mu\right\|^{-2}=\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}$.

Proof. (i) By the Lemma 2.11, $\int_{H L(X)} f d \mu\left(l-\left\langle h, u^{-1} f\right\rangle\right)=0$. So

$$
l-\left\langle h, u^{-1} f\right\rangle \in \operatorname{ker} \int_{H L(X)} f d \mu=\left(\mathcal{R} \int_{H L(X)}^{*} f d \mu\right)^{\perp}
$$

Since $\left\langle h, u^{-1} f\right\rangle \in \mathcal{R} \int_{H L(X)}^{*} f d \mu$,

$$
\|l\|^{2}=\left\|l-\left\langle h, u^{-1} f\right\rangle\right\|_{2}^{2}+\left\|\left\langle h, u^{-1} f\right\rangle\right\|_{2}^{2}
$$

(ii) Since, $\int_{H L(X)}^{\dagger} f d \mu(h)$ is the unique solution of minimal norm of

$$
\int_{H L(X)} f d \mu(l)=h
$$

so

$$
\int_{X} \mid\left\langle l(x)-\left.\left\langle h, u^{-1} f(x)\right\rangle\right|^{2} d \mu=0\right.
$$

Hence $l=\left\langle h, u^{-1} f\right\rangle=\int_{H L(X)}^{\dagger} f d \mu(h)$.
(iii) Since, $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0$, by the Lemma 2.11

$$
\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} u^{-1} f d \mu(h)\right\|>0
$$

Therefore

$$
\begin{aligned}
\left\|\int_{H L(X)}^{\dagger} f d \mu\right\|^{2} & =\sup _{h \in H_{1}} \int_{X} \mid\left\langle h, u^{-1} f(x)\right\rangle^{2} d \mu=\left\|\int_{H L(X)} u^{-1} f d \mu \int_{H L(X)}^{*} u^{-1} f d \mu\right\|^{*} \\
& =\left\|\left(\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu\right)^{-1}\right\|=\left(\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}\right)^{-1}
\end{aligned}
$$

Definition 3.4. Let $f, g \in \mathcal{L}(X, H)$. We define $\langle f, g\rangle_{\mathcal{L}}: X \rightarrow L^{2}(X)$ by

$$
\langle f, g\rangle_{\mathcal{L}}(x)=\langle f(x), g\rangle
$$

Theorem 3.5. Let $f, g \in \mathcal{L}(X, H)$. Then
(i) $\int_{H L(X)}^{*} g d \mu f=\langle f, g\rangle_{\mathcal{L}}$.
(ii) $\langle f, g\rangle_{\mathcal{L}} \in \mathcal{L}\left(X, L^{2}(X)\right)$.
(iii) Let $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0$ and $K=\mathcal{R} \int_{H L(X)}^{*} g d \mu$ be closed. Then

$$
\inf _{h \in K_{1}}\left\|\int_{H L(X)}^{*}\langle f, g\rangle_{\mathcal{L}} d \mu(h)\right\|>0
$$

and there exists a surjective bounded operator $u: L^{2}(X) \rightarrow H$ such that $g=$ $u\langle g, f\rangle_{\mathcal{L}}$.
Proof. (i) Let $l \in L^{2}(X)$. For each $x \in X$, we have

$$
\begin{aligned}
\left\langle l, \int_{H L(X)}^{*} g d \mu f(x)\right\rangle & =\left\langle\int_{H L(X)} g d \mu(l), f(x)\right\rangle=\int_{X} l(y)\langle g(y), f(x)\rangle d \mu_{y} \\
& =\int_{X} l(y)\left\langle f(x), g(y) \overline{\rangle} d \mu_{y}=\langle l,\langle f(x), g\rangle\rangle_{L^{2}}=\left\langle l,\langle f, g\rangle_{\mathcal{L}}(x)\right\rangle_{L^{2}}\right.
\end{aligned}
$$

Thus $\int_{H L(X)}^{*} g d \mu f=\langle f, g\rangle_{\mathcal{L}}$.
(ii) Let $l \in L^{2}(X)$. Since, the mapping

$$
X \rightarrow \mathbb{C}, \quad x \mapsto\left\langle l,\langle f, g\rangle_{\mathcal{L}}(x)\right\rangle=\left\langle l, \int_{H L(X)}^{*} g d \mu f(x)\right\rangle=\left\langle\int_{H L(X)} g d \mu(l), f(x)\right\rangle
$$

is measurable, $\langle f, g\rangle_{\mathcal{L}}$ is weakly measurable. Since

$$
\begin{aligned}
& \int_{X} \mid\left.\left\langle l,\left.\langle f, g\rangle_{\mathcal{L}}(x)\right|^{2} d \mu=\int_{X}\right|\left\langle l, \int_{H L(X)}^{*} g d \mu(f(x))\right\rangle\right|^{2} d \mu \\
& \quad=\int_{X}\left|\left\langle\int_{H L(X)} g d \mu(l), f(x)\right\rangle\right|^{2} d \mu \leq \sup _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}\left\|\int_{H L(X)} g d \mu(l)\right\|^{2} \\
& \quad \leq\left\|\int_{H L(X)} f d \mu\right\|^{2}\left\|\int_{H L(X)} g d \mu\right\|^{2}\|l\|^{2} .
\end{aligned}
$$

So, $\langle f, g\rangle_{\mathcal{L}} \in \mathcal{L}\left(X, L^{2}(X)\right)$.
(iii) For each $l \in \mathcal{R} \int_{H L(X)}^{*} g d \mu$, we have

$$
\begin{aligned}
\|l\| & =\left\|\int_{H L(X)}^{*} g d \mu\left(\int_{H L(X)}^{*} g d \mu\right)^{\dagger}(l)\right\| \\
& =\left\|\left(\left(_{H L(X)}^{*} g d \mu\right)^{\dagger}\right)^{*}\left(\int_{H L(X)} g d \mu(l)\right)\right\| \\
& \leq\left\|\int_{H L(X)}^{\dagger} g d \mu\right\|\left\|\int_{H L(X)} g d \mu(l)\right\|
\end{aligned}
$$

Hence

$$
\left\|\int_{H L(X)}^{\dagger} g d \mu\right\|^{-1}\|l\| \leq\left\|\int_{H L(X)} g d \mu(l)\right\|
$$

Thus

$$
\begin{aligned}
\inf _{h \in H_{1}} & \left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}\left\|\int_{H L(X)}^{\dagger} g d \mu\right\|^{-2}\|l\|^{2} \\
& \leq \inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|^{2}\left\|\int_{H L(X)} g d \mu(l)\right\|^{2} \\
& \leq \int_{X}\left|\left\langle\int_{H L(X)} g d \mu(l), f(x)\right\rangle\right|^{2} d \mu=\int_{X}\left|\left\langle l,\langle f, g\rangle_{\mathcal{L}}(x)\right\rangle\right|^{2} d \mu
\end{aligned}
$$

Hence

$$
\inf _{l \in K_{1}}\left\|\int_{H L(X)}^{*}\langle f, g\rangle_{\mathcal{L}} d \mu(l)\right\|>0
$$

We have the following retrieval formula

$$
\begin{aligned}
g & =\left(\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu\right)^{-1} \int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu g \\
& =\left(\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu\right)^{-1} \int_{H L(X)} f d \mu\langle g, f\rangle_{\mathcal{L}}
\end{aligned}
$$

So, $g=u\langle g, f\rangle_{\mathcal{L}}$, where, $u=\left(\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu\right)^{-1} \int_{H L(X)} f d \mu$ is a bounded surjective operator of $L^{2}(X)$ to H.

Since, $\langle f, f\rangle_{\mathcal{L}} \in \mathcal{L}\left(X, L^{2}(X)\right)$ is positive, we have the following corollary.
Corollary 3.6. Let $f \in \mathcal{L}(X, H)$ with $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0$, and

$$
K=\mathcal{R} \int_{H L(X)}^{*} f d \mu
$$

Then f can be written as $f=u g$, where $u: K \rightarrow H$ is a bounded operator, $g \in \mathcal{L}(X, K)$ is positive with $\inf _{h \in K_{1}}\left\|\int_{H L(X)}^{*} g d \mu(h)\right\|>0$.

Theorem 3.7. Let $f \in \mathcal{L}(X, H)$ with $\inf _{h \in H_{1}}\left\|\int_{H L(X)}^{*} f d \mu(h)\right\|>0$, and $g \in L^{2}(X)$. Let $u=\int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu$. Then, $h=\int_{H L(X)} u^{-1} f d \mu(g)$ is the unique vector in H which minimizes the mapping

$$
H \rightarrow \mathbb{C}, \quad h \mapsto \int_{X}|g-\langle h, f\rangle|^{2} d \mu
$$

Proof. Since, $\mathcal{R} \int_{H L(X)}^{*} f d \mu$ is closed and

$$
\int_{X}|g-\langle h, f\rangle|^{2} d \mu=\|g-\langle h, f\rangle\|_{2}^{2}
$$

it is enough to prove that the mapping

$$
L^{2}(X) \rightarrow L^{2}(X), \quad g \mapsto\left\langle\int_{H L(X)} u^{-1} f d \mu(g), f\right\rangle
$$

is the orthonormal projection of $L^{2}(X)$ onto $\mathcal{R} \int_{H L(X)}^{*} f d \mu$.
Let $g \in \mathcal{R} \int_{H L(X)}^{*} f d \mu^{\perp}$. Then

$$
\left\langle\int_{H L(X)} u^{-1} f d \mu(g), f\right\rangle=\left\langle u^{-1} \int_{H L(X)} f d \mu(g), f\right\rangle=\left\langle\int_{H L(X)} f d \mu(g), u^{-1} f\right\rangle=0
$$

Because, for each $x \in X$

$$
\begin{aligned}
\left\langle\int_{H L(X)} f d \mu(g), u^{-1} f\right\rangle(x) & =\int_{X} g(y)\left\langle f(y), u^{-1} f(x)\right\rangle d \mu \\
& =\left\langle g,\left\langle u^{-1} f(x), f\right\rangle\right\rangle_{L^{2}}=0 .
\end{aligned}
$$

Now, let $g \in \mathcal{R} \int_{H L(X)}^{*} f d \mu$. So, there exists $h \in H$ with $g=\langle h, f\rangle$. We have,

$$
\left\langle\int_{H L(X)} u^{-1} f d \mu(g), f\right\rangle=\left\langle u^{-1} \int_{H L(X)} f d \mu \int_{H L(X)}^{*} f d \mu(h), f\right\rangle=\langle h, f\rangle=g
$$

and the theorem is proved.
Theorem 3.8. Let $e=\left\{e_{\alpha}\right\}_{\alpha \in X}$ be an orthonormal basis for H. Let $\left\{\delta_{\alpha}\right\}_{\alpha \in X}$ be the canonical orthonormal basis for $l^{2}(X)$. Let $u: H \rightarrow l^{2}(X)$ be the isomorphism which maps e_{α} to δ_{α}. Then
(i) Let $f \in \mathcal{L}(X, H)$ and $0<\epsilon<1$. Then, there exist orthonormal bases $e^{i}=$ $\left\{e_{\alpha}^{i}\right\}_{\alpha \in X}, i=1,2,3$ for H such that

$$
\begin{equation*}
f=\frac{\left\|\int_{H L(X)} f d \mu\right\|}{1-\epsilon}\left(e^{1}+e^{2}+e^{3}\right) \tag{3.1}
\end{equation*}
$$

(ii) Let $f \in \mathcal{L}(X, H)$ be positive (i.e. $u f \in \mathcal{L}\left(X, l^{2}(X)\right)$ is positive) and $0<\epsilon<1$. Then there exist orthonormal bases $e^{i}=\left\{e_{\alpha}^{i}\right\}_{\alpha \in X}, i=1,2$ for H such that

$$
\begin{equation*}
f=\frac{\left\|\int_{H L(X)} f d \mu\right\|}{2 \epsilon}\left(e^{1}+e^{2}\right) . \tag{3.2}
\end{equation*}
$$

Proof. (i) If $\left\|\int_{H L(X)} f d \mu\right\|=0$ then $f=0$ and (3.2) is satisfied. Now, let

$$
\left\|\int_{H L(X)} f d \mu\right\|>0 .
$$

Let $w: H \rightarrow H$ be defined by

$$
w=\frac{1}{2} I+\frac{1-\epsilon}{2} \frac{\int_{H L(X)} f d \mu u}{\left\|\int_{H L(X)} f d \mu\right\|} .
$$

Since $\|I-w\|<1, w$ is invertible. So, by using the polar decomposition we can write $w=v p$, where v is a unitary and p is a positive operator. But, $\|p\|<1$, so we can write $p=\frac{1}{2}\left(z+z^{*}\right)$, where z, z^{*} are unitary operators. Thus

$$
\int_{H L(X)} f d \mu u=\frac{\left\|\int_{H L(X)} f d \mu\right\|}{1-\epsilon}\left(v z+v z^{*}-I\right)
$$

For each $h \in H$ we have

$$
\left\langle\int_{H L(X)} f d \mu u\left(e_{\alpha}\right), h\right\rangle=\int_{X} \delta_{\alpha}(\beta)\langle f(\beta), h\rangle d \mu_{\beta}=\langle f(\alpha), h\rangle, \quad \alpha \in X .
$$

Therefore

$$
f=\int_{H L(X)} f d \mu u e=\frac{\left\|\int_{H L(X)} f d \mu\right\|}{1-\epsilon}\left(v z e+v z^{*} e-e\right) .
$$

Since, $v z$ and $v z^{*}$ are unitary operators, $v z e$ and $v z^{*} e$ are orthonormal bases for H. Thus

$$
f=\frac{\left\|\int_{H L(X)} f d \mu\right\|}{1-\epsilon}\left(e^{1}+e^{2}+e^{3}\right),
$$

where $e^{i}, i=1,2,3$ are orthonormal bases for H.
(ii) Since $u \int_{H L(X)} f d \mu: l^{2}(X) \rightarrow l^{2}(X)$ is positive and u is a unitary,

$$
\begin{aligned}
u \int_{H L(X)} f d \mu & =\frac{\left\|\int_{H L(X)} u f d \mu\right\|}{2 \epsilon}\left(w+w^{*}\right) \\
& =\frac{\left\|u \int_{H L(X)} f d \mu\right\|}{2 \epsilon}\left(w+w^{*}\right)=\frac{\left\|\int_{H L(X)} f d \mu\right\|}{2 \epsilon}\left(w+w^{*}\right),
\end{aligned}
$$

where w is an unitary operator. We have

$$
f(\alpha)=\int_{H L(X)} f d \mu\left(\delta_{\alpha}\right)=\frac{\left\|\int_{H L(X)} f d \mu\right\|}{2 \epsilon}\left(u^{-1} w\left(\delta_{\alpha}\right)+u^{-1} w^{*}\left(\delta_{\alpha}\right)\right), \quad \alpha \in X .
$$

Thus

$$
f=\frac{\left\|\int_{H L(X)} f d \mu\right\|}{2 \epsilon}\left(e^{1}+e^{2}\right) .
$$

where $e^{i}, i=1,2$ are orthonormal bases for H.
Acknowledgments. The authors would like to thank the referee for his useful recommendations.

References

1. Sterling K. Berberian, Lectures in Functional Analysis and Operator Theory, Graduate Texts in Mathematics, 15, Springer-Verlag, New York-Heidelberg, 1974.
2. Ole Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhauser Boston, Inc., Boston, 2003.
3. Harro G. Heuser, Functional Analysis, A Wiley-Interscience Publication, John Wiley \& Sons, Ltd., Chichester, 1982.
4. Gert K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989.
5. W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, 1987.
6. W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York—Dusseldorf—Johannesburg, 1973.
7. S. Sakai, C^{*}-algebras and W^{*}-algebras, Reprint of the 1971 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1998.

Department of Mathematics, University of Tabriz, Tabriz, Iran
E-mail address: mhfaroughi@yahoo.com
Received 27/12/2006; Revised 28/03/2007

[^0]: 2000 Mathematics Subject Classification. Primary 46G12; Secondary 46C05.
 Key words and phrases. Lebesque integral, Hilbert space, Banach space, C^{*}-algebra.
 This work was supported by the University of Tabriz.

