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ON AN EXTENDED STOCHASTIC INTEGRAL AND THE WICK
CALCULUS ON THE CONNECTED WITH THE GENERALIZED

MEIXNER MEASURE KONDRATIEV-TYPE SPACES

N. A. KACHANOVSKY

Abstract. We introduce an extended stochastic integral and construct elements of
the Wick calculus on the Kondratiev-type spaces of regular and nonregular genera-
lized functions, study the interconnection between the extended stochastic integration
and the Wick calculus, and consider examples of stochastic equations with Wick-
type nonlinearity. Our researches are based on the general approach that covers the
Gaussian, Poissonian, Gamma, Pascal and Meixner analyses.

0. Introduction

In 1934 J. Meixner ([30]) proved that there exist exactly five types of orthogonal
polynomials on R with the generating function γ(λ)exα(λ) (the polynomials with such
a generating function are called the Schefer polynomials or, in another terminology, the
generalized Appell polynomials): the Hermite, Charlier, Laguerre, Meixner and Meixner-
Pollaczek polynomials, which are orthogonal with respect to the Gaussian, Poissonian,
Gamma, Pascal and Meixner measures correspondingly. In an infinite-dimensional anal-
ysis the situation is more complicated, but all mentioned measures and polynomials have
the corresponding counterparts, and the orthogonality preserves. Nevertheless, if for
the Gaussian and Poissonian measures the orthogonality of the (infinite-dimensional)
Hermite and Charlier polynomials correspondingly is quite simple, and therefore it is
respectively easy to construct corresponding analyses; then for the Gamma, Pascal and
Meixner measures the orthogonality of the corresponding polynomials is more tricky (see
Theorem 1.2 in Section 1), and therefore the situation is much more complicated. As a re-
sult, the connected with the Gamma, Pascal and Meixner measures infinite-dimensional
analyses are considerably more ‘poor’ than the analyses that are connected with the
Gaussian and Poissonian measures. (Note that the question of orthogonality of poly-
nomials is connected with the so-called Chaotic Representation Property (CRP) of the
measure. The CRP is very important in the stochastic integration theory. Between five
mentioned above measures only the Gaussian and Poissonian ones have CRP.)

In the papers [28, 29] E. W. Lytvynov made first (as far as it is known to the author)
attempt to generalize the results of [30] to the infinite-dimensional case and to construct
elements of the corresponding analysis with ”stochastic applications” (in this connection
we have to remember also the paper of Yu. M. Berezansky [4]). In the paper [31] I. V. Ro-
dionova constructed the analysis that is based on generalization of results [29]; and for
the first time considered connected with the Gaussian, Poissonian, Gamma, Pascal and
Meixner measures infinite-dimensional analyses from a common point of view. However,
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in these papers an extended stochastic integral and a stochastic derivative were not dis-
cussed. (Nevertheless, studied in [29, 31] operators ∂x (actually this is the generalized
Hida derivative at the point x) and ∂†x are closely connected with the extended stochastic
integral, see Section 3 for more details.)

The main aim of this paper is to introduce the extended stochastic integral and to
construct elements of the Wick calculus on the Kondratiev-type spaces of regular and
nonregular generalized functions, to consider the interconnection between the stochas-
tic integration and the Wick calculus, and to illustrate these considerations by simple
examples (by simple stochastic equations with Wick-type nonlinearity). Our researches
are based on the proposed in [31] general approach that covers the Gaussian, Poissonian,
Gamma, Pascal and Meixner analyses. The construction of the stochastic derivative is
affected only (in the connection with studying of properties of the extended stochastic
integral), the detailed study will be given in forthcoming papers.

The paper is based on the results of I. V. Rodionova [31] and of the author [21, 17],
and can be considered as a natural development and generalization of results [21, 17].

Finally we mention that in this paper (in the same way as in [31]) the base probability
measure (see Definition 1.1 in Section 1) is centered, but all results hold true for the case of
the described in [29] noncentered measure (in this connection see also Remarks 1.5 and 3.2
below).

The paper is organized in the following manner. In the first section we recall necessary
definitions and results, and prove several important for our considerations statements
(note that some definitions in this section seem ”artificial” because they are based on
calculations of [31], the interested reader can find the detailed explanations in the men-
tioned paper). In the second section we introduce the Kondratiev-type spaces of test
and (regular and nonregular) generalized functions and construct natural bases in these
spaces. In the third section we introduce the extended stochastic integral and study its
properties (in particular, its interconnection with the generalized Hida derivative). The
fourth section is devoted to the Wick calculus and its interconnection with the extended
stochastic integration; in the end of the section we consider examples.

1. Preliminaries

Let σ be a measure on (R+,B(R+)) (here and below B denotes the Borel σ-algebra)
satisfying the following assumptions:

1) σ is absolutely continuous with respect to the Lebesgue measure and the density
is an infinite differentiable function on R+;

2) σ is nondegenerate measure, i.e., for each nonempty open set O ⊂ R+ σ(O) > 0.

Remark 1.1. Note that these assumptions are the ”simplest sufficient ones” for our
considerations; actually it is possible to consider much more general σ. Moreover, one
can use the space R instead of R+; but in this case it is necessary either to introduce
the integration stochastic process on R (such situation is unnatural) or to overcome
unjustified technical problems.

By D denote the set of all real-valued infinite differentiable functions on R+ with
compact supports. This set can be naturally endowed with a (projective limit) topology
of a nuclear space (by analogy with, e.g., [8]): D = pr limτ∈T Hτ , where T is the set of
all pairs τ = (τ1, τ2), τ1 ∈ N, τ2 is an infinite differentiable function on R+ such that
τ2(t) ≥ 1 ∀t ∈ R+; Hτ = H(τ1,τ2) is the Sobolev space on R+ of order τ1 weighted by the
function τ2, i.e., the denoted by (·, ·)τ scalar product in Hτ is given by the formula

(f, g)τ :=
∫

R+

(f(t)g(t) +
τ1∑

k=1

f (k)(t)g(k)(t))τ2(t)σ(dt).
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Hence in what follows, we understand D as the corresponding topological space.

Remark 1.2. By analogy with [28, 29, 31] one can consider a complete, connected, ori-
ented C∞ non-compact Riemannian manifold X instead of R+ and work with D(X) etc.
But such a generalization is not essential for our considerations (and leads to a technical
complication), therefore we shall restrict ourselves, in this paper, to the case X = R+.

Let Hτ,C := Hτ ⊕ iHτ be the complexification of Hτ (here and below by the subindex
C denote complexifications of spaces). By | · |τ denote the corresponding to the scalar
product (·, ·)τ norm inHτ,C, i.e., |f |2τ = (f, f)τ . In the forthcoming statement we describe
the important property of Hτ,C.

Lemma 1.1. The space Hτ,C (τ ∈ T ) is a Banach algebra with respect to the usual
(pointwise) multiplication of functions, i.e., for each τ ∈ T there exists a constant cτ > 0
such that

|fg|τ ≤ cτ |f |τ |g|τ ∀f, g ∈ Hτ,C.

The proof is completely analogous to the proof of Theorem 7.1 in [6]. �

Let us consider the (nuclear) chain (the rigging of L2(R+, σ))

(1.1) D′ = ind lim
τ ′∈T

H−τ ′ ⊃ H−τ ⊃ L2(R+, σ) =: H ⊃ Hτ ⊃ pr lim
τ ′∈T

Hτ ′ = D,

where H−τ , D′ are the dual to Hτ , D with respect to H spaces correspondingly. By | · |−τ

and |·|0 denote the norms in H−τ and H. Let 〈·, ·〉 be the generated by the scalar product
in H dual pairing between elements of D′ and D (and also H−τ and Hτ ). The notation
| · |τ , | · |0, | · |−τ , (·, ·)τ , and 〈·, ·〉 will be preserved for tensor powers and complexifications
of spaces.

Remark 1.3. Note that all scalar products and pairings in this paper are real, i.e., they
are bilinear functionals. In particular, 〈·, ·〉 is a real pairing in complexifications of spaces.

Let us fix arbitrary functions α, β : R+ → C that are smooth and satisfy

(1.2) θ := −α− β ∈ R, η := αβ ∈ R+,

θ and η are bounded on R+. Further, let υ̃(α, β, ds) be a probability measure on R that
is defined by its Fourier transform∫

R
eiusυ̃(α, β, ds)

= exp
{
− iu(α + β)+2αβ

∞∑
m=1

(αβ)m−1

m

[ ∞∑
n=2

(−iu)n

n!
(βn−2 + βn−3α + · · ·+ αn−2)

]m}
,

υ(α, β, ds) := 1
s2 υ̃(α, β, ds).

Definition 1.1. We say that the probability measure µ on the measurable space (D′,F)
(here and below F is the generated by cylinder sets σ-algebra on D′) with the Fourier
transform∫

D′
ei〈x,ξ〉µ(dx) = exp

{ ∫
R+

σ(dt)
∫

R
υ(α(t), β(t), ds)(eisξ(t) − 1− isξ(t))

}
(here ξ ∈ D) is called the generalized Meixner measure.

Theorem 1.1. [31] The generalized Meixner measure µ is a generalized stochastic process
with independent values in the sense of [11]. The Laplace transform of µ is given in a
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neighborhood of zero U0 ⊂ DC by the following formula:

(1.3)

lµ(λ)=
∫
D′

e〈x,λ〉µ(dx)= exp
{∫

R+

∞∑
m=1

(α(t)β(t))m−1

m

×
( ∞∑

n=2

(−λ)n

n!
(β(t)n−2 + β(t)n−3α(t) + · · ·+ α(t)n−2)

)m

σ(dt)
}

, λ ∈ U0.

Remark 1.4. Accordingly to the classical classification [30] (see also [29, 31]) for α = β =
0 (here and below all such equalities we understand σ-a.e.) µ is the Gaussian measure;
for α 6= 0 (here and below a(·) 6= b(·) means that a − b 6= 0 on some measurable set M
such that σ(M) > 0), β = 0 µ is the centered Poissonian measure; for α = β 6= 0 µ is the
centered Gamma measure; for α 6= β, αβ 6= 0, α, β : R+ → R µ is the centered Pascal
measure; for α = β, Im(α) 6= 0 µ is the centered Meixner measure.

Remark 1.5. The introduced above generalized Meixner measure µ is centered by con-
struction; but this is not essential for our considerations because actually our construc-
tions do not depend on a ”centrality” of µ (the only difference is described in Remark 3.2
in Section 3 below). For example, one can use the introduced in [29] noncentered gene-
ralized Meixner measure (the particular case of this measure is the noncentered Gamma
measure that was introduced in [25] and studied in [23], see also [21, 17]).

It is known that the Gaussian measure, the Poissonian measure and the Gamma
measure are concentrated on a ”pre-limit” space H−τ (for some τ ∈ T ). Let us prove
that this result holds true for the generalized Meixner measure µ.

Lemma 1.2. There exists τ̃ ∈ T such that the generalized Meixner measure is concen-
trated on H−eτ , i.e., µ(H−eτ ) = 1.

Proof. It follows from (1.3) and Lemma 1.1 (see also [31]) that lµ is continuous at zero
in the topology of Hτ,C for all τ ∈ T . Let us fix τ ′ ∈ T . Since D′ is a nuclear space, there
exists τ̃ ∈ T such that the embedding Heτ ↪→ Hτ ′ is of Hilbert-Schmidt type, therefore
by the Minlos-Sazonov theorem µ is concentrated on H−eτ . �

Remark 1.6. In what follows, we assume that µ is concentrated on H−τ for all τ ∈ T .
In fact, it is sufficient to exclude from T the indexes τ such that µ is not concentrated
on H−τ .

Now by (L2) = L2(D′, µ) denote the space of square integrable with respect to µ
complex-valued functions on D′. Let us construct orthogonal polynomials on (L2).

Definition 1.2. We define a so-called Wick exponential (a generating function of the
orthogonal polynomials) by setting
(1.4)

: exp(x;λ) :

def= exp
{
−

∫
R+

(
λ(t)2

2
+

∞∑
n=3

λ(t)n

n
(α(t)n−2 + α(t)n−3β(t) + · · ·+ β(t)n−2)

)
σ(dt)

+
〈
x, λ +

∞∑
n=2

λn

n
(αn−1 + αn−2β + · · ·+ βn−1)

〉}
,

where λ ∈ U0 ⊂ DC, x ∈ D′, U0 is some neighborhood of 0 ∈ DC.

Remark 1.7. It was proved in [31] that

: exp(x;λ) :=
e〈x,Ψ(λ)〉

lµ(Ψ(λ))
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with Ψ(λ) = λ+
∑∞

n=2
λn

n (αn−1+αn−2β+· · ·+βn−1), therefore : exp(x; ·) : is a generating
function of the so-called Schefer polynomials (or the generalized Appell polynomials in
another terminology). This fact gives us the possibility to use well-known results of
the so-called ”biorthogonal analysis” (see, e.g., [2, 1, 27, 18, 19, 24, 3, 7] and references
therein) in order to construct the connected with the generalized Meixner measure µ
analysis; but actually this is not very important for our considerations in this paper.

It is clear (see also [31]) that : exp(x; ·) : is a holomorphic at zero function on DC
for each x ∈ D′. Therefore using the Cauchy inequalities (see, e.g., [10]) and the kernel
theorem (see, e.g., [8]) one can obtain the representation

: exp(x;λ) :=
∞∑

n=0

1
n!
〈Pn(x), λ⊗n〉, Pn(x) ∈ D′

C
b⊗n

, x ∈ D′, λ ∈ DC.

Here (and below) ⊗̂ denotes the symmetric tensor product, λ⊗0 = 1 even for λ ≡ 0.

Remark 1.8. It follows from the given in [31] recurrence formula for Pn(x) that actually
Pn(x) ∈ D′ b⊗n for x ∈ D′. Moreover, if τ ∈ T is such that the Dirac delta-function
δ0 ∈ H−τ (it means that δs ∈ H−τ ∀s ∈ R+, see, e.g., [8]) then for x ∈ H−τ we have
Pn(x) ∈ Hb⊗n

−τ .
In what follows, we assume that this statement holds true for all τ ∈ T . In fact,

by analogy with Remark 1.6 it is sufficient to exclude from T the indexes τ such that
δ0 6∈ H−τ .

Definition 1.3. We say that the polynomials 〈Pn, f (n)〉, f (n) ∈ Db⊗n
C are called the

generalized Meixner polynomials.

Remark 1.9. Depending on α and β in (1.4) the generalized Meixner polynomials can be
the generalized Hermite polynomials (α = β = 0); the generalized Charlier polynomials
(α 6= 0, β = 0); the generalized Laguerre polynomials (α = β 6= 0); the Meixner poly-
nomials (α 6= β, αβ 6= 0, α, β : R+ → R); the Meixner-Pollaczek polynomials (α = β,
Im(α) 6= 0). (See also Remark 1.4.)

In order to formulate a statement on an orthogonality of the generalized Meixner
polynomials we need the following

Definition 1.4. We define the scalar product 〈·, ·〉ext on Db⊗n
C (n ∈ N) by the formula

(1.5)

〈f (n), g(n)〉ext :=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!
ls1
1 . . . lsk

k s1! . . . sk!

×
∫

Rs1+···+sk
+

f (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)

× g(n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)η(t1)l1−1 . . . η(ts1)
l1−1

× η(ts1+1)l2−1 . . . η(ts1+s2)
l2−1 . . . η(ts1+···+sk−1+1)lk−1 . . . η(ts1+···+sk

)lk−1

× σ(dt1) . . . σ(dts1+···+sk
).

Denote by | · |ext the corresponding norm, i.e., |f (n)|2ext = 〈f (n), f (n)〉ext. For n = 0
〈f (0), g(0)〉ext := f (0)g(0), |f (0)|ext = |f (0)|.
Example 1.1. It is easy to see that for n = 1

〈f (1), g(1)〉ext = 〈f (1), g(1)〉 =
∫

R+

f (1)(t)g(1)(t)σ(dt).
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Further, for n = 2

〈f (2), g(2)〉ext = 〈f (2), g(2)〉+
∫

R+

f (2)(t, t)g(2)(t, t)η(t)σ(dt).

If η = 0 (this corresponds to the Gaussian and Poissonian measures µ, see Remark 1.4)
then 〈f (n), g(n)〉ext = 〈f (n), g(n)〉 for all n ∈ Z+, in a general case 〈f (n), g(n)〉ext =
〈f (n), g(n)〉+ · · · .

Theorem 1.2. [31] The generalized Meixner polynomials are orthogonal in (L2) in the
sense that

(1.6)
∫
D′
〈Pn(x), f (n)〉〈Pm(x), g(m)〉µ(dx) = δmnn!〈f (n), g(n)〉ext.

By H(n)
ext (n ∈ N) denote the closure of Db⊗n

C with respect to the connected with scalar
product (1.5) norm | · |ext, H(0)

ext := C.

Remark 1.10. It is not difficult to prove by analogy with [5] that the space H(n)
ext is,

generally speaking, the orthogonal sum of Hb⊗n
C ≡ L2(R+, σ)b⊗n

C and some another Hilbert
spaces (as a ”limit case” one can consider η = 0, in this case H(n)

ext = Hb⊗n
C ). In this sense

H(n)
ext is an extension of Hb⊗n

C .
One can give another explanation of the fact that H(n)

ext is a more wide space than
Hb⊗n

C . Namely, let f (n) ∈ Hb⊗n
C (f (n) is an equivalence class in Hb⊗n

C ). We select a
representative (a function) f̃ (n) ∈ f (n) with a ”zero diagonal”, i.e., f̃ (n) is such that
f̃ (n)(t1, . . . , tn) = 0 if ∃i, j ∈ {1, . . . , n}, i 6= j such that ti = tj . This function generates
an equivalence class f̂ (n) in H(n)

ext because |f̃ (n)|ext = |f̃ (n)|0. If f̃
(n)
1 ∈ f (n) is another

function with the ”zero diagonal” then f̃
(n)
1 ∈ f̂ (n) because f̃ (n) − f̃

(n)
1 has the ”zero

diagonal” and therefore |f̃ (n)− f̃
(n)
1 |ext = |f̃ (n)− f̃

(n)
1 |0 = 0. Further, let f (n), g(n) ∈ Hb⊗n

C
be different elements of Hb⊗n

C and f̂ (n), ĝ(n) ∈ H(n)
ext be the corresponding (constructed

above) elements of H(n)
ext . Since |f̂ (n) − ĝ(n)|ext = |f̃ (n) − g̃(n)|ext = |f̃ (n) − g̃(n)|0 > 0,

f̂ (n) and ĝ(n) are different elements of H(n)
ext . Thus there exists the injective isometric

mapping Hb⊗n
C 3 f (n) 7→ f̂ (n) ∈ H(n)

ext that can be accepted as a generalized embedding of
Hb⊗n

C in H(n)
ext .

Definition 1.5. For f (n) ∈ H(n)
ext (n ∈ Z+) we define 〈Pn, f (n)〉 ∈ (L2) as an (L2)-limit

(1.7) 〈Pn, f (n)〉 := lim
k→∞

〈Pn, f
(n)
k 〉,

where (f (n)
k ∈ Db⊗n

C )∞k=1 is a sequence of ”smooth” functions such that f
(n)
k → f (n) (as

k →∞) in H(n)
ext .

Let us prove the correctness of this definition. Let (f (n)
k ∈ Db⊗n

C )∞k=1 be such that
f

(n)
k → f (n) (as k → ∞) in H(n)

ext . Since ‖〈Pn, f
(n)
k 〉 − 〈Pn, f

(n)
l 〉‖2(L2) = ‖〈Pn, f

(n)
k −

f
(n)
l 〉‖2(L2) =

∫
D′〈Pn(x), f (n)

k − f
(n)
l 〉〈Pn(x), f (n)

k − f
(n)
l 〉µ(dx) = n!|f (n)

k − f
(n)
l |2ext → 0 as

k, l →∞ (see (1.6)), the sequence (〈Pn, f
(n)
k 〉)∞k=1 is a Cauchy one in (L2) and therefore

there exists the (L2)-limit 〈Pn, f (n)〉 := limk→∞〈Pn, f
(n)
k 〉 ∈ (L2). Let (g(n)

k ∈ Db⊗n
C )∞k=1

be another sequence of ”smooth” functions such that g
(n)
k → f (n) (as k → ∞) in

H(n)
ext , 〈Pn, f (n)〉g := limk→∞〈Pn, g

(n)
k 〉 in (L2). We consider the ”mixed” sequence

(f (n)
1 , g

(n)
1 , f

(n)
2 , g

(n)
2 , . . . ) and by h

(n)
k denote the k-th element of this sequence. Let

〈Pn, f (n)〉h := limk→∞〈Pn, h
(n)
k 〉 in (L2). It is obvious that 〈Pn, f (n)〉h = 〈Pn, f (n)〉g and
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〈Pn, f (n)〉h = 〈Pn, f (n)〉, thus 〈Pn, f (n)〉 is well-defined as an element of (L2) and does
not depend on the choice of an ”approximating sequence”. �

Remark 1.11. It is easy to see that for ”smooth” f (n) ∈ Db⊗n
C limit (1.7) is a generalized

Meixner polynomial, therefore the accepted in Definition 1.5 notation is natural.

The following statement from results of [31] follows.

Theorem 1.3. A function f ∈ (L2) if and only if there exists a sequence of kernels
(f (n) ∈ H(n)

ext)∞n=0 such that f can be presented in the form

(1.8) f =
∞∑

n=0

〈Pn, f (n)〉,

where the series converges in (L2), i.e., the (L2)-norm of f

(1.9) ‖f‖2(L2) =
∞∑

n=0

n!|f (n)|2ext < ∞.

Furthermore, the system {〈Pn, f (n)〉, f (n) ∈ H(n)
ext , n ∈ Z+} plays a role of an orthogonal

basis in (L2) in the sense that for f, g ∈ (L2)

(f, g)(L2) =
∞∑

n=0

n!〈f (n), g(n)〉ext,

where f (n), g(n) are the kernels from decompositions (1.8) for f, g (in particular, (1.6)
for f (n) ∈ H(n)

ext, g(m) ∈ H(m)
ext holds true).

2. Kondratiev-type spaces

In this section we introduce the Kondratiev-type spaces of test and (regular and non-
regular) generalized functions (see, e.g., [2, 1, 27, 24, 12, 19]) and construct natural
(orthogonal in the spaces that are Hilbert ones) bases in these spaces. Note that the
term ”Kondratiev spaces” is connected with the fact that for the first time such spaces
were introduced by Yu.G. Kondratiev in [22] (in the Gaussian analysis).

In the classical Gaussian and Poissonian analysis the Kondratiev-type spaces are
”based” on the tensor powers of complexification of chain (1.1)

(2.1) D′
C

b⊗n ⊃ Hb⊗n
−τ,C ⊃ Hb⊗n

C ⊃ Hb⊗n
τ,C ⊃ Db⊗n

C , τ ∈ T.

But in view of orthogonality relation (1.6) now it will be more natural to use H(n)
ext as

”central spaces” (by analogy with the Gamma analysis, see, e.g., [21]). In order to
construct corresponding chains we need

Proposition 2.1. There exists τ̃ ∈ T such that for each n ∈ N Hb⊗neτ,C is densely and

continuously embedded in H(n)
ext and, moreover, for all f (n) ∈ Hb⊗neτ,C the estimate

(2.2) |f (n)|2ext ≤ n!cn|f (n)|2eτ
with some c > 0 is valid.

Proof. First we prove that ∃τ̃ ∈ T such that ∀f (n) ∈ Db⊗n
C estimate (2.2) is valid. Since

the Laplace transform of µ lµ is a holomorphic at 0 ∈ DC function (see (1.3), and [31]
for more details), it follows from results of [26] that there exist τ ′ ∈ T and ε > 0 such
that k1 :=

∫
H−τ′

eε|x|−τ′µ(dx) < ∞ (we remind that T is modified in accordance with
Remarks 1.6, 1.8, hence by Lemma 1.2 we can integrate by H−τ ′ instead of D′). Further,
since D is a nuclear space, there exists τ̃ ∈ T such that Heτ ↪→ Hτ ′ and this embed-
ding is of Hilbert-Schmidt type. In accordance with, e.g., [18] |Pn(x)|−eτ ≤ n!cn

1 ek2|x|−τ′ ,
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where on can select k2 ∈ (0, ε/2] (the result from [18] can be used because the gener-
alized Meixner polynomials are the generalized Appell polynomials, see Remark 1.7).
Therefore

∫
H−τ′

|Pn(x)|2−eτµ(dx) ≤ (n!)2c2n
1

∫
H−τ′

e2k2|x|−τ′µ(dx) ≤ (n!)2cn, where c ≥

c2
1 max(1, k1). Let f (n) ∈ Db⊗n

C . Using (1.6) we can estimate as follows:

n!|f (n)|2ext =
∫
D′
〈Pn(x), f (n)〉〈Pn(x), f (n)〉µ(dx) =

∫
H−τ′

〈Pn(x), f (n)〉〈Pn(x), f (n)〉µ(dx)

=
∫
H−τ′

|〈Pn(x), f (n)〉|2µ(dx) ≤
∫
H−τ′

|Pn(x)|2−eτµ(dx)|f (n)|2eτ ≤ (n!)2cn|f (n)|2eτ ,

from where for f (n) ∈ Db⊗n
C (2.2) follows.

Further, let a sequence (f (n)
k ∈ Db⊗n

C )∞k=1 be a Cauchy one in Hb⊗neτ,C and limk→∞ f
(n)
k =

0 in H(n)
ext . In order to prove that Hb⊗neτ,C is embedded in H(n)

ext we have to show that

limk→∞ f
(n)
k = 0 in Hb⊗neτ,C (see, e.g., [8]). In fact, since | · |0 ≤ | · |ext (see Definition 1.4),

limk→∞ f
(n)
k = 0 in Hb⊗n

C . But Db⊗n
C ↪→ Hb⊗neτ,C ↪→ Hb⊗n

C , therefore limk→∞ f
(n)
k = 0 in

Hb⊗neτ,C. Estimate (2.2) for general f (n) ∈ Hb⊗neτ,C can be obtained from the corresponding

estimate for f (n) ∈ Db⊗n
C by passing to a limit. Finally, the embedding Hb⊗neτ,C ⊂ H(n)

ext is

dense because Db⊗n
C ↪→ Hb⊗neτ,C and Db⊗n

C is a dense set in H(n)
ext ; and the continuity of this

embedding from estimate (2.2) follows. �

Remark 2.1. Let Hτ be continuously embedded in Heτ (τ, τ̃ ∈ T , τ̃ from Proposition 2.1).
Then it easily follows from Proposition 2.1 that for each n ∈ N Hb⊗n

τ,C is densely and

continuously embedded in H(n)
ext . Moreover, since now there exists k(τ) > 0 such that

| · |eτ ≤ √
k(τ)| · |τ , it follows from (2.2) that

|f (n)|2ext ≤ n!cnk(τ)|f (n)|2τ
with the same c (of course, one can easily obtain from here or by direct calculation the
estimate |f (n)|2ext ≤ n!c(τ)n|f (n)|2τ , which is the full formal analog of (2.2)).

Therefore by analogy with Remarks 1.6, 1.8 one can exclude from T indexes τ such
that there is no a continuous embedding Hτ in Heτ , and assume in what follows, that the
results of Proposition 2.1 hold true for all τ ∈ T .

Finally we note that since | · |−τ ≤
√

k(τ)| · |−eτ , for each τ ∈ T

(2.3)
‖|Pn(·)|−τ‖(L2) =

√∫
H−τ′

|Pn(x)|2−τµ(dx) ≤
√

k(τ)
∫
H−τ′

|Pn(x)|2−eτµ(dx)

≤ n!cn/2
√

k(τ)

(here c does not depend on τ).

Now we can consider the chains

(2.4) D′
C

(n) ⊃ H(n)
−τ,C ⊃ H(n)

ext ⊃ Hb⊗n
τ,C ⊃ Db⊗n

C ,

where H(n)
−τ,C, D′

C
(n) = ind limτ∈T H(n)

−τ,C are the dual to Hb⊗n
τ,C, Db⊗n

C with respect to H(n)
ext

spaces correspondingly. For the generated by the scalar product in H(n)
ext (real) dual

pairings between elements of D′
C

(n) and Db⊗n
C (in the same way as H(n)

−τ,C and Hb⊗n
τ,C) we

preserve the notation 〈·, ·〉ext.
Of course, for n = 1 chain (2.4) has the form

D′
C ⊃ H−τ,C ⊃ H(1)

ext = HC ⊃ Hτ,C ⊃ DC,
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i.e., this chain coincides with the complexification of chain (1.1). But for n > 1 and η 6= 0
chain (2.4) is not a tensor power of chain of type (1.1). Nevertheless, there exists the
natural interconnection between chains (2.1) and (2.4). In fact, since D′

C
(n) in the same

way as D′
C

b⊗n (n ∈ Z+) are the sets of linear continuous functionals on Db⊗n
C , there exist

linear bijective operators Un : D′
C

(n) → D′
C

b⊗n such that ∀F (n)
ext ∈ D′

C
(n), ∀f (n) ∈ Db⊗n

C

(2.5) 〈UnF
(n)
ext , f (n)〉 = 〈F (n)

ext , f (n)〉ext.

By analogy, since for all τ ∈ T H(n)
−τ,C and Hb⊗n

−τ,C are the sets of linear continuous

functionals on Hb⊗n
τ,C, there exist linear isometric operators Un,τ : H(n)

−τ,C → Hb⊗n
−τ,C such

that ∀F (n)
ext ∈ H

(n)
−τ,C, ∀f (n) ∈ Hb⊗n

τ,C 〈Un,τF
(n)
ext , f (n)〉 = 〈F (n)

ext , f (n)〉ext.

Proposition 2.2. For each τ ∈ T and each n ∈ Z+ the restriction of the operator Un

on H(n)
−τ,C coincides with Un,τ .

Proof. Let F
(n)
ext ∈ H(n)

−τ,C ⊂ D′
C

(n). For each f (n) ∈ Db⊗n
C we have 〈UnF

(n)
ext , f (n)〉 =

〈F (n)
ext , f (n)〉ext = 〈Un,τF

(n)
ext , f (n)〉, therefore UnF

(n)
ext = Un,τF

(n)
ext as an element of D′

C
b⊗n.

But Un,τF
(n)
ext ∈ H

b⊗n
−τ,C by definition, andHb⊗n

−τ,C ⊂ D′
C

b⊗n; so the proposition is proved. �

Corollary. Let τ, τ ′ ∈ T be such that Hτ ⊂ Hτ ′ . Then for each n ∈ N H(n)
−τ ′,C ⊂ H(n)

−τ,C

and the restriction of Un,τ on H(n)
−τ ′,C coincides with Un,τ ′ .

Taking into account Proposition 2.2 and its Corollary, in what follows, we omit a
subindex τ for operators Un,τ , i.e., we’ll write always Un for such operators.

Remark 2.2. We note that for n = 0 and n = 1 Un = id; but for n > 1 and η 6= 0
UnH(n)

ext 6= Hb⊗n
C , i.e., the restriction of Un on H(n)

ext is not an isomorphism between H(n)
ext

and Hb⊗n
C . This fact was proved in [21] for η ≡ 1 (in the Gamma analysis), the proof in

the general case can be constructed by analogy.

Let P be the set of all continuous polynomials on D′. It follows from results of [18, 24]
that any element of P can be presented in the form

(2.6) f =
Nf∑
n=0

〈Pn, f (n)〉, f (n) ∈ Db⊗n
C , Nf ∈ Z+.

We define on P a family of scalar products by setting for f, g ∈ P, τ ∈ T , q ∈ N

(f, g)τ,q :=
min(Nf ,Ng)∑

n=0

(n!)22qn(f (n), g(n))τ ,

where f (n), g(n) are the kernels from decompositions (2.6) for f and g respectively. By
‖ · ‖τ,q denote the corresponding norm, i.e., for f ∈ P of form (2.6) we have

‖f‖2τ,q = (f, f)τ,q =
Nf∑
n=0

(n!)22qn|f (n)|2τ .

Definition 2.1. By (Hτ )q denote a Hilbert space that is the closure of P with respect
to the norm ‖ · ‖τ,q. Let also (Hτ ) := pr limq∈N(Hτ )q, (D) := pr limτ∈T,q∈N(Hτ )q. The
spaces (Hτ )q, (Hτ ), (D) are called the Kondratiev-type test functions spaces.
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It is clear that f ∈ (Hτ )q if and only if f can be presented in form (1.8) with f (n) ∈
Hb⊗n

τ,C, and the series converges in the sense that

(2.7) ‖f‖2τ,q =
∞∑

n=0

(n!)22qn|f (n)|2τ < ∞.

Further, f ∈ (Hτ ) if and only if f has form (1.8) and norm (2.7) is finite for all q ∈ N;
and f ∈ (D) if and only if norm (2.7) for f is finite for all τ ∈ T and q ∈ N (in this case,
of course, the kernels from decomposition (1.8) f (n) ∈ Db⊗n

C ).

Remark 2.3. Elements of the Kondratiev-type test functions spaces (Hτ )q, as distin-
guished from elements of P, are not functions with arguments from D′. But under some
conditions on τ and q elements of (Hτ )q can be considered as functions on H−τ (more-
over, these functions are continuous). A more detailed discussion of this question is given
in, e.g., [7].

Remark 2.4. Let f, g ∈ (Hτ )q. Then

(f, g)τ,q =
∞∑

n=0

(n!)22qn(f (n), g(n))τ ,

where f (n), g(n) ∈ Hb⊗n
τ,C are the kernels from decompositions (1.8) for f and g respectively;

therefore the system of the generalized Meixner polynomials plays a role of an orthogonal
basis in (Hτ )q.

In order to define the Kondratiev-type spaces of generalized functions we need the
following

Proposition 2.3. There exists q0 ∈ N such that for all natural q ≥ q0 and for all τ ∈ T
the dense and continuous embedding (Hτ )q ↪→ (L2) takes place (we remind that T is
modified in accordance with Remarks 1.6, 1.8, 2.1).

Proof. Let f ∈ (Hτ )q (τ ∈ T , q ∈ N), and {f (n) ∈ Hb⊗n
τ,C}∞n=0 be the kernels from

decomposition (1.8) for f . Using estimate (2.3) we can evaluate as follows:

‖f‖(L2) ≤
∞∑

n=0

‖〈Pn(·), f (n)〉‖(L2) ≤
∞∑

n=0

‖|Pn(·)|−τ‖(L2)|f (n)|τ ≤
√

k(τ)
∞∑

n=0

n!cn/2|f (n)|τ

=
√

k(τ)
∞∑

n=0

[n!2qn/2|f (n)|τ ][2−qc]n/2 ≤
√

k(τ)

√√√√ ∞∑
n=0

(n!)22qn|f (n)|2τ

√√√√ ∞∑
n=0

[2−qc]n

= K‖f‖τ,q < ∞,

where K :=
√

k(τ)
√∑∞

n=0[2−qc]n < ∞ if q is so large that 2q > c.
Let q0 be the minimal natural number such that 2q0 > c. Now in order to prove that

for all natural q ≥ q0 (Hτ )q is continuously embedded in (L2), we have to prove that
any Cauchy sequence (fk ∈ P)∞k=1 in (Hτ )q with limk→∞ fk = 0 in (L2) tends to zero in
(Hτ )q (see, e.g., [8]). Let f = limk→∞ fk in (Hτ )q. Then

‖f‖(L2) = ‖f − fk + fk‖(L2) ≤ ‖f − fk‖(L2) + ‖fk‖(L2) ≤ K‖f − fk‖τ,q + ‖fk‖(L2) →
k→∞

0,

therefore ‖f‖(L2) = 0. Let {f (n) ∈ Hb⊗n
τ,C}∞n=0 be the kernels from decomposition (1.8)

for f ∈ (Hτ )q. By Theorem 1.3 0 = ‖f‖2(L2) =
∑∞

n=0 n!|f (n)|2ext (we remind that by

Proposition 2.1 for each n ∈ Z+ Hb⊗n
τ,C ↪→ H(n)

ext , therefore the norms |f (n)|ext are well-

defined), hence ∀n ∈ Z+ |f (n)|ext = 0 and (again in view of the embedding of Hb⊗n
τ,C in
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H(n)
ext) |f (n)|τ = 0. But it means that ‖f‖2τ,q =

∑∞
n=0(n!)22qn|f (n)|2τ = 0, thus f = 0

as an element of (Hτ )q and the continuous embedding of (Hτ )q in (L2) is proved. The
density of this embedding from the density of the embedding P ↪→ (L2) follows (the last
fact is a consequence of a holomorphy at zero of the Laplace transform of µ, see, e.g.,
[32]). �

Remark 2.5. Let Nq0 := {q0, q0 + 1, . . . } ⊆ N. Then we can reformulate Proposition 2.3
as follows: for all q ∈ Nq0 and for all τ ∈ T the dense and continuous embedding
(Hτ )q ↪→ (L2) is valid.

Now one can consider the chain

(2.8) (D′)′ ⊃ (H−τ ) ⊃ (H−τ )−q ⊃ (L2) ⊃ (Hτ )q ⊃ (Hτ ) ⊃ (D), q ∈ Nq0 , τ ∈ T,

where (H−τ )−q, (H−τ ) = ind limq∈Nq0
(H−τ )−q, (D′)′ = ind limq∈Nq0 ,τ∈T (H−τ )−q are

the dual to (Hτ )q, (Hτ ), (D) with respect to (L2) spaces correspondingly.

Definition 2.2. The spaces (H−τ )−q (q ∈ Nq0 , τ ∈ T ), (H−τ ), (D′)′ are called the
Kondratiev-type spaces of nonregular generalized functions.

The generated by the scalar product in (L2) (real) dual pairing between elements of
(H−τ )−q and (Hτ )q (in the same way as (H−τ ) and (Hτ ), (D′)′ and (D)) will be denoted
by 〈〈·, ·〉〉 (for example, if f, g ∈ (L2) then 〈〈f, g〉〉 = (f, g)(L2) =

∫
D′ f(x)g(x)µ(dx)).

One can construct orthogonal bases in the spaces (H−τ )−q by different ways. The
simplest solution of this problem consists in using of results of the so-called biorthogonal
analysis (see, e.g., [18, 3, 19, 24, 7]); but in this case elements of orthogonal bases
in (H−τ )−q are some generalized functions that are ”not concordant” with the special
orthogonality of the generalized Meixner polynomials in (L2), this is very inconvenient
for our consequent considerations. Another way is based on the well-known result of the
general duality theory: since the generalized Meixner polynomials are orthogonal in (Hτ )q

and in (L2), these polynomials are orthogonal in (H−τ )−q. This fact is not sufficient in
order to accept the set {〈Pn, f (n)〉: f (n) ∈ Hb⊗n

τ,C} as an orthogonal basis in (H−τ )−q

(the ”coefficients” of a basis must be distributions), but the corresponding basis can be
constructed ”on the base of the generalized Meixner polynomials”. An example of such
a construction is given in [21] for the connected with the Gamma measure generalized
Laguerre polynomials.

Now we construct the connected with the generalized Meixner polynomials orthogonal
bases in (H−τ )−q and establish the interconnection of these bases with ones that are
given by the ”biorthogonal approach”. Note that our approach differs from the offered
in [21] one (here we give more general and independent presentation). We begin from
two statements that are simple generalizations of well-known results for Fock spaces.

Lemma 2.1. Let H0,H1, . . . be (complex) Hilbert spaces, v = (vn > 0)∞n=0 be a numer-
ical sequence. The space

Hv :=
∞
⊕

n=0
Hnvn

≡
{

f = (f (0), f (1), . . . ) : f (n) ∈ Hn, n ∈ Z+, ‖f‖2Hv
:=

∞∑
n=0

|f (n)|2Hnvn < ∞
}

is a Hilbert one with the (real) scalar product

(f, g)Hv =
∞∑

n=0

(f (n), g(n))Hnvn

(here | · |Hn and (·, ·)Hn are the norms and the (real) scalar products in Hn corres-
pondingly, n ∈ Z+).
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This result follows from the well-known fact that a direct sum of Hilbert spaces is a
Hilbert space. �

Using Lemma 2.1 and the theory of rigged Hilbert spaces (see, e.g., [8]), one can easily
prove the following

Lemma 2.2. Let (Hn
− ⊇ Hn

0 ⊇ Hn
+)∞n=0 be a sequence of chains of Hilbert spaces (riggings

of Hn
0 ), (vn)∞n=0, (wn)∞n=0 (0 < wn ≤ vn ∀n ∈ Z+) be numerical sequences. Then

∞
⊕

n=0
Hn

+vn is densely and continuously embedded in
∞
⊕

n=0
Hn

0 wn, and
∞
⊕

n=0
Hn
−

w2
n

vn
is the

space that is dual to
∞
⊕

n=0
Hn

+vn with respect to the zero space
∞
⊕

n=0
Hn

0 wn, i.e.,

(2.9)
∞
⊕

n=0
Hn
−

w2
n

vn
⊇

∞
⊕

n=0
Hn

0 wn ⊇
∞
⊕

n=0
Hn

+vn

is a chain of Hilbert spaces.

By construction the space (Hτ )q (τ ∈ T , q ∈ Nq0 (see Remark 2.5)) is isometrically

isomorphic to the space
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn

(Hτ )q 3 f =
∞∑

n=0

〈Pn, f (n)〉 ↔ f̃ = (f (0), f (1), . . . ) ∈
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn,

‖f‖τ,q = ‖f̃‖ ∞
⊕

n=0
H b⊗n

τ,C(n!)22qn
(see (2.7) and Lemma 2.1). Therefore there exists the iso-

metric isomorphism between the space (H−τ )−q and the space [
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn]′ of

linear continuous functionals on
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn. Different representations of the space

[
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn]′ can be associated with different orthogonal bases in (H−τ )−q. We

consider two representations of [
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn]′ (and, correspondingly, two bases in

(H−τ )−q) that are connected with chains (2.4), (2.1).
Let

(2.10)
∞
⊕

n=0
H(n)
−τ,C2−qn ⊃

∞
⊕

n=0
H(n)

extn! ⊃
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn

be chain (2.9) that is based on chains (2.4). Now [
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn]′ is represented by

the Hilbert space
∞
⊕

n=0
H(n)
−τ,C2−qn, therefore each element F ∈ (H−τ )−q can be identified

with F̃ = (F (0)
ext , F

(1)
ext , . . . ) ∈

∞
⊕

n=0
H(n)
−τ,C2−qn, i.e., there exists the orthogonal basis in

(H−τ )−q that has a form of a family of generalized functions {〈P̃n, F
(n)
ext 〉 ∈ (H−τ )−q:

F
(n)
ext ∈ H

(n)
−τ,C, n ∈ Z+} such that

(2.11) F =
∞∑

n=0

〈P̃n, F
(n)
ext 〉

and this formal series converges in the sense that

(2.12) ‖F‖2−τ,−q := ‖F‖2(H−τ )−q
= ‖F̃‖2∞

⊕
n=0

H(n)
−τ,C2−qn

=
∞∑

n=0

2−qn|F (n)
ext |2−τ,ext < ∞

(here and below by | · |−τ,ext denote the norms in H(n)
−τ,C). Note that, as is easily seen,

for all n ∈ Z+, c1, c2 ∈ C, F
(n)
ext , G

(n)
ext ∈ H(n)

−τ,C 〈P̃n, c1F
(n)
ext + c2G

(n)
ext〉 = c1〈P̃n, F

(n)
ext 〉 +
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c2〈P̃n, G
(n)
ext〉. Further, for each f ∈ (Hτ )q that corresponds to f̃ = (f (0), f (1), . . . ) ∈

∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn (here {f (n)}∞n=0 are the kernels from decomposition (1.8) for f) we

have

(2.13) 〈〈F, f〉〉 = (F̃ , f̃) ∞
⊕

n=0
H(n)

extn!
=

∞∑
n=0

n!〈F (n)
ext , f (n)〉ext.

In particular,
〈〈〈P̃n, F

(n)
ext 〉, 〈Pm, f (m)〉〉〉 = δnmn!〈F (n)

ext , f (n)〉ext.

Therefore taking into account (1.6) and a density in (L2) of the set of polynomials, one
can conclude that for smooth F

(n)
ext ∈ H

b⊗n
τ,C 〈P̃n, F

(n)
ext 〉 is a generalized Meixner polynomial,

hence it is natural to accept the notation

〈P̃n, F
(n)
ext 〉 = 〈Pn, F

(n)
ext 〉 ∀F (n)

ext ∈ H
(n)
−τ,C.

Remark 2.6. One can understand 〈P̃n, F
(n)
ext 〉 with F

(n)
ext ∈ H(n)

−τ,C as a limit in (H−τ )−q

(for any q ∈ Nq0) of a sequence of generalized Meixner polynomials (cf. 〈Pn, f (n)〉, f (n) ∈
H(n)

ext): if Hb⊗n
τ,C 3 F

(n)
k

→
k→∞

F
(n)
ext ∈ H

(n)
−τ,C in the topology of H(n)

−τ,C then

‖〈P̃n, F
(n)
ext 〉 − 〈Pn, F

(n)
k 〉‖−τ,−q = ‖〈P̃n, F

(n)
ext 〉 − 〈P̃n, F

(n)
k 〉‖−τ,−q

= ‖〈P̃n, F
(n)
ext − F

(n)
k 〉‖−τ,−q = 2−qn/2|F (n)

ext − F
(n)
k |−τ,ext →

k→∞
0.

Note that it is possible to define 〈P̃n, F
(n)
ext 〉 as a limit of a sequence of the generalized

Meixner polynomials in (H−τ )−q, and then to prove that such limits form an orthogonal
basis in this space (for example, with using of Lemma 2.2).

Remark 2.7. Actually the fact that 〈P̃n, F
(n)
ext 〉 (n ∈ Z+) are direct generalizations of

the generalized Meixner polynomials is connected with the result of Theorem 1.3: the
”central space” of chain (2.10) is isometrically isomorphic to (L2), i.e.,

(L2) 3 f =
∞∑

n=0

〈Pn, f (n)〉 ↔ f̃ = (f (0), f (1), . . . ) ∈
∞
⊕

n=0
H(n)

extn!

(and for f (n) ∈ Hb⊗n
τ,C 〈Pn, f (n)〉 (n ∈ Z+) here are the generalized Meixner polynomials).

Let now
∞
⊕

n=0
Hb⊗n
−τ,C2−qn ⊃

∞
⊕

n=0
Hb⊗n

C n! ⊃
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn

be chain (2.9) that is based on chains (2.1) (note that all spaces in this chain are weighted

Fock ones). The space [
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn]′ is represented by
∞
⊕

n=0
Hb⊗n
−τ,C2−qn, therefore each

element F ∈ (H−τ )−q can be identified with F̆ = (F (0), F (1), . . . ) ∈
∞
⊕

n=0
Hb⊗n
−τ,C2−qn, i.e.,

there exists the orthogonal basis in (H−τ )−q that has a form of a family of generalized
functions {Qn(F (n); ·) ≡ Qn(F (n)) ∈ (H−τ )−q: F (n) ∈ Hb⊗n

−τ,C, n ∈ Z+} such that

(2.14) F =
∞∑

n=0

Qn(F (n))

and this formal series converges in the sense that

(2.15) ‖F‖2−τ,−q = ‖F̆‖2∞
⊕

n=0
H b⊗n
−τ,C2−qn

=
∞∑

n=0

2−qn|F (n)|2−τ < ∞
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(and it is easy to see that for all n ∈ Z+, c1, c2 ∈ C, F (n), G(n) ∈ Hb⊗n
−τ,C Qn(c1F

(n) +
c2G

(n)) = c1Qn(F (n))+c2Qn(G(n))). Note that, of course, for the same F ∈ (H−τ )−q the
sums of series in the right hand sides of (2.12) and (2.15) are coincide (in fact, F̃ and F̆ are

different representations of the same linear continuous functional lF on
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn,

therefore ‖F̃‖ ∞
⊕

n=0
H(n)
−τ,C2−qn

= ‖lF ‖ = ‖F̆‖ ∞
⊕

n=0
H b⊗n
−τ,C2−qn

). Further, for each f ∈ (Hτ )q that

corresponds to f̃ = (f (0), f (1), . . . ) ∈
∞
⊕

n=0
Hb⊗n

τ,C(n!)22qn (here {f (n)}∞n=0 are the kernels

from decomposition (1.8) for f) we have

(2.16) 〈〈F, f〉〉 = (F̆ , f̃) ∞
⊕

n=0
H b⊗n

C n!
=

∞∑
n=0

n!〈F (n), f (n)〉.

In particular,
〈〈Qn(F (n)), 〈Pm, f (m)〉〉〉 = δnmn!〈F (n), f (n)〉

(this is the so-called biorthogonality relation, cf. [27, 18, 3, 24, 7]).

In view of (2.5) the representatives F̃ = (F (0)
ext , F

(1)
ext , . . . ) ∈

∞
⊕

n=0
H(n)
−τ,C2−qn and F̆ =

(F (0), F (1), . . . ) ∈
∞
⊕

n=0
Hb⊗n
−τ,C2−qn of the same functional lF are connected by the formulas

F (n) = UnF
(n)
ext , n ∈ Z+ (and also it follows from (2.4), (2.1) and (2.5) that | · |−τ,ext =

|Un · |−τ , i.e., for each F
(n)
ext ∈ H

(n)
−τ,C |F

(n)
ext |−τ,ext = |UnF

(n)
ext |−τ ). Therefore

(2.17) 〈Pn, F
(n)
ext 〉 = Qn(UnF

(n)
ext )

(or, which is the same, Qn(F (n)) = 〈Pn, U−1
n F (n)〉).

Let us formulate all connected with orthogonal bases in (H−τ )−q obtained above
results as a theorem.

Theorem 2.1. A generalized function F ∈ (H−τ )−q (τ ∈ T , q ∈ Nq0) if and only if
there exists a sequence

(2.18) (F (n)
ext ∈ H

(n)
−τ,C)∞n=0

such that F can be presented in form (2.11), where the formal series converges in
(H−τ )−q, i.e., norm (2.12) is finite. Furthermore, the system {〈Pn, F

(n)
ext 〉: F

(n)
ext ∈

H(n)
−τ,C, n ∈ Z+} plays a role of an orthogonal basis in (H−τ )−q in the sense that for

F,G ∈ (H−τ )−q

(F,G)(H−τ )−q
=

∞∑
n=0

2−qn(F (n)
ext , G

(n)
ext)−τ,ext,

where F
(n)
ext , G

(n)
ext ∈ H

(n)
−τ,C are the kernels from decompositions (2.11) for F and G cor-

respondingly, (·, ·)−τ,ext is the scalar product in H(n)
−τ,C.

Alternatively, instead of sequence (2.18) one can use the sequence

(2.19) (F (n) = UnF
(n)
ext ∈ H

b⊗n
−τ,C)∞n=0

(see (2.5)), in this case F has form (2.14), norm (2.15) must be finite; and the system
{Qn(F (n)): F (n) ∈ Hb⊗n

−τ,C, n ∈ Z+} plays a role of an orthogonal basis in (H−τ )−q in
the sense that for F,G ∈ (H−τ )−q

(F,G)(H−τ )−q
=

∞∑
n=0

2−qn(F (n), G(n))−τ ,
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where F (n), G(n) ∈ Hb⊗n
−τ,C are the kernels from decompositions (2.14) for F and G cor-

respondingly, (·, ·)−τ is the scalar product in Hb⊗n
−τ,C (we note that (F (n)

ext , G
(n)
ext)−τ,ext =

(UnF
(n)
ext , UnG

(n)
ext)−τ , ‖F‖−τ,−q =

√
(F, F )(H−τ )−q

).

The generalized functions 〈Pn, F
(n)
ext 〉 and Qn(F (n)) are connected by formula (2.17).

The (generated by the scalar product in (L2)) real dual pairing between elements of
(H−τ )−q and (Hτ )q is given by (2.13) or, equivalently, by (2.16).

Remark 2.8. It is easy to see that F ∈ (H−τ ) (correspondingly F ∈ (D′)′) if and only if
there exists sequence (2.18) such that F can be presented in form (2.11) with finite norm
(2.12) for some q ∈ N (correspondingly for some q ∈ N and some τ ∈ T ). Alternatively,
one can use sequence (2.19), representation (2.14) and norm (2.15).

Remark 2.9. One can construct the generalized functions Qn(F (n)) and 〈Pn, F
(n)
ext 〉, and

to prove that they play the role of orthogonal bases in (H−τ )−q (τ ∈ T , q ∈ Nq0) by
another way (by analogy with [21]). Namely, on ”monomials” 〈Pm, f (m)〉, f (m) ∈ Hb⊗m

τ,C

we define a generalized differential operator 〈F (n), : D :b⊗n〉, F (n) ∈ Hb⊗n
−τ,C by setting

〈F (n), : D :b⊗n〉〈Pm, f (m)〉 := 1{m≥n}
m!

(m− n)!
〈Pm−n⊗̂F (n), f (m)〉

(here and below 1A denotes the indicator of A). One can prove (see, e.g., [18]) that this
operator can be extended to a linear continuous operator acting in (Hτ )q (we preserve
for this extension the previous notation). Let 〈F (n), : D :b⊗n〉∗ : (H−τ )−q → (H−τ )−q be
the dual to 〈F (n), : D :b⊗n〉 with respect to (L2) operator, i.e.,

〈〈〈F (n), : D :b⊗n〉∗F, f〉〉 = 〈〈F, 〈F (n), : D :b⊗n〉f〉〉 ∀F ∈ (H−τ )−q, ∀f ∈ (Hτ )q.

We define Q̃n(F (n)) := 〈F (n), : D :b⊗n〉∗1. It is easy to show that for all n, m ∈ Z+,
F (n) ∈ Hb⊗n

−τ,C and f (m) ∈ Hb⊗m
τ,C

〈〈Q̃n(F (n)), 〈Pm, f (m)〉〉〉 = δnmn!〈F (n), f (n)〉,

therefore Q̃n(F (n)) = Qn(F (n)). It follows from general results of non-Gaussian infinite-
dimensional analysis (see, e.g., [18, 24, 19]) that the system {Q̃n(F (n)): F (n) ∈ Hb⊗n

−τ,C,
n ∈ Z+} plays a role of an orthogonal basis in (H−τ )−q in the sense of Theorem 2.1. The
generalized functions {〈Pn, F

(n)
ext 〉: F

(n)
ext ∈ H

(n)
−τ,C, n ∈ Z+} can be defined now by (2.17),

their properties from properties of the ”Q-system” follow.

Now let us introduce the Kondratiev-type spaces of regular test and generalized func-
tions (cf. [12, 17, 16]). First we consider the set P̃ := {f =

∑Nf

n=0〈Pn, f (n)〉, f (n) ∈
H(n)

ext , Nf ∈ Z+} ⊂ (L2) of polynomials and ∀q ∈ N introduce on this set the scalar
product (·, ·)q by setting for f =

∑Nf

n=0〈Pn, f (n)〉, g =
∑Ng

n=0〈Pn, g(n)〉

(f, g)q :=
min(Nf ,Ng)∑

n=0

(n!)22qn〈f (n), g(n)〉ext.

Let ‖ · ‖q be the corresponding norm: ‖f‖q =
√

(f, f)q =
√∑Nf

n=0(n!)22qn|f (n)|2ext.

Definition 2.3. We define the Kondratiev-type spaces of (”regular”) test functions (L2)1q
(q ∈ N) as the closures of P̃ with respect to the norms ‖ · ‖q, (L2)1 := pr limq∈N(L2)1q.
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It is not difficult to see that f ∈ (L2)1q if and only if f can be presented in form (1.8)
with

(2.20) ‖f‖2q =
∞∑

n=0

(n!)22qn|f (n)|2ext < ∞,

and for f, g ∈ (L2)1q (f, g)q := (f, g)(L2)1q
=

∞∑
n=0

(n!)22qn〈f (n), g(n)〉ext, where f (n), g(n) ∈

H(n)
ext are the kernels from decompositions (1.8) for f and g correspondingly. Therefore

the generalized Meixner polynomials play a role of an orthogonal basis in (L2)1q.
It is obvious that for each q ∈ N ‖ · ‖(L2) ≤ ‖ · ‖q. Further, let a sequence (fk ∈ P̃)∞k=1

be a Cauchy one in (L2)1q and tends to zero in (L2), and let f := limk→∞ fk in (L2)1q. We
have ‖f‖(L2) = ‖f − fk + fk‖(L2) ≤ ‖f − fk‖(L2) + ‖fk‖(L2) ≤ ‖f − fk‖q + ‖fk‖(L2) → 0
as k → ∞, so, ‖f‖(L2) = 0. But it follows from here that for all kernels f (n) ∈ H(n)

ext

from decomposition (1.8) for f |f (n)|ext = 0 (see (1.9)) whence ‖f‖q = 0. Therefore
fk → 0 (as k → ∞) in (L2)1q. Thus (see, e.g., [8]) (L2)1q is continuously embedded in
(L2). Moreover, it is obvious that this embedding is dense. Therefore one can consider
the chain

(2.21) (L2)−1 = ind limeq∈N
(L2)−1

−eq ⊃ (L2)−1
−q ⊃ (L2) ⊃ (L2)1q ⊃ (L2)1,

where (L2)−1
−q, (L2)−1 are the dual to (L2)1q, (L2)1 with respect to (L2) spaces corre-

spondingly.

Definition 2.4. The spaces (L2)−1
−q, (L2)−1 are called the Kondratiev-type spaces of

regular generalized functions.

Let us construct the natural orthogonal bases in (L2)−1
−q. By construction the space

(L2)1q (q ∈ N) is isometrically isomorphic to the space
∞
⊕

n=0
H(n)

ext(n!)22qn:

(L2)1q 3 f =
∞∑

n=0

〈Pn, f (n)〉 ↔ f̃ = (f (0), f (1), . . . ) ∈
∞
⊕

n=0
H(n)

ext(n!)22qn,

‖f‖q = ‖f̃‖ ∞
⊕

n=0
H(n)

ext (n!)22qn
(see (2.20) and Lemma 2.1). Therefore there exists the iso-

metric isomorphism between the space (L2)−1
−q and the space [

∞
⊕

n=0
H(n)

ext(n!)22qn]′ of linear

continuous functionals on
∞
⊕

n=0
H(n)

ext(n!)22qn. Let

∞
⊕

n=0
H(n)

ext2
−qn ⊃

∞
⊕

n=0
H(n)

extn! ⊃
∞
⊕

n=0
H(n)

ext(n!)22qn

be chain (2.9) that is based on the (degenerated) chains H(n)
ext ⊇ H(n)

ext ⊇ H(n)
ext . Now

the space [
∞
⊕

n=0
H(n)

ext(n!)22qn]′ is represented by the Hilbert space
∞
⊕

n=0
H(n)

ext2−qn, therefore

each element F ∈ (L2)−1
−q can be identified with F̂ = (F (0)

ext , F
(1)
ext , . . . ) ∈

∞
⊕

n=0
H(n)

ext2−qn,

i.e., there exists the orthogonal basis in (L2)−1
−q that has a form of a family of regular

generalized functions {〈P̂n, F
(n)
ext 〉 ∈ (L2)−1

−q: F
(n)
ext ∈ H

(n)
ext , n ∈ Z+} such that

(2.22) F =
∞∑

n=0

〈P̂n, F
(n)
ext 〉
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and this formal series converges in the sense that

(2.23) ‖F‖2−q := ‖F‖2
(L2)−1

−q

= ‖F̂‖2∞
⊕

n=0
H(n)

ext2
−qn

=
∞∑

n=0

2−qn|F (n)
ext |2ext < ∞.

Note that, as is easily seen, for all n ∈ Z+, c1, c2 ∈ C, F
(n)
ext , G

(n)
ext ∈ H

(n)
ext 〈P̂n, c1F

(n)
ext +

c2G
(n)
ext〉 = c1〈P̂n, F

(n)
ext 〉 + c2〈P̂n, G

(n)
ext〉. Further, for each f ∈ (L2)1q that corresponds to

f̃ = (f (0), f (1), . . . ) ∈
∞
⊕

n=0
H(n)

ext(n!)22qn (here {f (n)}∞n=0 are the kernels from decomposi-

tion (1.8) for f) we have

〈〈F, f〉〉 = (F̂ , f̃) ∞
⊕

n=0
H(n)

extn!
=

∞∑
n=0

n!〈F (n)
ext , f (n)〉ext.

In particular,

〈〈〈P̂n, F
(n)
ext 〉, 〈Pm, f (m)〉〉〉 = δnmn!〈F (n)

ext , f (n)〉ext.

Therefore taking into account (1.6) and a density in (L2) of the set of polynomials, one can
conclude that for smooth F

(n)
ext ∈ D

b⊗n
C 〈P̂n, F

(n)
ext 〉 is a generalized Meixner polynomial; and

for a general F
(n)
ext ∈ H

(n)
ext 〈P̂n, F

(n)
ext 〉 is an (L2)-limit of the corresponding sequence of the

generalized Meixner polynomials (see Definition 1.5). Note that this result is connected
with the results of Theorem 1.3, cf. Remark 2.7. We remind that in accordance with the
accepted above notation

〈P̂n, F
(n)
ext 〉 = 〈Pn, F

(n)
ext 〉.

As above, let us sum up the obtained results in

Theorem 2.2. A regular generalized function F ∈ (L2)−1
−q (q ∈ N) if and only if there

exists a sequence

(2.24) (F (n)
ext ∈ H

(n)
ext)

∞
n=0

such that F can be presented in form (2.22), where the formal series converges in (L2)−1
−q,

i.e., norm (2.23) is finite. Furthermore, the system {〈Pn, F
(n)
ext 〉: F

(n)
ext ∈ H

(n)
ext, n ∈ Z+}

plays a role of an orthogonal basis in (L2)−1
−q in the sense that for F,G ∈ (L2)−1

−q

(F,G)(L2)−1
−q

=
∞∑

n=0

2−qn〈F (n)
ext , G

(n)
ext〉ext,

where F
(n)
ext , G

(n)
ext ∈ H(n)

ext are the kernels from decompositions (2.22) for F and G cor-
respondingly. The (generated by the scalar product in (L2)) real dual pairing between
elements of (L2)−1

−q and (L2)1q is given by (2.13).

Remark 2.10. It is easy to see that F ∈ (L2)−1 if and only if there exists a sequence
(2.24) such that F can be presented in form (2.22) with finite norm (2.23) for some q ∈ N.

Remark 2.11. Note that one can introduce the spaces (D)q := pr limτ∈T (Hτ )q (q ∈ N)
and the corresponding dual ones; but all results for these spaces are similar to the results
for (Hτ )q and (H−τ )−q.

Finally we note that in order to construct and study the extended stochastic integral
and elements of the Wick calculus on the spaces of regular generalized functions it is not
necessary to use the result of Lemma 1.2.
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3. An extended stochastic integral

In this section we introduce and study a natural extended stochastic integral that
is connected with the generalized Meixner measure µ. Note that our construction is
similar to the construction of the connected with the Gamma measure extended stochastic
integral, see [21, 17].

First, let us recall the classical definition of the extended stochastic integral. Let γ be
the Gaussian measure on D′, i.e., the probability measure with the Laplace transform

lγ(λ) =
∫
D′

exp{〈x, λ〉}γ(dx) = exp
{1

2
〈λ, λ〉

}
.

By the Wiener-Itô chaos decomposition theorem (see, e.g., [14]) the Gaussian measure
has the so-called Chaotic Representation Property (CRP), i.e., we can write any function
f ∈ L2(D′, γ) in the form

(3.1) f =
∞∑

n=0

n!
∫ ∞

0

∫ un

0

. . .

∫ u2

0

f (n)(u1, . . . , un) dWu1 . . . dWun ,

where for each n ∈ N f (n) ∈ Hb⊗n
C = L2(R+, σ)b⊗n

C , the term with n = 0 in (3.1) is just a
constant f (0) ∈ C, and W· is a standard Wiener process.

Let now f ∈ L2(D′, γ)⊗HC. It follows from (3.1) that

(3.2) f(·) =
∞∑

n=0

n!
∫ ∞

0

∫ un

0

. . .

∫ u2

0

f
(n)
· (u1, . . . , un) dWu1 . . . dWun

,

where for each n ∈ Z+ f
(n)
· ∈ Hb⊗n

C ⊗ HC. We assume in addition that f is adapted
with respect to the flow of (full by definition) σ-algebras {Fs = σ(Wu, u ≤ s)}s≥0 that
is generated by the Wiener process (more exactly, there is a representative (a function)
f 3 ḟ : R+ → L2(D′, γ) such that ḟ(s) is Fs-measurable ∀s ∈ R+). As is well known
(see, e.g., [13]), f is integrable by Itô and the corresponding Itô integral has the form

(3.3)
∫ ∞

0

f(s) dWs =
∞∑

n=0

n!
∫ ∞

0

∫ s

0

∫ un

0

. . .

∫ u2

0

f (n)
s (u1, . . . , un) dWu1 . . . dWundWs.

In fact, the ”adaptiveness” of f means that, roughly speaking, if for some k ∈ {1, . . . , n}
uk > s then f

(n)
s (u1, . . . , un) = 0 (more exactly, such a function belongs to the corre-

sponding equivalence class f
(n)
· ). Therefore (3.2) can be rewritten in the form

(3.4) f(·) =
∞∑

n=0

n!
∫ ·

0

∫ un

0

. . .

∫ u2

0

f
(n)
· (u1, . . . , un) dWu1 . . . dWun

,

and integrating this series term by term we obtain (3.3) (the correctness of such integra-
tion follows from the estimate∥∥∥∫ ∞

0

f(s) dWs

∥∥∥2

L2(D′,γ)
≡ E

[∣∣∣ ∫ ∞

0

f(s) dWs

∣∣∣2]
= E

[ ∫ ∞

0

|f(s)|2σ(ds)
]
≡ ‖f‖2L2(D′,γ)⊗HC

< ∞,

here and below E denotes the expectation).
Let f̂ (n) ∈ Hb⊗n+1

C be the symmetrization of f
(n)
· with respect to n+1 variables (more

exactly, the projection of f
(n)
· ∈ Hb⊗n

C ⊗HC on Hb⊗n+1
C ). It is easy to see that (3.3) can
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be rewritten in the form
(3.5)∫ ∞

0

f(s) dWs =
∞∑

n=0

(n + 1)!
∫ ∞

0

∫ s

0

∫ un

0

. . .

∫ u2

0

f̂ (n)(u1, . . . , un, s) dWu1 . . . dWundWs.

If f is not adapted with respect to {Fs}s≥0 then the Itô integral
∫∞
0

f(s) dWs has
no sense (note that now f can not be presented in form (3.4), and at least one term
in series (3.2) is not integrable by Itô, therefore term by term integration of (3.2) is
impossible). Nevertheless, one can consider symmetrizations f̂ (n) of kernels f

(n)
· and

write out formal series (3.5) that can diverge in L2(D′, γ), generally speaking. Let us
assume that f ∈ L2(D′, γ)⊗HC is such that series (3.5) converges in L2(D′, γ), i.e.,∥∥∥ ∞∑

n=0

(n + 1)!
∫ ∞

0

∫ s

0

∫ un

0

. . .

∫ u2

0

f̂ (n)(u1, . . . , un, s) dWu1 . . . dWun
dWs

∥∥∥2

L2(D′,γ)

=
∞∑

n=0

(n + 1)!|f̂ (n)|20 < ∞

(remind that any adapted with respect to {Fs}s≥0 f ∈ L2(D′, γ) ⊗ HC satisfies this
assumption). Then the sum of series (3.5) is called the extended (Skorohod) stochastic
integral, we denote this integral by

∫∞
0

f(s) d̂Ws.
So, the extended stochastic integral

∫∞
0
◦(s) d̂Ws is an extension of the Itô stochastic

integral
∫∞
0
◦(s) dWs in the sense that the domain of the Itô integral is embedded in the

domain of the extended stochastic integral, there are integrable ”in the extended sense”
and not integrable by Itô functions, and if f is integrable by Itô then

∫∞
0

f(s) d̂Ws =∫∞
0

f(s) dWs.

Remark 3.1. Note that for not adapted f sums of series (3.3) and (3.5) are different (in
this case the right hand side of (3.3) is the Itô integral from the element of L2(D′, γ)⊗HC
that is defined by the right hand side of (3.4)). In a sense one can understand (3.3) as a
not Skorohod extended stochastic integral.

On the other hand, it is well known (see, e.g., [13]) that for each n ∈ Z+ one can iden-
tify the multiple stochastic integral with the corresponding generalized Hermite polyno-
mial, i.e.,
(3.6)

n!
∫ ∞

0

∫ un

0

. . .

∫ u2

0

f
(n)
· (u1, . . . , un) dWu1 . . . dWun

= 〈Hn, f
(n)
· 〉 ∀f (n)

· ∈ Hb⊗n
C ⊗HC,

where Hn(x) ∈ D′ b⊗n is the kernel of the Hermite polynomial of power n from the
decomposition

(3.7) exp
{
〈x, λ〉 − 1

2
〈λ, λ〉

}
=

∞∑
n=0

1
n!
〈Hn(x), λ⊗n〉,

λ belongs to some neighborhood of zero in DC. Thus one can rewrite the integrand f

and the stochastic integral
∫∞
0

f(s) d̂Ws (formulas (3.2) and (3.5)) in the form

f(·) =
∞∑

n=0

〈Hn, f
(n)
· 〉

and ∫ ∞

0

f(s) d̂Ws =
∞∑

n=0

〈Hn+1, f̂
(n)〉



ON AN EXTENDED STOCHASTIC INTEGRAL . . . 357

correspondingly (note that the Wiener process can be written out in this notation in the
form W· = 〈H1, 1[0,·)〉).

If instead of the space L2(D′, γ) we want to use the space (L2) = L2(D′, µ) with the
generalized Meixner measure µ then the full analog of the recalled above construction
of the extended stochastic integral can not be obtained. In the first place, µ has no
the CRP if η 6= 0 (see (1.2) for a definition of η), i.e., we can not present any element
f ∈ (L2) in form (3.1) with the corresponding stochastic process (actually this follows
from Theorem 1.3 and the construction of the Itô stochastic integral; one can found the
proof for the Gamma measure (corresponding to η = 1) in, e.g., [9]). In the second place,
an attempt to ”go around” the absence of the CRP leads to use H(n)

ext instead ofHb⊗n
C . But

since for η 6= 0 and n > 1 H(n)
ext are not tensor powers of Hilbert spaces, it is impossible to

use only the symmetrization in order to construct the kernels for the Meixner-analog of
decomposition (3.5), i.e., it is impossible to proceed by analogy with the Gaussian case.
So, in order to construct the natural extended stochastic integral that is connected with
the generalized Meixner measure, we need a modification of the described above classical
scheme. The idea of this modification is the same as in the Gamma analysis (see [21, 17])
and very simple: in order to construct f̂ (n) ∈ H(n+1)

ext starting from f (n) ∈ H(n)
ext ⊗HC we

”exclude a diagonal of f (n)”, i.e., non-strictly speaking, we symmetrize the ”function”

(3.8) f̃ (n)(t1, . . . , tn, s) :=

{
f

(n)
s (t1, . . . , tn), if s 6= t1, . . . , s 6= tn

0, in other cases

(cf. [21, 17]).
Now let us pass to the construction of stochastic integrals in the Meixner analysis. By

analogy with the classical Gaussian analysis one can consider the Meixner process M· on
the probability space (D′,F , µ): for each s ∈ R+ Ms := 〈P1, 1[0,s)〉 ∈ (L2).

Remark 3.2. Since now the measure µ is centered, P1(x) = x. For a noncentered measure
µ (such measures were considered in, e.g., [23, 21, 15, 29, 17]) 〈P1, 1[0,s)〉 = 〈·, 1[0,s)〉 −
E〈·, 1[0,s)〉. In both cases E〈P1, 1[0,s)〉 = 0, i.e., the random process M· = 〈P1, 1[0,·)〉 is a
compensated one.

The process M· has orthogonal increments (see (1.6) and Theorem 1.3), therefore M· is
a martingale with respect to the flow of σ-algebras {Fs := σ(Mu : u ≤ s)}s≥0 (as above,
all Fs are full by definition). Further, this martingale is (locally) square integrable: on
each interval [0, S], S ∈ R+

sup
s≤S

EM2
s = sup

s≤S
〈〈〈P1, 1[0,s)〉2, 1〉〉 = sup

s≤S

∫
D′
〈P1(x), 1[0,s)〉2µ(dx)

= sup
s≤S

〈1[0,s), 1[0,s)〉 = sup
s≤S

σ{[0, s)} = σ{[0, S)} < ∞,

therefore M· has the Doob-Meyer decomposition M2
· = m· + A·, where m· is an Fs-

martingale and A· is a natural increasing process. Finally, since by Theorem 1.1 the
generalized stochastic process (the Meixner white noise) {M ′

s = 〈P1, δs〉 ∈ (H−τ )−q}s≥0

(τ ∈ T , q ∈ Nq0) has independent values, M· has independent increments, therefore A·
is nonrandom, so, M· is a (square integrable) normal Fs-martingale. Hence one can
consider the Itô stochastic integral with respect to M·, and any adapted with respect to
{Fs}s≥0 f ∈ (L2)⊗HC is integrable by Itô on R+ (and, therefore, on [0, t) ∀t ∈ [0,+∞])
in the sense of the so-called L2-theory. We denote the Itô integral of f on [0, t) by∫ t

0
f(s) dMs.
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Now let us pass to the construction of the extended stochastic integral. Let f ∈
(L2)⊗HC. It follows from Theorem 1.3 that f can be presented in the form

(3.9) f(·) =
∞∑

n=0

〈Pn, f
(n)
· 〉, f

(n)
· ∈ H(n)

ext ⊗HC

with

‖f‖2(L2)⊗HC
=

∞∑
n=0

n!|f (n)
· |2

H(n)
ext⊗HC

< ∞.

Remark 3.3. Generally speaking, (3.9) is not a ”Meixner analog” of (3.2) because the
terms in series (3.9) can not be presented by analogy with (3.6) as repeated Itô integrals
with respect to M·. Nevertheless, for f ∈ (L2)⊗HC with the kernels from decomposition
(3.9) f

(n)
· ∈ Hb⊗n

C ⊗ HC (now Hb⊗n
C (n > 1) are considered as subspaces of H(n)

ext , see
Remark 1.10) representation (3.9) is a ”Meixner analog” of (3.2)

(3.10) 〈Pn, f
(n)
· 〉 = n!

∫ ∞

0

∫ un

0

. . .

∫ u2

0

f
(n)
· (u1, . . . , un) dMu1 . . . dMun

∀n ∈ Z+

(cf. (3.6)). In fact, for n = 0 (3.10) is obvious. Let n ∈ N and ∆1, . . . ,∆n ⊂ R+ be
disjoint measurable sets. Then, as is easily seen,
(3.11)

n!
∫ ∞

0

∫ un

0

. . .

∫ u2

0

(1∆1⊗̂ . . . ⊗̂1∆n)(u1, . . . , un) dMu1 . . . dMun = 〈P1, 1∆1〉 . . . 〈P1, 1∆n〉.

On the other hand, it follows from results of [31] that for each m ∈ Z+

(3.12)
〈Pm, f (m)〉〈P1, g

(1)〉 = 〈Pm+1, f
(m)⊗̂g(1)〉+ m〈Pm, P r(θ(·)g(1)(·)f (m)(·, ·2, . . . , ·m))〉

+ m〈Pm−1, 〈f (m), g(1)〉〉+ m(m− 1)〈Pm−1, P r(η(·)g(1)(·)f (m)(·, ·, ·3 . . . , ·m))〉

(see (1.2) for a definition of θ and η), where f (m) ∈ Db⊗m
C , g(1) ∈ DC, Pr is the symmetriza-

tion operator, 〈f (m), g(1)〉 :=
∫

R+
f (m)(s, ·2, . . . , ·m)g(1)(s)σ(ds) ∈ Db⊗m−1

C . Let (el
k ∈

D)∞l=1), k ∈ {1, . . . , n} be sequences of ”smooth” functions such that el
k → 1∆k

as l →∞
in H (it is clear that one can select el

k that satisfy estimates |el
k| ≤ c(k) ∀l ∈ N). It is not

difficult to show that since ∆1, . . . ,∆n are disjoint sets, el
1⊗̂ . . . ⊗̂el

n → 1∆1⊗̂ . . . ⊗̂1∆n

as l → ∞ in H(n)
ext (here we understand 1∆1⊗̂ . . . ⊗̂1∆n ∈ Hb⊗n as an element of H(n)

ext ,
see Remark 1.10); Pr(θ(·)el

n(·)(el
1⊗̂ . . . ⊗̂el

n−1)(·, ·2, . . . , ·n−1)) → 0 as l →∞ in H(n−1)
ext ;

〈el
1⊗̂ . . . ⊗̂el

n−1, e
l
n〉 → 0 as l →∞ and Pr(η(·)el

n(·)(el
1⊗̂ . . . ⊗̂el

n−1)(·, ·, ·3, . . . , ·n−1)) → 0
as l →∞ in H(n−2)

ext . Therefore substituting in (3.12) m = n−1, f (n−1) = el
1⊗̂ . . . ⊗̂el

n−1,
g(1) = el

n and passing to the limit as l →∞ we obtain

〈Pn−1, 1∆1⊗̂ . . . ⊗̂1∆n−1〉〈P1, 1∆n〉 = 〈Pn, 1∆1⊗̂ . . . ⊗̂1∆n〉.

By analogy 〈Pn−2, 1∆1⊗̂ . . . ⊗̂1∆n−2〉〈P1, 1∆n−1〉 = 〈Pn−1, 1∆1⊗̂ . . . ⊗̂1∆n−1〉 (if n > 1)
etc. So, 〈P1, 1∆1〉 . . . 〈P1, 1∆n〉 = 〈Pn, 1∆1⊗̂ . . . ⊗̂1∆n〉. Substituting this result in (3.11)
and taking into consideration that {1∆1⊗̂ . . . ⊗̂1∆n} with disjoint ∆1, . . . ,∆n ⊂ R+ is a
total set in Hb⊗n

C , we obtain

〈Pn, f (n)〉 = n!
∫ ∞

0

∫ un

0

. . .

∫ u2

0

f (n)(u1, . . . , un) dMu1 . . . dMun ∀f (n) ∈ Hb⊗n
C , ∀n ∈ Z+,

from where (3.10) follows (cf. [23]).

In order to give a definition of the extended stochastic integral we need
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Lemma 3.1. For given f
(n)
· ∈ H(n)

ext ⊗ HC and t ∈ [0,+∞] we construct the element
f̂

(n)
[0,t) ∈ H

(n+1)
ext by the following way. Let ḟ

(n)
· ∈ f

(n)
· be some representative (function)

from the equivalence class f
(n)
· . We set

˜̇
f

(n)

[0,t)(u1, . . . , un, u) :=

{
ḟ

(n)
u (u1, . . . , un)1[0,t)(u), if u 6= u1, . . . , u 6= un,

0, in other cases
,

̂̇
f

(n)

[0,t) := Pr
˜̇
f

(n)

[0,t), where Pr is the symmetrization operator. Let f̂
(n)
[0,t) ∈ H(n+1)

ext be the

generated by ̂̇
f

(n)

[0,t) equivalence class in H(n+1)
ext . This class is well-defined, does not depend

on the representative ḟ
(n)
· , and the estimate

(3.13) |f̂ (n)
[0,t)|ext ≤ |f (n)

· 1[0,t)(·)|H(n)
ext⊗HC

≤ |f (n)
· |H(n)

ext⊗HC

is valid.

Proof. By direct calculation that is based on formula (1.5), properties of ˜̇
f

(n)

[0,t), well-know
estimate |

∑p
l=1 al|2 ≤ p

∑p
l=1 |al|2 and nonatomicity of the measure σ, by analogy with

the calculation in the proof of Lemma 2.1 in [21] one can obtain the estimate

|̂̇f (n)

[0,t)|ext ≤ |ḟ (n)
· 1[0,t)(·)|H(n)

ext⊗HC
≤ |ḟ (n)

· |H(n)
ext⊗HC

,

therefore f̂
(n)
[0,t) is well-defined as an element of H(n+1)

ext and estimate (3.13) is valid. Let

ġ
(n)
· ∈ f

(n)
· be another representative of f

(n)
· , ĝ

(n)
[0,t) be the corresponding element of

H(n+1)
ext . We have |f̂ (n)

[0,t) − ĝ
(n)
[0,t)|ext = |̂̇f (n)

[0,t) − ̂̇g(n)

[0,t)|ext ≤ |ḟ (n)
· − ġ

(n)
· |H(n)

ext⊗HC
= 0 (it is

obvious that if ḣ
(n)
· = ḟ

(n)
· − ġ

(n)
· then ̂̇

h
(n)

[0,t) = ̂̇
f

(n)

[0,t) − ̂̇g(n)

[0,t)). Therefore f̂
(n)
[0,t) does not

depend on a choice of ḟ
(n)
· ∈ f

(n)
· and the Lemma is proved. �

Definition 3.1. Let t ∈ [0,+∞] and f ∈ (L2)⊗HC be such that

(3.14)
∞∑

n=0

(n + 1)!|f̂ (n)
[0,t)|

2
ext < ∞,

where f̂
(n)
[0,t) ∈ H

(n+1)
ext (n ∈ Z+) are constructed in Lemma 3.1 starting from the kernels

f
(n)
· ∈ H(n)

ext ⊗ HC from decomposition (3.9) for f . We define the extended stochastic
integral

∫ t

0
f(s) d̂Ms ∈ (L2) by setting

(3.15)
∫ t

0

f(s) d̂Ms :=
∞∑

n=0

〈Pn+1, f̂
(n)
[0,t)〉.

Since ‖
∫ t

0
f(s) d̂Ms‖2(L2) =

∑∞
n=0(n + 1)!|f̂ (n)

[0,t)|
2
ext < ∞, this definition is correct. �

Remark 3.4. Note that for the Gaussian or Poissonian measure η = 0 and f̂
(n)
[0,t) ∈

Hb⊗n+1
C is the symmetrization of f (n)(·1, . . . , ·n; ·)1[0,t)(·) ∈ Hb⊗n

C ⊗ HC with respect to
n + 1 ”arguments” (more exactly, f̂

(n)
[0,t) is the projection of f

(n)
· 1[0,t)(·) on Hb⊗n+1

C ).

For the general Meixner measure we have to ”exclude a diagonal of f
(n)
· 1[0,t)(·) before

symmetrization”, i.e., (non-strictly speaking) we symmetrize ”function” (3.8).
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It is easy to show (by analogy with the classical Gaussian case) that if f ∈ (L2)⊗HC is
integrable by Itô (with respect to the martingale M·) and satisfies the addition condition
of Remark 3.3 then

∫ t

0
f(s) d̂Ms =

∫ t

0
f(s) dMs. For a general f ∈ (L2) ⊗ HC the

”classical” proof can not be adapted; nevertheless, the result holds true (and therefore
Definition 3.1 is natural). More exactly, we have the following

Theorem 3.1. Let f ∈ (L2)⊗HC be adapted with respect to the generated by M· flow of
σ-algebras. Then ∀t ∈ [0,+∞] f is integrable on [0, t) by Itô and in the extended sense,
and

∫ t

0
f(s) d̂Ms =

∫ t

0
f(s) dMs.

Proof. Since f ∈ (L2) ⊗HC, E
∫∞
0
|f(s)|2σ(ds) = ‖f‖2(L2)⊗HC

< ∞, therefore f is inte-
grable by Itô. Further, let us prove that now
(3.16)

‖f‖2(L2)⊗HC
=

∞∑
n=0

n!|f (n)
· |2

H(n)
ext⊗HC

=
∞∑

n=0

(n + 1)!|f̂ (n)
[0,+∞)|

2
ext =

∥∥∥∫ +∞

0

f(s) d̂Ms

∥∥∥2

(L2)

(here the kernels f
(n)
· ∈ H(n)

ext⊗HC, n ∈ Z+ are from decomposition (3.9) for f , f̂
(n)
[0,+∞) ∈

H(n+1)
ext , n ∈ Z+ are constructed in Lemma 3.1 starting from f

(n)
· ). For this purpose we

will show that for each n ∈ Z+ |f̂ (n)
[0,+∞)|

2
ext = 1

n+1 |f
(n)
· |2

H(n)
ext⊗HC

. Using the notation of

Lemma 3.1 and (1.5) we can write

(3.17)

|f̂ (n)
[0,+∞)|

2
ext =

∑
k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n+1

(n + 1)!
ls1
1 . . . lsk

k s1! . . . sk!

×
∫

Rs1+···+sk
+

|̂̇f (n)

[0,+∞)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)|2

× η(t1)l1−1 . . . η(ts1+···+sk
)lk−1σ(dt1) . . . σ(dts1+···+sk

)

=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n+1

(n + 1)!
ls1
1 . . . lsk

k s1! . . . sk!(n + 1)2

×
∫

Rs1+···+sk
+

[|˜̇f (n)

[0,+∞)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)|2

+ |˜̇f (n)

[0,+∞)(ts1+···+sk
, t1, . . . , t1︸ ︷︷ ︸

l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸
lk−1

)|2

+ · · ·+ |˜̇f (n)

[0,+∞)(t1, . . . , t1︸ ︷︷ ︸
l1−1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

, t1)|2]

× η(t1)l1−1 . . . η(ts1+···+sk
)lk−1σ(dt1) . . . σ(dts1+···+sk

).

Here we used the equality ˜̇
f

(n)

[0,+∞)(tτ(1), . . . , tτ(n+1)) · ˜̇
f

(n)

[0,+∞)(tτ ′(1), . . . , tτ ′(n+1)) = 0,
where τ and τ ′ are different permutations of numbers 1, 2, . . . , n+1. In fact, either in the
first multiplier tτ(n+1) less then one of previous arguments, therefore the first multiplier
is equal to zero (since f is adapted with respect to the generated by M· flow of σ-algebras,
we can accept ḟ

(n)
u (u1, . . . , un) = 0 if ∃j ∈ {1, . . . , n} such that uj > u, this follows from

(3.12): the generalized Meixner polynomial of power n is a ”measurable combination”
of polynomials of power 1), or in the second multiplier tτ ′(n+1) less then one of previous
arguments, therefore the second multiplier is equal to zero, or in the first multiplier tτ(n+1)
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coincides with one of previous arguments, in this case ˜̇
f

(n)

[0,+∞)(tτ(1), . . . , tτ(n+1)) = 0 by
construction.

The integrals in the right hand side of (3.17) can be not equal to zero if and only if

lk = 1 (by construction of ˜̇
f

(n)

[0,+∞)). In these cases (for fixed k, l·, s·, lk = 1), obviously,
all the nonzero integrals of the connected with symmetrization summands are equal, and
the quantity of such integrals is sk. Hence we can continue (3.17) as follows:

|f̂ (n)
[0,+∞)|

2
ext =

1
n + 1

∑
k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk−1>1,

l1s1+···+lk−1sk−1+(sk−1)=n

n!
ls1
1 . . . l

sk−1
k−1 s1! . . . sk−1!(sk − 1)!

×
∫

Rs1+···+sk
+

|˜̇f (n)

[0,+∞)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
)|2

× η(t1)l1−1 . . . η(ts1+···+sk−1)
lk−1−1σ(dt1) . . . σ(dts1+···+sk

)

=
1

n + 1
|f (n)
· |2

H(n)
ext⊗HC

(here we used the nonatomicity of σ).
It follows from (3.16) that 1) f is integrable on R+ (and therefore on [0, t) for each

t ∈ [0,+∞]) in the extended sense; 2) if a sequence of adapted step-functions converges
to f in (L2)⊗HC then the sequence of extended stochastic integrals on [0, t) (t ∈ [0,+∞])
of these step-functions converges to

∫ t

0
f(s) d̂Ms in (L2).

Therefore it remains to prove that for each t ∈ [0,+∞]
∫ t

0
f(s)d̂Ms =

∫ t

0
f(s)dMs for

an adapted step-function f ∈ (L2)⊗HC. Since stochastic integrals are linear operators,
we can consider without loss of generality f = g · 1[u1,u2)(·) ∈ (L2) ⊗ HC, where g =∑∞

n=0〈Pn, g(n)〉 ∈ (L2) is Fu1-measurable (we remind that Fu1 = σ(Mu : u ≤ u1)),
g(n) ∈ H(n)

ext .
Let t ≥ u2. We have

∫ t

0
f(s)dMs = g(Mu2 − Mu1) =

∑∞
n=0〈Pn, g(n)〉〈P1, 1[u1,u2)〉,∫ t

0
f(s)d̂Ms =

∑∞
n=0〈Pn+1, ĝ

(n)
[0,t)〉, where ĝ

(n)
[0,t) ∈ H(n+1)

ext , n ∈ Z+ are constructed in

Lemma 3.1 starting from g(n) · 1[u1,u2)(·) ∈ H(n)
ext ⊗ HC. Thus it is sufficient to prove

that for each n ∈ Z+ 〈Pn, g(n)〉〈P1, 1[u1,u2)〉 = 〈Pn+1, ĝ
(n)
[0,t)〉. But this result easily follows

from (3.12): we can consider sequences D
b⊗n
C 3 g

(n)
k → g(n) as k → ∞ in H(n)

ext , DC 3
hk → 1[u1,u2) as k → ∞ in HC (both sequences must be uniformly bounded outside of
supp g(n) and [u1, u2] correspondingly), to substitute in (3.12) g

(n)
k instead of f (n), hk

instead of g(1), and pass to the limit as k →∞, taking into account Fu1-measurability of
g (roughly speaking, the last means that for each n ∈ N g(n) vanishes outside of [0, u1]n),
cf. [15].

In the case t ∈ [u1, u2) it is convenient to consider f = g · 1[u1,t)(·); the case t < u1 is
trivial. �

Corollary. If f satisfies assumptions of Theorem 3.1 then for all t ∈ [0,+∞] estimate
(3.14) is fulfilled.

This statement from (3.16) follows. �
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Remark 3.5. Let f ∈ (L2)1q+1⊗HC ⊂ (L2)⊗HC (q ∈ N), t ∈ [0,+∞]. Then using (3.13)
we obtain∥∥∥∫ t

0

f(s)d̂Ms

∥∥∥2

q
=

∞∑
n=0

((n + 1)!)22q(n+1)|f̂ (n)
[0,t)|

2
ext ≤

∞∑
n=0

((n + 1)!)22q(n+1)|f (n)
· |2

H(n)
ext⊗HC

= 2q
∞∑

n=0

[(n + 1)22−n](n!)22(q+1)n|f (n)
· |2

H(n)
ext⊗HC

≤ 9 · 2q−2‖f‖2(L2)1q+1⊗HC
< ∞

(because maxn∈Z+ [(n + 1)22−n] = 9/4), therefore in this case
∫ t

0
f(s) d̂Ms ∈ (L2)1q. If

f ∈ (Hτ )q+1 ⊗Hτ,C (τ ∈ T , q ∈ N) then again
∫ t

0
f(s) d̂Ms ∈ (L2)1q because (Hτ )q+1 ⊗

Hτ,C ⊂ (L2)1q+1 ⊗ HC. In order to obey the inclusion
∫ t

0
f(s) d̂Ms ∈ (Hτ )q that seems

”natural”, f must satisfy addition conditions (cf. Remark 3.3). This question is connected
with the generalized stochastic derivative and will be discussed in details in forthcoming
papers.

As is well known (see, e.g., [13]), the extended stochastic integral in the Gaussian
analysis can be constructed as the operator that is dual to the stochastic derivative (or,
equivalently, as ”the integral” of the operator that is dual to the ”Hida derivative at a
point”, or the Malliavin derivative in another notation). In the Meixner analysis such an
approach also is possible, let us explain this in details.

By analogy with the Gaussian analysis we define the ”Hida derivative” ∂· by setting
∂· := 〈δ·, : D :〉 (see Remark 2.9), where δ is the Dirac delta-function. Since for each
τ ∈ T δs ∈ H−τ ∀s ∈ R+ (see Remark 1.8), ∂s is a linear continuous operator acting
in (Hτ )q, τ ∈ T , q ∈ N. Moreover, ∂· is a linear continuous operator acting from (Hτ )q

to (Hτ )q ⊗ Hτ,C. In fact, if for f ∈ (Hτ )q f (n) ∈ Hb⊗n
τ,C (n ∈ Z+) are the kernels from

decomposition (1.8) then

(3.18)

∂·f =
∞∑

n=0

(n + 1)〈Pn, f (n+1)(·)〉,

‖∂·f‖2(Hτ )q⊗Hτ,C
=

∞∑
n=0

(n!)22qn(n + 1)2|f (n+1)(·)|2
H b⊗n

τ,C⊗Hτ,C

= 2−q
∞∑

n=0

((n + 1)!)22q(n+1)|f (n+1)|2τ ≤ 2−q‖f‖2τ,q,

where f (n+1)(·) ∈ Hb⊗n
τ,C ⊗ Hτ,C are obtained from f (n+1) ∈ Hb⊗n+1

τ,C by ”separating” of

one argument (since f (n+1) are symmetric functions, actually f (n+1)(·) ∈ Hb⊗n+1
τ,C ⊂

Hb⊗n
τ,C ⊗Hτ,C and |f (n+1)(·)|H b⊗n

τ,C⊗Hτ,C
= |f (n+1)|τ ).

Unfortunately, the introduced in Remark 2.9 generalized differential operator 〈δ·, : D :〉
can not be continued by continuity on (L2). Therefore we have to extend the operator
∂· on (L2) ”by hand” (note that the domain of this extension is not equal to (L2)).
First we need the natural generalization of f (n)(·) (n ∈ N), i.e., we have to construct for
f (n) ∈ H(n)

ext the element f (n)(·) ∈ H(n−1)
ext ⊗HC that coincides with the introduced above

f (n)(·) if f (n) ∈ Hb⊗n
τ,C ⊂ H(n)

ext .

Lemma 3.2. For given f (n) ∈ H(n)
ext (n ∈ N) we construct the element f (n)(·) ∈ H(n−1)

ext ⊗
HC by the following way. Let ḟ (n) ∈ f (n) be some representative (function) from the
equivalence class f (n). We consider ḟ (n)(·) (i.e., separate a one argument of ḟ (n)). Let
f (n)(·) ∈ H(n−1)

ext ⊗HC be the generated by ḟ (n)(·) equivalence class in H(n−1)
ext ⊗HC. This
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class is well-defined, does not depend on the representative ḟ (n), and

(3.19) |f (n)(·)|H(n−1)
ext ⊗HC

≤ |f (n)|ext.

Proof. Let ḟ (n) ∈ f (n) be a representative from the equivalence class f (n). We fix a
one argument in ḟ (n) and obtain the function ḟ (n)(·). Using the definition of | · |ext (see
Definition 1.4) we can write

|f (n)|2ext = |ḟ (n)|2ext =
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!
ls1
1 . . . lsk

k s1! . . . sk!

×
∫

Rs1+···+sk
+

|ḟ (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)|2

× η(t1)l1−1 . . . η(ts1+···+sk
)lk−1σ(dt1) . . . σ(dts1+···+sk

)

=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk>1,
l1s1+···+lksk=n

n!
ls1
1 . . . lsk

k s1! . . . sk!

×
∫

Rs1+···+sk
+

|ḟ (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)|2

× η(t1)l1−1 . . . η(ts1+···+sk
)lk−1σ(dt1) . . . σ(dts1+···+sk

)

+
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk=1,
l1s1+···+lk−1sk−1+(sk−1)=n−1

(n− 1)!n
ls1
1 . . . l

sk−1
k−1 s1! . . . (sk − 1)!sk

×
∫

Rs1+···+sk
+

∣∣ḟ (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk−1 , . . . , ts1+···+sk−1︸ ︷︷ ︸
lk−1

,

ts1+···+sk−1+1, . . . , ts1+···+sk
)
∣∣2

× η(t1)l1−1 . . . η(ts1+···+sk−1)
lk−1−1σ(dt1) . . . σ(dts1+···+sk

) ≥ |ḟ (n)(·)|2
H(n−1)

ext ⊗HC

because n ≥ sk. Let f (n)(·) ∈ H(n−1)
ext ⊗HC be the generated by ḟ (n)(·) equivalence class

in H(n−1)
ext ⊗ HC. It is clear that this class is well-defined and (3.19) is valid. Let now

ḟ
(n)
1 ∈ f (n) be another representative from f (n), f

(n)
1 (·) be the corresponding equivalence

class in H(n−1)
ext ⊗HC. By analogy with the calculation above we obtain

|f (n)(·)− f
(n)
1 (·)|H(n−1)

ext ⊗HC
= |ḟ (n)(·)− ḟ

(n)
1 (·)|H(n−1)

ext ⊗HC
≤ |ḟ (n) − ḟ

(n)
1 |ext = 0,

therefore f (n)(·) ∈ H(n−1)
ext ⊗HC does not depend on the representative ḟ (n) ∈ f (n). �

Corollary. If f (n) ∈ Hb⊗n
τ,C ⊂ H(n)

ext (τ ∈ T , n ∈ N) then constructed in Lemma 3.2

f (n)(·) ∈ H(n−1)
ext ⊗ HC coincides with the considered above f (n)(·) ∈ Hb⊗n−1

τ,C ⊗ Hτ,C

(more exactly, the considered above f (n)(·) ∈ Hb⊗n−1
τ,C ⊗Hτ,C belongs to the corresponding

equivalence class in H(n−1)
ext ⊗HC).

Definition 3.2. Let f ∈ (L2) be such that

(3.20)
∞∑

n=0

(n + 1)!(n + 1)|f (n+1)(·)|2
H(n)

ext⊗HC
< ∞,
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where f (n+1)(·) ∈ H(n)
ext ⊗HC (n ∈ Z+) are constructed in Lemma 3.2 starting from the

kernels f (n+1) ∈ H(n+1)
ext from decomposition (1.8) for f . We define the generalized Hida

derivative ∂·f ∈ (L2)⊗HC by formula (3.18).

Since ‖∂·f‖2(L2)⊗HC
=

∑∞
n=0(n + 1)!(n + 1)|f (n+1)(·)|2

H(n)
ext⊗HC

< ∞, this definition is

correct. (Moreover, one can prove that ∂· is a closed operator.) �

Remark 3.6. It is obvious that the restriction of the generalized Hida derivative on (Hτ )q

(τ ∈ T , q ∈ N) coincides with the ”Hida derivative” (3.18).

Remark 3.7. In the classical Gaussian analysis the domain of the Hida derivative ∂·
consists of f ∈ L2(D′, γ) (here γ is the Gaussian measure) such that

(3.21)
∞∑

n=0

(n + 1)!(n + 1)|f (n+1)|2
H b⊗n+1

C
< ∞

(we remind that now η = 0, therefore H(n)
ext = Hb⊗n

C for all n ∈ Z+). Since |f (n+1)|H b⊗n+1
C

=

|f (n+1)(·)|H b⊗n
C ⊗HC

, (3.21) can be rewritten in the form

∞∑
n=0

(n + 1)!(n + 1)|f (n+1)(·)|2
H b⊗n

C ⊗HC
< ∞

(cf. (3.20)). At the same time in the Meixner analysis we can not accept the ”natural”
analog of (3.21)

(3.22)
∞∑

n=0

(n + 1)!(n + 1)|f (n+1)|2ext < ∞

because for η 6= 0 the class of elements of (L2) satisfying (3.22) is narrower than the
class of elements satisfying (3.20), this statement from the proof of Lemma 3.2 follows.

Theorem 3.2. Let t ∈ [0,+∞], f ∈ (L2) ⊗ HC, and g ∈ (L2) be such that estimate
(3.14) for f and estimate (3.20) for g are fulfilled. Then
(3.23)

E
[
g

∫ t

0

f(s) d̂Ms

]
≡ 〈〈

∫ t

0

f(s) d̂Ms, g〉〉 =
∫ t

0

〈〈f(s), ∂sg〉〉σ(ds) ≡
∫ t

0

E[f(s)∂sg]σ(ds).

Proof. It follows from estimates (3.14) and (3.20) that all terms in (3.23) are well-defined.
Further,

〈〈
∫ t

0

f(s) d̂Ms, g〉〉 =
∞∑

n=0

(n + 1)!〈f̂ (n)
[0,t), g

(n+1)〉ext,

where f̂
(n)
[0,t) ∈ H

(n+1)
ext , n ∈ Z+, are the kernels from decomposition (3.15) for

∫ t

0
f(s) d̂Ms,

{g(n+1) ∈ H(n+1)
ext }∞n=0 are the kernels from decomposition (1.8) for g. On the other hand,

∂·g =
∑∞

n=0(n + 1)〈Pn, g(n+1)(·)〉, so we have

〈〈f(·), ∂·g〉〉 =
∞∑

n=0

(n + 1)!〈f (n)
· , g(n+1)(·)〉ext

(here f
(n)
· ∈ H(n)

ext ⊗ HC, n ∈ Z+, are the kernels from decomposition (3.9) for f ,
g(n+1)(·) ∈ H(n)

ext ⊗ HC are constructed in Lemma 3.2. Therefore in order to finish the
proof it is sufficient to show that for each n ∈ Z+

(3.24) 〈f̂ (n)
[0,t), g

(n+1)〉ext =
∫ t

0

〈f (n)
u , g(n+1)(u)〉extσ(du).
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Using the notation of Lemma 3.1 we have (see (1.5))

〈f̂ (n)
[0,t), g

(n+1)〉ext = 〈̂̇f (n)

[0,t), ġ
(n+1)〉ext =

∑
k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n+1

(n + 1)!
ls1
1 . . . lsk

k s1! . . . sk!

×
∫

Rs1+···+sk
+

̂̇
f

(n)

[0,t)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× ġ(n+1)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× η(u1)l1−1 . . . η(us1+···+sk
)lk−1σ(du1) . . . σ(dus1+···+sk

)

=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n+1

n!
ls1
1 . . . lsk

k s1! . . . sk!

× [
∫

Rs1+···+sk
+

˜̇
f

(n)

[0,t)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× ġ(n+1)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× η(u1)l1−1 . . . η(us1+···+sk
)lk−1σ(du1) . . . σ(dus1+···+sk

)

+
∫

Rs1+···+sk
+

˜̇
f

(n)

[0,t)(us1+···+sk
, u1, . . . , u1︸ ︷︷ ︸

l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸
lk−1

)

× ġ(n+1)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× η(u1)l1−1 . . . η(us1+···+sk
)lk−1σ(du1) . . . σ(dus1+···+sk

) + . . .

+
∫

Rs1+···+sk
+

˜̇
f

(n)

[0,t)(u1, . . . , u1︸ ︷︷ ︸
l1−1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

, u1)

× ġ(n+1)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× η(u1)l1−1 . . . η(us1+···+sk
)lk−1σ(du1) . . . σ(dus1+···+sk

)]

=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk−1>1,
l1s1+···+lk−1sk−1+(sk−1)=n

n!
ls1
1 . . . l

sk−1
k−1 s1! . . . sk−1!(sk − 1)!

×
∫

Rs1+···+sk
+

˜̇
f

(n)

[0,t)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk−1 , . . . , us1+···+sk−1︸ ︷︷ ︸
lk−1

,

us1+···+sk−1+1, . . . , us1+···+sk−1, u)

× ġ(n+1)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk−1 , . . . , us1+···+sk−1︸ ︷︷ ︸
lk−1

,

us1+···+sk−1+1, . . . , us1+···+sk−1, u)

× η(u1)l1−1 . . . η(us1+···+sk−1)
lk−1−1σ(du1) . . . σ(dus1+···+sk−1)σ(du)

=
∫ t

0

〈ḟ (n)
u , ġ(n+1)(u)〉extσ(du) =

∫ t

0

〈f (n)
u , g(n+1)(u)〉extσ(du)
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(here a nonatomicity of σ, a symmetry of ˜̇
f

(n)

[0,t) by first n arguments and a symmetry of
ġ(n+1) by n + 1 arguments were used). �

Remark 3.8. If g ∈ (L2) satisfies the estimate
∞∑

n=0

(n + 1)!(n + 1)|g(n+1)(·)1[0,t)(·)|2H(n)
ext⊗HC

< ∞

then one can consider defined by (3.18) ∂·g as an element of (L2) ⊗ L2([0, t), σ)C. It is
obvious that the result of Theorem 3.2 holds true in this case.

Since dom ∂· (here and below by dom A denote the domain of an operator A) is a dense
set in (L2) (see (3.20) and (3.19)), the adjoint to ∂· operator ∂∗· : (L2) ⊗HC → (L2) is
well-defined. Since ∀f ∈ dom ∂∗· , ∀g ∈ dom ∂·

(3.25) (f, ∂·g)(L2)⊗HC ≡
∫

R+

〈〈f(s), ∂sg〉〉σ(ds) = 〈〈∂∗· f, g〉〉,

it is natural to write formally∫
R+

〈〈f(s), ∂sg〉〉σ(ds) =
∫

R+

〈〈∂†sf(s), g〉〉σ(ds) = 〈〈
∫

R+

∂†sf(s)σ(ds), g〉〉,

where we accepted the notation
∫

R+
∂†sf(s)σ(ds) := ∂∗· f (cf. ∂†x in [31]). Also we denote∫ t

0
∂†sf(s)σ(ds) :=

∫
R+

∂†sf(s)1[0,t)(s)σ(ds) ≡ ∂∗· (f(·)1[0,t)(·)).

Remark 3.9. Formally one can understand ∂†s (s ∈ R+) as the adjoint to ∂s with respect
to the scalar product in (L2) operator. Strictly speaking, if we consider ∂· on (L2) then
such a ”definition” of ∂†s is incorrect because for f (n+1)(·) ∈ H(n)

ext ⊗ HC f (n+1)(s) is
not determined and therefore ∂s is not determined. But for the ”Hida derivative” ∂· on
(Hτ )q (τ ∈ T , q ∈ Nq0) ∂s is a linear continuous operator in (Hτ )q for each s ∈ R+,
therefore ∀s ∈ R+ ∂†s is well-defined as a linear continuous operator in (H−τ )−q (see also
Theorem 3.5 below).

From Theorem 3.2 we obtain the following

Corollary. Let t ∈ [0,+∞], and f ∈ (L2)⊗HC satisfy estimate (3.14). Then

(3.26)
∫ t

0

f(s) d̂Ms = ∂∗· (f(·)1[0,t)(·)) =
∫ t

0

∂†sf(s)σ(ds)

(in particular, this means that
∫ t

0
◦(s) d̂Ms is a closed operator). This equality can be

accepted as a definition of the extended stochastic integral.

Proof. We have to prove that dom
∫ t

0
◦(s) d̂Ms = dom ∂∗· (◦(·)1[0,t)(·)) and (3.26) is valid.

In accordance with the definitions
{f ∈ dom ∂∗· (◦(·)1[0,t)(·))} ⇔ {f1[0,t) ∈ dom ∂∗· }
⇔ {(L2) ⊃ dom ∂· 3 g 7→ (f(·)1[0,t)(·), ∂·g)(L2)⊗HC is a linear continuous functional}.

By Riesz’s theorem the last is possible if and only if (f(·)1[0,t)(·), ∂·g)(L2)⊗HC can be
presented in the form 〈〈H, g〉〉 with some H ∈ (L2). Using (3.18) and (3.24), for f ∈
(L2)⊗HC and g ∈ dom ∂· we obtain

(f(·)1[0,t)(·), ∂·g)(L2)⊗HC =
∞∑

n=0

(n + 1)!
∫ t

0

〈f (n)
s , g(n+1)(s)〉extσ(ds)

=
∞∑

n=0

(n + 1)!〈f̂ (n)
[0,t), g

(n+1)〉ext,
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where f
(n)
· , g(n+1)(·) ∈ H(n)

ext ⊗HC are the kernels from decompositions (3.9) and (3.18)
for f and ∂·g correspondingly, f̂

(n)
[0,t) ∈ H

(n+1)
ext are constructed in Lemma 3.1 starting from

f (n). By Theorem 1.3 the last series can be presented in the form 〈〈H, g〉〉 with H :=∑∞
n=0〈Pn+1, f̂

(n)
[0,t)〉, if, of course, this H ∈ (L2). Therefore f ∈ dom ∂∗· (◦(·)1[0,t)(·)) if and

only if estimate (3.14) is fulfilled. It means that dom ∂∗· (◦(·)1[0,t)(·)) = dom
∫ t

0
◦(s) d̂Ms.

Further, if f ∈ dom
∫ t

0
◦(s) d̂Ms then by (3.15) H =

∫ t

0
f(s) d̂Ms and by (3.25) for g ∈

dom ∂· (f(·)1[0,t)(·), ∂·g)(L2)⊗HC = 〈〈∂∗· (f(·)1[0,t)(·)), g〉〉. Thus 〈〈∂∗· (f(·)1[0,t)(·)), g〉〉 =
〈〈
∫ t

0
f(s) d̂Ms, g〉〉 and (3.26) is valid because dom ∂· is a dense set in (L2). �

Remark 3.10. The result of Theorem 3.2 accepts the following natural generalization.
Let t ∈ [0,+∞], f ∈ (L2)⊗HC, g ∈ (L2). Without additional restrictions like estimates
(3.14), (3.20)

∫ t

0
f(s) d̂Ms and ∂·g are well-defined as elements of the spaces of regular

generalized functions (L2)−1
−q and (L2)−1

−q ⊗ HC (q ∈ N) correspondingly, this fact will
be proved for

∫ t

0
f(s) d̂Ms later and for ∂·g in forthcoming papers. Therefore the expec-

tations and pairings in (3.23) can be undetermined. But if either estimate (3.22) (not
(3.20)!) for g is fulfilled or estimate (3.14) for f is fulfilled then at least one term in
(3.23) is well-defined and therefore (3.23) holds true in a generalized sense. In fact, it
is sufficient to prove that

∑∞
n=0(n + 1)!〈f̂ (n)

[0,t), g
(n+1)〉ext < ∞. If (3.22) for g is fulfilled

then using (3.13) we can estimate as follows:∣∣∣∣ ∞∑
n=0

(n + 1)!〈f̂ (n)
[0,t), g

(n+1)〉ext

∣∣∣∣ ≤ ∞∑
n=0

(n + 1)!|f̂ (n)
[0,t)|ext|g(n+1)|ext

≤
∞∑

n=0

[
√

n!|f (n)
· |H(n)

ext⊗HC
][
√

n!(n + 1)|g(n+1)|ext]

≤

√√√√ ∞∑
n=0

n!|f (n)
· |2

H(n)
ext⊗HC

·

√√√√ ∞∑
n=0

(n + 1)!(n + 1)|g(n+1)|2ext

= ‖f‖(L2)⊗HC ·

√√√√ ∞∑
n=0

(n + 1)!(n + 1)|g(n+1)|2ext < ∞.

If (3.14) for f is valid then∣∣∣∣ ∞∑
n=0

(n + 1)!〈f̂ (n)
[0,t), g

(n+1)〉ext

∣∣∣∣ ≤ ∞∑
n=0

(n + 1)!|f̂ (n)
[0,t)|ext|g(n+1)|ext

=
∞∑

n=0

[
√

(n + 1)!|f̂ (n)
[0,t)|ext][

√
(n + 1)!|g(n+1)|ext]

≤

√√√√ ∞∑
n=0

(n + 1)!|f̂ (n)
[0,t)|

2
ext ·

√√√√ ∞∑
n=0

(n + 1)!|g(n+1)|2ext

≤

√√√√ ∞∑
n=0

(n + 1)!|f̂ (n)
[0,t)|

2
ext · ‖g‖(L2) < ∞.

Now let us pass to constructing of the extended stochastic integral on the spaces of
regular generalized functions. Let F ∈ (L2)−1

−q ⊗HC, q ∈ N. Then (see (2.22))

(3.27) F (·) =
∞∑

n=0

〈Pn, F
(n)
· 〉, F

(n)
· ∈ H(n)

ext ⊗HC.
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Definition 3.3. Let F ∈ (L2)−1
−q ⊗ HC, q ∈ N. For each t ∈ [0,+∞] we define the

extended stochastic integral
∫ t

0
F (s) d̃Ms ∈ (L2)−1

−q by setting

(3.28)
∫ t

0

F (s) d̃Ms :=
∞∑

n=0

〈Pn+1, F̂
(n)
[0,t)〉,

where the kernels F̂
(n)
[0,t) ∈ H

(n+1)
ext , n ∈ Z+, are constructed in Lemma 3.1 starting from

the kernels F
(n)
· from decomposition (3.27) for F .

Since (see (3.13))∥∥∥∫ t

0

F (s) d̃Ms

∥∥∥2

−q
=

∞∑
n=0

2−q(n+1)|F̂ (n)
[0,t)|

2
ext ≤ 2−q

∞∑
n=0

2−qn|F (n)
· |2

H(n)
ext⊗HC

= 2−q‖F‖2
(L2)−1

−q⊗HC
< ∞,

this definition is correct, and, moreover, as distinguished from the integration on (L2)⊗
HC,

∫ t

0
◦(s) d̃Ms is a linear continuous operator acting from (L2)−1

−q ⊗HC to (L2)−1
−q. �

Comparing (3.28) and (3.15) we obtain

Theorem 3.3. The restriction of
∫ t

0
◦(s) d̃Ms on dom

∫ t

0
◦(s) d̂Ms ⊂ (L2) ⊗ HC (here

t ∈ [0,+∞]) coincides with
∫ t

0
◦(s) d̂Ms.

It follows from this statement that it is natural to accept for integral (3.28) the notation∫ t

0
F (s) d̂Ms.
Now let us obtain the analog of Theorem 3.2 and its Corollary. First we note that

if f ∈ (L2)1q (q ∈ N) then f satisfies estimate (3.20) because ∀n ∈ Z+ (n + 1)!(n +
1)|f (n+1)(·)|2

H(n)
ext⊗HC

≤ ((n+1)!)22q(n+1)|f (n+1)|2ext, see (3.19). Therefore the generalized

Hida derivative is well-defined for each f ∈ (L2)1q. Moreover, since (see (3.18), (3.19))

‖∂·f‖2(L2)1q⊗HC
=

∞∑
n=0

(n!)22qn(n + 1)2|f (n+1)(·)|2
H(n)

ext⊗HC

≤ 2−q
∞∑

n=0

((n + 1)!)22q(n+1)|f (n+1)|2ext ≤ 2−q‖f‖2q < ∞,

the restriction of ∂· on (L2)1q is a linear continuous operator acting from (L2)1q to (L2)1q⊗
HC. Therefore the defined by (3.25) adjoint to ∂· operator ∂∗· is a linear continuous one
acting from (L2)−1

−q ⊗HC to (L2)−1
−q (here q ∈ N).

Theorem 3.4. Let t ∈ [0,+∞], F ∈ (L2)−1
−q ⊗HC, f ∈ (L2)1q (q ∈ N). Then

(3.29)

E
[
f

∫ t

0

F (s) d̂Ms

]
≡ 〈〈

∫ t

0

F (s) d̂Ms, f〉〉 =
∫ t

0

〈〈F (s), ∂sf〉〉σ(ds) ≡
∫ t

0

E[F (s)∂sf ]σ(ds)

and

(3.30)
∫ t

0

F (s) d̂Ms = ∂∗· (F (·)1[0,t)(·)) ≡
∫ t

0

∂†sF (s)σ(ds).

Moreover, (3.30) can be accepted as a definition of the extended stochastic integral on
(L2)−1

−q ⊗HC.

Proof. Since now the extended stochastic integral and the generalized Hida derivative are
linear continuous operators, dom ∂· = (L2)1q and dom

∫ t

0
◦(s) d̂Ms = dom ∂∗· (◦(·)1[0,t)(·))

= (L2)−1
−q ⊗ HC. The equalities (3.29) and (3.30) can be obtained by direct calculation

as in the proofs of Theorem 3.2 and its Corollary. �



ON AN EXTENDED STOCHASTIC INTEGRAL . . . 369

Remark 3.11. Note that for F ∈ (L2)−1⊗HC the defined by (3.28) integral
∫ t

0
F (s) d̂Ms

is well-defined as an element of (L2)−1 and, moreover,
∫ t

0
◦(s) d̂Ms is a linear continuous

operator acting from (L2)−1⊗HC to (L2)−1. Of course, the results of Theorem 3.3 hold
true for F ∈ (L2)−1 ⊗HC and f ∈ (L2)1.

Finally, we consider the extended stochastic integral on the spaces of nonregular gen-
eralized functions. In the paper [20] such an integral ”on the language of the so-called
Q-system in the biorthogonal analysis” was constructed. Now we recall the definition
from [20] and prove that the restriction on (L2)−1

−q ⊗ HC (q ∈ N) of the integral ”from
[20]” coincides with the integral that is given by Definition 3.3.

Let F ∈ (H−τ )−q ⊗HC (τ ∈ T , q ∈ Nq0). It follows from Theorem 2.1 that F can be
presented in the form (see (2.14))

(3.31) F (·) =
∞∑

n=0

Qn(F (n)
· ), F

(n)
· ∈ Hb⊗n

−τ,C ⊗HC.

Definition 3.4. (cf. [20]) Let F ∈ (H−τ )−q ⊗HC, τ ∈ T , q ∈ Nq0 . For each t ∈ [0,+∞]
we define the extended stochastic integral

∫ t

0
F (s) dMs ∈ (H−τ )−q by setting

(3.32)
∫ t

0

F (s) dMs :=
∞∑

n=0

Qn+1(F
b(n)
[0,t) ),

where the kernels F
b(n)
[0,t) ∈ H

b⊗n+1
−τ,C , n ∈ Z+, are the symmetrizations (the projections on

Hb⊗n+1
−τ,C ) of F

(n)
· 1[0,t)(·), {F

(n)
· }∞n=0 are from decomposition (3.31) for F .

Since∥∥∥∫ t

0

F (s) dMs

∥∥∥2

−τ,−q
=

∞∑
n=0

2−q(n+1)|Fb(n)
[0,t) |

2
−τ

≤ 2−qc

∞∑
n=0

2−qn|F (n)
· |2

H b⊗n
−τ,C⊗HC

= 2−qc‖F‖2(H−τ )−q⊗HC
< ∞

(here c = c(τ) > 0 is a constant such that | · |−τ ≤ c| · |0), this definition is correct
and, moreover,

∫ t

0
◦(s)dMs is a linear continuous operator acting from (H−τ )−q ⊗HC to

(H−τ )−q. �

Remark 3.12. Note that for t = +∞ we can define the extended stochastic integral
for F ∈ (H−τ )−q ⊗ H−τ,C by formula (3.32). As is easily seen, this integral will be a
linear continuous operator acting from (H−τ )−q ⊗ H−τ,C to (H−τ )−q. The restriction
F ∈ (L2)−1

−q⊗HC is connected only with the necessity to multiply the integrand F by the
indicator: the multiplication of an element ofH−τ,C by an element ofHC is undetermined.

In according with the results of Theorem 2.1 one can rewrite formulas (3.31), (3.32)
in the form (see (2.11), (2.17), (2.5); Pr is the symmetrization operator)

(3.33) F (·) =
∞∑

n=0

〈Pn, F
(n)
ext,·〉, F

(n)
ext,· = U−1

n F
(n)
· ∈ H(n)

−τ,C ⊗HC,

(3.34)

∫ t

0

F (s) dMs =
∞∑

n=0

〈Pn+1, F
b(n)
ext,[0,t)〉,

F
b(n)
ext,[0,t) = U−1

n+1F
b(n)
[0,t) = U−1

n+1[Pr(Un(F (n)
ext,·)1[0,t)(·))] ∈ H

(n+1)
−τ,C ,

this form is more natural for our considerations.
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Let us study properties of integral (3.32). First we note that the defined above (see
(3.18)) ”Hida derivative” ∂· : (Hτ )q → (Hτ )q⊗Hτ,C (τ ∈ T , q ∈ Nq0) can be considered as
a linear continuous operator acting from (Hτ )q to (Hτ )q⊗HC becauseHτ,C is continuously
embedded in HC. Therefore one can consider the adjoint to ∂· operator ∂∗· : (H−τ )−q ⊗
HC → (H−τ )−q (see (3.25)) that is a linear continuous one.

Theorem 3.5. Let t ∈ [0,+∞], F ∈ (H−τ )−q ⊗HC, f ∈ (Hτ )q (τ ∈ T , q ∈ Nq0). Then
(3.35)

E
[
f

∫ t

0

F (s) dMs

]
≡ 〈〈

∫ t

0

F (s) dMs, f〉〉 =
∫ t

0

〈〈F (s), ∂sf〉〉σ(ds) ≡
∫ t

0

E[F (s)∂sf ]σ(ds)

and

(3.36)
∫ t

0

F (s) dMs = ∂∗· (F (·)1[0,t)(·)) =
∫ t

0

∂†sF (s)σ(ds).

Formula (3.36) can be accepted as a definition of the extended stochastic integral on
(H−τ )−q ⊗HC.

Proof. By analogy with the proof of Theorem 3.2, using (2.16) one can show that in
order to prove (3.35) it is sufficient to establish that for each n ∈ Z+

(3.37) 〈Fb(n)
[0,t) , f

(n+1)〉 =
∫ t

0

〈F (n)
s , f (n+1)(s)〉σ(ds),

where F
b(n)
[0,t) ∈ H

b⊗n+1
−τ,C , f (n+1) ∈ Hb⊗n+1

τ,C , F
(n)
· ∈ Hb⊗n

−τ,C⊗HC and f (n+1)(·) ∈ Hb⊗n
τ,C⊗Hτ,C,

n ∈ Z+, are the kernels from decompositions (3.32), (1.8), (3.31) and (3.18) correspond-
ingly. But (3.37) is obviously true. Further, it is easy to see that dom

∫ t

0
◦(s) dMs =

dom ∂∗· (F (·)1[0,t)(·)) = (H−τ )−q ⊗HC. Equality (3.36) follows from (3.35) by definition
of ∂∗· (see (3.25)). �

Remark 3.13. For t = +∞ Theorem 3.5 can be easily reformulated for the extended
stochastic integral that is defined on (H−τ )−q ⊗ H−τ,C in Remark 3.12 (in this case
we have to consider ∂∗· : (H−τ )−q ⊗ H−τ,C → (H−τ )−q, this operator is a linear and
continuous one by construction).

Comparing (3.36) and (3.30) and taking into account Remark 3.6 we obtain the fol-
lowing

Corollary. If F ∈ (L2)−1
−q⊗̂HC and simultaneously F ∈ (H−τ )−q⊗HC then ∀t ∈ [0,+∞]∫ t

0
F (s) dMs, f =

∫ t

0
F (s) d̂Ms. In particular, the restriction of

∫ t

0
◦(s) dMs on (L2)⊗HC

coincides with
∫ t

0
◦(s) d̂Ms.

It follows from this statement that it is natural to accept for integral (3.32) the notation∫ t

0
F (s) d̂Ms.

Remark 3.14. The result of the Corollary from Theorem 3.5 can be obtained by direct
calculation, by analogy with the proof of Theorem 2.2 in [21]. Namely, one has to prove
that

(3.38) 〈〈
∫ t

0

F (s) dMs, f〉〉 = 〈〈
∫ t

0

F (s) d̂Ms, f〉〉 ∀F ∈ (L2)⊗HC, ∀f ∈ (Hτ )q.

Using (3.34), (1.8), (3.28) and (2.13) one can show that (3.38) is true if for each n ∈ Z+

〈Fb(n)
ext,[0,t), f

(n+1)〉ext = 〈F̂ (n)
[0,t), f

(n+1)〉ext ∀f (n+1) ∈ Hb⊗n
τ,C,

where F̂
(n)
[0,t) ∈ H(n+1)

ext are constructed in Lemma 3.1 starting from the kernels F
(n)
ext,· ∈

H(n)
ext ⊗ HC from decomposition (3.33) for (arbitrary integrable) F ∈ (L2) ⊗ HC ⊂
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(H−τ )−q ⊗ HC, F
b(n)
ext,[0,t) ∈ H

(n+1)
−τ,C , n ∈ Z+, are the kernels from decomposition (3.34).

Using (2.5), (3.37) and (3.24) we obtain

〈Fb(n)
ext,[0,t), f

(n+1)〉ext = 〈Fb(n)
[0,t) , f

(n+1)〉 =
∫ t

0

〈F (n)
s , f (n+1)(s)〉σ(ds)

=
∫ t

0

〈F (n)
ext,s, f

(n+1)(s)〉extσ(ds) = 〈F̂ (n)
[0,t), f

(n+1)〉ext.

Remark 3.15. As is easily seen, if we replace (H−τ )−q⊗HC in Definition 3.4 by (H−τ )⊗
HC (or by (D′)′ ⊗ HC) then all described here connected with the extended stochastic
integral results hold true (some necessary modifications are obvious).

4. Elements of the Wick calculus and stochastic equations

In this section we introduce a Wick product and Wick versions of holomorphic func-
tions on the spaces (D′)′, (H−τ ) and (L2)−1. Then we study the interconnection of these
objects with the extended stochastic integral and consider some stochastic equations with
Wick type nonlinearity.

Definition 4.1. For F ∈ (D′)′ we define an integral S-transform (SF )(λ) (λ belongs to
some depending on F neighborhood of zero in DC) by setting (see (1.4))

(SF )(λ) := 〈〈F, : exp(·;λ) :〉〉.

The S-transform is well-defined because for each F ∈ (D′)′ there exist τ ∈ T and q ∈
Nq0 such that F ∈ (H−τ )−q; and for λ ∈ DC such that 2q|λ|2τ < 1 we have : exp(·;λ) : ∈
(Hτ )q. �

Remark 4.1. It is easy to see that

(4.1) (SF )(λ) =
∞∑

n=0

〈F (n), λ⊗n〉 =
∞∑

n=0

〈F (n)
ext , λ⊗n〉ext,

where F (n) ∈ Hb⊗n
−τ,C, F

(n)
ext = U−1

n F (n) ∈ H(n)
−τ,C (see (2.5)) are the kernels correspondingly

from decompositions (2.14), (2.11) for F . In particular, (SF )(0) = F (0) = F
(0)
ext , S1 ≡ 1.

Theorem 4.1. ([18, 24]) The S-transform is a topological isomorphism between the space
(D′)′ and the algebra Hol0 of germs of holomorphic at zero functions on DC.

Definition 4.2. For F,G ∈ (D′)′ and a holomorphic at (SF )(0) function h : C → C
we define the Wick product F♦G ∈ (D′)′ and the Wick version of h h♦(F ) ∈ (D′)′ by
setting

F♦G := S−1(SF · SG), h♦(F ) := S−1h(SF ).

The correctness of this definition from Theorem 4.1 follows. �

Remark 4.2. It is easy to see that the Wick multiplication ♦ is commutative, associative
and distributive (over the field C). Further, if h from Definition 4.2 is presented in the
form

(4.2) h(u) =
∞∑

n=0

hn(u− (SF )(0))n

then h♦(F ) =
∑∞

n=0 hn(F − (SF )(0))♦n, where F♦n := F♦ . . .♦F︸ ︷︷ ︸
n times

.
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Let us write out the ”coordinate form” of F♦G and h♦(F ) (this form is necessary for
calculations). Using (4.1) it is easy to show that

(4.3) F♦G =
∞∑

n=0

Qn

( n∑
k=0

F (k)⊗̂G(n−k)
)
≡

∞∑
n=0

〈
Pn,

n∑
k=0

F
(k)
ext �G

(n−k)
ext

〉
,

where F (k), G(k) ∈ D
′ b⊗k
C , F

(k)
ext = U−1

k F (k), G
(k)
ext = U−1

k G(k) ∈ D
′(k)
C (see (2.5)) are

the kernels from decompositions (2.14), (2.11) for F and G correspondingly; and for
F

(k)
ext ∈ D

′(k)
C , G

(m)
ext ∈ D

′(m)
C

(4.4) F
(k)
ext �G

(m)
ext := U−1

k+m(UkF
(k)
ext ⊗̂UmG

(m)
ext ) ∈ D

′(k+m)
C

(it is obvious that the ”multiplication” � is commutative, associative and distributive
(over the field C)). Further, substituting (4.1) in (4.2) and applying S−1 one can obtain

(4.5)

h♦(F ) = h0 +
∞∑

n=1

Qn

( n∑
k=1

hk

∑
m1,...,mk∈N:m1+···+mk=n

F (m1)⊗̂ . . . ⊗̂F (mk)
)

≡ h0 +
∞∑

n=1

〈
Pn,

n∑
k=1

hk

∑
m1,...,mk∈N:m1+···+mk=n

F
(m1)
ext � · · · � F

(mk)
ext

〉
,

where F (m) ∈ D
′ b⊗m
C , F

(m)
ext = U−1

m F (m) ∈ D
′(m)
C are the kernels from decompositions

correspondingly (2.14), (2.11) for F ; {hk ∈ C}∞k=0 are the coefficients from decomposition
(4.2) for h. (The interested reader can find the detailed proof of (4.3) and (4.5) in [16]
(see also formula (4.11) below): in this place there is no any difference in a formalism
between the Meixner and Gamma cases).

Remark 4.3. It follows from (4.3) that, in particular,

Qn(F (n))♦Qm(G(m)) = Qn+m(F (n)⊗̂G(m))

or, equivalently,

〈Pn, F
(n)
ext 〉♦〈Pm, G

(m)
ext 〉 = 〈Pn+m, F

(n)
ext �G

(m)
ext 〉.

Each of these formulas can be used in order to define the Wick product (and then the
Wick version of a holomorphic function as a series) without the S-transform. Formulas
(4.3) and (4.5) also can be used as definitions.

Remark 4.4. In the classical Gaussian analysis the (Gaussian) Wick exponential coincides
with exp�(〈H1, λ〉) (here H1(x) = x is the kernel of the generalized Hermite polynomial,
see, e.g., [27] for more details). But now (if η 6= 0)

exp�(〈P1, λ〉) =
∞∑

n=0

1
n!
〈P1, λ〉♦n =

∞∑
n=0

1
n!
〈Pn, λ�n〉 6=: exp(·;λ) :=

∞∑
n=0

1
n!
〈Pn, λ⊗n〉

and therefore the inherited from the Gaussian analysis term ”Wick exponential” for
: exp(·;λ) : is, strictly speaking, inaccurate (cf. [16]).

Let now F,G ∈ (H−τ ), τ ∈ T . Since the space (H−τ ) is embedded in (D′)′, the
Wick product F♦G and the Wick version of a holomorphic at (SF )(0) function h h♦ are
well-defined as elements of (D′)′ and ”coordinate representations” (4.3), (4.5) hold true.
Moreover, by Remark 2.8 and Proposition 2.2 the kernels from decompositions (4.3) and
(4.5) ”by Q-system” are elements of Hb⊗n

−τ,C; and the kernels from decompositions (4.3)

and (4.5) ”by P -system” are elements of H(n)
−τ,C.
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Theorem 4.2. ([19]) Let F,G ∈ (H−τ ), τ ∈ T , and h : C → C be a holomorphic at
(SF )(0) function. Then the Wick product F♦G and the Wick version h♦(F ) are elements
of (H−τ ), i.e., F♦G ∈ (H−τ ) and h♦(F ) ∈ (H−τ ). Moreover, the Wick multiplication is
continuous in the topology of (H−τ ) (more exactly, for F1, . . . , Fm ∈ (H−τ ), m ∈ N,

‖F1♦ . . .♦Fm‖−τ,−q ≤ C(m− 1)‖F1‖−τ,−(q−1) . . . ‖Fm‖−τ,−(q−1),

where C(m) =
√

maxn∈Z+{2−n(n + 1)m}, q ∈ N is such that F1, . . . , Fm ∈ (H−τ )−(q−1)).

Remark 4.5. Note that the proof of Theorem 4.2 consists in a direct estimation of
(H−τ )−q-norms of F♦G and h♦(F ) with using of decompositions (4.3) and (4.5).

Finally, we consider the case F,G ∈ (L2)−1. First we note that since : exp(·;λ) : 6∈
(L2)1q ∀q ∈ N if λ 6= 0, the S-transform now can be defined on (L2)−1 only as a formal

operator, i.e., by definition for F =
∑∞

n=0〈Pn, F
(n)
ext 〉 ∈ (L2)−1 (SF )(λ) is given by (4.1),

where the series is a formal one (can diverge). Nevertheless, calculating formally F♦G
and h♦(F ) we obtain representations (4.3) and (4.5) correspondingly. Our nearest goal
is to prove that for F

(n)
ext ∈ H(n)

ext and G
(m)
ext ∈ H(m)

ext F
(n)
ext � G

(m)
ext ∈ H(n+m)

ext (this result
can not be obtained directly from properties of the operators Un (see (2.5)) because
UnH(n)

ext 6= Hb⊗n
C if η 6= 0). Then we will show that for F,G ∈ (L2)−1 and holomorphic at

(SF )(0) h : C → C F♦G ∈ (L2)−1 and h♦(F ) ∈ (L2)−1. We begin from the following
statement (in a sense this is a generalization of Lemma 3.1).

Lemma 4.1. Let F (n) ∈ H(n)
ext, G(m) ∈ H(m)

ext , n, m ∈ Z+. Then defined by (4.4)
F (n) �G(m) ∈ H(n+m)

ext and

(4.6) |F (n) �G(m)|ext ≤ |F (n)|ext|G(m)|ext.

More exactly, there exists ̂F (n)G(m) ∈ H(n+m)
ext such that ∀q(n+m) ∈ Db⊗(n+m)

C

〈 ̂F (n)G(m), q(n+m)〉ext = 〈F (n) �G(m), q(n+m)〉ext.

The element ̂F (n)G(m) has the following construction. Let Ḟ (n) ∈ F (n), Ġ(m) ∈ G(m) be
some representatives (functions) from equivalence classes F (n), G(m). Set

(4.7)
( ˜̇
F (n)G(m))(t1, . . . , tn; tn+1, . . . , tn+m) ≡ ˜Ḟ (n)(t1, . . . , tn)Ġ(m)(tn+1, . . . , tn+m)

:=

{
Ḟ (n)(t1, . . . , tn)Ġ(m)(tn+1, . . . , tn+m), if ∀i∈{1,...,n},

∀j∈{n+1,...,n+m} ti 6=tj
,

0, in other cases
,

̂̇
F (n)G(m) := Pr

˜̇
F (n)G(m), where Pr is the symmetrization operator. Then ̂F (n)G(m)

is the generated by ̂̇
F (n)G(m) equivalence class in H(n+m)

ext , this class is well-defined and
does not depend on a choice of representatives Ḟ (n), Ġ(m).

Remark 4.6. Note that non-strictly speaking ̂F (n)G(m) is the symmetrization of the
function

˜F (n)G(m)(t1, . . . , tn; tn+1, . . . , tn+m)

:=

{
F (n)(t1, . . . , tn)G(m)(tn+1, . . . , tn+m), if ∀i∈{1,...,n},

∀j∈{n+1,...,n+m} ti 6=tj
,

0, in other cases

with respect to n + m variables.
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Proof. Note that for n = 0 or m = 0 Lemma 4.1 is obviously true. Let n, m ∈ N. By
direct calculation that is based on formula (1.5), properties of function (4.7), well-know
estimate |

∑p
l=1 al|2 ≤ p

∑p
l=1 |al|2 and nonatomicity of the measure σ, by analogy with

the calculation in the proof of Lemma 3.1 in [17] one can obtain the estimate

(4.8) | ̂̇
F (n)G(m)|ext ≤ |Ḟ (n)|ext|Ġ(m)|ext,

therefore ̂F (n)G(m) is well-defined as an element of H(n+m)
ext and

(4.9) | ̂F (n)G(m)|ext ≤ |F (n)|ext|G(m)|ext.

Let Ḟ
(n)
1 ∈ F (n), Ġ

(m)
1 ∈ G(m) be another representatives from F (n) and G(m). Using

the obvious linearity of the operation ◦̂ and estimate (4.8) we obtain

| ̂F (n)G(m) − ̂
F

(n)
1 G

(m)
1 |ext = | ̂̇

F (n)G(m) −
̂̇

F
(n)
1 G

(m)
1 |ext

= |( ̂̇
F (n)G(m) −

̂̇
F (n)G

(m)
1 ) + (

̂̇
F (n)G

(m)
1 −

̂̇
F

(n)
1 G

(m)
1 )|ext

≤ | ̂̇
F (n)G(m) −

̂̇
F (n)G

(m)
1 |ext + |

̂̇
F (n)G

(m)
1 −

̂̇
F

(n)
1 G

(m)
1 |ext

= |
̂̇

F (n)(G(m) −G
(m)
1 )|ext + |

̂̇
(F (n) − F

(n)
1 )G(m)

1 |ext

≤ |Ḟ (n)|ext|Ġ(m) − Ġ
(m)
1 |ext + |Ḟ (n) − Ḟ

(n)
1 |ext|Ġ(m)

1 |ext = 0,

therefore ̂F (n)G(m) does not depend on a choice of representatives Ḟ (n), Ġ(m).
By direct calculation that is based on formula (1.5), properties of functions (4.7), and

nonatomicity of the measure σ, by analogy with the previous calculations one can show
that

(4.10) 〈 ̂F (n)G(m), λ⊗n+m〉ext = 〈F (n), λ⊗n〉ext〈G(m), λ⊗m〉ext ∀λ ∈ DC.

On the other hand, by (4.4) and (2.5)

(4.11)
〈F (n) �G(m), λ⊗n+m〉ext = 〈Un+mU−1

n+m((UnF (n))⊗̂(UmG(m))), λ⊗n+m〉

= 〈UnF (n), λ⊗n〉〈UmG(m), λ⊗m〉 = 〈F (n), λ⊗n〉ext〈G(m), λ⊗m〉ext.

Comparing (4.10) and (4.11) we obtain

(4.12) 〈 ̂F (n)G(m), λ⊗n+m〉ext = 〈F (n) �G(m), λ⊗n+m〉ext ∀λ ∈ DC.

The restriction of ̂F (n)G(m) (as a linear continuous functional) on Db⊗n+m
C is a li-

near continuous functional on Db⊗n+m
C that coincides (by (4.12)) with F (n) � G(m) ∈

[Db⊗n+m
C ]′ on the total in Db⊗n+m

C set {λ⊗n+m: λ ∈ DC}. Therefore ∀q(n+m) ∈ Db⊗n+m
C

〈 ̂F (n)G(m), q(n+m)〉ext = 〈F (n) � G(m), q(n+m)〉ext. Estimate (4.6) is equivalent to (4.9).
�

Using the result of Lemma 4.1 we obtain

Theorem 4.3. Let F,G ∈ (L2)−1 and h : C → C be a holomorphic at (SF )(0) function.
Then the Wick product F♦G and the Wick version h♦(F ) are elements of (L2)−1, i.e.,
F♦G ∈ (L2)−1 and h♦(F ) ∈ (L2)−1. Moreover, the Wick multiplication is continuous in
the topology of (L2)−1 (more exactly, for F1, . . . , Fm ∈ (L2)−1, m ∈ N,

(4.13) ‖F1♦ . . .♦Fm‖−q ≤ C(m− 1)‖F1‖−(q−1) . . . ‖Fm‖−(q−1),

where C(m) =
√

maxn∈Z+{2−n(n + 1)m}, q ∈ N is such that F1, . . . , Fm ∈ (L2)−1
−(q−1)).
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Proof. The proof of this theorem is completely analogous to the proof of the correspond-
ing statement in the Gamma analysis (see Theorem 3.2 in [17]). Therefore we shall
confine ourselves to the short description of main steps.

(1) Let F1, . . . , Fm ∈ (L2)−1. Then there exists q ∈ N such that F1, . . . , Fm ∈
(L2)−1

−(q−1). By (4.3) one can calculate the ”coordinate form” of F1♦ . . .♦Fm.
Then calculating the (L2)−1

−q-norm of F1♦ . . .♦Fm by (2.23) and estimating this
norm with using (4.6) one can obtain (4.13). In particular, it follows from (4.13)
that for F,G ∈ (L2)−1 we have F♦G ∈ (L2)−1.

(2) Let F ∈ (L2)−1. Then there exists q ∈ N such that F ∈ (L2)−1
−q. Using (4.5),

(2.23) and (4.6) one can show that for a holomorphic at (SF )(0) function h :
C → C

‖h♦(F )‖2−q′ ≤ |h0|2 + C

∞∑
s=1

2(q−q′+2+2eq+2| log2(‖F‖−q)|)s−2 < ∞,

where q̃ ∈ N is such that |hn| < 2eqn for all n ∈ N (here {hn ∈ C}∞n=0 are the
coefficients from decomposition (4.2) for h, such q̃ exists because of holomorphy
of h), C := 22eq+2| log2(‖F‖−q)|

(2eq+| log2(‖F‖−q)|−1)2
, q′ ∈ N is sufficiently large. Therefore h♦(F ) ∈

(L2)−1
−q′ ⊂ (L2)−1.

�

Now let us consider the interconnection between the Wick calculus and the extended
stochastic integration. It is well-known that in the Gaussian analysis the extended sto-
chastic integral can be presented in the form

(4.14)
∫ t

0

F (s) d̂Ws =
∫ t

0

F (s)♦W ′
sσ(ds),

where W· = 〈H1, 1[0,·)〉 is a standard Wiener process, W ′
· = 〈H1, δ·〉 is the corresponding

white noise (here H1 is the kernel of the generalized Hermite polynomial, see (3.7)). The
analog (generalization) of (4.14) in the ”biorthogonal analysis” was obtained in [20]; in
the Gamma analysis the corresponding results were proved in [21, 17]. Now we’ll obtain
the analog of (4.14) in the Meixner analysis. Note that a portion of results in this area
from [20] follow, but we prefer to give a full (and more detailed than in [20]) presentation.

First we remind that M· = 〈P1, 1[0,·)〉 (and correspondingly M ′
· = 〈P1, δ·〉 = Q1(δ·)),

where M· is a Meixner process and M ′
· is the corresponding Meixner white noise (this

noise is the generalized stochastic process with independent values from Theorem 1.1).
Let F ∈ (D′)′ ⊗ HC. One can select a representative (with respect to HC) Ḟ ∈ F
(more exactly, this representative is a (D′)′-valued function on R+ such that ∀g ∈ (D)
〈〈Ḟ (·), g〉〉 ∈ 〈〈F, g〉〉 ∈ HC). It is convenient to preserve the notation F for Ḟ because we’ll
consider integrals with respect to σ and from this point of view different representatives
are identical. Since for each s ∈ R+ M ′

s = Q1(δs) ∈ (D′)′, we can consider

F (s)♦M ′
s =

∞∑
n=0

Qn+1(F (n)
s ⊗̂δs) ∈ (D′)′

(see Remark 4.3), where F
(n)
s ∈ D′

C
b⊗n (n ∈ Z+) are (corresponding to the representative

F ) representatives (at s) of the kernels F
(n)
· ∈ D′

C
b⊗n⊗HC from decomposition (3.31) for
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F . For arbitrary f ∈ (D) by (2.16) we have

〈〈F (s)♦M ′
s, f〉〉 =

∞∑
n=0

(n + 1)!〈F (n)
s ⊗̂δs, f

(n+1)〉

=
∞∑

n=0

(n + 1)!〈F (n)
s ⊗ δs, f

(n+1)〉 =
∞∑

n=0

(n + 1)!〈F (n)
s , f (n+1)(s)〉,

where f (n) ∈ Db⊗n
C , n ∈ Z+, are the kernels from decomposition (1.8) for f , and the

kernels f (n+1)(s) ∈ Db⊗n
C are obtained from f (n+1) by substitution s as a one argument.

Since there exist τ ∈ T and q ∈ Nq0 such that F ∈ (H−τ )−q ⊗ HC, we can estimate as
follows:

∞∑
n=0

(n + 1)!
∫ ∞

0

|〈F (n)
s , f (n+1)(s)〉|σ(ds) ≤

∞∑
n=0

(n + 1)!
∫ ∞

0

|F (n)
s |−τ |f (n+1)(s)|τσ(ds)

≤
∞∑

n=0

(n + 1)!

√∫ ∞

0

|F (n)
s |2−τσ(ds)

√∫ ∞

0

|f (n+1)(s)|2τσ(ds)

=
∞∑

n=0

(n + 1)!|F (n)
· |H b⊗n

−τ,C⊗HC
|f (n+1)(·)|H b⊗n

τ,C⊗HC

≤ c

∞∑
n=0

(n + 1)!|F (n)
· |H b⊗n

−τ,C⊗HC
|f (n+1)|τ

= c2−q/2
∞∑

n=0

[2−qn/2|F (n)
· |H b⊗n

−τ,C⊗HC
][(n + 1)!2q(n+1)/2|f (n+1)|τ ]

≤ c2−q/2

√√√√ ∞∑
n=0

2−qn|F (n)
· |2

H b⊗n
−τ,C⊗HC

√√√√ ∞∑
n=0

((n + 1)!)22q(n+1)|f (n+1)|2τ

≤ c2−q/2‖F‖(H−τ )−q⊗HC‖f‖τ,q < ∞,

where c = c(τ) > 0 is a constant such that | · |HC ≤ c| · |τ . Therefore for each t ∈ [0,+∞]
and each f ∈ (D)

(4.15)

∫ t

0

〈〈F (s)♦M ′
s, f〉〉σ(ds) =

∞∑
n=0

(n + 1)!
∫ t

0

〈F (n)
s , f (n+1)(s)〉σ(ds)

=
∞∑

n=0

(n + 1)!〈Fb(n)
[0,t) , f

(n+1)〉 = 〈〈
∫ t

0

F (s) d̂Ms, f〉〉

(see (3.37), (3.32), (2.16) and the Corollary from Theorem 3.5).

Definition 4.3. Let F ∈ (D′)′ ⊗HC, t ∈ [0,+∞]. We define
∫ t

0
F (s)♦M ′

sσ(ds) ∈ (D′)′

by the formula

〈〈
∫ t

0

F (s)♦M ′
sσ(ds), f〉〉 =

∫ t

0

〈〈F (s)♦M ′
s, f〉〉σ(ds) ∀f ∈ (D).

It follows from (4.15) that this definition is correct and, moreover, we have the follow-
ing

Theorem 4.4. (cf. (4.14)) For all t ∈ [0,+∞] and F ∈ (D′)′ ⊗HC

(4.16)
∫ t

0

F (s) d̂Ms =
∫ t

0

F (s)♦M ′
sσ(ds) ∈ (D′)′.
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Remark 4.7. Of course, one can easily rewrite all corresponding to (4.16) calculations
”on the language of P -system”. We selected the ”Q-system language” because in this
case the calculations are slightly more simple from the technical point of view.

Remark 4.8. We explain that (4.16) has the following ”practical” sense: in order to
calculate the ”action” of the extended stochastic integral

∫ t

0
F (s) d̂Ms on a test function

f one can
1) select a representative F (s);
2) calculate the Wick product F (s)♦M ′

s;
3) calculate the pairing 〈〈F (s)♦M ′

s, f〉〉 =: q(s);
4) calculate

∫ t

0
q(s)σ(ds).

To put it in another way, it is possible to interchange stochastic integration by calcu-
lation of the Wick product and Lebesgue integration.

It is easy to see that one can rewrite Definition 4.3 and Theorem 4.4 using the space
(H−τ )⊗HC (τ ∈ T ) instead of (D′)′ ⊗HC, in this case

∫ t

0
F (s)♦M ′

sσ(ds) ∈ (H−τ ). But
for F ∈ (L2)−1 ⊗ HC the situation is slightly more complicated. Namely, we have the
following

Theorem 4.5. For all t ∈ [0,+∞] and F ∈ (L2)−1 ⊗HC
∫ t

0
Fs♦M ′

sσ(ds) can be consi-
dered as a linear continuous functional on (L2)1 that coincides with

∫ t

0
Fs d̂Ms, i.e.,∫ t

0

F (s)♦M ′
sσ(ds) =

∫ t

0

F (s) d̂Ms ∈ (L2)−1.

Proof. We have to prove that if F ∈ (L2)−1⊗̂HC and simultaneously F ∈ (H−τ )⊗̂HC
then

〈〈
∫ t

0

F (s)♦M ′
sσ(ds), f〉〉 = 〈〈

∫ t

0

F (s)d̂Ms, f〉〉 ∀f ∈ (D),

but this result follows from (4.16) and the Corollary from Theorem 3.5. �

Theorems 4.1–4.5 give us a possibility to consider so-called stochastic differential equa-
tions with Wick-type nonlinearity and solve such equations using the S-transform. Let
us consider corresponding examples.

Example 4.1. (a linear equation) Let us consider the integral stochastic equation

(4.17) Xt = X0 +
∫ t

0

Xs♦F1♦ . . .♦Fnσ(ds) +
∫ t

0

Xs♦G1♦ . . .♦Gmd̂Ms,

where X0 ∈ (D′)′ (correspondingly (H−τ ) (τ ∈ T ), (L2)−1); n, m ∈ N; Fk = 〈P1, F
(1)
k 〉,

F
(1)
k ∈ D′

C (correspondingly H−τ,C, H(1)
ext = HC), k ∈ {1, . . . , n}; Gk = 〈P1, G

(1)
k 〉,

G
(1)
k ∈ D′

C (correspondingly H−τ,C, H(1)
ext), k ∈ {1, . . . ,m}. Applying to (4.17) the S-

transform (with regard to (4.16)), solving the obtained algebraic equation and applying
the inverse S-transform we obtain the solution

Xt = X0♦ exp♦{F1♦ . . .♦Fnσ([0, t)) + G1♦ . . .♦Gm♦Mt} ∈ (D′)′

(correspondingly (H−τ ), (L2)−1).
By analogy one can solve the more general equation

Xt = X0 +
∫ t

0

Xs♦Fσ(ds) +
∫ t

0

Xs♦G d̂Ms,

where X0, F, G ∈ (D′)′ (correspondingly (H−τ ), (L2)−1), the solution has the form

Xt = X0♦ exp♦{Fσ([0, t)) + G♦Mt} ∈ (D′)′

(correspondingly (H−τ ), (L2)−1).
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Example 4.2. (a Verhulst-type equation) Let us consider the integral stochastic equation

(4.18) Xt = X0 + r

∫ t

0

Xs♦(N −Xs)σ(ds) + α

∫ t

0

Xs♦(N −Xs) d̂Ms,

where X0 ∈ (D′)′ (correspondingly (H−τ ), (L2)−1), N, r, α ∈ R, N > 0, r > 0,
(SX0)(0) > 0. Applying to (4.18) the S-transform (with regard to (4.16)), solving
the obtained algebraic equation and applying the inverse S-transform, one can show by
the full analogy with [20] that the solution of (4.18) has the form

Xt = N [1 + (NX
♦(−1)
0 − 1)♦ exp♦{−N(rσ([0, t)) + αMt)}]♦(−1) ∈ (D′)′

(correspondingly (H−τ ), (L2)−1), where Y ♦(−1) := S−1 1
SY .
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