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ANOTHER FORM OF SEPARATION AXIOMS

S. ATHISAYA PONMANI AND M. LELLIS THIVAGAR

Abstract. It is the object of this paper to introduce the (1, 2)∗pre-Dk axioms for
k = 0, 1, 2.

1. Introduction

In 1982, Mashhour et al [9] introduced the notion of pre-open sets and the pre-closed
sets were defined in [4]. Ashish Kar and Bhattacharya [2], in 1990, continued their work
on pre-open sets and offered another set of separation axioms analogous to the semi
separation axioms defined by Maheshwari and Prasad [8]. Caldas [10] defined a new
class of sets called semi-Difference (briefly sD) sets by using the semi-open sets [5], and
introduced the semi-Di spaces for i = 0, 1, 2.

The purpose of this paper is to introduce some pre-separation axioms in bitopological
spaces. To define and investigate the axioms we use the (1, 2)∗pre-open sets [6] introduced
by Lellis Thivagar and Ravi. We call these axioms as (1, 2)∗pre-T0, (1, 2)∗pre-T1 and
(1, 2)∗pre-T2. We also define (1, 2)∗pre-Difference sets and utilize them to define the
(1, 2)∗pre-Di, i = 0, 1, 2, axioms. We prove a bitopological space is (1, 2)∗pre-D1 if and
only if it is (1, 2)∗pre-D2.

We recall some definitions and concepts which are useful in the following sections.

2. Preliminaries

In this section unless it is explicitly stated X is a topological space (X, τ). For a
A ⊂ X, the interior and closure of A in X are denoted by int(A) and cl(A) respectively.

Definition 2.1. A space X is called
(i). Pre-T0 [2]] iff to each pair of distinct points x, y in X, there exists a pre-open

set containing one of the points but not the other.
(ii). Pre-T1 [2] iff to each pair of distinct points x, y of X, there exists a pair of

pre-open sets one containing x but not y and other containing y but not x.
(iii). Pre-T2 [2] iff to each pair of distinct points x, y of X, there exists a pair of

disjoint pre-open sets one containing x and the other containing y.

Definition 2.2. A subset A of X is called a semi-Difference set (in short sD-set) if there
are two semi-open sets O1, O2 in X such that O1 6= X and A = O1 \ O2.

Definition 2.3. A space X is called
(i). Semi-D0 if for x, y ∈ X, x 6= y, there exists a sD-set of X containing one of x

and y but not the other.
(ii). Semi-D1 if for x, y ∈ X, x 6= y, there exists a pair of sD-sets one containing x

but not y and the other containing y but not x.
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(iii). Semi-D2 if for x, y ∈ X, x 6= y, there exist disjoint sD-sets S1 and S2 such that
x ∈ S1 and y ∈ S2.

A subset A of a bitopological space (X, τ1, τ2) is called τ1,2-open [6] if A = S1 ∪ S2

where S1 ∈ τ1 and S2 ∈ τ2, and τ1,2-closed if Ac is τ1,2-open in X. We write τ1τ2-interior
of A and τ1τ2-closure of A, in short form, τ1τ2-int(A) and τ1τ2-cl(A) respectively. τ1τ2-
int(A) is the union of all τ1,2-open sets contained in A and τ1τ2-cl(A) is the intersection
of all τ1,2-closed sets containing A.

Definition 2.4. A subset A of X is called (1, 2)∗pre-open [6] if A ⊂ τ1τ2-int(τ1τ2-
cl(A)) and (1, 2)∗pre-closed if its complement in X is (1, 2)∗pre-open. Or equivalently,
τ1τ2-cl(τ1τ2-int(A)) ⊂ A.

The family of all (1, 2)∗pre-open sets of X is denoted by (1, 2)∗PO(X). (1, 2)∗pre-
closure of A denoted by (1, 2)∗pcl(A) is the intersection of all (1, 2)∗pre-closed sets con-
taining A.

A subset A of X is (1, 2)∗pre-closed if and only if (1, 2)∗pcl(A) = A. Note that every
τ1,2-open set is (1, 2)∗pre-open.

Definition 2.5. A map f : (X, τ1, τ2)→(Y , σ1, σ2)is called
(i). (1, 2)∗pre-irresolute if the inverse image of every (1, 2)∗pre-open set in Y is

(1, 2)∗pre-open in X.
(ii). Strongly (1, 2)∗pre-open [6] if the image of every (1, 2)∗pre-open if the image of

every (1, 2)∗pre-open set in X is (1, 2)∗pre-open in Y .

In the next section we introduce the (1, 2)∗pre-Tk-spaces for k = 0, 1, 2. In the
following sections by X and Y we mean bitopological spaces (X, τ1, τ2) and (Y , σ1, σ2)
respectively.

3. (1, 2)∗pre-Tk-spaces

Definition 3.1. A bitopological space X is said to be (1, 2)∗pre-T0 iff for x, y ∈ X,
x 6= y, there exists an (1, 2)∗pre-open set containing only one of x and y but not the
other.

Now we proceed to prove that every bitopological space is (1, 2)∗pre-T0.

Lemma 3.2. If for some x ∈ X, {x} is (1, 2)∗pre-open then x /∈ (1, 2)∗pcl({y}) for all
y 6= x.

Proof. If {x} is (1, 2)∗pre-open for some x ∈ X, then X \ {x} is (1, 2)∗pre-closed and
x /∈ X \{x}. If x ∈ (1, 2)∗pcl({y}) for some y 6= x, then x, y both are in all the (1, 2)∗pre-
closed sets containing y which implies that x ∈ X \ {x} which is not true. Therefore,
x /∈ (1, 2)∗pcl({y}). �

Theorem 3.3. In a space X, distinct points have distinct (1, 2)∗pre-closures.

Proof. Let x, y ∈ X, x 6= y. Take A = {x}c. Then τ1τ2-cl(A) = A or X.
Case (a). If τ1τ2-cl(A) = A, then A is τ1,2-closed and hence (1, 2)∗pre-closed. Then

X \ A = {x} is (1, 2)∗pre-open, not containing y. Therefore, by Lemma 3.2, x /∈
(1, 2)∗pcl({y}) and y ∈ (1, 2)∗pcl({y}) which implies that

(1, 2)∗pcl({x}) and (1, 2)∗pcl({y})

are distinct.
Case (b). If τ1τ2-cl(A) = X, then A is (1, 2)∗pre-open and hence {x} is (1, 2)∗pre-closed

which shows that (1, 2)∗pcl({x}) = {x} which is not equal to (1, 2)∗pcl({y}). �
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Theorem 3.4. In a space X, if distinct points have distinct (1, 2)∗pre-closures then X
is (1, 2)∗pre-T0.

Proof. Let x, y ∈ X, x 6= y. Then (1, 2)∗pcl({x}) is not equal to (1, 2)∗pcl({y}).
Then there exists z ∈ X such that z ∈ (1, 2)∗pcl({x}) but z /∈ (1, 2)∗pcl({y}) or z ∈
(1, 2)∗pcl({y}) but z /∈ (1, 2)∗pcl({x}). Without loss of generality, let z ∈ (1, 2)∗pcl({x})
but z /∈ (1, 2)∗pcl({y}). If x ∈ (1, 2)∗pcl({y}), then (1, 2)∗pcl({x}) is contained in
(1, 2)∗pcl({y}) and therefore, z ∈ (1, 2)∗pcl({y}), which is a contradiction. Thus we get
x /∈ (1, 2)∗pcl({y}). This implies that x ∈ (1, 2)∗pcl(({y})c). Therefore, X is (1, 2)∗pre-
T0. �

Theorem 3.5. Every bitopological space is (1, 2)∗pre-T0.

Proof. Follows from Theorem 3.3 and Theorem 3.4. �

Remark 3.6. It is observed that every T0-space is pre-T0 but not the converse [2]. Here
we note that if a space X is T0 with respect to τ1 or τ2 then X is (1, 2)∗pre-T0. But if
X is (1, 2)∗pre-T0, it is not necessary that (X, τ1) is T0 or (X, τ2) is T0, as shown in the
following example.

Example 3.7. Let X = {a, b, c}. τ1 = {∅, {a, b}, X}, τ2 = {∅, {b, c}, X}. Then X is
(1, 2)∗pre-T0 but both (X, τ1) and (X, τ2) are T0.

Definition 3.8. A space X is called (1, 2)∗pre-T1 iff for x, y ∈ X, x 6= y, there exist U ,
V ∈ (1, 2)∗PO(X) such that x ∈ U , y /∈ U and y ∈ V , x /∈ V .

Remark 3.9. It is obvious that every (1, 2)∗pre- T1 space is (1, 2)∗pre-T0 but the converse
is not true in general as illustrated in the next example.

Example 3.10. Let X = {a, b, c}. τ1 = {∅, {a}, X}, τ2 = {∅, {b}, X}. Then X is
(1, 2)∗pre-T0 but not (1, 2)∗pre-T1.

Theorem 3.11. In a space X, the following statements are equivalent.
(i). X is (1, 2)∗pre-T1.
(ii). For each x ∈ X, {x} is (1, 2)∗pre-closed in X.
(iii). Each subset of X is the intersection of all (1, 2)∗pre-open sets containing it.
(iv). The intersection of all (1, 2)∗pre-open sets containing the point x ∈ X is {x}.

Proof. (i) ⇒ (ii).
Let x ∈ X. If y ∈ X and x 6= y then there exists an (1, 2)∗pre-open set Uy such

that y ∈ Uy. Hence y ∈ Uy ⊂ {x}c. Therefore, {x}c =
⋃
{Uy : y ∈ {x}c} which is

(1, 2)∗pre-open and so {x} is (1, 2)∗pre-closed in X.
(ii) ⇒ (iii).

Let A ⊂ X and y /∈ A. Then A ⊂ {y}c and {y}c is (1, 2)∗pre-open in X and A =
⋂

{{y}c : y ∈ Ac} which is the intersection of all (1, 2)∗pre-open sets containing A.
(iii) ⇒ (iv).

Obvious.
(iv) ⇒ (i).

Let x, y ∈ X, x 6= y. By our assumption, there exist atleast an (1, 2)∗pre-open set
containing x but not y and also an (1, 2)∗pre-open set containing y but not x. Therefore,
X is (1, 2)∗pre-T1. �

Definition 3.12. A space X is called (1, 2)∗pre-T2 iff for x, y ∈ X, x 6= y, there exist
disjoint (1, 2)∗pre-open sets U , V in X such that x ∈ U and y ∈ V .

Remark 3.13. (1, 2)∗pre-T2ness implies (1, 2)∗pre-T1ness but the converse is not true in
general. In Example 3.7, X is (1, 2)∗pre-T1 but not (1, 2)∗pre-T2.
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Definition 3.14. A subset O of X is said to be (1, 2)∗pre-neighbourhood of a point
x ∈ X iff there exists an (1, 2)∗pre-open set U such that x ∈ U ⊂ O.

Theorem 3.15. For a space X the following statements are equivalent.
(i). X is (1, 2)∗pre-T2

(ii). If x ∈ X, then for each y 6= x, there is an (1, 2)∗pre-neighbourhood N(x) of x
such that y /∈ (1, 2)∗pcl(N(x)).

(iii). For each x ∈ {(1, 2)∗pcl(N): N is an (1, 2)∗pre-neighbourhood of x} = {x}.

Proof. (i) ⇒ (ii).
Let x ∈ X. If y ∈ X is such that y 6= x, there exist disjoint (1, 2)∗pre-open sets U ,

V such that x ∈ U and y ∈ V . Then x ∈ U ⊂ X \ V which implies that X \ V is an
(1, 2)∗pre-neighbourhood of x. Also X \ V is (1, 2)∗pre-closed and y /∈ X \ V . Let N(x)
= X \ V . Then y /∈ (1, 2)∗pcl(N(x)).
(ii) ⇒ (iii).

Obvious.
(iii) ⇒ (i).

Let x, y ∈ X, x 6= y. By hypothesis, there is atleast an (1, 2)∗pre-neighbourhood N of
x such that y /∈ (1, 2)∗pcl(N). We have x /∈ X \ (1, 2)∗pcl(N) is (1, 2)∗pre-open. Since N
is an (1, 2)∗pre-neighbourhood of x, there exists U ∈ (1, 2)∗PO(X) such that x ∈ U ⊂ N
and U ∩ (X \ (1, 2)∗pcl(N)) =∅. Hence X is (1, 2)∗pre-T2. �

Definition 3.16. A space X is said to be (1, 2)∗pre-regular if for each (1, 2)∗pre-closed
set F and each point x /∈ F there exist disjoint (1, 2)∗pre-open sets U and V such that
x ∈ U and F ⊂ V .

Theorem 3.17. An (1, 2)∗pre-T0 space is (1, 2)∗pre-T2 if it is (1, 2)∗pre-regular.

Proof. Let X be (1, 2)∗pre-T0 and (1, 2)∗pre-regular. If x, y ∈ X, x 6= y, there exists
U ∈ (1, 2)∗PO(X) such that U contains one of x and y, say x but not y. Then X \ U
is (1, 2)∗pre-closed and x /∈ X \ U . Since X is (1, 2)∗pre-regular, there exist disjoint
(1, 2)∗pre-open sets V1 and V2 such that x ∈ V1 and X \ U ⊂ V2. Thus x ∈ V1 and
y ∈ V2, V1 ∩ V2 = ∅. Hence X is (1, 2)∗pre-T2. �

Theorem 3.18. If f :(X, τ1, τ2)→(Y , σ1, σ2) is an injective, (1, 2)∗pre-irresolute map
and Y is (1, 2)∗pre-T2 then X is (1, 2)∗pre-T2.

Proof. Let x, y ∈ X, x 6= y. Since f is injective, f(x) 6= f(y) in Y and there exist disjoint
(1, 2)∗pre-open sets U , V such that f(x) ∈ U and f(y) ∈ V . Let G = f−1(U) and H =
f−1(V ). Then x ∈ G, y ∈ H and G, H ∈ (1, 2)∗PO(X). Also G∩H = f−1(U)∩ f−1(V )
= f−1(U ∩ V ) = ∅. Thus X is (1, 2)∗pre-T2. �

4. Pre-difference axioms

Definition 4.1. A subset A of X is called (1, 2)∗pre-difference set (briefly (1, 2)∗pD-set)
if there are two (1, 2)∗pre-open sets P1 and P2 in X, P1 6= X such that A = P1 \ P2.

Remark 4.2. It is evident that each (1, 2)∗pre-open set is an (1, 2)∗pD-set.

Now we define another set of separation axioms called (1, 2)∗pre-Di, i = 0, 1, 2 by
using the (1, 2)∗pD-sets.

Definition 4.3. A space X is said to be
(i). (1, 2)∗pre-D0 if for x, y ∈ X, x 6= y, there exists an (1, 2)∗pD-set containing one

of x and y but not the other.
(ii). (1, 2)∗pre-D1 if for x, y ∈ X, x 6= y, there exist (1, 2)∗pD-sets U , V in X such

that x ∈ U , y /∈ U and y ∈ V , x /∈ V .
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(iii). (1, 2)∗pre-D2 if for x, y ∈ X, x 6= y, there exist disjoint (1, 2)∗pD-sets U , V in
X such that x ∈ U and y ∈ V .

Remark 4.4. (i). Every (1, 2)∗pre-Ti space is (1, 2)∗pre-Di, i = 0, 1, 2 respectively.
(ii). If X is (1, 2)∗pre-Di then it is (1, 2)∗pre-Di−1, i = 1, 2.

Remark 4.5. (1, 2)∗pre-Di ness does not imply (1, 2)∗pre-Ti ness for i = 1, 2 respectively.
In example 3.10, X is (1, 2)∗pre-D1 but not (1, 2)∗pre-T1 and in Example 3.7, X is not
(1, 2)∗pre-T2 but (1, 2)∗pre-D2.

The next example shows that (1, 2)∗pre-D0 does not imply (1, 2)∗pre-D1.

Example 4.6. Let X = {a, b}, τ1 = {∅, X}, τ2 = {∅, {a}, X}. Then X is (1, 2)∗pre-D0

but not (1, 2)∗pre-D1.

Theorem 4.7. A space X is (1, 2)∗pre-D0 if and only if it is (1, 2)∗pre-T0.

Proof. Suppose that X is (1, 2)∗pre-D0. Let x, y ∈ X, x 6= y. Then there exists an
(1, 2)∗pD-set U such that U contains x but not y, say. As U is an (1, 2)∗pD-set, it is
possible to write U = P1 \ P2 where P1 6= X and P1, P2 ∈ (1, 2)PO(X). Now there
arises two cases. (i)y /∈ P1 (ii) y ∈ P1 and y ∈ P2.

Case (i). y /∈ P1 and x ∈ P1 \ P2 implies that x ∈ P1 and y /∈ P1.
Case (ii). y ∈ P1 and y ∈ P2. x ∈ P1 \ P2 implies that x /∈ P2. Thus y ∈ P2 and

x /∈ P2.
Thus in both the cases, we obtain that X is (1, 2)∗pre-T0. Conversely, if X is (1, 2)∗pre-

T0, by Remark 4.4, X is (1, 2)∗pre-D0. �

It has been showed in section 3, that an (1, 2)∗pre-T2-space is (1, 2)∗pre-T1 but not the
converse. But in the case of pre-Difference axioms, we prove that an (1, 2)∗pre-D1-space
is (1, 2)∗pre-D2 and so the (1, 2)∗pre-D1-space coincides with (1, 2)∗pre-D2-space.

Theorem 4.8. A space X is (1, 2)∗pre-D1 if and only if X is (1, 2)∗pre-D2.

Proof. Necessity. Let x, y ∈ X, x 6= y. Then there exist (1, 2)∗pD-sets U , V in X
such that x ∈ U , y /∈ U and y ∈ V , x /∈ V . Let U = P1 \ P2 and V = P3 \ P4 where
Pi ∈ (1, 2)∗PO(X), i = 1, 2, 3, 4 and P1 6= X, P3 6= X. It is evident that x /∈ V implies
the two possibilities, (i) x ∈ P3 ∩P4 (ii) x /∈ P3.

Case (i). x ∈ P3 ∩ P4. We have x ∈ P4 and y ∈ P3\ P4 and P4 ∩ (P3 \ P4) = ∅ are
disjoint.

Case (ii). x /∈ P3. y /∈ U implies that either y ∈ P1 and y ∈ P2 or y /∈ P1.
Sub Case (a). y ∈ P1 and y ∈ P2 and x ∈ P1 \ P2. We get P1 \P2 and P2 are disjoint

(1, 2)∗pD-sets containing x and y respectively.
Sub Case (b). y /∈ P1 and x ∈ P1 \P2 and x /∈ P3 implies that x ∈ P1 \ (P2 ∪ P3) and

y ∈ P3 \P4 and y /∈ P1 implies that y ∈ P3 \(P1∪P4) and P1 \(P2∪P3) and P3 \(P1∪P4)
are disjoint. Therefore, X is (1, 2)∗pre-D2.

Sufficiency. Follows from Remark 4.4. �

Theorem 4.9. If X is (1, 2)∗pre-D1 then it is (1, 2)∗pre-T0.

Proof. Follows from (ii) Remark 4.4 and theorem 4.8. �

Remark 4.10. An (1, 2)∗pre-T0-space is not (1, 2)∗pre-D1, in general. In Example 3.10,
X is (1, 2)∗pre-T0 but not (1, 2)∗pre-D1.
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Remark 4.11. From the discussions in Sections three and four, the following implication
diagram is drawn. In the diagram,

1. (1, 2)∗pre-T2

2. (1, 2)∗pre-T1

3. (1, 2)∗pre-T0

4. (1, 2)∗pre-D1

(1) (2)

(3)(4)

-

- ?
?)

A → B (resp. A 9 B) represents that A implies B (resp. A does not imply B).
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