ANOTHER FORM OF SEPARATION AXIOMS

S. ATHISAYA PONMANI AND M. LELLIS THIVAGAR

ABSTRACT. It is the object of this paper to introduce the $(1,2)^*$ pre- D_k axioms for $k=0,\,1,\,2.$

1. Introduction

In 1982, Mashhour et al [9] introduced the notion of pre-open sets and the pre-closed sets were defined in [4]. Ashish Kar and Bhattacharya [2], in 1990, continued their work on pre-open sets and offered another set of separation axioms analogous to the semi separation axioms defined by Maheshwari and Prasad [8]. Caldas [10] defined a new class of sets called semi-Difference (briefly sD) sets by using the semi-open sets [5], and introduced the semi- D_i spaces for i = 0, 1, 2.

The purpose of this paper is to introduce some pre-separation axioms in bitopological spaces. To define and investigate the axioms we use the (1,2)*pre-open sets [6] introduced by Lellis Thivagar and Ravi. We call these axioms as (1,2)*pre- T_0 , (1,2)*pre- T_1 and (1,2)*pre- T_2 . We also define (1,2)*pre-Difference sets and utilize them to define the (1,2)*pre- D_i , i=0,1,2, axioms. We prove a bitopological space is (1,2)*pre- D_1 if and only if it is (1,2)*pre- D_2 .

We recall some definitions and concepts which are useful in the following sections.

2. Preliminaries

In this section unless it is explicitly stated X is a topological space (X, τ) . For a $A \subset X$, the interior and closure of A in X are denoted by int(A) and cl(A) respectively.

Definition 2.1. A space X is called

- (i). Pre- T_0 [2]] iff to each pair of distinct points x, y in X, there exists a pre-open set containing one of the points but not the other.
- (ii). Pre- T_1 [2] iff to each pair of distinct points x, y of X, there exists a pair of pre-open sets one containing x but not y and other containing y but not x.
- (iii). Pre- T_2 [2] iff to each pair of distinct points x, y of X, there exists a pair of disjoint pre-open sets one containing x and the other containing y.

Definition 2.2. A subset A of X is called a semi-Difference set (in short sD-set) if there are two semi-open sets O_1 , O_2 in X such that $O_1 \neq X$ and $A = O_1 \setminus O_2$.

Definition 2.3. A space X is called

- (i). Semi- D_0 if for $x, y \in X$, $x \neq y$, there exists a sD-set of X containing one of x and y but not the other.
- (ii). Semi- D_1 if for $x, y \in X$, $x \neq y$, there exists a pair of sD-sets one containing x but not y and the other containing y but not x.

²⁰⁰⁰ Mathematics Subject Classification. 54C55.

Key words and phrases. $(1,2)^*$ pre- T_k , $(1,2)^*$ pre- D_k , k=0,1,2.

The first author wishes to acknowledge the support of University Grants Commission, New Delhi, India, FIP-X Plan.

(iii). Semi- D_2 if for $x, y \in X$, $x \neq y$, there exist disjoint sD-sets S_1 and S_2 such that $x \in S_1$ and $y \in S_2$.

A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_{1,2}$ -open [6] if $A = S_1 \cup S_2$ where $S_1 \in \tau_1$ and $S_2 \in \tau_2$, and $\tau_{1,2}$ -closed if A^c is $\tau_{1,2}$ -open in X. We write $\tau_1\tau_2$ -interior of A and $\tau_1\tau_2$ -closure of A, in short form, $\tau_1\tau_2$ -int(A) and $\tau_1\tau_2$ -cl(A) respectively. $\tau_1\tau_2$ -int(A) is the union of all $\tau_{1,2}$ -open sets contained in A and $\tau_1\tau_2$ -cl(A) is the intersection of all $\tau_{1,2}$ -closed sets containing A.

Definition 2.4. A subset A of X is called $(1,2)^*$ pre-open [6] if $A \subset \tau_1\tau_2$ - $int(\tau_1\tau_2-cl(A))$ and $(1,2)^*$ pre-closed if its complement in X is $(1,2)^*$ pre-open. Or equivalently, $\tau_1\tau_2$ - $cl(\tau_1\tau_2$ - $int(A)) \subset A$.

The family of all (1,2)*pre-open sets of X is denoted by (1,2)*PO(X). (1,2)*pre-closure of A denoted by (1,2)*pcl(A) is the intersection of all (1,2)*pre-closed sets containing A.

A subset A of X is (1,2)*pre-closed if and only if (1,2)*pcl(A) = A. Note that every $\tau_{1,2}$ -open set is (1,2)*pre-open.

Definition 2.5. A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (i). (1,2)*pre-irresolute if the inverse image of every (1,2)*pre-open set in Y is (1,2)*pre-open in X.
- (ii). Strongly (1,2)*pre-open [6] if the image of every (1,2)*pre-open if the image of every (1,2)*pre-open set in X is (1,2)*pre-open in Y.

In the next section we introduce the $(1,2)^*$ pre- T_k -spaces for k=0,1,2. In the following sections by X and Y we mean bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) respectively.

3.
$$(1,2)^*$$
PRE- T_k -SPACES

Definition 3.1. A bitopological space X is said to be $(1,2)^*$ pre- T_0 iff for $x, y \in X$, $x \neq y$, there exists an $(1,2)^*$ pre-open set containing only one of x and y but not the other.

Now we proceed to prove that every bitopological space is (1,2)*pre- T_0 .

Lemma 3.2. If for some $x \in X$, $\{x\}$ is $(1,2)^*$ pre-open then $x \notin (1,2)^*$ pcl $(\{y\})$ for all $y \neq x$.

Proof. If $\{x\}$ is $(1,2)^*$ pre-open for some $x \in X$, then $X \setminus \{x\}$ is $(1,2)^*$ pre-closed and $x \notin X \setminus \{x\}$. If $x \in (1,2)^*$ pcl $(\{y\})$ for some $y \neq x$, then x,y both are in all the $(1,2)^*$ pre-closed sets containing y which implies that $x \in X \setminus \{x\}$ which is not true. Therefore, $x \notin (1,2)^*$ pcl $(\{y\})$.

Theorem 3.3. In a space X, distinct points have distinct $(1,2)^*$ pre-closures.

Proof. Let $x, y \in X$, $x \neq y$. Take $A = \{x\}^c$. Then $\tau_1 \tau_2 - cl(A) = A$ or X.

Case (a). If $\tau_1\tau_2\text{-}cl(A)=A$, then A is $\tau_{1,2}$ -closed and hence $(1,2)^*$ pre-closed. Then $X\setminus A=\{x\}$ is $(1,2)^*$ pre-open, not containing y. Therefore, by Lemma 3.2, $x\notin (1,2)^*pcl(\{y\})$ and $y\in (1,2)^*pcl(\{y\})$ which implies that

$$(1,2)^*pcl(\{x\})$$
 and $(1,2)^*pcl(\{y\})$

are distinct.

Case (b). If $\tau_1\tau_2$ -cl(A) = X, then A is $(1,2)^*$ pre-open and hence $\{x\}$ is $(1,2)^*$ pre-closed which shows that $(1,2)^*$ $pcl(\{x\}) = \{x\}$ which is not equal to $(1,2)^*$ $pcl(\{y\})$.

Theorem 3.4. In a space X, if distinct points have distinct $(1,2)^*$ pre-closures then X is $(1,2)^*$ pre- T_0 .

Proof. Let $x, y \in X$, $x \neq y$. Then $(1,2)^*pcl(\{x\})$ is not equal to $(1,2)^*pcl(\{y\})$. Then there exists $z \in X$ such that $z \in (1,2)^*pcl(\{x\})$ but $z \notin (1,2)^*pcl(\{y\})$ or $z \in (1,2)^*pcl(\{y\})$ but $z \notin (1,2)^*pcl(\{x\})$. Without loss of generality, let $z \in (1,2)^*pcl(\{x\})$ but $z \notin (1,2)^*pcl(\{y\})$. If $x \in (1,2)^*pcl(\{y\})$, then $(1,2)^*pcl(\{x\})$ is contained in $(1,2)^*pcl(\{y\})$ and therefore, $z \in (1,2)^*pcl(\{y\})$, which is a contradiction. Thus we get $x \notin (1,2)^*pcl(\{y\})$. This implies that $x \in (1,2)^*pcl(\{y\})^c$. Therefore, $x \in (1,2)^*pcl(\{y\})^c$.

Theorem 3.5. Every bitopological space is $(1,2)^*$ pre- T_0 .

Proof. Follows from Theorem 3.3 and Theorem 3.4.

Remark 3.6. It is observed that every T_0 -space is pre- T_0 but not the converse [2]. Here we note that if a space X is T_0 with respect to τ_1 or τ_2 then X is $(1,2)^*$ pre- T_0 . But if X is $(1,2)^*$ pre- T_0 , it is not necessary that (X, τ_1) is T_0 or (X, τ_2) is T_0 , as shown in the following example.

Example 3.7. Let $X = \{a, b, c\}$. $\tau_1 = \{\emptyset, \{a, b\}, X\}$, $\tau_2 = \{\emptyset, \{b, c\}, X\}$. Then X is $(1, 2)^*$ pre- T_0 but both (X, τ_1) and (X, τ_2) are T_0 .

Definition 3.8. A space X is called $(1,2)^*$ pre- T_1 iff for $x, y \in X, x \neq y$, there exist U, $V \in (1,2)^* PO(X)$ such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Remark 3.9. It is obvious that every (1,2)*pre- T_1 space is (1,2)*pre- T_0 but the converse is not true in general as illustrated in the next example.

Example 3.10. Let $X = \{a, b, c\}$. $\tau_1 = \{\emptyset, \{a\}, X\}, \tau_2 = \{\emptyset, \{b\}, X\}$. Then X is (1, 2)*pre- T_0 but not (1, 2)*pre- T_1 .

Theorem 3.11. In a space X, the following statements are equivalent.

- (i). X is $(1,2)^*$ pre- T_1 .
- (ii). For each $x \in X$, $\{x\}$ is $(1,2)^*$ pre-closed in X.
- (iii). Each subset of X is the intersection of all (1,2)* pre-open sets containing it.
- (iv). The intersection of all (1,2)* pre-open sets containing the point $x \in X$ is $\{x\}$.

Proof. $(i) \Rightarrow (ii)$.

Let $x \in X$. If $y \in X$ and $x \neq y$ then there exists an $(1,2)^*$ pre-open set U_y such that $y \in U_y$. Hence $y \in U_y \subset \{x\}^c$. Therefore, $\{x\}^c = \bigcup \{U_y : y \in \{x\}^c\}$ which is $(1,2)^*$ pre-open and so $\{x\}$ is $(1,2)^*$ pre-closed in X. $(ii) \Rightarrow (iii)$.

Let $A \subset X$ and $y \notin A$. Then $A \subset \{y\}^c$ and $\{y\}^c$ is $(1,2)^*$ pre-open in X and $A = \bigcap \{\{y\}^c : y \in A^c\}$ which is the intersection of all $(1,2)^*$ pre-open sets containing A. $(iii) \Rightarrow (iv)$.

Obvious.

 $(iv) \Rightarrow (i)$.

Let $x, y \in X$, $x \neq y$. By our assumption, there exist at least an $(1,2)^*$ pre-open set containing x but not y and also an $(1,2)^*$ pre-open set containing y but not x. Therefore, X is $(1,2)^*$ pre- T_1 .

Definition 3.12. A space X is called $(1,2)^*$ pre- T_2 iff for $x, y \in X$, $x \neq y$, there exist disjoint $(1,2)^*$ pre-open sets U, V in X such that $x \in U$ and $y \in V$.

Remark 3.13. (1,2)*pre- T_2 ness implies (1,2)*pre- T_1 ness but the converse is not true in general. In Example 3.7, X is (1,2)*pre- T_1 but not (1,2)*pre- T_2 .

Definition 3.14. A subset O of X is said to be $(1,2)^*$ pre-neighbourhood of a point $x \in X$ iff there exists an $(1,2)^*$ pre-open set U such that $x \in U \subset O$.

Theorem 3.15. For a space X the following statements are equivalent.

- (i). X is $(1,2)^*$ pre- T_2
- (ii). If $x \in X$, then for each $y \neq x$, there is an $(1,2)^*$ pre-neighbourhood N(x) of x such that $y \notin (1,2)^*$ pcl(N(x)).
- (iii). For each $x \in \{(1,2)^*pcl(N): N \text{ is an } (1,2)^*pre-neighbourhood of } x\} = \{x\}.$

Proof. $(i) \Rightarrow (ii)$.

Let $x \in X$. If $y \in X$ is such that $y \neq x$, there exist disjoint $(1,2)^*$ pre-open sets U, V such that $x \in U$ and $y \in V$. Then $x \in U \subset X \setminus V$ which implies that $X \setminus V$ is an $(1,2)^*$ pre-neighbourhood of x. Also $X \setminus V$ is $(1,2)^*$ pre-closed and $y \notin X \setminus V$. Let $N(x) = X \setminus V$. Then $y \notin (1,2)^*$ pcl(N(x)).

 $(ii) \Rightarrow (iii).$

Obvious.

 $(iii) \Rightarrow (i).$

Let $x, y \in X, x \neq y$. By hypothesis, there is at least an $(1,2)^*$ pre-neighbourhood N of x such that $y \notin (1,2)^* pcl(N)$. We have $x \notin X \setminus (1,2)^* pcl(N)$ is $(1,2)^*$ pre-open. Since N is an $(1,2)^*$ pre-neighbourhood of x, there exists $U \in (1,2)^* PO(X)$ such that $x \in U \subset N$ and $U \cap (X \setminus (1,2)^* pcl(N)) = \emptyset$. Hence X is $(1,2)^*$ pre- T_2 .

Definition 3.16. A space X is said to be $(1,2)^*$ pre-regular if for each $(1,2)^*$ pre-closed set F and each point $x \notin F$ there exist disjoint $(1,2)^*$ pre-open sets U and V such that $x \in U$ and $F \subset V$.

Theorem 3.17. An $(1,2)^*$ pre- T_0 space is $(1,2)^*$ pre- T_2 if it is $(1,2)^*$ pre-regular.

Proof. Let X be $(1,2)^*$ pre- T_0 and $(1,2)^*$ pre-regular. If $x, y \in X$, $x \neq y$, there exists $U \in (1,2)^* PO(X)$ such that U contains one of x and y, say x but not y. Then $X \setminus U$ is $(1,2)^*$ pre-closed and $x \notin X \setminus U$. Since X is $(1,2)^*$ pre-regular, there exist disjoint $(1,2)^*$ pre-open sets V_1 and V_2 such that $x \in V_1$ and $X \setminus U \subset V_2$. Thus $x \in V_1$ and $y \in V_2$, $V_1 \cap V_2 = \emptyset$. Hence X is $(1,2)^*$ pre- T_2 .

Theorem 3.18. If $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an injective, $(1, 2)^*$ pre-irresolute map and Y is $(1, 2)^*$ pre- T_2 then X is $(1, 2)^*$ pre- T_2 .

Proof. Let $x, y \in X, x \neq y$. Since f is injective, $f(x) \neq f(y)$ in Y and there exist disjoint $(1,2)^*$ pre-open sets U, V such that $f(x) \in U$ and $f(y) \in V$. Let $G = f^{-1}(U)$ and $H = f^{-1}(V)$. Then $x \in G, y \in H$ and $G, H \in (1,2)^* PO(X)$. Also $G \cap H = f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = \emptyset$. Thus X is $(1,2)^*$ pre- T_2 .

4. Pre-difference axioms

Definition 4.1. A subset A of X is called $(1,2)^*$ pre-difference set (briefly $(1,2)^*$ pD-set) if there are two $(1,2)^*$ pre-open sets P_1 and P_2 in X, $P_1 \neq X$ such that $A = P_1 \setminus P_2$.

Remark 4.2. It is evident that each (1,2)*pre-open set is an (1,2)*pD-set.

Now we define another set of separation axioms called $(1,2)^*$ pre- D_i , i=0,1,2 by using the $(1,2)^*p$ -sets.

Definition 4.3. A space X is said to be

- (i). (1,2)*pre- D_0 if for $x, y \in X$, $x \neq y$, there exists an (1,2)*pD-set containing one of x and y but not the other.
- (ii). $(1,2)^*$ pre- D_1 if for $x, y \in X, x \neq y$, there exist $(1,2)^*pD$ -sets U, V in X such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

(iii). $(1,2)^*$ pre- D_2 if for $x, y \in X$, $x \neq y$, there exist disjoint $(1,2)^*p$ -sets U, V in X such that $x \in U$ and $y \in V$.

Remark 4.4. (i). Every $(1,2)^*$ pre- T_i space is $(1,2)^*$ pre- D_i , i=0,1,2 respectively. (ii). If X is $(1,2)^*$ pre- D_i then it is $(1,2)^*$ pre- D_{i-1} , i=1,2.

Remark 4.5. (1,2)*pre- D_i ness does not imply (1,2)*pre- T_i ness for i=1,2 respectively. In example 3.10, X is (1,2)*pre- D_1 but not (1,2)*pre- T_1 and in Example 3.7, X is not (1,2)*pre- T_2 but (1,2)*pre- D_2 .

The next example shows that (1,2)*pre- D_0 does not imply (1,2)*pre- D_1 .

Example 4.6. Let $X = \{a, b\}$, $\tau_1 = \{\emptyset, X\}$, $\tau_2 = \{\emptyset, \{a\}, X\}$. Then X is $(1, 2)^*$ pre- D_0 but not $(1, 2)^*$ pre- D_1 .

Theorem 4.7. A space X is $(1,2)^*$ pre- D_0 if and only if it is $(1,2)^*$ pre- T_0 .

Proof. Suppose that X is $(1,2)^*$ pre- D_0 . Let $x, y \in X$, $x \neq y$. Then there exists an $(1,2)^*pD$ -set U such that U contains x but not y, say. As U is an $(1,2)^*pD$ -set, it is possible to write $U = P_1 \setminus P_2$ where $P_1 \neq X$ and $P_1, P_2 \in (1,2)PO(X)$. Now there arises two cases. (i) $y \notin P_1$ (ii) $y \in P_1$ and $y \in P_2$.

Case (i). $y \notin P_1$ and $x \in P_1 \setminus P_2$ implies that $x \in P_1$ and $y \notin P_1$.

Case (ii). $y \in P_1$ and $y \in P_2$. $x \in P_1 \setminus P_2$ implies that $x \notin P_2$. Thus $y \in P_2$ and $x \notin P_2$.

Thus in both the cases, we obtain that X is (1,2)*pre- T_0 . Conversely, if X is (1,2)*pre- T_0 , by Remark 4.4, X is (1,2)*pre- D_0 .

It has been showed in section 3, that an (1,2)*pre- T_2 -space is (1,2)*pre- T_1 but not the converse. But in the case of pre-Difference axioms, we prove that an (1,2)*pre- D_1 -space is (1,2)*pre- D_2 and so the (1,2)*pre- D_1 -space coincides with (1,2)*pre- D_2 -space.

Theorem 4.8. A space X is $(1,2)^*$ pre- D_1 if and only if X is $(1,2)^*$ pre- D_2 .

Proof. Necessity. Let $x, y \in X$, $x \neq y$. Then there exist $(1,2)^*pD$ -sets U, V in X such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$. Let $U = P_1 \setminus P_2$ and $V = P_3 \setminus P_4$ where $P_i \in (1,2)^*PO(X)$, i=1,2,3,4 and $P_1 \neq X$, $P_3 \neq X$. It is evident that $x \notin V$ implies the two possibilities, (i) $x \in P_3 \cap P_4$ (ii) $x \notin P_3$.

Case (i). $x \in P_3 \cap P_4$. We have $x \in P_4$ and $y \in P_3 \setminus P_4$ and $P_4 \cap (P_3 \setminus P_4) = \emptyset$ are disjoint.

Case (ii). $x \notin P_3$. $y \notin U$ implies that either $y \in P_1$ and $y \in P_2$ or $y \notin P_1$.

Sub Case (a). $y \in P_1$ and $y \in P_2$ and $x \in P_1 \setminus P_2$. We get $P_1 \setminus P_2$ and P_2 are disjoint $(1,2)^*pD$ -sets containing x and y respectively.

Sub Case (b). $y \notin P_1$ and $x \in P_1 \setminus P_2$ and $x \notin P_3$ implies that $x \in P_1 \setminus (P_2 \cup P_3)$ and $y \in P_3 \setminus P_4$ and $y \notin P_1$ implies that $y \in P_3 \setminus (P_1 \cup P_4)$ and $P_1 \setminus (P_2 \cup P_3)$ and $P_3 \setminus (P_1 \cup P_4)$ are disjoint. Therefore, X is $(1,2)^*$ pre- D_2 .

Sufficiency. Follows from Remark 4.4.

Theorem 4.9. If X is $(1,2)^*$ pre- D_1 then it is $(1,2)^*$ pre- T_0 .

Proof. Follows from (ii) Remark 4.4 and theorem 4.8.

Remark 4.10. An (1,2)*pre- T_0 -space is not (1,2)*pre- D_1 , in general. In Example 3.10, X is (1,2)*pre- T_0 but not (1,2)*pre- D_1 .

Remark 4.11. From the discussions in Sections three and four, the following implication diagram is drawn. In the diagram,

- 2. (1,2)*pre- T_1
- 3. (1,2)*pre- T_0
- 4. (1,2)*pre- D_1

 $A \to B$ (resp. $A \nrightarrow B$) represents that A implies B (resp. A does not imply B).

References

- Abhijit Chattopadhyay, Pre-T0 and Pre-T1 topological spaces, J. Indian Acad. Math. 17 (1995), no. 2, 156–159.
- 2. Ashish Kar and Paritosh Bhattacharyya, *Some weak separation axioms*, Bull. Cal. Math. Soc. **82** (1990), 415–422.
- A. S. Davis, Indexed system of neighbourhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886–893.
- S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour, and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.) 27(75) (1983), 311–315.
- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- M. Lellis Thivagar and O. Ravi, A bitopological (1,2)* semi generalized continuous mappings, Bull. Malaysian Math. Soc. 29 (2005), no. 1, 1-9.
- 7. M. Lellis Thivagar, Generalization of Pairwise α -continuous functions, Pure and Applied Mathematika Sciences 33 (1991), 55–63.
- S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles 89 (1975), 395–402.
- 9. A. S. Mashhour, M. E. Abd El-Monsef, and S.N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt (1982), 47–53.
- 10. Miguel Caldas, A separation axiom between semi- T_0 and semi- T_1 , Mem. Fac. Sci. Kochi. Univ. (Math.) **18** (1997), 37-42.
- 11. G. B. Navalagi, *P-normal, almost P-normal and mildly p-normal spaces*, Topology Atlas Preprint 427.
- 12. G. B. Navalagi, Pre-neighbourhoods, Topology Atlas Preprint 422.

Department of Mathematics, Jayaraj Annapackiam College for Women, Periyakulam, Theni (Dt.)-625601, Tamilnadu, India

E-mail address: athisayaponmani@yahoo.co.in

Department of Mathematics, Arul Anandar College, Karumathur, Madurai (Dt.)-625514, Tamilnadu, India

 $E ext{-}mail\ address: mlthivagar@yahoo.co.in}$

Received 01/02/2006