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ANOTHER FORM OF SEPARATION AXIOMS

S. ATHISAYA PONMANI AND M. LELLIS THIVAGAR

ABSTRACT. It is the object of this paper to introduce the (1,2)*pre-Dj axioms for
k=0,1,2.

1. INTRODUCTION

In 1982, Mashhour et al [9] introduced the notion of pre-open sets and the pre-closed
sets were defined in [4]. Ashish Kar and Bhattacharya [2], in 1990, continued their work
on pre-open sets and offered another set of separation axioms analogous to the semi
separation axioms defined by Maheshwari and Prasad [8]. Caldas [10] defined a new
class of sets called semi-Difference (briefly sD) sets by using the semi-open sets [5], and
introduced the semi-D; spaces for i = 0, 1, 2.

The purpose of this paper is to introduce some pre-separation axioms in bitopological
spaces. To define and investigate the axioms we use the (1, 2)*pre-open sets [6] introduced
by Lellis Thivagar and Ravi. We call these axioms as (1,2)*pre-Tp, (1,2)*pre-77 and
(1,2)*pre-T5. We also define (1,2)*pre-Difference sets and utilize them to define the
(1,2)*pre-D;, ¢ = 0, 1, 2, axioms. We prove a bitopological space is (1,2)*pre-D; if and
only if it is (1,2)*pre-Ds.

We recall some definitions and concepts which are useful in the following sections.

2. PRELIMINARIES

In this section unless it is explicitly stated X is a topological space (X, 7). For a
A C X, the interior and closure of A in X are denoted by int(A) and cl(A) respectively.

Definition 2.1. A space X is called
(i). Pre-Tp [2]] iff to each pair of distinct points z, y in X, there exists a pre-open
set containing one of the points but not the other.
(ii). Pre-Ty [2] iff to each pair of distinct points x, y of X, there exists a pair of
pre-open sets one containing x but not y and other containing y but not x.
(iii). Pre-Ty [2] iff to each pair of distinct points x, y of X, there exists a pair of
disjoint pre-open sets one containing = and the other containing y.

Definition 2.2. A subset A of X is called a semi-Difference set (in short sD-set) if there
are two semi-open sets O1, Oy in X such that O; # X and A = O \ Os.

Definition 2.3. A space X is called

(i). Semi-Dy if for z, y € X, = # y, there exists a sD-set of X containing one of z
and y but not the other.

(ii). Semi-D; if for x, y € X, x # y, there exists a pair of sD-sets one containing x
but not y and the other containing y but not .
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(iii). Semi-Ds if for x, y € X, x # y, there exist disjoint sD-sets S; and S5 such that
r €85y and y € 55.

A subset A of a bitopological space (X, 71, 72) is called 7y 2-open [6] if A = 57 U S
where S; € 71 and Sy € T2, and 7 »-closed if A¢ is Ty 2-open in X. We write 7 mo-interior
of A and 1 7m-closure of A, in short form, 7172-int(A) and 7179-cl(A) respectively. 717o-
int(A) is the union of all 7y 2-open sets contained in A and 71 72-cl(A) is the intersection
of all 7 2-closed sets containing A.

Definition 2.4. A subset A of X is called (1,2)*pre-open [6] if A C 7y7-int(r172-
cl(A)) and (1, 2)*pre-closed if its complement in X is (1,2)*pre-open. Or equivalently,
T1Ta-cl(T1T2-int(A)) C A.

The family of all (1,2)*pre-open sets of X is denoted by (1,2)*PO(X). (1,2)*pre-
closure of A denoted by (1,2)*pcl(A) is the intersection of all (1,2)*pre-closed sets con-
taining A.

A subset A of X is (1,2)*pre-closed if and only if (1,2)*pcl(A) = A. Note that every
T1,2-0pen set is (1, 2)*pre-open.

Definition 2.5. A map f: (X, 71, 2)—(Y, 01, 02)is called
(). (1,2)*pre-irresolute if the inverse image of every (1,2)*pre-open set in Y is
(1,2)*pre-open in X.
(ii). Strongly (1,2)*pre-open [6] if the image of every (1,2)*pre-open if the image of
every (1,2)*pre-open set in X is (1,2)*pre-open in Y.

In the next section we introduce the (1,2)*pre-Tji-spaces for £k = 0, 1, 2. In the
following sections by X and Y we mean bitopological spaces (X, 71, 72) and (Y, o1, 02)
respectively.

3. (1,2)*PRE-T,-SPACES

Definition 3.1. A bitopological space X is said to be (1,2)*pre-Tp iff for z, y € X,
x # y, there exists an (1,2)*pre-open set containing only one of x and y but not the
other.

Now we proceed to prove that every bitopological space is (1, 2)*pre-Tp.

Lemma 3.2. If for some x € X, {z} is (1,2)*pre-open then = ¢ (1,2)*pcl({y}) for all
y# .

Proof. If {z} is (1,2)*pre-open for some z € X, then X \ {z} is (1,2)*pre-closed and
x ¢ X\{z}. ffx e (1,2)*pcl({y}) for some y # x, then x, y both are in all the (1,2)*pre-
closed sets containing y which implies that « € X \ {z} which is not true. Therefore,

z & (1,2)"pcl({y}). O
Theorem 3.3. In a space X, distinct points have distinct (1,2)* pre-closures.

Proof. Let x, y € X, x #y. Take A = {x}°. Then m7o-cl(A) = A or X.

Case (a). If mymo-cl(A) = A, then A is 7 5-closed and hence (1, 2)*pre-closed. Then
X \ A = {z} is (1,2)*pre-open, not containing y. Therefore, by Lemma 3.2, = ¢
(1,2)*pcl({y}) and y € (1,2)*pcl({y}) which implies that

(1,2)"pcd({z})  and  (1,2)"pcl({y})
are distinct.
Case (b). If 1y7a-cl(A) = X, then A is (1, 2)*pre-open and hence {x} is (1, 2)*pre-closed
which shows that (1,2)*pcl({z}) = {«} which is not equal to (1,2)*pcl({y}). O
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Theorem 3.4. In a space X, if distinct points have distinct (1,2)* pre-closures then X
is (1,2)*pre-Tp.

Proof. Let z, y € X, v # y. Then (1,2)*pcl({z}) is not equal to (1,2)*pcl({y}).
Then there exists z € X such that z € (1,2)*pcl({z}) but z ¢ (1,2)*pcl({y}) or z €
(1,2)*pcl({y}) but z ¢ (1,2)*pcl({z}). Without loss of generality, let z € (1,2)*pcl({z})
but z ¢ (1,2)*pcl({y}). If x € (1,2)*pcl({y}), then (1,2)*pcl({x}) is contained in
(1,2)*pcl({y}) and therefore, z € (1,2)*pcl({y}), which is a contradiction. Thus we get
x ¢ (1,2)*pcl({y}). This implies that = € (1,2)*pcl(({y})°). Therefore, X is (1,2)*pre-
To. O

Theorem 3.5. Every bitopological space is (1,2)* pre-Ty.
Proof. Follows from Theorem 3.3 and Theorem 3.4. |

Remark 3.6. It is observed that every Ty-space is pre-T but not the converse [2]. Here
we note that if a space X is Ty with respect to 7y or 7o then X is (1,2)*pre-Ty. But if
X is (1,2)*pre-Ty, it is not necessary that (X, 7) is Ty or (X, 72) is Tp, as shown in the
following example.

Example 3.7. Let X = {a, b, ¢}. 7 = {0, {a,b}, X}, 72 = {0, {b,c}, X}. Then X is
(1,2)*pre-Ty but both (X, 7 ) and (X, 72 ) are Tj.

Definition 3.8. A space X is called (1,2)*pre-T; iff for z, y € X, x # y, there exist U,
Ve(1,2)*PO(X)suchthat € U,y¢ UandyeV,z ¢ V.

Remark 3.9. Tt is obvious that every (1,2)*pre- T space is (1,2)*pre-Ty but the converse
is not true in general as illustrated in the next example.

Example 3.10. Let X = {a, b, c}. 7 = {0, {a}, X}, = = {0, {b}, X}. Then X is
(1,2)*pre-Ty but not (1,2)*pre-T7.

Theorem 3.11. In a space X, the following statements are equivalent.
(i). X is (1,2)*pre-T;.
(ii). For each x € X, {z} is (1,2)*pre-closed in X.
(iii). Each subset of X is the intersection of all (1,2)*pre-open sets containing it.
(iv). The intersection of all (1,2)*pre-open sets containing the point x € X is {x}.

Proof. (i) = (ii).

Let z € X. If y € X and = # y then there exists an (1,2)*pre-open set U, such
that y € U,. Hence y € U, C {z}°. Therefore, {z}° = J {U, : y € {z}°} which is
(1,2)*pre-open and so {z} is (1,2)*pre-closed in X.

(id) = (iii).

Let AC X and y ¢ A. Then A C {y}° and {y}° is (1,2)*pre-open in X and A =)
{{y}°¢ : y € A°} which is the intersection of all (1, 2)*pre-open sets containing A.

(731) = (iv).

Obvious.

(iv) = (4).

Let z, y € X, © # y. By our assumption, there exist atleast an (1,2)*pre-open set
containing 2 but not y and also an (1,2)*pre-open set containing y but not 2. Therefore,
X is (1,2)"pre-T. O

Definition 3.12. A space X is called (1,2)*pre-T» iff for =, y € X, x # y, there exist
disjoint (1,2)*pre-open sets U, V in X such that z € U and y € V.

Remark 3.13. (1,2)*pre-Teness implies (1,2)*pre-Tiness but the converse is not true in
general. In Example 3.7, X is (1,2)*pre-T; but not (1,2)*pre-T5.
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Definition 3.14. A subset O of X is said to be (1,2)*pre-neighbourhood of a point
x € X iff there exists an (1, 2)*pre-open set U such that z € U C O.

Theorem 3.15. For a space X the following statements are equivalent.
(i). X is (1,2)*pre-Ty
(ii). If x € X, then for each y # x, there is an (1,2)*pre-neighbourhood N (z) of x
such that y ¢ (1,2)*pcl(N(z)).
(iii). For each x € {(1,2)*pcl(N): N is an (1,2)*pre-neighbourhood of x} = {z}.

Proof. (i) = (ii).

Let © € X. If y € X is such that y # z, there exist disjoint (1,2)*pre-open sets U,
V such that € U and y € V. Then z € U C X \ V which implies that X \ V is an
(1,2)*pre-neighbourhood of z. Also X \ V' is (1,2)*pre-closed and y ¢ X \ V. Let N(x)
=X \V. Then y ¢ (1,2)*pcl(N(x)).
(i3) = (iid).

Obvious.

Let x, y € X, x # y. By hypothesis, there is atleast an (1, 2)*pre-neighbourhood N of
x such that y ¢ (1,2)*pcl(N). We have x ¢ X \ (1,2)*pcl(N) is (1, 2)*pre-open. Since N
is an (1, 2)*pre-neighbourhood of z, there exists U € (1,2)*PO(X) such that t € U C N
and U N (X \ (1,2)*pcl(N)) =0. Hence X is (1,2)*pre-Tx. O

Definition 3.16. A space X is said to be (1, 2)*pre-regular if for each (1, 2)*pre-closed
set F' and each point « ¢ F' there exist disjoint (1,2)*pre-open sets U and V' such that
zeUand FCV.

Theorem 3.17. An (1,2)*pre-Ty space is (1,2)*pre-Ty if it is (1,2)* pre-regular.

Proof. Let X be (1,2)*pre-Ty and (1,2)*pre-regular. If z, y € X, x # y, there exists
U € (1,2)*PO(X) such that U contains one of 2 and y, say « but not y. Then X \ U
is (1,2)*pre-closed and « ¢ X \ U. Since X is (1,2)*pre-regular, there exist disjoint
(1,2)*pre-open sets Vi and V5 such that x € V4 and X \ U C Vo. Thus x € V; and
y € Vo, V1 NVo = 0. Hence X is (1,2)*pre-T. O

Theorem 3.18. If f :(X, 71, 72)— (Y, 01, 02) is an injective, (1,2)*pre-irresolute map
and Y is (1,2)*pre-Ty then X is (1,2)*pre-Ts.

Proof. Let x,y € X, x # y. Since f is injective, f(x) # f(y) in Y and there exist disjoint
(1,2)*pre-open sets U, V such that f(z) € U and f(y) € V. Let G = f~}(U) and H =
f7Y(V). Thenx € G,y € H and G, H € (1,2)*PO(X). Also GNH = f~YU)N f~1(V)
= f~Y(UNV)=0. Thus X is (1,2)*pre-Ts. O

4. PRE-DIFFERENCE AXIOMS

Definition 4.1. A subset A of X is called (1,2)*pre-difference set (briefly (1,2)*pD-set)
if there are two (1,2)*pre-open sets P; and P, in X, P; # X such that A = P, \ P,.

Remark 4.2. Tt is evident that each (1,2)*pre-open set is an (1,2)*pD-set.
Now we define another set of separation axioms called (1,2)*pre-D;, ¢ = 0, 1, 2 by
using the (1,2)*pD-sets.
Definition 4.3. A space X is said to be
(). (1,2)*pre-Dy if for x, y € X, x # y, there exists an (1,2)*pD-set containing one
of z and y but not the other.
(ii). (1,2)*pre-Dy if for z, y € X, © # y, there exist (1,2)*pD-sets U, V in X such
that z e U,y¢UandyeV,x ¢ V.
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(iii). (1,2)*pre-Dy if for z, y € X, x # y, there exist disjoint (1,2)*pD-sets U, V in
X such that x € U and y € V.

Remark 4.4. (i). Every (1,2)*pre-T; space is (1,2)*pre-D;, i = 0, 1, 2 respectively.
(ii). If X is (1,2)*pre-D; then it is (1,2)*pre-D;_1, i = 1, 2.

Remark 4.5. (1,2)*pre-D; ness does not imply (1, 2)*pre-T; ness for ¢ = 1, 2 respectively.
In example 3.10, X is (1,2)*pre-D; but not (1,2)*pre-7; and in Example 3.7, X is not
(1,2)*pre-T, but (1,2)*pre-Ds.

The next example shows that (1,2)*pre-Dg does not imply (1,2)*pre-D;.

Example 4.6. Let X = {a, b}, 71 = {0, X}, 72 = {0, {a}, X}. Then X is (1, 2)*pre-Dy
but not (1,2)*pre-D; .

Theorem 4.7. A space X is (1,2)*pre-Dy if and only if it is (1,2)*pre-Tp.

Proof. Suppose that X is (1,2)*pre-Dy. Let x, y € X,  # y. Then there exists an
(1,2)*pD-set U such that U contains z but not y, say. As U is an (1,2)*pD-set, it is
possible to write U = Py \ P> where P; # X and P, P» € (1,2)PO(X). Now there
arises two cases. 1)y ¢ P, (ii) y € P, and y € Ps.

Case (i). y ¢ Py and x € Py \ P, implies that € P, and y ¢ P;.

Case (i1). y € Py and y € P,. x € P, \ P, implies that z ¢ P,. Thus y € P, and

x ¢ PQ.
Thus in both the cases, we obtain that X is (1,2)*pre-Ty. Conversely, if X is (1,2)*pre-
To, by Remark 4.4, X is (1,2)*pre-Dy. |

It has been showed in section 3, that an (1, 2)*pre-Ts-space is (1, 2)*pre-T; but not the
converse. But in the case of pre-Difference axioms, we prove that an (1,2)*pre-D;-space
is (1,2)*pre-D2 and so the (1,2)*pre-D;-space coincides with (1, 2)*pre-Da-space.

Theorem 4.8. A space X is (1,2)*pre-D; if and only if X is (1,2)*pre-Ds.

Proof. Necessity. Let x, y € X, x # y. Then there exist (1,2)*pD-sets U, V in X
such that x e U,y ¢ Uandy € V, z ¢ V. Let U = P, \ P, and V = P53\ P, where
P, e (1,2)*PO(X),i=1,2,3,4and P, # X, P;s # X. It is evident that ¢ V implies
the two possibilities, (i) x € Ps NPy (ii) = ¢ Ps.

Case (i). x € P3N Py. We have v € Py and y € P3\ Py and Py N (P3\ Py) = 0 are
disjoint.

Case (i1). v ¢ P3. y ¢ U implies that either y € Py and y € P or y ¢ P;.

Sub Case (a). y € Py and y € Py and « € P, \ Po. We get P; \ P, and P, are disjoint
(1,2)*pD-sets containing x and y respectively.

Sub Case (b). y ¢ Py and = € P; \P, and x ¢ Ps implies that x € P; \ (P, U P3) and
Yy e P3\P4 and y ¢ P; implies that y € P3\(P1UP4) and Pl\(qupg) and P3\(P1UP4)
are disjoint. Therefore, X is (1,2)*pre-Ds.

Sufficiency. Follows from Remark 4.4. |
Theorem 4.9. If X is (1,2)*pre-Dy then it is (1,2)*pre-Tp.
Proof. Follows from (ii) Remark 4.4 and theorem 4.8. O

Remark 4.10. An (1,2)*pre-Tp-space is not (1,2)*pre-Dy, in general. In Example 3.10,
X is (1,2)*pre-Tp but not (1,2)*pre-D;.
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Remark 4.11. From the discussions in Sections three and four, the following implication
diagram is drawn. In the diagram,

1. (1,2)*pre-Ty (1) (2)
2. (1,2)*pre-Ty
3. (1,2)*pre-Ty
4. (1,2)*pre-Dy

)

(4) " (3)

A — B (resp. A - B) represents that A implies B (resp. A does not imply B).
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