1. Introduction

In 1982, Mashhour et al [9] introduced the notion of pre-open sets and the pre-closed sets were defined in [4]. Ashish Kar and Bhattacharya [2], in 1990, continued their work on pre-open sets and offered another set of separation axioms analogous to the semi separation axioms defined by Maheshwari and Prasad [8]. Caldas [10] defined a new class of sets called semi-Difference (briefly sD) sets by using the semi-open sets [5], and introduced the semi-D$_i$ spaces for $i = 0, 1, 2$.

The purpose of this paper is to introduce some pre-separation axioms in bitopological spaces. To define and investigate the axioms we use the $(1, 2)^*$ pre-open sets [6] introduced by Lellis Thivagar and Ravi. We call these axioms as $(1, 2)^*_{pre-T_0}$, $(1, 2)^*_{pre-T_1}$ and $(1, 2)^*_{pre-T_2}$. We also define $(1, 2)^*_{pre-D_i}$ sets and utilize them to define the $(1, 2)^*_{pre-D_i}$, $i = 0, 1, 2$, axioms. We prove a bitopological space is $(1, 2)^*_{pre-D_1}$ if and only if it is $(1, 2)^*_{pre-D_2}$.

We recall some definitions and concepts which are useful in the following sections.

2. Preliminaries

In this section unless it is explicitly stated X is a topological space (X, τ). For a $A \subset X$, the interior and closure of A in X are denoted by $int(A)$ and $cl(A)$ respectively.

Definition 2.1. A space X is called

(i). $Pre-T_0$ [2] iff to each pair of distinct points x, y in X, there exists a pre-open set containing one of the points but not the other.

(ii). $Pre-T_1$ [2] iff to each pair of distinct points x, y of X, there exists a pair of pre-open sets one containing x but not y and other containing y but not x.

(iii). $Pre-T_2$ [2] iff to each pair of distinct points x, y of X, there exists a pair of disjoint pre-open sets one containing x and the other containing y.

Definition 2.2. A subset A of X is called a semi-Difference set (in short sD-set) if there are two semi-open sets O_1, O_2 in X such that $O_1 \neq X$ and $A = O_1 \setminus O_2$.

Definition 2.3. A space X is called

(i). Semi-D_0 if for $x, y \in X$, $x \neq y$, there exists a sD-set of X containing one of x and y but not the other.

(ii). Semi-D_1 if for $x, y \in X$, $x \neq y$, there exists a pair of sD-sets one containing x but not y and the other containing y but not x.

\textbf{Abstract.} It is the object of this paper to introduce the $(1, 2)^*_{pre-D_k}$ axioms for $k = 0, 1, 2$.

\textbf{2000 Mathematics Subject Classification.} 54C55.
\textbf{Key words and phrases.} $(1, 2)^*_{pre-T_k}$, $(1, 2)^*_{pre-D_k}$, $k = 0, 1, 2$.

The first author wishes to acknowledge the support of University Grants Commission, New Delhi, India, FIP-X Plan.

380
(iii). Semi-D_2 if for $x, y \in X, x \neq y$, there exist disjoint sD-sets S_1 and S_2 such that $x \in S_1$ and $y \in S_2$.

A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_{1,2}$-open [6] if $A = S_1 \cup S_2$ where $S_1 \in \tau_1$ and $S_2 \in \tau_2$, and $\tau_{1,2}$-closed if A^c is $\tau_{1,2}$-open in X. We write $\tau_1\tau_2$-interior of A and $\tau_1\tau_2$-closure of A, in short form, $\tau_1\tau_2-int(A)$ and $\tau_1\tau_2-cl(A)$ respectively. $\tau_1\tau_2-int(A)$ is the union of all $\tau_{1,2}$-open sets contained in A and $\tau_1\tau_2-cl(A)$ is the intersection of all $\tau_{1,2}$-closed sets containing A.

Definition 2.4. A subset A of X is called $(1,2)^\ast$-pre-open [6] if $A \subset \tau_1\tau_2-int(\tau_1\tau_2-cl(A))$ and $(1,2)^\ast$-pre-closed if its complement in X is $(1,2)^\ast$-pre-open. Or equivalently, $\tau_1\tau_2-cl(\tau_1\tau_2-int(A)) \subset A$.

The family of all $(1,2)^\ast$-pre-open sets of X is denoted by $(1,2)^\ast PO(X)$. $(1,2)^\ast$-pre-closure of A denoted by $(1,2)^\ast pcl(A)$ is the intersection of all $(1,2)^\ast$-pre-closed sets containing A.

A subset A of X is $(1,2)^\ast$-pre-closed if and only if $(1,2)^\ast pcl(A) = A$. Note that every $\tau_{1,2}$-open set is $(1,2)^\ast$-pre-open.

Definition 2.5. A map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

(i). $(1,2)^\ast$ pre-irresolute if the inverse image of every $(1,2)^\ast$-pre-open set in Y is $(1,2)^\ast$-pre-open in X.

(ii). Strongly $(1,2)^\ast$-pre-open [6] if the image of every $(1,2)^\ast$-pre-open if the image of every $(1,2)^\ast$-pre-open set in X is $(1,2)^\ast$-pre-open in Y.

In the next section we introduce the $(1,2)^\ast$-pre-T_k-spaces for $k = 0, 1, 2$. In the following sections by X and Y we mean bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) respectively.

3. $(1,2)^\ast$-PRE-T_k-SPACES

Definition 3.1. A bitopological space X is said to be $(1,2)^\ast$-pre-T_0 iff for $x, y \in X$, $x \neq y$, there exists an $(1,2)^\ast$-pre-open set containing only one of x and y but not the other.

Now we proceed to prove that every bitopological space is $(1,2)^\ast$-pre-T_0.

Lemma 3.2. If for some $x \in X$, $\{x\}$ is $(1,2)^\ast$-pre-open then $x \notin (1,2)^\ast pcl(\{y\})$ for all $y \neq x$.

Proof. If $\{x\}$ is $(1,2)^\ast$-pre-open for some $x \in X$, then $X \setminus \{x\}$ is $(1,2)^\ast$-pre-closed and $x \notin X \setminus \{x\}$. If $x \in (1,2)^\ast pcl(\{y\})$ for some $y \neq x$, then x, y both are in all the $(1,2)^\ast$-pre-closed sets containing y which implies that $x \in X \setminus \{x\}$ which is not true. Therefore, $x \notin (1,2)^\ast pcl(\{y\})$. \qed

Theorem 3.3. In a space X, distinct points have distinct $(1,2)^\ast$-pre-closures.

Proof. Let $x, y \in X, x \neq y$. Take $A = \{x\}^c$. Then $\tau_1\tau_2-cl(A) = A$ or X.

Case (a). If $\tau_1\tau_2-cl(A) = A$, then A is $\tau_{1,2}$-closed and hence $(1,2)^\ast$-pre-closed. Then $X \setminus A = \{x\}$ is $(1,2)^\ast$-pre-open, not containing y. Therefore, by Lemma 3.2, $x \notin (1,2)^\ast pcl(\{y\})$ and $y \in (1,2)^\ast pcl(\{y\})$ which implies that $(1,2)^\ast pcl(\{x\})$ and $(1,2)^\ast pcl(\{y\})$ are distinct.

Case (b). If $\tau_1\tau_2-cl(A) = X$, then A is $(1,2)^\ast$-pre-open and hence $\{x\}$ is $(1,2)^\ast$-pre-closed which shows that $(1,2)^\ast pcl(\{x\}) = \{x\}$ which is not equal to $(1,2)^\ast pcl(\{y\})$. \qed
Theorem 3.4. In a space X, if distinct points have distinct (1,2)*pre-closures then X is (1,2)*pre-T_0.

Proof. Let $x, y \in X, x \neq y$. Then $(1,2)^*pcl(\{x\})$ is not equal to $(1,2)^*pcl(\{y\})$. Then there exists $z \in X$ such that $z \in (1,2)^*pcl(\{x\})$ but $z \notin (1,2)^*pcl(\{y\})$ or $z \in (1,2)^*pcl(\{y\})$ but $z \notin (1,2)^*pcl(\{x\})$. Without loss of generality, let $z \in (1,2)^*pcl(\{x\})$ but $z \notin (1,2)^*pcl(\{y\})$. If $x \in (1,2)^*pcl(\{y\})$, then $(1,2)^*pcl(\{x\})$ is contained in $(1,2)^*pcl(\{y\})$ and therefore, $z \in (1,2)^*pcl(\{y\})$, which is a contradiction. Thus we get $x \notin (1,2)^*pcl(\{y\})$. This implies that $x \in (1,2)^*pcl((\{y\})^c)$. Therefore, X is (1,2)*pre-T_0. □

Theorem 3.5. Every bitopological space is (1,2)*pre-T_0.

Proof. Follows from Theorem 3.3 and Theorem 3.4. □

Remark 3.6. It is observed that every T_0-space is pre-T_0 but not the converse [2]. Here we note that if a space X is T_0 with respect to τ_1 or τ_2, then X is (1,2)*pre-T_0. But if X is (1,2)*pre-T_0, it is not necessary that (X, τ_1) is T_0 or (X, τ_2) is T_0, as shown in the following example.

Example 3.7. Let $X = \{a, b, c\}$. $\tau_1 = \{\emptyset, \{a, b\}, X\}$, $\tau_2 = \{\emptyset, \{b, c\}, X\}$. Then X is (1,2)*pre-$T_0$ but both (X, τ_1) and (X, τ_2) are T_0.

Definition 3.8. A space X is called (1,2)*pre-T_1 iff for $x, y \in X, x \neq y$, there exist $U, V \in (1,2)^*PO(X)$ such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Remark 3.9. It is obvious that every (1,2)*pre- T_1 space is (1,2)*pre-T_0 but the converse is not true in general as illustrated in the next example.

Example 3.10. Let $X = \{a, b, c\}$. $\tau_1 = \{\emptyset, \{a\}, X\}$, $\tau_2 = \{\emptyset, \{b\}, X\}$. Then X is (1,2)*pre-$T_0$ but not (1,2)*pre-T_1.

Theorem 3.11. In a space X, the following statements are equivalent.

(i). X is (1,2)*pre-T_1.

(ii). For each $x \in X$, $\{x\}$ is (1,2)*pre-closed in X.

(iii). Each subset of X is the intersection of all (1,2)*pre-open sets containing it.

(iv). The intersection of all (1,2)*pre-open sets containing the point $x \in X$ is $\{x\}$.

Proof. (i) \Rightarrow (ii).

Let $x \in X$. If $y \in X$ and $x \neq y$ then there exists an (1,2)*pre-open set U_y such that $y \in U_y$. Hence $y \in U_y \subset \{x\}^c$. Therefore, $\{x\}^c = \bigcup \{U_y : y \in \{x\}^c\}$ which is (1,2)*pre-open and so $\{x\}$ is (1,2)*pre-closed in X.

(ii) \Rightarrow (iii).

Let $A \subset X$ and $y \notin A$. Then $A \subset \{y\}^c$ and $\{y\}^c$ is (1,2)*pre-open in X and $A = \bigcap \{y\}^c : y \in A^c$ which is the intersection of all (1,2)*pre-open sets containing A.

(iii) \Rightarrow (iv).

Obvious.

(iv) \Rightarrow (i).

Let $x, y \in X, x \neq y$. By our assumption, there exist at least an (1,2)*pre-open set containing x but not y and also an (1,2)*pre-open set containing y but not x. Therefore, X is (1,2)*pre-T_1.

Definition 3.12. A space X is called (1,2)*pre-T_2 iff for $x, y \in X, x \neq y$, there exist disjoint (1,2)*pre-open sets U, V in X such that $x \in U$ and $y \in V$.

Remark 3.13. (1,2)*pre-T_2ness implies (1,2)*pre-T_1ness but the converse is not true in general. In Example 3.7, X is (1,2)*pre-T_1 but not (1,2)*pre-T_2.
Definition 3.14. A subset O of X is said to be $(1, 2)^*\text{-pre-neighbourhood of a point } x \in X$ if there exists an $(1, 2)^*\text{-pre-open set } U$ such that $x \in U \subset O$.

Theorem 3.15. For a space X the following statements are equivalent.

(i). X is $(1, 2)^*\text{-pre-T}_2$.

(ii). If $x \in X$, then for each $y \neq x$, there is an $(1, 2)^*\text{-pre-neighbourhood } N(x)$ of x such that $y \notin (1, 2)^*\text{pcl}(N(x))$.

(iii). For each $x \in \{(1, 2)^*\text{pcl}(N) : N$ is an $(1, 2)^*\text{-pre-neighbourhood of } x\}$, $\{x\}$.

Proof. (i) \Rightarrow (ii).

Let $x \in X$. If $y \in X$ is such that $y \neq x$, there exist disjoint $(1, 2)^*\text{-pre-open sets } U, V$ such that $x \in U$ and $y \in V$. Then $x \in U \subset X \setminus V$ which implies that $X \setminus V$ is an $(1, 2)^*\text{-pre-neighbourhood of } x$. Also $X \setminus V$ is $(1, 2)^*\text{-pre-closed and } y \notin X \setminus V$. Let $N(x) = X \setminus V$. Then $y \notin (1, 2)^*\text{pcl}(N(x))$.

(ii) \Rightarrow (iii).

Obvious.

(iii) \Rightarrow (i).

Let $x, y \in X$, $x \neq y$. By hypothesis, there is at least an $(1, 2)^*\text{-pre-neighbourhood } N$ of x such that $y \notin (1, 2)^*\text{pcl}(N)$. We have $x \notin X \setminus (1, 2)^*\text{pcl}(N)$ is $(1, 2)^*\text{-pre-open}$. Since N is an $(1, 2)^*\text{-pre-neighbourhood of } x$, there exists $U \in (1, 2)^*\text{PO}(X)$ such that $x \in U \subset N$ and $U \cap (X \setminus (1, 2)^*\text{pcl}(N)) = \emptyset$. Hence X is $(1, 2)^*\text{-pre-T}_2$. $lacksquare$

Definition 3.16. A space X is said to be $(1, 2)^*\text{-pre-regular}$ if for each $(1, 2)^*\text{-pre-closed set } F$ and each point $x \notin F$ there exist disjoint $(1, 2)^*\text{-pre-open sets } U$ and V such that $x \in U$ and $V \subset F$.

Theorem 3.17. An $(1, 2)^*\text{-pre-T}_0$ space is $(1, 2)^*\text{-pre-T}_2$ if it is $(1, 2)^*\text{-pre-regular}$.

Proof. Let X be $(1, 2)^*\text{-pre-T}_0$ and $(1, 2)^*\text{-pre-regular}$. If $x, y \in X$, $x \neq y$, there exists $U \in (1, 2)^*\text{PO}(X)$ such that U contains one of x and y, say x but not y. Then $X \setminus U$ is $(1, 2)^*\text{-pre-closed and } x \notin X \setminus U$. Since X is $(1, 2)^*\text{-pre-regular}$, there exist disjoint $(1, 2)^*\text{-pre-open sets } V_1$ and V_2 such that $x \in V_1$ and $X \setminus U \subset V_2$. Thus $x \in V_1$ and $y \in V_2$, $V_1 \cap V_2 = \emptyset$. Hence X is $(1, 2)^*\text{-pre-T}_2$. $lacksquare$

Theorem 3.18. If $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an injective, $(1, 2)^*\text{-pre-irresolute map and } Y$ is $(1, 2)^*\text{-pre-T}_2$ then X is $(1, 2)^*\text{-pre-T}_2$.

Proof. Let $x, y \in X$, $x \neq y$. Since f is injective, $f(x) \neq f(y)$ in Y and there exist disjoint $(1, 2)^*\text{-pre-open sets } U, V$ such that $f(x) \in U$ and $f(y) \in V$. Let $G = f^{-1}(U)$ and $H = f^{-1}(V)$. Then $x \in G$, $y \in H$ and $G, H \in (1, 2)^*\text{PO}(X)$. Also $G \cap H = f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = \emptyset$. Thus X is $(1, 2)^*\text{-pre-T}_2$.

4. Pre-difference axioms

Definition 4.1. A subset A of X is called $(1, 2)^*\text{-pre-difference set (briefly } (1, 2)^*\text{pD-set})$ if there are two $(1, 2)^*\text{-pre-open sets } P_1$ and P_2 in X, $P_1 \neq X$ such that $A = P_1 \setminus P_2$.

Remark 4.2. It is evident that each $(1, 2)^*\text{-pre-open set is an } (1, 2)^*\text{pD-set}$.

Now we define another set of separation axioms called $(1, 2)^*\text{-pre-D}_i$, $i = 0, 1, 2$ by using the $(1, 2)^*\text{pD-sets}$.

Definition 4.3. A space X is said to be

(i). $(1, 2)^*\text{-pre-D}_0$ if for $x, y \in X$, $x \neq y$, there exists an $(1, 2)^*\text{pD-set containing one of } x$ and y but not the other.

(ii). $(1, 2)^*\text{-pre-D}_1$ if for $x, y \in X$, $x \neq y$, there exist $(1, 2)^*\text{pD-sets } U, V$ in X such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Theorem 4.9. \((1,2)^*\text{pre-}D_2 \) if for \(x, y \in X, x \neq y \), there exist disjoint \((1,2)^*\text{pD-sets}\) \(U, V \) in \(X \) such that \(x \in U \) and \(y \in V \).

Remark 4.4. (i) Every \((1,2)^*\text{pre-}T_i \) space is \((1,2)^*\text{pre-}D_i \), \(i = 0, 1, 2 \) respectively.

(ii) If \(X \) is \((1,2)^*\text{pre-}D_i \) then it is \((1,2)^*\text{pre-}D_{i-1} \), \(i = 1, 2 \).

Remark 4.5. \((1,2)^*\text{pre-}D_i \) ness does not imply \((1,2)^*\text{pre-}T_i \) ness for \(i = 1, 2 \) respectively.

In Example 3.10, \(X \) is \((1,2)^*\text{pre-}D_1 \) but not \((1,2)^*\text{pre-}T_1 \) and in Example 3.7, \(X \) is not \((1,2)^*\text{pre-}T_2 \) but \((1,2)^*\text{pre-}D_2 \).

The next example shows that \((1,2)^*\text{pre-}D_0 \) does not imply \((1,2)^*\text{pre-}D_1 \).

Example 4.6. Let \(X = \{a, b\}, \tau_1 = \{\emptyset, X\}, \tau_2 = \{\emptyset, \{a\}, X\}. \) Then \(X \) is \((1,2)^*\text{pre-}D_0 \) but not \((1,2)^*\text{pre-}D_1 \).

Theorem 4.7. A space \(X \) is \((1,2)^*\text{pre-}D_0 \) if and only if it is \((1,2)^*\text{pre-}T_0 \).

Proof. Suppose that \(X \) is \((1,2)^*\text{pre-}D_0 \). Let \(x, y \in X, x \neq y \). Then there exists an \((1,2)^*\text{pD-set}\) \(U \) such that \(U \) contains \(x \) but not \(y \), say. As \(U \) is an \((1,2)^*\text{pD-set}\), it is possible to write \(U = P_1 \setminus P_2 \) where \(P_1 \neq X \) and \(P_1, P_2 \in (1,2)^*\text{PO}(X) \). Now there arises two cases. (i) \(y \notin P_1 \) (ii) \(y \in P_1 \) and \(y \in P_2 \).

Case (i). \(y \notin P_1 \) and \(x \in P_1 \setminus P_2 \) implies that \(x \in P_1 \) and \(y \notin P_1 \).

Case (ii). \(y \in P_1 \) and \(y \notin P_2 \). \(x \in P_1 \setminus P_2 \) implies that \(x \notin P_2 \). Thus \(y \in P_2 \) and \(x \notin P_2 \).

Thus in both the cases, we obtain that \(X \) is \((1,2)^*\text{pre-}T_0 \). Conversely, if \(X \) is \((1,2)^*\text{pre-}T_0 \), by Remark 4.4, \(X \) is \((1,2)^*\text{pre-}D_0 \). \(\Box \)

It has been showed in section 3, that an \((1,2)^*\text{pre-}T_2 \)-space is \((1,2)^*\text{pre-}T_1 \) but not the converse. But in the case of pre-Difference axioms, we prove that an \((1,2)^*\text{pre-}D_1 \)-space is \((1,2)^*\text{pre-}D_2 \) and so the \((1,2)^*\text{pre-}D_1 \)-space coincides with \((1,2)^*\text{pre-}D_2 \)-space.

Theorem 4.8. A space \(X \) is \((1,2)^*\text{pre-}D_1 \) if and only if \(X \) is \((1,2)^*\text{pre-}D_2 \).

Proof. Necessity. Let \(x, y \in X, x \neq y \). Then there exist \((1,2)^*\text{pD-sets}\) \(U, V \) in \(X \) such that \(x \in U, y \notin U \) and \(y \in V, x \notin V \). Let \(U = P_1 \setminus P_2 \) and \(V = P_3 \setminus P_4 \) where \(P_i \in (1,2)^*\text{PO}(X) \), \(i = 1, 2, 3, 4 \) and \(P_1 \neq X, P_3 \neq X \). It is evident that \(x \notin V \) implies the two possibilities, (i) \(x \in P_3 \cap P_4 \) (ii) \(x \notin P_3 \).

Case (i). \(x \in P_3 \cap P_4 \). We have \(x \in P_4 \) and \(y \in P_3 \setminus P_4 \) and \(P_4 \cap (P_3 \setminus P_4) = \emptyset \) are disjoint.

Case (ii). \(x \notin P_3, y \notin U \) implies that either \(y \in P_1 \) and \(y \in P_2 \) or \(y \notin P_1 \).

Sub Case (a). \(y \in P_1 \) and \(y \in P_2 \) and \(x \notin P_1 \setminus P_2 \). We get \(P_1 \setminus P_2 \) and \(P_2 \) are disjoint \((1,2)^*\text{pD-sets}\) containing \(x \) and \(y \) respectively.

Sub Case (b). \(y \notin P_1 \) and \(x \in P_1 \setminus P_2 \) and \(x \notin P_1 \setminus P_2 \) implies that \(y \in (P_1 \cup P_4) \) and \(y \notin P_1 \) implies that \(x \in (P_1 \cup P_3) \) and \(y \notin P_1 \) implies that \(x \in (P_2 \cup P_3) \) and \((P_2 \cup P_3) \) are disjoint. Therefore, \(X \) is \((1,2)^*\text{pre-}D_2 \).

Sufficiency. Follows from Remark 4.4. \(\Box \)

Theorem 4.9. If \(X \) is \((1,2)^*\text{pre-}D_1 \) then it is \((1,2)^*\text{pre-}T_0 \).

Proof. Follows from (ii) Remark 4.4 and theorem 4.8.

Remark 4.10. An \((1,2)^*\text{pre-}T_0 \)-space is not \((1,2)^*\text{pre-}D_1 \), in general. In Example 3.10, \(X \) is \((1,2)^*\text{pre-}T_0 \) but not \((1,2)^*\text{pre-}D_1 \).
Remark 4.11. From the discussions in Sections three and four, the following implication diagram is drawn. In the diagram,

1. $(1, 2)^*\text{pre-}T_2$
2. $(1, 2)^*\text{pre-}T_1$
3. $(1, 2)^*\text{pre-}T_0$
4. $(1, 2)^*\text{pre-}D_1$

$A \rightarrow B$ (resp. $A \nrightarrow B$) represents that A implies B (resp. A does not imply B).

REFERENCES

DEPARTMENT OF MATHEMATICS, JAYARAJ ANNAPACKIAM COLLEGE FOR WOMEN, PERIYAKULAM, THENI (Dt.)-625601, TAMILNADU, INDIA
E-mail address: athisayaponmani@yahoo.co.in

DEPARTMENT OF MATHEMATICS, ARUL ANANDAR COLLEGE, KARUMATHUR, MADURAI (Dt.)-625514, TAMILNADU, INDIA
E-mail address: mlthivagar@yahoo.co.in

Received 01/02/2006