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DEVELOPMENT OF THE MARKOV MOMENT PROBLEM
APPROACH IN THE OPTIMAL CONTROL THEORY

G. M. SKLYAR AND S. YU. IGNATOVICH

Dedicated to 100 anniversary of Mark Krein.

Abstract. The paper is a survey of the main ideas and results on using of the
Markov moment problem method in the optimal control theory. It contains a version
of the presentation of the Markov moment approach to the time-optimal control
theory, linear and nonlinear.

1. Introduction

The idea of using of the moment problem in the optimal control theory was proposed
by N. N. Krasovskii [1, 2]. He initiated the application of the Krein moment L-problem
[3, 4, 5] in the linear optimal control problems where the cost function was interpreted
as a norm. This became a basis for various numerical methods [6]. Numerous examples
of using of the moment approach in the optimal control problems for PDE systems are
contained in [7].

In the case of geometric constraints on the control the Markov moment problem [8] can
be applied [5, p. 372]. A new fundamental progress in this field was connected with the
development of the Markov moment problem method [8] with a view to the analytical
solving of the linear time-optimal control problem. This approach was proposed and
worked out by V. I. Korobov and G. M. Sklyar in the 80-th–90-th of the last century
[9, 10, 11, 12, 13, 14, 15, 16, 17]. The main idea is to interpret the linear time-optimal
problem as the Markov moment problem on a nonconstant (namely, the minimal possible)
interval. One of the most important results in this way [9, 10] is the analytic solution of
the problem of Pontryagin et al [18] on the time-optimal control for the canonical system
of an arbitrary dimension.

The new advance in the application of the Markov moment problem approach was its
extension to nonlinear case carried out in the works of G. M. Sklyar and S. Yu. Ignatovich
during the last decade [19, 20, 21, 22, 23, 24, 25, 26]. It turns out that the study of the
nonlinear power Markov moment problem is connected in a natural way with properties of
certain structures in free associative algebras. The basic results of this direction find their
application in the homogeneous approximation problem of nonlinear control systems.

The present paper is a survey of the main ideas and results of the Markov moment
problem method in the optimal control theory. The paper is split into two parts. The
first part (Section 2) contains a version of presentation of the approach in the case of
linear systems. The second part (Section 3) is devoted to the nonlinear case.
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2. Linear time optimality and Markov moment min-problem

Consider a linear control system of the form

(1) ẋ = A(t)x + b(t)u, x ∈ Rn, u ∈ R,

where A(t) and b(t) are n × n matrix and n-dimensional vector respectively, with con-
tinuous entries. Suppose a control u = u(t) steers the system from some initial state
x(0) = x0 to the final state x(T ) = 0. Denote by φ(t) the fundamental matrix of the
equation ẋ = A(t)x such that φ(0) = I. Then, due to the Cauchy formula,

x(T ) = 0 = φ(T )x0 + φ(T )
∫ T

0

φ−1(t)b(t)u(t) dt.

Hence, the function u(t) satisfies the following moment equalities

(2) x0
k =

∫ T

0

gk(t)u(t) dt, k = 1, . . . , n,

where g(t) = (g1(t), . . . , gn(t)) = −φ−1(t)b(t).
For the complete statement of the controllability problem, the description of admissible

controls is required. If the set of admissible controls is a ball in some functional space
then we get the abstract Krein moment L-problem [3, 4, 5]. Then the conditions of
controllability are reduced to the conditions of solvability of the moment problem.

In particular, if in the control problem geometric constraints |u(t)| ≤ 1 are adopted
then we get the Krein moment problem in the space L1[0, T ], that is, the Markov moment
(−1, 1)-problem [8]

(3) sk =
∫ T

0

gk(t)u(t) dt, k = 1, . . . , n, u(t) ∈ [−1, 1].

Thus, the controllability problem from the point x0 to the origin on the time interval
[0, T ] by use of the controls satisfying the constraint |u(t)| ≤ 1 for system (1) is reduced
to the Markov moment problem (3) with s = x0 and g(t) = −φ−1(t)b(t). From the
point of view of the functional analysis, this problem corresponds to the extension of the
functional defined on the finite-dimensional subspace Lin{g1(t), . . . , gn(t)} ⊂ L1[0, T ] to
the whole space L1[0, T ] with preservation of its norm.

As it is well-known, the Markov moment problem has a unique solution u(t) = u0(t)
if and only if T is the smallest positive number such that (3) holds. Moreover, if the
functions g1(t), . . . , gn(t) form a Tchebycheff system on the interval (0, T ) then this func-
tion u0(t) takes the values ±1 and has no more than n− 1 points of discontinuity. This
means that the moment problem, in essence, is reduced to the finding of n independent
parameters (the value of T and points of discontinuity of u0(t)).

On the other hand, from the point of view of the control theory, the minimal possible
T satisfying (3) is interpreted as the minimal time in which it is possible to steer system
(1) from the initial state to the origin by use of the controls satisfying the condition
|u(t)| ≤ 1. Hence, in this case T is the optimal time and the function u0(t) is the
time-optimal control in the linear problem of time optimality.

This leads to the following statement of the Markov moment problem on the smallest
possible interval (Markov moment min-problem) [12]: for a given sequence of functions
{gk(t)}n

k=1, t ∈ [0, T ], and a vector s ∈ Rn, to find the smallest possible interval [0, θs] ⊂
[0, T ] such that for θ = θs the following representation holds

(4) sk =
∫ θ

0

gk(t)u(t) dt, k = 1, . . . , n, |u(t)| ≤ 1,

and to find a function u(t) = us(t) corresponding to this representation. The pair
(θs, us(t)) is called a solution of Markov moment min-problem (4). If the sequence
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{gk(t)}n
k=1 form a Tchebycheff system then the solution is unique, the function us(t)

equals ±1, and has no more than n − 1 points of discontinuity. As it follows from the
above, the solution of the moment min-problem solves the time-optimal control prob-
lem; the mentioned properties of the optimal control follow also from the Pontryagin
maximum principle.

Thus, below we identify the time-optimal control problem for system (1) to the origin
under the constraint |u(t)| ≤ 1 and the Markov moment min-problem (4) where g(t) =
−φ−1(t)b(t).

Let M(T ) ⊂ Rn denote the solvability set for the Markov moment problem (3). Then
θs solves the Markov moment min-problem (4) if and only if s belongs to the boundary
of the solvability set M(θs). This leads to the problem of description of the solvability
set M(θ) as a function of θ what is a typical problem in the optimal control theory.

2.1. Power Markov moment problem. Now, let us consider the particular case of
the Markov moment min-problem (4) where gk(t) = tk−1, k = 1, . . . , n, i.e. the power
Markov moment min-problem

(5) sk =
∫ θ

0

tk−1u(t) dt, k = 1, . . . , n, |u(t)| ≤ 1, θ → min .

This case corresponds to the time-optimal control problem for the “canonical” control
system

(6) ẋ1 = u, ẋk = xk−1, k = 2, . . . , n, x(0) = x0, x(θ) = 0, |u(t)| ≤ 1, θ → min,

where x0
k = (−1)ksk

(k−1)! , k = 1, . . . , n.
As it is well known, the power Markov moment problem can be interpreted from the

point of view of the function theory as the problem of finding of a function from some
class satisfying certain conditions on its first Laurent series coefficients [5]. We briefly
explain this approach for the case of min-problem following Korobov and Sklyar [9, 14].

Suppose (θs, us(t)) is the solution of (5). Then us(t) takes the values ±1 and has
no more than n − 1 points of discontinuity. For simplicity, suppose now that us(t) has
exactly n − 1 points of discontinuity; denote them by 0 < t1 < · · · < tn−1 < θs. Then
(5) gives

n−1∑
j=1

(−1)n−j+1tkj = c±k (θs, s), k = 1, . . . , n,

where c±k (θ, s) = 1
2 (θk ∓ ksk) and the sign in the upper index of ck corresponds to the

sign of us(t) on the last interval (that is the value us(θs − 0)).
First consider the case n = 2m + 1. Introduce the rational function

(7) R(z) =

m∏
j=1

(z − t2j)

m∏
j=1

(z − t2j−1)
= 1−

∞∑
k=1

γk

zk

which is analytic when |z| is rather large. The rational function R(z) has m roots and m
poles on the interval (0, θs) which alternate. This implies the following property of the
coefficients γk: if we denote by Γp,q the determinant of the Hankel matrix

Γp,q = det


γp γp+1 . . . γq

γp+1 γp+2 . . . γq+1

. . . . . . . . . . . .
γq γq+1 . . . γ2q−p


then Γ1,m+1 = 0 and, moreover, Γ1,p > 0, Γ2,p+1 > 0 for p = 1, . . . ,m.
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This can be proved directly by manipulation with rational functions. However, one can
also use the deep connection with the Hausdorff moment problem. In fact, since the roots
and poles of R(z) alternate then R(z) can be represented as R(z) = 1 −

∫ θs

0
1

z−tdµ(t),
where µ(t) is a monotonically nondecreasing piecewise constant function having m jumps.
Hence, the function µ(t) solves the moment problem of the form γk =

∫ θ

0
tk−1dµ(t),

k = 1, . . . , n. The solvability conditions for this moment problem are expressed via
Hankel determinants of γk. In order to solve the Markov moment problem, one can
observe that the function −R(z) belongs to the Nevanlinna class what allows to apply
the well-known additive and multiplicative representations for such functions.

We briefly discuss the direct way to pass to the Markov moment min-problem. Notice
that

lnR(z) =
m∑

j=1

ln
(

1− t2j

z

)
−

m∑
j=1

ln
(

1− t2j−1

z

)
= −

∞∑
k=1

1
kzk

2m∑
j=1

(−1)jtkj .

Hence,

lnR(z) = −c±1 (θs, s)
z

− · · · − c±n (θs, s)
nzn

+ O(
1

zn+1
).

This means that one can find γ1, . . . , γn using ck = c±k (θs, s), k = 1, . . . , n. Namely, the
following formula can be proved [16]

(8) γk =
(−1)k−1

k!
det


c1 1 0 . . . 0
c2 c1 2 . . . 0
. . . . . . . . . . . .

ck−1 ck−2 . . . c1 k − 1
ck ck−1 . . . c2 c1

 .

Thus, we get the following plan for the solving of the moment min-problem (for the
case n = 2m + 1).

(a) Substituting the given vector s, to find c±k (θ) = c±k (θ, s), k = 1, . . . , n, as polyno-
mials of the unknown variable θ (the power of c±k (θ) equals k).

(b) Using formula (8), to find γ±k = γ±k (θ) which are polynomials of θ (the power of
γ±k (θ) equals k).

(c) To consider the relation Γ±1,m+1 = Γ±1,m+1(θ) = 0 as the equation for determining
of θ. In fact, Γ±1,m+1(θ) is the polynomial of power 1

2n(n + 1). If the conditions assumed
above are satisfied then θ = θs is a root of one of two polynomials Γ±1,m+1(θ). The
additional conditions Γ±1,p(θ) > 0, Γ±2,p+1(θ) > 0, p = 1, . . . ,m allow to choose the proper
root.

The case when n = 2m can be analyzed by considering the function

R(z) =

m∏
j=1

(z − t2j−1)

z
m−1∏
j=1

(z − t2j)
= 1−

∞∑
k=1

γk

zk
;

this leads to the equation Γ±2,m+1 = Γ±2,m+1(θ) = 0. The analogous relations hold if the
control us(t) has less than n− 1 points of discontinuity.

The complete solution of the power Markov moment min-problem was constructed by
Korobov and Sklyar in [9]. To formulate this result, let us introduce some additional
notations. Denote

∆±
p =

{
Γ±1,k+1 as p = 2k + 1,

Γ±2,k+1 as p = 2k,
, p = 1, . . . , n.
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Consider also the expansion
1

R(z)
= 1−

∞∑
k=1

γ̄k

zk
, then

γ̄k =
(−1)k−1

k!
det


−c1 1 0 . . . 0
−c2 −c1 2 . . . 0
. . . . . . . . . . . .

−ck−1 −ck−2 . . . −c1 k − 1
−ck −ck−1 . . . −c2 −c1

 .

Theorem 2.1. (Korobov–Sklyar [9]) For any s ∈ Rn, the solution (θs, us(t)) of power
Markov moment min-problem (5) can be found as follows:

(i) θs equals the maximal (real) root of the equation

∆+
n (θ) ·∆−

n (θ) = 0;

(ii) the number of points of discontinuity q−1 of the function us(t) is uniquely defined
from the conditions

∆+
q (θs) ·∆−

q (θs) = 0, (∆+
q (θs))2 + (∆−

q (θs))2 6= 0;

(iii) us(θs − 0) = 1 if in the previous relation ∆+
q (θs) = 0 and us(θs − 0) = −1

otherwise;
(iv) all points of discontinuity 0 < t1 < · · · < tq−1 < θs of the function us(t) are the

roots of the equation

det


γ2 γ3 . . . γp+1

. . . . . . . . . . . .
γp γp+1 . . . γ2p−1

1 z . . . zp−1

 · det


−1 γ̄1 . . . γ̄p

γ̄1 γ̄2 . . . γ̄p+1

. . . . . . . . . . . .
γ̄p−1 γ̄p . . . γ̄2p−1

1 z . . . zp

 = 0 if q = 2p,

or

det


γ̄1 γ̄2 . . . γ̄p

. . . . . . . . . . . .
γ̄p−1 γ̄p . . . γ̄2p−2

1 z . . . zp−1

 · det


γ1 γ2 . . . γp

. . . . . . . . . . . .
γp−1 γp . . . γ̄2p−2

1 z . . . zp−1

 = 0 if q = 2p− 1,

where γk = γ±k (θs) and γ̄k = γ̄±k (θs), and the sign ± corresponds to the value of us(θs−0)
obtained above.

The proof of (iv) can be found in [16].
This theorem gives also the solution of time-optimal control problem (6); in order to

find the optimal time and optimal control one substitutes (−1)k(k− 1)!x0
k instead of sk,

k = 1, . . . , n, in all relations of the theorem.
This method allows to solve the optimal synthesis problem. In fact, consider c̃±k (θ, x) =

c±k (θ, s) where sk = (−1)k(k− 1)!xk as polynomials of θ and xk and use them for finding
of γ̃±k (θ, x) = γ±k (θ, s) as polynomials of θ and xk. Hence, ∆̃±

p (θ, x) = ∆±
p (θ, s) also are

polynomials of θ and xk. Denote θ̃x = θs where sk = (−1)k(k − 1)!xk.
Then Theorem 2.1 gives the following explicit formula for the time-optimal positional

control:
u(x) = (−1)p−1sign(∆̃−

p (θ̃x, x)− ∆̃+
p (θ̃x, x)),

if
∆̃−

p (θ̃x, x) 6= ∆̃+
p (θ̃x, x),

∆̃−
r (θ̃x, x) = ∆̃+

r (θ̃x, x), r = 1, . . . , p− 1.
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2.2. Power Markov moment problem with gaps. Developing the technique dis-
cussed in the previous subsection, Korobov and Sklyar [13], [14] considered the power
Markov moment min-problem with gaps,

(9) sk =
∫ θ

0

tmk−1u(t) dt, k = 1, . . . , n, |u(t)| ≤ 1, θ → min,

where m1 < · · · < mn are arbitrary positive integers. In particular, the time-optimal
control problem for the autonomous system (1) with the matrix A(t) = A having a
rational spectrum can be reduced to the min-problem of type (9).

We recall briefly the sketch of solving of the power Markov moment min-problem with
gaps given in [13], [14].

Denote by χk, k = 1, . . . ,mn the sequence of the form

χk =

{
1, if k ∈ {mj}n

j=1,

0, if k 6∈ {mj}n
j=1

and suppose χk is periodic of period p, that is χk = χk+p. Introduce the generating
function P (w) which is analytic in a neighborhood of the origin and satisfies the following
property

(10) lnP (w) =
∞∑

r=0

∑
mk≤p

amk+rpw
mk+rp.

As it was shown in [13], [14], such function P (w) is rational if and only if the set {ek
p :

k ∈ {1, . . . , p}\{mj : mj ≤ p}} coincides with the set of roots of some polynomial
r(w) which is a divisor of wp − 1 over Q. In this case, if r(w) =

∑p−1
k=0 rkwk, rk ∈ Z,

then P (w) =
∏p−1

k=0(1 − ek
pw)rk (here ep denotes a primitive root of unit of power p).

Suppose further that P (w) is rational, that is P (w) = P1(w)
P2(w) where P1(w) and P2(w) are

polynomials of power d1 and d2 respectively.
Now assume that Markov moment min-problem with gaps (9) has a solution (θs, us(t));

assume for the simplicity that us(t) has n− 1 points of discontinuity. Consider the case
n = 2m + 1 and introduce the rational function

(11) R(z) =

m∏
j=1

P ( t2j

z )

m∏
j=1

P ( t2j−1
z )

= 1−
∞∑

k=1

γk

zk
.

Observe that function (7) is a partial case of function (11) since for the power moment
problem (5) one has p = 1 and P (w) = 1− w.

Then the rationality of R(z) implies the equalities Γr,r+m(d1+d2) = 0, r ≥ 1.
On the other hand,

lnR(z) =
m∑

j=1

lnP

(
t2j

z

)
−

m∑
j=1

lnP

(
t2j−1

z

)
= − ĉ±1 (θs, s)

z
−· · ·−

ĉ±mn
(θs, s)

mnzmn
+O(

1
zmn+1

),

where ĉ±k (θs, s) = akc±k (θs, s) and ak are coefficients of the Taylor series (10) of ln P (w).
In particular, ĉ±k (θs, s) = 0 if k 6= mj + rp. Hence, the equality

(12) Γ±1,1+m(d1+d2)
(θ) = 0

can be considered as a condition for determining of θ = θs where γ±k = γ±k (θ) are found
by formula (8) (where ĉ±k are substituted instead of ck).

If 1+2m(d1 +d2) ≤ mn then equation (12) contains only those γk which can be found
by (8). In particular, this condition is satisfied for the “problem with even powers” [17]

sk =
∫ θ

0

t2k−2u(t) dt, k = 1, . . . , n, |u(t)| ≤ 1, θ → min .
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In this case p = 2, P (w) = 1−w
1+w , d1 = d2 = 1 and mk = 2k − 1.

If 1+2m(d1 +d2) > mn then equation (12) includes unknown parameters γmn+1, . . . ,
γ1+2m(d1+d2). In order to find them one applies the conditions Γ±r,r+m(d1+d2)

(θ) = 0,
r ≥ 2, and formula (8) taking into account the equalities ĉ±k (θ, s) = 0 if k 6= mj + rp.

In the case n = 2m the function

R(z) =

m∏
j=1

P ( t2j−1
z )

zd1−d2

m−1∏
j=1

P ( t2j

z )
= 1−

∞∑
k=1

γk

zk

is used. Analogous arguments are applied if the function us(t) has less than n− 1 points
of discontinuity.

Finally, notice that another functions besides of ln can be used in manipulations with
the generating function. In particular, for the ”problem with even powers” the function
arctg was applied in [17].

2.3. General linear system. Finally, let us consider the time-optimal control problem
for system (1) with arbitrary coefficients. Suppose A(t) and b(t) are real analytic (at
least, in a neighborhood of the point t = 0). Then the time-optimal control problem for
system (1) is reduced to the Markov moment min-problem of the form

(13) sk =
∞∑

i=0

1
i!

g
(i)
k (0)

∫ θ

0

tiu(t) dt, k = 1, . . . , n, |u(t)| ≤ 1, θ → min .

Suppose the functions g1(t), . . . , gn(t) are linearly independent (what corresponds to the
fact that the system is controllable), then they form a Tchebycheff system on some
interval (0, T1) where T1 is rather small.

Let m1 < · · · < mn be indices of the first n linearly independent vectors from the se-
quence {g(i)(0)}∞i=0, and G = ( 1

m1!
g(m1)(0), . . . , 1

mn!g
(mn)(0))−1. Then (13) is equivalent

to

(14) s̃k =
∫ θ

0

tmku(t) dt +
∞∑

j=mk+1

rkj

∫ θ

0

tju(t) dt, k = 1, . . . , n, |u(t)| ≤ 1, θ → min,

where s̃k = (Gs)k. Notice that

(15)
∫ θ

0

tju(t) dt = θj+1

∫ 1

0

τ j û(τ) dτ, where û(τ) = u(τθ), τ ∈ [0, 1],

hence, the number j +1 can be considered as the order of smallness of the power moment
(15) when θ → 0. This means that the power moment

∫ θ

0
tmku(t)dt is the leading term

of the right-hand side of (14). Hence, it is natural to expect that the solution of (14) is
close to the solution of the power moment min-problem with gaps

(16) s̃k =
∫ θ

0

tmku(t) dt, k = 1, . . . , n, |u(t)| ≤ 1, θ → min .

Notice also that any min-problem (16) corresponds to a linear time-optimal problem. It
is not defined uniquely; for example, it can be chosen in the form

(17) ẋk = −tmku, k = 1, . . . , n, x(0) = x0, x(θ) = 0, |u(t)| ≤ 1, θ → min .

This leads to the complete classification of linear systems with real analytic coefficients
in the sense of time optimality. More precisely, we adopt the following definition.

Definition 2.2. [27] Consider two Markov moment min-problems

(18) sk =
∫ θ

0

gk(t)u(t) dt, k = 1, . . . , n, |u(t)| ≤ 1, θ → min,
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and

(19) sk =
∫ θ

0

ĝk(t)u(t) dt, k = 1, . . . , n, |u(t)| ≤ 1, θ → min,

where gk(t), k = 1, . . . , n, and ĝk(t), k = 1, . . . , n, are two sequences of real analytic
functions in a neighborhood of the point t = 0. Let (θs, us(t)), (θ̂s, ûs(t)) be their
solutions. These two min-problems are called locally equivalent in a neighborhood of the
origin if there exists a linear nonsingular operator L : Rn → Rn such that

θ̂Ls

θs
→ 1,

1
θ

∫ θ

0

|ûLs(t)− us(t)| dt → 0 as s → 0,

where θ = min{θ̂Ls, θs}.
Then the following result holds.

Theorem 2.3. [27] Two Markov moment min-problems (18) and (19) are locally equiv-
alent in a neighborhood of the origin if and only if the indices of the first n linearly
independent vectors from the sequences {g(i)(0)}∞i=0 and {ĝ(i)(0)}∞i=0 coincide. More-
over, suppose m1 < · · · < mn are these indices. Then the both Markov moment min-
problems are locally equivalent to the power Markov moment min-problem with gaps of
the form (16).

As a consequence, we get the following definition of local equivalence and the classifi-
cation theorem for time-optimal control problems.

Definition 2.4. [27] Consider two time-optimal control problems of the form

(20) ẋ = A(t)x + b(t)u, |u| ≤ 1, x(0) = x0, x(θ) = 0, θ → min,

and

(21) ẋ = Â(t)x + b̂(t)u, |u| ≤ 1, x(0) = x0, x(θ) = 0, θ → min,

and let (θx0 , ux0(t)), (θ̂x0 , ûx0(t)) be their solutions. These two problems are called locally
equivalent in a neighborhood of the origin if there exists a linear nonsingular operator
L : Rn → Rn such that

θ̂Lx0

θx0
→ 1,

1
θ

∫ θ

0

|ûLx0(t)− ux0(t)| dt → 0 as x0 → 0,

where θ = min{θ̂Lx0 , θx0}.
Theorem 2.5. [27] Two time-optimal control problems (20) and (21) are locally equiva-
lent in a neighborhood of the origin if and only if the indices of the first n linearly indepen-
dent vectors from the sequences {(−A(t)+ d

dt )
ib(t)|t=0}∞i=0 and {(−Â(t)+ d

dt )
ib̂(t)|t=0}∞i=0

coincide.

Moreover, it is shown in [15], [27] that under certain conditions the solution of the
min-problem (18) (and, therefore, the solution of the time-optimal problem (20)) can be
found by the method of successive approximations by use of the corresponding power
moment min-problem with gaps (16).

Theorem 2.6. [27] Let the vectors {g(mk)(0)}n
k=1, m1 < · · · < mn, be linearly indepen-

dent and g(j)(0) = 0 for all j < mn such that j 6= mk, k = 1, . . . , n. Then the solution
(θs, us(t)) of Markov moment min-problem (18) can be found as the limit of the sequence
(θ∗yi , u∗yi(t)) of solutions of power Markov moment min-problem with gaps (16) where the
sequence yi is defined recursively as

yi+1 = G

(
s−

∫ θ∗
yi

0

g(t)u∗yi(t) dt

)
, y0 = 0,
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where G = ( 1
m1!

g(m1)(0), . . . , 1
mn!g

(mn)(0))−1.

In particular, the conditions of the theorem are satisfied if mk = k − 1, k = 1, . . . , n,
and the vectors {g(k−1)(0)}n

k=1 are linearly independent; the corresponding result was
obtained in [15].

3. Nonlinear time optimality and nonlinear power Markov moment
min-problem

The next step is to extend the moment approach to nonlinear control systems. The
simplest class of nonlinear control systems which are most close to linear ones is the class
of affine control systems of the form

(22) ẋ = a(t, x) + b(t, x)u, a(t, 0) ≡ 0, x ∈ Rn, u ∈ R,

where a(t, x), b(t, x) are real analytic vector functions in a neighborhood of the origin in
Rn+1. The condition a(t, 0) ≡ 0 means that the origin is a point of rest for the system.
Let us consider the time-optimal control problem for system (22) to the origin with the
control satisfying the constraint |u(t)| ≤ 1.

3.1. Series representation of nonlinear systems. In the nonlinear case one gets the
power moment series representation as a generalization of the Cauchy formula (2) for the
linear case. Namely, if the control u(t) steers the point x(0) = x0 to the origin, x(θ) = 0,
then

(23) x0 = Sa,b(θ, u) =
∞∑

m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

vm1...mk
ξm1...mk

(θ, u),

where ξm1...mk
(θ, u) are nonlinear power moments of the form

(24) ξm1...mk
(θ, u) =

∫ θ

0

∫ τ1

0

· · ·
∫ τk−1

0

τm1
1 τm2

2 · · · τmk

k

k∏
j=1

u(τj) dτk · · · dτ2dτ1

and vm1...mk
are constant vector coefficients depending on system parameters. More

specifically, let Ra and Rb denote operators acting as Rac(t, x) = ct(t, x)+ cx(t, x)a(t, x),
Rbc(t, x) = cx(t, x)b(t, x), and E(x) ≡ x. Let adm+1

Ra
Rb = [Ra, adm

Ra
Rb], ad0

Ra
Rb = Rb,

where [·, ·] is the operator commutator. Then

vm1...mk
=

(−1)k

m1! · · ·mk!
adm1

Ra
Rb ◦ · · · ◦ admk

Ra
RbE(x)| t=0

x=0
.

The series in the right-hand side of (23) is absolutely convergent if |u(t)| ≤ 1 and θ
is rather small. Close series representations of nonlinear control systems were given in
[28, 29, 30] and other works.

In essence, equality (23) can be considered as a nonlinear power Markov moment
problem on the interval [0, θ]. In the case of time-optimal control problem one requires
θ → min what leads to the nonlinear power Markov moment min-problem.

3.2. Algebra of nonlinear power moments. If (θ, u) runs through the set {(θ, u) :
0 ≤ θ ≤ T, |u(t)| ≤ 1} then the functionals (24) are linearly independent. It is convenient
to consider the linear span of the nonlinear power moments as a free associative algebra
A (over R) generated by the set of linear power moments {ξm : m ≥ 0} and the algebraic
operation of “concatenation”:

ξm1...mk
ξn1...nr = ξm1...mkn1...nr .

Below we use the notation f =
∑

αm1...mk
ξm1...mk

(without arguments) when we mean
an element of the algebra A of functionals (where αm1...mk

∈ R) and write f(θ, u) =
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αm1...mk

ξm1...mk
(θ, u) for the value of the functional when θ and u = u(t) are given.

Notice that, analogously to (15),

ξm1...mk
(θ, u) = θm1+···+mk+kξm1...mk

(1, û)

where û(τ) = u(τθ), τ ∈ [0, 1]. Hence, the number m1 + · · · + mk + k is the order
of smallness of the nonlinear power moment ξm1...mk

. In the algebraic terms, it cor-
responds to the graded structure in the algebra A. Namely, A =

∑∞
m=1Am where

Am = Lin{ξm1...mk
: m1 + · · ·+ mk + k = m} are subspaces of homogeneous elements.

In these constructions, the important role is played by the Lie algebra L (over R)
generated by the set of linear moments {ξm : m ≥ 0} with the Lie bracket operation
[`1, `2] = `1`2 − `2`1, `1, `2 ∈ L. Denote Lm = L ∩ Am.

Now let us return to the series (23). It generates a linear map v : A → Rn defined on
basis elements of A by the formula v(ξm1...mk

) = vm1...mk
. It turns out that the study

of many important properties of system (22) can be reduced to the study of “algebraic
properties” of the formal series

Sa,b =
∞∑

m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

v(ξm1...mk
)ξm1...mk

.

In particular, one easily can see that there exists a natural homomorphism ϕ from L to
the Lie algebra of vector fields generated by the set {adm

Ra
RbE(x)|t=0 : m ≥ 0} such that

v(`) = ϕ(`)(0). Moreover, the following important concept is connected with the map v.
For any m ≥ 1, consider the subspace

Pm = {` ∈ Lm : v(`) ∈ v(L1 + · · ·+ Lm−1)}
(describing linear dependence analogous to that in the sequence {(−A(t)+ d

dt )
ib(t)|t=0}∞i=0

for linear system (1)). Denote by Ja,b the right ideal generated by the subspace
∑∞

m=1 Pm,
that is

Ja,b =
∞∑

m=1

Pm(A+ R).

Elements of Ja,b possess the following property: v(Ja,b ∩ Am) ⊂ v(A1 + · · · + Am−1).
Roughly speaking, elements of Ja,b cannot be leading terms in the series Sa,b.

In the linear case only linear changes of variables are considered; in the nonlinear case
one can use nonlinear changes of variables. Observe that the change of variables in the
system corresponds to the transformation over the series. Namely, suppose an analytic
change of variables y = Φ(x) reduces system (22) to the system ẏ = ā(t, y)+b̄(t, y)u. Since
y0 = Φ(x0) then Sā,b̄(θ, u) = Φ(Sa,b(θ, u)). To find Φ(Sa,b(θ, u)) one needs to multiply
nonlinear power moments (24). Since ξm1...mk

are integrals over simplex domains then
the product of two such integrals can be represented as a linear combination of integrals of
the same type. The product of such integrals corresponds to the shuffle product operation
xxy in the algebra A defined recursively as

ξm1xxyξn1 = ξm1n1 + ξn1m1 ,

ξm1xxyξn1...nr = ξn1...nr xxyξm1 = ξm1n1...nr + ξn1(ξm1xxyξn2...nr ), r ≥ 2,

ξm1...mk
xxyξn1...nr = ξm1(ξm2...mk

xxyξn1...nr ) + ξn1(ξm1...mk
xxyξn2...nr ), k, r ≥ 2.

In fact,
ξm1...mk

(θ, u) · ξn1...nr
(θ, u) = (ξm1...mk

xxyξn1...nr
)(θ, u).

Obviously, the shuffle product operation is associative and commutative. The shuffle
product was introduced by R. Ree in [31] and used to study properties of Lie elements
in an associative algebra; later it was applied for series representing control systems by
M. Fliess [29].
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This operation allows to express the relation Sā,b̄(θ, u) = Φ(Sa,b(θ, u)) discussed
above via formal series of nonlinear power moments, namely, as Sā,b̄ = Φ(Sa,b) =∑∞

r=1
1
r!Φ

(r)(0)(Sa,b)xxyr where we use the notation axxyr = axxy · · · xxya (r times).
Moreover, the following important property of the shuffle product was discovered by

R. Ree [31]. Introduce the inner product in the algebra A assuming that the basis
{ξm1...mk

: k ≥ 1;m1, . . . ,mk ≥ 0} is orthonormal. Then the subspaces L and AxxyA
are orthogonal to each other. We essentially used this remarkable result in order to
prove the next theorem which describes the leading terms in the series Sa,b (analogous
to that in (14)). We suppose that system (22) is accessible, i.e. its attainability set has
a nonempty interior in Rn; this is the case iff v(L) = Rn.

Theorem 3.1. [23] Suppose system (22) is such that v(L) = Rn. Let `1, . . . , `n ∈ L
be such homogeneous elements that L = Lin{`1, . . . , `n} +

∑∞
m=1 Pm; assume `k ∈ Ark

,
k = 1, . . . , n. Denote by ˜̀

k the orthogonal projection of `k on the subspace J⊥a,b. Then
there exists a map y = Φ(x), Φ(0) = 0, such that

(Φ(Sa,b))k = ˜̀
k + ρk, k = 1, . . . , n,

where ρk is a sum of elements of
∑∞

j=rk+1Aj. Moreover, there exists a system ẋ =
â(t, x) + b̂(t, x)u such that

(25) (Sâ,b̂)k = ˜̀
k, k = 1, . . . , n.

In particular, this system is accessible.

In terms of the moment problem, this theorem gives the “algebraic” classification
of nonlinear power moment min-problems which correspond to affine systems. One
naturally expects that the solution of the time-optimal problem for the system ẋ =
â(t, x) + b̂(t, x)u is close to the solution of the time-optimal problem for system (22) as
it is in the linear case. In fact, this holds under some additional conditions. The precise
results are given in the two next subsections.

3.3. Systems which are equivalent to linear ones. The simplest case of the moment
problem (25) is a linear case when ˜̀

k = ξmk
, k = 1, . . . , n, for some set m1 < · · · < mn.

Notice that this is the case if and only if

(26) rank{vi}∞i=0 = n and vm1...mk
∈ Lin{vi}m−2

i=0 , where m = m1+· · ·+mk+k, k ≥ 2.

In [21] we called such systems “essentially linear”. The following definition generalizes
the concept of the local equivalence of (linear) power Markov moment min-problems.

Definition 3.2. [21] Consider a nonlinear power Markov moment min-problem

s =
∞∑

m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

vm1...mk
ξm1...mk

(θ, u), |u(t)| ≤ 1, θ → min,

and suppose it has a solution for any s from a neighborhood of the origin. Denote
by {(θs, us(t)) : u(t) ∈ Us} the set of all its solutions. This problem is called locally
equivalent to the power moment min-problem with gaps

(27) sk =
∫ θ

0

tmku(t) dt, k = 1, . . . , n, |u(t)| ≤ 1, θ → min,

where 0 ≤ m1 < · · · < mn, if there exists an analytic map Φ of a neighborhood of the
origin, Φ(0) = 0, such that

θΦ(s)

θLin
s

→ 1, sup
u(t)∈UΦ(s)

1
θ

∫ θ

0

|u(t)− uLin
s (t)| dt → 0 as s → 0,
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where θ = min{θΦ(s), θ
Lin
s } and (θLin

s , uLin
s (t)) is the solution of min-problem (27).

Observe that two min-problems with gaps having sequences of powers m1 < · · · < mn

and m′
1 < · · · < m′

n respectively are locally equivalent to each other if and only if these
sequences coincide, i.e. mk = m′

k, k = 1, . . . , n.
Since the time-optimal control problem for affine systems of the form (22) is reduced

to the nonlinear power Markov moment min-problem, we identify the solutions of the
time-optimal problem and the corresponding Markov moment min-problem. Notice that
such time-optimal problem (and, hence, the min-problem) has a solution due to the
Filippov theorem [32].

Theorem 3.3. [21] The time-optimal control problem for system (22) is locally equivalent
to a certain power Markov moment min-problem with gaps (27) (and, therefore, to the
time-optimal control problem for system (17)) if and only if condition (26) holds.

3.4. General nonlinear affine system. In the general case, elements ˜̀
k are nonlin-

ear power moments. However, the local equivalence of the initial time-optimal control
problem and the Markov moment min-problem

(28) sk = ˜̀
k(θ, u), k = 1, . . . , n, |u(t)| ≤ 1, θ → min,

can be proved under some additional conditions. First, note that the solvability set of a
nonlinear power Markov moment problem of the form

sk = ˜̀
k(T, u), k = 1, . . . , n, |u(t)| ≤ 1,

can be nonconvex, and even in the case of accessibility the origin can belong to the
boundary of the solvability set (these properties are well known for the attainability set
of a nonlinear affine control system).

We adopt the following version of the definition of local equivalence.

Definition 3.4. [23] Consider a nonlinear power Markov moment min-problem

(29) s =
∞∑

m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

vm1...mk
ξm1...mk

(θ, u), |u(t)| ≤ 1, θ → min,

and for any θ denote by Us(θ) the set of all functions u(t) such that |u(t)| ≤ 1, t ∈ [0, θ],
which satisfy the moment equalities (29). Denote θs = inf{θ : Us(θ) 6= ∅}.

Consider a nonlinear power Markov moment min-problem

(30) s =
∞∑

m=1

∑
m1+···+mk+k=m

k≥1,mj≥0

v∗m1...mk
ξm1...mk

(θ, u), |u(t)| ≤ 1, θ → min,

and suppose it has the unique solution (θ∗s , u∗s(t)) for any s from a domain Ω ⊂ Rn\{0},
0 ∈ Ω.

We say that nonlinear power Markov moment min-problem (30) approximates nonlin-
ear power Markov moment min-problem (29) in the domain Ω if there exists an analytic
map Φ of a neighborhood of the origin, Φ(0) = 0, and a set of pairs (θ̃s, ũs(t)), s ∈ Ω,
such that ũs(t) ∈ UΦ(s)(θ̃s) and

θΦ(s)

θ∗s
→ 1,

θ̃s

θ∗s
→ 1,

1
θ

∫ θ

0

|u∗s(t)− ũs(t)|dt → 0 as s → 0, s ∈ Ω,

where θ = min{θ̃s, θ
∗
s}.

In the other words, θΦ(s) and θ∗s are asymptotically equivalent as s → 0, s ∈ Ω like in
Definition 3.2 whereas u∗s(t) is close to an “almost optimal” function ũs(t).
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We proved the following theorem on approximation for nonlinear time-optimal control
problems.

Theorem 3.5. [23] Suppose system (22) is such that v(L) = Rn. Let `1, . . . , `n ∈ L
be such homogeneous elements that L = Lin{`1, . . . , `n} +

∑∞
m=1 Pm. Denote by ˜̀

k the
orthogonal projection of `k on the subspace J⊥a,b.

Suppose Ω ⊂ Rn, 0 ∈ Ω, is an open domain such that
(i) the nonlinear power Markov moment min-problem

(31) sk = ˜̀
k(θ, u), k = 1, . . . , n, |u(t)| ≤ 1, θ → min,

has the unique solution (θ∗s , u∗s(t)) for any s ∈ Ω;
(ii) the function θ∗s is continuous at any s ∈ Ω;
(iii) for the set K = {u∗s(tθ∗s), t ∈ [0, 1] : s ∈ Ω} ⊂ L2[0, 1], the weak convergence of

elements from K implies the strong convergence.
Then there exists a set {Ω(δ)}δ>0 of embedded domains, ∪δ>0Ω(δ) = Ω, such that

the moment min-problem (31) approximates the time-optimal control problem for system
(22) in any domain Ω(δ).

Recall that, as it was stated in Theorem 3.1, there exists a system ẋ = â(t, x)+ b̂(t, x)u
such that (Sâ,b̂)k = ˜̀

k, k = 1, . . . , n. Hence, the time-optimal control problem for system
(22) is approximated by some (homogeneous) time-optimal control problem.

Hence, the problem arises to study such “special” nonlinear power Markov moment
min-problems of the form (31). Since they are realizable as time-optimal control problems
then they have solutions due to the Filippov theorem. However, their solutions do not
possess important properties like solutions of linear power Markov moment min-problems.
In particular, the function us(t) can take not only bound values.

Example. [23] Let us consider the time-optimal control problem for the three-dimensional
control system

(32) ẋ1 = u, ẋ2 = x1, ẋ3 =
1
2
x2

1, x(0) = x0, x(θ) = 0, |u(t)| ≤ 1, θ → min .

It corresponds to the nonlinear power Markov moment min-problem

(33)

s1 = −ξ0(θ, u) = −
θ∫
0

u(t) dt,

s2 = ξ1(θ, u) =
θ∫
0

tu(t) dt,

s3 = −ξ01(θ, u) = −
∫ θ

0

∫ τ1

0
τ2u(τ1)u(τ2) dτ2dτ1, |u(t)| ≤ 1, θ → min .

In [33, 23] the complete solution of this time-optimal control problem (and, therefore,
the moment min-problem) was obtained. It turns out that the solvability set for this
min-problem equals

Ω = {s : s3 < − 1
6 |s1|3} ∪ {s = (s1,− 1

2s1|s1|,− 1
6 |s1|3)},

i.e. system (32) is accessible but not locally controllable.
If s ∈ {s : s3 ≤ −1

6σs3
1 − 1

3 ( 1
2s2

1 + σs2)3/2}, where σ = sign(s2 + 1
2s1|s1|), then

us(t) = ±1 and has no more than two points of discontinuity. If s1 = 0 then such
function us(t) is not unique.

However, if s ∈ {s : − 1
6σs3

1 − 1
3 ( 1

2s2
1 + σs2)3/2 < s3 < − 1

6 |s1|3} then us(t) is of a
singular type

us(t) =

 ±1, t ∈ [0, as],
0, t ∈ (as, bs),
±1, t ∈ [bs, θs],
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for some 0 ≤ as < bs < θs. Thus, the time-optimal control for the nonlinear affine system
is not of the bang-bang type.

For system (32) the conditions of Theorem 3.5 are satisfied. In particular, nonlinear
power Markov moment min-problem (33) approximates the time-optimal problem for the
(locally controllable) system

ẋ1 = u, ẋ2 = x1, ẋ3 =
1
2
x2

1 + x3
1

in the domains Ω1 = {x : −δ1x
3
1 < x3 < −δ2x

3
1, x1 > 0} and Ω2 = {x : δ1x

3
1 < x3 <

δ2x
3
1, x1 < 0} for any δ1 > δ2 > 1

6 .
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