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BOUNDARY PROBLEMS FOR FULLY NONLINEAR PARABOLIC
EQUATIONS WITH LÉVY LAPLACIAN

S. ALBEVERIO, YA. BELOPOLSKAYA, AND M. FELLER

Abstract. We suggest a method to solve boundary and initial-boundary value prob-
lems for a class of nonlinear parabolic equations with the infinite dimensional Lévy
Laplacian ∆L

f
“
U(t, x),

∂U(t, x)

∂t
, ∆LU(t, x)

”
= 0

in fundamental domains of a Hilbert space.

1. Introduction

In the paper by S. Albeverio, Ya. I. Belopolskaya, M. N. Feller [1] we have constructed
a solution of the Cauchy problem for a fully nonlinear parabolic equation with the Lévy
Laplacian

f
(
U(t, x),

∂U(t, x)
∂t

,∆LU(t, x)
)
= 0, U(0, x) = U0(x),

where f(ξ, η, ζ) is a function on R3.
In the present paper we continue the investigation started in [1] . We develop a method

to solve the boundary value problem

f
(
U(t, x),

∂U(t, x)
∂t

,∆LU(t, x)
)
= 0, U(t, x) = G(t, x) on Γ,

and the initial-boundary value problem

f
(
U(t, x),

∂U(t, x)
∂t

,∆LU(t, x)
)
= 0, U(0, x) = U0(x), U(t, x) = G(t, x) on Γ,

in fundamental domains Ω ∪ Γ of a Hilbert space.

2. Preliminaries

Let H be a separable real Hilbert space, F (x) be a scalar function defined on H.
An infinite dimensional Laplacian was introduced by P. Lévy [2] through the formula

∆LF (x) = 2 lim
ρ→0

MF (x+ ρy)− F (x)
ρ2

,

where MΦ is the mean value of the function Φ(y) over the sphere ‖y‖2H = 1.
If F (x) is a twice strongly differentiable function at the point x0, then the Lévy

Laplacian is defined (when it exists) by the formula

(1) ∆LF (x0) = lim
n→∞

1
n

n∑
k=1

(F ′′(x0)fk, fk)H ,

where F ′′(x) is the Hessian of the function F (x), {fk}∞1 is an orthonormal basis in H.
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In the sequel we need a property of the Lévy Laplacian that has been established in
[2], (see as well [3]) which we describe now.

Let
F (x) = f(U1(x), . . . , Um(x)),

f(u1, . . . , um) be a twice continuously differentiable function with m arguments defined
on the domain {U1(x), . . . , Um(x)} ⊂ Rm, where (U1(x), . . . , Um(x)) is a vector of values
of the functions U1(x), . . . , Um(x). Assume that Uj(x) are uniformly continuous in a
bounded domain Ω ⊂ H and twice strongly differentiable functions and ∆LUj(x) exist
(j = 1, . . . ,m). Then ∆LF (x) exists and

(2) ∆LF (x) =
m∑

j=1

∂f

∂uj

∣∣∣
uj=Uj(x)

∆LUj(x).

Actually the second differential of the function F (x) at the point x in the direction
h ∈ H has the form

d2F (x;h) = (F ′′(x)h, h)H =
m∑

i,j=1

∂2f

∂ui∂uj

∣∣∣
ul=Ul(x)

(U ′i(x), h)H(U ′j(x), h)H

+
m∑

j=1

∂f

∂uj

∣∣∣
uj=Uj(x)

(U ′′j (x)h, h)H .

By (1),

∆LF (x) =
m∑

i,j=1

∂2f

∂ui∂uj

∣∣∣∣∣
ul=Ul(x)

lim
n→∞

1
n

n∑
k=1

(U ′i(x), fk)H(U ′j(x), fk)H

+
m∑

j=1

∂f

∂uj

∣∣∣∣∣
uj=Uj(x)

lim
n→∞

1
n

n∑
k=1

(U ′′j (x)fk, fk)H .

But

lim
n→∞

1
n

n∑
k=1

(U ′i(x), fk)H(U ′j(x), fk)H = 0,

(since (U ′l (x), fk)H → 0 as k →∞), and

lim
n→∞

1
n

n∑
k=1

(U ′′j (x)fk, fk)H = ∆LUj(x).

From this we obtain

∆LF (x) =
m∑

j=1

∂f

∂uj

∣∣∣
uj=Uj(x)

∆LUj(x).

Let Ω be a bounded domain in the Hilbert space H, that is, a bounded open set in
H, and let Ω = Ω

⋃
Γ be the corresponding domain in H with boundary Γ.

In the space H we define a domain Ω with the surface Γ as follows:

Ω = {x ∈ H : 0 ≤ Q(x) < R2}, Γ = {x ∈ H : Q(x) = R2},

where Q(x) is a twice continuously differentiable function such that ∆LQ(x) = γ for a
nonzero positive constant γ. Domains of this type are called fundamental domains.

Let us give some examples of fundamental domains.
1) The ball Ω = {x ∈ H : ‖x‖2H ≤ R2}.
2) The ellipsoid Ω = {x ∈ H : (Bx, x)H ≤ R2}, where B = γE + S(x), E is the

identity operator and S(x) is a compact operator on H.
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Let us introduce a function T (x) = R2−Q(x)
γ . This function possesses the following

properties:

0 < T (x) ≤ R2

γ
, ∆LT (x) = −1 if x ∈ Ω,

T (x) = 0 if x ∈ Γ.

3. the problem without initial and boundary conditions

Consider the nonlinear equation

(3) f
(
U(t, x),

∂U(t, x)
∂t

,∆LU(t, x)
)
= 0,

where U(t, x) is a function on [0, T ] ×H, f(ξ, η, ζ) is a given function with three argu-
ments.

Theorem 1. 1. Let f(ξ, η, ζ) be a continuous twice differentiable function with three
arguments taking values in the domain {U(t, x), ∂U(t,x)

∂t ,∆LU(t, x)} in R3 .
2. Assume that one can solve the equation f(ξ, η, cη) = 0 with respect to η, η = φ(ξ, c)

(although the original equation f(ξ, η, ζ) = 0, in general, might have no solution η) and
the solution admits separation of the variables ξ and c, i.e., φ(ξ, c) = α(c)β(ξ) (for some
functions α(c), β(ξ) on R1, β(ξ) 6= 0).

Then a solution of (3) can be given in an implicit form

(4) ϕ(U(t, x)) = α(Ψ(x))t+ δ(Ψ(x))
‖x‖2H

2
+ Φ(x),

where ϕ(ξ) =
∫

dξ
β(ξ) , δ(c) = cα(c), and Ψ(x), Φ(x) are arbitrary harmonic functions

on H.

Proof. We deduce from (4), using (2) and the relation δ(Ψ(x)) = Ψ(x)α(Ψ(x)), that

ϕ′ξ(U(t, x))
∂U(t, x)
∂t

= α(Ψ(x)),

ϕ′ξ(U(t, x))∆LU(t, x) = α′c(Ψ(x))∆LΨ(x)t+ Ψ(x)α′c(Ψ(x))∆LΨ(x)
‖x‖2H

2

+ ∆LΨ(x)α(Ψ(x))
‖x‖2H

2
+ Ψ(x)α(Ψ(x))

1
2
∆L‖x‖2H + ∆LΦ(x)

= Ψ(x)α(Ψ(x))

(since ∆LΨ(x) = ∆LΦ(x) = 0 by harmonicity and ∆L‖x‖2H = 2 according to (1)).
Since ϕ′ξ = 1

β(ξ) this implies that

∂U(t, x)
∂t

= α(Ψ(x))β(U(t, x)) = φ(U(t, x),Ψ(x)),

∆LU(t, x) = δ(Ψ(x))β(U(t, x)) = Ψ(x)φ(U(t, x),Ψ(x)).

Substituting these relations into (3) we obtain

f
(
U(t, x), φ(U(t, x),Ψ(x)),Ψ(x)φ(U(t, x),Ψ(x))

)
= 0.

Due to condition 2) in the statement of the theorem this yields the identity

φ(U(t, x),Ψ(x)) = φ(U(t, x),Ψ(x)).

�
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4. Boundary problem

Consider the boundary problem

(5) f
(
U(t, x),

∂U(t, x)
∂t

,∆LU(t, x)
)
= 0 in Ω,

(6) U(t, x) = G(t, x) on Γ,

where U(t, x) is a function on [0, T ] × H, f(ξ, η, ζ) is a given function having three
arguments and G(t, x) is a given function.

Theorem 2. 1. Let f(ξ, η, ζ) be a continuous twice differentiable function with three
arguments defined in the domain {U(t, x), ∂U(t,x)

∂t ,∆LU(t, x)} in R3.
2. Assume that one can solve the equation f(ξ, η, cη) = 0 with respect to η, η = φ(ξ, c),

and the solution admits the separation of variables ξ and c that is φ(ξ, c) = α(c)β(ξ) (for
some functions α(c), β(ξ) on R1, β(ξ) 6= 0).

3. Assume that there exist a primitive ϕ(ξ) =
∫

dξ
β(ξ) and its inverse function ϕ−1.

4. Assume that the domain Ω is fundamental.
5. Assume that in some functional space there exists a solution V (τ, x) of the boundary

problem for the heat equation

(7)
∂V (τ, x)
∂τ

= ∆LV (τ, x) in Ω, V (τ, x)
∣∣∣
Γ
= G(τ, x).

6. Consider the equation

(8) α′c

(
α−1

( ∂V (τ,x)
∂τ

∣∣∣
τ=X+T (x)

β(V (X + T (x), x))

))
[t−X]−δ′c

(
α−1

( ∂V (τ,x)
∂τ

∣∣∣
τ=X+T (x)

β(V (X + T (x), x))

))
T (x) = 0,

where δ(c) = cα(c), and assume that it can be solved with respect to X = χ(t, x), and
χ(t, x)

∣∣∣
Γ
= t.

Then the solution of the boundary problem (5), (6) in the same functional space is
given by the formula

(9) ϕ(U(t, x)) = α(ψ(χ(t, x)))[t−χ(t, x)]− δ(ψ(χ(t, x))T (x)+ϕ(V (χ(t, x)+T (x), x))),

where

(10) ψ(χ(t, x)) = α−1

( ∂V (τ,x)
∂τ

∣∣∣
τ=χ(t,x)+T (x)

β(V (χ(t, x) + T (x), x))

)

(ψ(z) is a function on R1).
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Proof. Since ϕ′ξ = 1
β(ξ) we deduce from (9)

ϕ′ξ(U(t, x))
∂U(t, x)
∂t

=
1

β(U(t, x))
∂U(t, x)
∂t

= α(ψ(χ(t, x)))− α(ψ(χ(t, x)))
∂χ(t, x)
∂t

+ α′c(ψ(χ(t, x)))ψ′z(χ(t, x))
∂χ(t, x)
∂t

[t− χ(t, x)]

− δ′c(ψ(χ(t, x)))ψ′z(χ(t, x))
∂χ(t, x)
∂t

T (x)

+

∂V (τ,x)
∂τ

∣∣∣
τ=χ(t,x)+T (x)

β(V (χ(t, x) + T (x), x))
∂χ(t, x)
∂t

= α(ψ(χ(t, x))) +
{
α′c(ψ(χ(t, x)))[t− χ(t, x)]

− δ′c(ψ(χ(t, x)))T (x)
}
ψ′z(χ(t, x))

∂χ(t, x)
∂t

−
[
α(ψ(χ(t, x)))−

∂V (τ,x)
∂τ

∣∣∣
τ=χ(t,x)+T (x)

β(V (χ(t, x) + T (x), x))

]
∂χ(t, x)
∂t

.

Note that χ(t, x) solves (8) and due to (10) we have

(11)
∂U(t, x)
∂t

= α(ψ(χ(t, x)))β(U(t, x)).

Since ϕ′ξ = 1
β(ξ) , and ∆LT (x) = −1, applying (2) we deduce from (9)

ϕ′ξ(U(t, x))∆LU(t, x) =
1

β(U(t, x))
∆LU(t, x)

= −α(ψ(χ(t, x)))∆Lχ(t, x) + α′c(ψ(χ(t, x)))ψ′z(χ(t, x))∆Lχ(t, x)[t− χ(t, x)]

− δ′c(ψ(χ(t, x)))ψ′z(χ(t, x))∆Lχ(t, x)T (x)− δ(ψ(χ(t, x)))∆LT (x)

+

∂V (τ,x)
∂τ

∣∣∣
τ=χ(t,x)+T (x)

β(V (χ(t, x) + T (x), x))

[
∆Lχ(t, x) + ∆LT (x)

]
+

∆LV (τ, x)
∣∣∣
τ=χ(t,x)+T (x)

β(V (χ(t, x) + T (x), x))

= δ(ψ(χ(t, x))) +
{
α′c(ψ(χ(t, x)))[t− χ(t, x)]

− δ′c(ψ(χ(t, x))))T (x)
}
ψ′z(χ(t, x))∆Lχ(t, x)

−
[
α(ψ(χ(t, x)))−

∂V (τ,x)
∂τ

∣∣∣
τ=χ(t,x)+T (x)

β(V (χ(t, x) + T (x), x))

]
∆Lχ(t, x)

−

[
∂V (τ,x)

∂τ −∆LV (τ, x)
]∣∣∣

τ=χ(t,x)+T (x)

β(V (χ(t, x) + T (x), x))
.

Recall that χ(t, x) solves (8), ∂V (τ,x)
∂τ = ∆LV (τ, x), then taking into account (10) we

obtain

(12) ∆LU(t, x) = δ(ψ(χ(t, x)))β(U(t, x)).

Substituting (11) and (12) into (5) we derive

(13) f
(
U(t, x), α(ψ(χ(t, x)))β(U(t, x)), ψ(χ(t, x))α(ψ(χ(t, x)))β(U(t, x))

)
= 0.
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By condition 2) in the statement of the theorem the identity

α(ψ(χ(t, x)))β(U(t, x)) = α(ψ(χ(t, x)))β(U(t, x))

can be deduced from (13).
At the surface Γ we have T (x) = 0, and χ(t, x) = t. Setting T (x) = 0, χ(t, x) = t in

(9) and keeping in mind that V (t, x)
∣∣∣
Γ
= G(t, x) we obtain

ϕ
(
U(t, x)

∣∣∣
Γ

)
= ϕ

(
V (t, x)

∣∣∣
Γ

)
= ϕ(G(t, x)) and U(t, x)

∣∣∣
Γ
= G(t, x).

�

5. Initial-boundary value problem

Consider an initial-boundary value problem with uniform initial data

(14) f
(
U(t, x),

∂U(t, x)
∂t

,∆LU(t, x)
)
= 0 in Ω,

(15) U(0, x) = 0,

(16) U(t, x) = G(t, x) on Γ,

where U(t, x) is a function on [0, T ] ×H, f(ξ, η, ζ) is a given function with three argu-
ments, G(t, x) is a given function.

Theorem 3. 1. Let f(ξ, η, ζ) be a continuous twice differentiable function with three
arguments defined in the domain {U(t, x), ∂U(t,x)

∂t ,∆LU(t, x)} in R3.
2. Assume that one can solve the equation f(ξ, η, cη) = 0 with respect to η, η = φ(ξ, c),

and the solution admits the separation of variables ξ and c that is φ(ξ, c) = α(c)β(ξ) (for
some functions α(c), β(ξ) on R1, β(ξ) 6= 0).

3. Assume that there exist a primitive ϕ(ξ) =
∫

dξ
β(ξ) and its inverse function ϕ−1.

4. Assume that the domain Ω is fundamental .
5. Assume that in some functional space there exists a solution V (τ, x) of the initial-

boundary value problem for the heat equation

(17)
∂V (τ, x)
∂τ

= ∆LV (τ, x)) in Ω, V (0, x) = 0, V (τ, x)
∣∣∣
Γ
= G(t, x).

6. Assume that the equation

(18) α′c

(
α−1

( ∂V (τ,x)
∂τ

∣∣∣
τ=X+T (x)

β(V (X + T (x), x))

))
[t−X]−δ′c

(
α−1

( ∂V (τ,x)
∂τ

∣∣∣
τ=X+T (x)

β(V (X + T (x), x)

))
T (x) = 0,

where δ(c) = cα(c), can be solved with respect to X = χ(t, x), and χ(t, x)
∣∣∣
Γ
= t, χ(0, x) < r.

7. Assume in addition that the function G(t, x) is uniformly continuous in Ω for each
t ∈ [0, T ], and the mean value MG(t, x +

√
2T (x)y) for all t ∈ [0, T ] and G(t, x) = 0,

G′t(t, x) = 0 for t ≤ r (r > 0) exists .
Then the solution of initial-boundary value problem (14)–(16) in this functional space

is given by

(19) ϕ(U(t, x)) = α(ψ(χ(t, x)))[t−χ(t, x)]−δ(ψ(χ(t, x)))T (x)+ϕ(V (χ(t, x)+T (x), x)),

where

(20) ψ(χ(t, x)) = α−1

( ∂V (τ,x)
∂τ

∣∣∣
τ=χ(t,x)+T (x)

β(V (χ(t, x) + T (x), x))

)
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(ψ(z) is a function on R1).

Proof. We can prove that the function given by (19) satisfies (14) in Ω and at the surface
Γ U(t, x) = G(t, x), in the similar to the proof of theorem 2.

Let us show that U(0, x) = 0.
First we prove that if G(τ, x) = 0 for τ ≤ 0, then under the conditions of the theorem

(namely condition (7)) the solution of the problem

∂V (t, x)
∂t

= ∆LV (t, x) in Ω, V (0, x) = 0, V (t, x)
∣∣∣
Γ
= G(t, x)

can be written in the form

(21) V (t, x) = MG(t− T (x), x+
√

2T (x)y),

where MΦ is a mean value of the function Φ(y) over the sphere ‖y‖2H = 1.
Eventually, at one hand

(22)
∂V (t, x)
∂t

=
∂MG(t− T (x), x+

√
2T (x)y)

∂τ
.

At the other hand using (2) we derive

∆LV (t, x)

= −
∂MG(t− T (x), x+

√
2T (x)y)

∂τ
∆LT (x) + ∆LMG(τ, x+

√
2T (x)y)

∣∣∣
τ=t−T (x)

.

It was shown in the paper [4] by E. M. Polischuk that if the function F (x) is uniformly
continuous in Ω and has a mean value MF (x +

√
2T (x)y), then this mean value is a

harmonic function in Ω, that is ∆LMF (x+
√

2T (x)y) = 0 (x ∈ Ω).
Hence taking into account that ∆LT (x) = −1, we obtain

(23) ∆LV (t, x) =
∂MG(t− T (x), x+

√
2T (x)y)

∂τ
.

Substituting (22) and (23) into the equation ∂V (t,x)
∂t = ∆LV (t, x) we get the identity

∂MG(t− T (x), x+
√

2T (x)y)
∂τ

=
∂MG(t− T (x), x+

√
2T (x)y)

∂τ
.

Setting t = 0 in (21) we obtain V (0, x) = MG(−T (x), x +
√

2T (x)y) = 0, since by
conditions of the theorem we have G(τ, x) = 0 for τ ≤ 0.

At the surface Γ T (x) = 0, and (21) yields V (t, x)
∣∣∣
Γ
= MG(t, x) = G(t, x).

It results from (21) that

V (χ(t, x) + T (x), x) = MG(χ(t, x), x+
√

2T (x)y)
and thus

(24) V (χ(0, x) + T (x), x) = MG(χ(0, x), x+
√

2T (x)y) = 0

(since by theorem conditions χ(0, x) ≤ r, and G(τ, x) = 0 for τ ≤ r).
The relation

α(ψ(χ(t, x))) =

∂V (τ,x)
∂τ

∣∣∣
τ=χ(t,x)+T (x)

β(V (χ(t, x)) + T (x), x))
=

MG′τ (χ(t, x), x+
√

2T (x)y)
β(V (χ(t, x)) + T (x), x))

follows from (20) and leads to α(ψ(χ(0, x))) = 0 (since by theorem conditions χ(0, x) < r,
and G′(τ, x) = 0 for τ ≤ r).

Setting t = 0 in (19) and taking into account (24) and the existence of ϕ−1, we deduce
ϕ(U(0, x)) = ϕ(V (χ(0, t) + T (x), x)) = ϕ(0), that yields U(0, x) = 0. �
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Remark. If there exist unique solutions η, c and χ(t, x) to the equations f(ξ, η, cη) = 0,
α(c) = z and (18) respectively, and if the initial-boundary value problem (17) for the
heat equation has a unique solution in a certain functional class then the solution of the
initial-boundary value problem (14)–(16) is unique in this functional space.

Example. Let us solve the initial-boundary value problem in a ball of the Hilbert
space H: Ω = {x ∈ H : ‖x‖2H ≤ R2}

(25)
(∂U(t, x)

∂t

)3

−U(t, x)
(∂U(t, x)

∂t

)2

+
(∂U(t, x)

∂t

)
∆LU(t, x)

= U(t, x)∆LU(t, x) in Ω,

(26) U(0, x) = 0,

(27) U(t, x)
∣∣∣
‖x‖2H=R2

= g
(
t− 1

2
‖x‖2H

)
,

where g(λ) = λ2 if λ ≥ 0, g(λ) = 0 if λ ≤ 0.
To apply theorem 3 we note that the function f in (25) has the form

f(ξ, η, ζ) = η3 − ξη2 + ηζ − ξζ.

Hence the equation that appears in the condition 2) of theorem 3 has the form

(28) η3 − ξη2 + cη2 − cξη = 0.

The solutions of the equation (28) have the form η = −c, η = ξ and η = 0.
Let us take the solution η = −c. In this case η = φ(ξ, c) = −c. Hence α(c) = −c,

β(ξ) = 1 which yields δ(c) = −c2, ϕ(ξ) = ξ.
A solution of the initial-boundary value problem for the heat equation

∂V (τ, x)
∂τ

= ∆LV (τ, x) in Ω, V (0, x) = 0, V (τ, x)
∣∣∣
‖x‖2H=R2

= g
(
τ − 1

2
‖x‖2H

)
is given by the formula

V (τ, x) = g
(
τ +

1
2
‖x‖2H −R2

)
.

It results

V (τ, x)
∣∣∣
τ=X+T

= g
(
X − R2

2

)
,

∂V (τ, x)
∂τ

∣∣∣∣∣
τ=X+T

= 2
√
g
(
X −R2/2

)
.

Now the equation (18) (in the condition 6) of theorem 3) takes the form

t− (1− 4T (x))X − 2R2T (x) = 0.

A solution of this equation is given by

X = χ(t, x) =
t− 2R2T (x)
1− 4T (x)

,

and in addition we have χ(t, x)
∣∣∣
Γ
= t.

Since for such a form of χ(t, x)

V (χ(t, x) + T (x), x) = g
(
χ(t, x)− R2

2

)
=

g(t− R2

2 )
(1− 4T (x))2

,

∂V (τ, x)
∂τ

∣∣∣∣∣
τ=χ(t,x)+T (x)

=
2
√
g
(
t−R2/2

)
1− 4T (x)

,
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we deduce

α(ψ(χ(t, x))) =
2
√
g(t−R2/2)

1− 4T (x)
, δ(ψ(χ(t, x))) = −

4g(t− R2

2 )
(1− 4T (x))2

.

It results from (19) in theorem 3 that the solution of the problem (25)–(27) has the form

U(t, x) =
g
(
t− R2

2

)
1− 2(R2 − ‖x‖2H)

.
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