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BOUNDARY PROBLEMS FOR FULLY NONLINEAR PARABOLIC
EQUATIONS WITH LEVY LAPLACIAN

S. ALBEVERIO, YA. BELOPOLSKAYA, AND M. FELLER

ABSTRACT. We suggest a method to solve boundary and initial-boundary value prob-
lems for a class of nonlinear parabolic equations with the infinite dimensional Lévy

Laplacian Aj,
oU(t, x)
FUte), ==,

in fundamental domains of a Hilbert space.

ALU(t,x)): 0

1. INTRODUCTION

In the paper by S. Albeverio, Ya. 1. Belopolskaya, M. N. Feller [1] we have constructed
a solution of the Cauchy problem for a fully nonlinear parabolic equation with the Lévy
Laplacian
oU (t,x)
f(U(t7 ZL’), Ta
where f(£,7,() is a function on R3.
In the present paper we continue the investigation started in [1] . We develop a method
to solve the boundary value problem

f(U(t,x),%,ALU(t,x)):O, U(t,z) = G(t,z) on T,

ALU(t,x)): 0, U(0,z) = Up(z),

and the initial-boundary value problem

f(U(t,m),w,ALU(t@)):O, U(0,2) = Up(x), U(t,z)=G(t,xz) on T,

in fundamental domains 2 U T of a Hilbert space.

2. PRELIMINARIES

Let H be a separable real Hilbert space, F(x) be a scalar function defined on H.
An infinite dimensional Laplacian was introduced by P. Lévy [2] through the formula

MF(x + py) - F(a)

2 9

ALF(z)=2 ;11% ;

where 9M® is the mean value of the function ®(y) over the sphere ||y||% = 1.
If F(x) is a twice strongly differentiable function at the point z(, then the Lévy
Laplacian is defined (when it exists) by the formula

n

.1
(1) ApF(zo) = lim —» (F"(x0)f, fu)s,
where F”'(z) is the Hessian of the function F(z), {f;}$° is an orthonormal basis in H.
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In the sequel we need a property of the Lévy Laplacian that has been established in
[2], (see as well [3]) which we describe now.

Let
F(x) - f(Ul(x)ﬂ sy Um(x))v
flug, ..., um) be a twice continuously differentiable function with m arguments defined
on the domain {Uy(z),...,Un(z)} C R™, where (Ui(z),...,Un(z)) is a vector of values
of the functions Ui(x),...,Un(x). Assume that U;(z) are uniformly continuous in a

bounded domain  C H and twice strongly differentiable functions and ApUj(z) exist
(j=1,...,m). Then ApF(x) exists and

of

(2) ApF(z) = o,

ALU: ().
wytry oy 2V @)

Actually the second differential of the function F(x) at the point x in the direction
h € H has the form

d?F(z;h) = (F" (2 Z au 8u o) (U{(x),h)H(UJ/(w),h)H
i g lu x
- Of ”
j=1
By (1),
m 62f n ,
ALF@) =Y G5 T =S (U@, fi)n (U} (a), f)
,j=1 w;=U;(x) k=1
- Of o
+Z ou, Jim > U7 (@) fr, fr)
Jj=1 u;=U;(z) k=1
But

From this we obtain

ALU: ().
wytry oy 2V @)

Let © be a bounded domain in the Hilbert space H, that is, a bounded open set in
H, and let Q = QJT be the corresponding domain in H with boundary T
In the space H we define a domain 2 with the surface I' as follows:

Q={reH:0<Q(z)<R*, T={zxecH:Q() =R},

where Q(x) is a twice continuously differentiable function such that ApQ(x) =« for a
nonzero positive constant . Domains of this type are called fundamental domains.

Let us give some examples of fundamental domains.

1) The ball Q = {z € H : ||z||%} < R?}.

2) The ellipsoid Q = {x € H : (Bz,z)y < R?}, where B = vE + S(z), E is the
identity operator and S(x) is a compact operator on H.
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2
Let us introduce a function T'(z) = R%Q(z) This function possesses the following

properties:

0<T(z) <

R2
AT =1 if zeQ,
~

T(x)=0 if zeT.

3. THE PROBLEM WITHOUT INITIAL AND BOUNDARY CONDITIONS

Consider the nonlinear equation
oU(t,x)

3) f(Uee), =

where U(t, x) is a function on [0,7] x H, f(£,n,() is a given function with three argu-
ments.

ALU(t2))=0,

Theorem 1. 1. Let f(&,1,() be a continuous twice differentiable function with three

arguments taking values in the domain {U(t,x), 8U£§i’x) JALU(t,m)} in RS .

2. Assume that one can solve the equation f(&,n,cn) = 0 with respect ton, n = ¢(&,c)
(although the original equation f(&,m,() = 0, in general, might have no solution 1) and
the solution admits separation of the variables £ and ¢, i.e., ¢(£,c) = a(c)B(&) (for some

functions a(c), B(€) on RY, B(&) #0).

Then a solution of (3) can be given in an implicit form

0 o(U(t2)) = (W)t + 6(¥ @) 0E | a(r),

where @(§) = f%, d(c) = cale), and V(z), ®(z) are arbitrary harmonic functions
on H.

Proof. We deduce from (4), using (2) and the relation (¥ (z)) = ¥(x)a(¥(x)), that

(U (t,2) 220 — a(u(a),

e (Ut 2))ALU(t ) = ap(U(z) ALY ()t 4+ W (x)a (¥ (z)) AL (z) ||952||H

+ A ¥@a@@) I L w@a@E) LAl + A0
— U)o (W)

(since ALV (z) = AL ®(x) = 0 by harmonicity and Af|z||% = 2 according to (1)).
Since ¢} = ﬁ this implies that

ALU(t,x) = 0(¥(x)BU(t, x)) = V(x)p(U(t, ), ¥(z)).

Substituting these relations into (3) we obtain

(U2, 60 (1, 2), (@), D(@)o(U 1, 2), () )= 0.
Due to condition 2) in the statement of the theorem this yields the identity
(U, ), ¥(x)) = o(U(t, z), ¥(x)).
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4. BOUNDARY PROBLEM

Consider the boundary problem

(5) (v, 28D Apam)=0 w o
(6) U(t,z) =G(t,xz) on T,

where U(t,z) is a function on [0,7] x H, f(&,n,¢) is a given function having three
arguments and G(t, ) is a given function.

Theorem 2. 1. Let f(&,1,() be a continuous twice differentiable function with three

arguments defined in the domain {U(t,x), aUg,x) JALU(t )} in R3.
2. Assume that one can solve the equation f(&,n,cn) = 0 with respect ton, n = ¢(&, c),

and the solution admits the separation of variables & and ¢ that is ¢(€,¢) = a(c)B(&) (for
some functions a(c), B(€) on R, B(&) #0).
1

3. Assume that there exist a primitive (&) = [ % and its inverse function o~ .

4. Assume that the domain Q is fundamental.
5. Assume that in some functional space there exists a solution V (7, x) of the boundary
problem for the heat equation

™ WD Aview) i 0 Virw)| = 6ra)

6. Consider the equation

oV (r,x) oV (r,x)

® (o (Groerrim ) )X (o (o) )T =0

where 0(c) = ca(c), and assume that it can be solved with respect to X = x(t,z), and
X(f7I)‘F: t.

Then the solution of the boundary problem (5), (6) in the same functional space is
given by the formula

9) w(U(t,2)) = alP(x(t,2)[t—x(t, )] =6 (x(t 2))T(x) +o(V(x(t, 2) + T(x), 2))),

where
oV (r,z)
o or T=x(t,x)+T(x)
(10) U(x(t,z)) =a! (ﬁ(V(X(t, x) +T(x), x)))

(¢(2) is a function on RY).
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Proof. Since pp = % we deduce from (9)

, ou(t,z) 1 oU(t,x)
P2 =5 = 52 o
= o (x(t,)) ~ ab(x(t,2)) 202
Ot )Lt ) 2D 1,0
3wt ) (xtr, ) P
oV (t,x)
o lrxtaw+1@ Ox(t,x)

T BVt 2) + T(@),2)) ot

= a(p(x(t, z))) + {a'c(z/f(x(t,x)))[t — x(t, )]

— Ll )T () P (x(t,) 2AE D)
oV (r,x)
or

a 2 — r=x(t2)+7T() | Ix(t,x)
[(W(t, M) ﬁ(wmm”wm)} (t2)

Note that x(t, ) solves (8) and due to (10) we have

(1) WL) _ a(wintt,o))BUE ).

Since <p’£ = %, and AT (z) = —1, applying (2) we deduce from (9)

e (U(t,2))ALU(t x) = ApU(t,x)

1
AU, x))
= —a(y(x(t, ) ALx(t, x) + o (POt )L (x(t, 2)) Ax(t, 2)[t — X(t, 2)]
= Oe(W(x(t, )L (x(t, 2) Ax(t, #)T () — 6((x(t, 2)))ALT (x)

QVL,S:,Z‘) T (o) ALV(T7 l’) (t.2) 4T ()
T=x(t,x T T=x(t,x T
+ ST o )y [Aexta) + AuT(@) [+ o X

= 0((x(t,2)) + { L (Wt )t = x(t, )
— Lt )T (@) } 0 (x(t 2) Arx(t, )

oV (r,x)

97 lr=x(t@)+T(2)
- |otvtntt) - e A A

oV (r,x)
[ or ALV (, x)} r=x(t,x)+T ()
BV (x(t,x) + T (z),x))

Recall that x(¢,x) solves (8), W = ApV(r,x), then taking into account (10) we

obtain
(12) ALU(t x) = 6(p(x(t,2))BU (X, x)).
Substituting (11) and (12) into (5) we derive

(13) f(U(t, ), e (x(t, 2))) (UL, ), Y (x (£, ) (b (x (E, 2))) BU (&, :1:))): 0.
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By condition 2) in the statement of the theorem the identity

a(@(x(t,2))BU(¢ x)) = a(db(x(t,2)))BU (L))
can be deduced from (13).
At the surface I' we have T'(x) = 0, and x(¢,x) = t. Setting T'(z) = 0, x(¢,z) =t in

(9) and keeping in mind that V (¢, x)’F: G(t,x) we obtain

@(U(t,x)‘r) = cp(V(th)‘F) =p(G(t,z)) and U(t, x) = G(t, ).

5. INITIAL-BOUNDARY VALUE PROBLEM

Consider an initial-boundary value problem with uniform initial data

(14) f(U(t,sc),0Ug;’m),ALU(t,x)):0 n Q
(15) U(0,z) =0,
(16) U(t,z) = G(t,z) on T,

where U(t,x) is a function on [0, 7] x H, f(&,n,() is a given function with three argu-
ments, G(t,z) is a given function.

Theorem 3. 1. Let f(£,1,() be a continuous twice differentiable function with three

arguments defined in the domain {U(t,x), aUg;,x) JALU(t )} in R3.
2. Assume that one can solve the equation f(&,m,cn) = 0 with respect ton, n = ¢(&,¢),

and the solution admits the separation of variables & and c that is ¢(€,c) = a(c)B(&) (for
some functions a(c), B(€) on R, B(€) # 0).
1

3. Assume that there exist a primitive (&) = [ % and its inverse function =" .

4. Assume that the domain Q is fundamental .
5. Assume that in some functional space there exists a solution V(7,x) of the initial-
boundary value problem for the heat equation
oV (r,x)

(17) CoEE =AYV (ra) i Q0 V(0,2) =0, V(T,m)‘F:G(t,x).

6. Assume that the equation

oV (r,z) oV (r,z)
or

19 (o (Gror i) e -0 (e rre ) )T =0

where §(c) = ca(c), can be solved with respect to X = x(t,x), and x(t, a:)‘F: t, x(0,z) <r.

7. Assume in addition that the function G(t,x) is uniformly continuous in Q for each
t € [0, 7], and the mean value MG (t,x + /2T (x)y) for all t € [0,7] and G(t,x) = 0,
Gi(t,x) =0 fort <r (r>0) exists .

Then the solution of initial-boundary value problem (14)—(16) in this functional space
is given by
(19) @(U(t, ) = a(P(x(t, )t =x(t, 2)] =6 (x(t, )T (2)+o(V(x(t )+ T(z), ),
where

oV (r,x)

orT
(20) bx(t,2) = a”! ( .

T=x(t,z)+T(z) )
Vix(t,z) +T(x),z))
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(¥(2) is a function on RY).

Proof. We can prove that the function given by (19) satisfies (14) in 2 and at the surface
T U(t,x) = G(t, ), in the similar to the proof of theorem 2.

Let us show that U(0,z) = 0.

First we prove that if G(7,z) = 0 for 7 < 0, then under the conditions of the theorem
(namely condition (7)) the solution of the problem

t
W = ALV(a) I 0 V(0,0 =0, Vita)| =6
can be written in the form
(21) Vt,z) = MGt — T(z),z + /2T (2)y),

where M® is a mean value of the function ®(y) over the sphere ||y||%, = 1.
Eventually, at one hand

OV (t,x) _ OMG(t — T(x),x + /2T (z)y)

(22) ot or
At the other hand using (2) we derive
ALV (t,x)
COMG(t — T (), + /2T (x)y)

_ - ALT(z) + ALMG (7, 2 + /2T (x)y)

It was shown in the paper [4] by E. M. Polischuk that if the function F(x) is uniformly
continuous in  and has a mean value MF (z 4+ /2T (z)y), then this mean value is a
harmonic function in €, that is ApINEF (z + /2T (z)y) =0 (z € Q).

r=t—T(z)

Hence taking into account that AT (z) = —1, we obtain
t—-T V2T
(23) apv(tr) = 22 (”%’H @)y)
T

Substituting (22) and (23) into the equation % = ALV (t,z) we get the identity
OMG(t —T(x), x4+ /2T (x)y)  OMG(t — T(x),x + /2T (x)y)
or N or '

Setting ¢ = 0 in (21) we obtain V(0,2) = MG(—T(z),z + /2T (x)y) = 0, since by
conditions of the theorem we have G(7,z) = 0 for 7 < 0.

At the surface T T'(z) = 0, and (21) yields V(t,a:)‘rz MG(t,x) = G(t,x).
It results from (21) that

Vx(t,z) + T(z),2) = MG(x(t, 2), x + /2T (2)y)

and thus
(24) V(x(0,2) + T(z),z) = MG (x(0,z),z + /2T (z)y) =0

(since by theorem conditions x(0,z) < r, and G(r,z) =0 for 7 < r).
The relation
oV (1,x)
O lrexto)+1@ MG (XL, 7)),z + /2T (2)y)

a(P(x(t,x))) = BV(x(ta) +T@),2)  BV(x(ta) + T(z),z))

follows from (20) and leads to a(1(x(0,z))) = 0 (since by theorem conditions x(0,z) < r,
and G'(1,2) =0 for 7 <r).

Setting t = 0 in (19) and taking into account (24) and the existence of ¢, we deduce
e(U(0,2)) = p(V(x(0,t) + T(x),z)) = »(0), that yields U(0,z) = 0. O

1
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Remark. If there exist unique solutions n, ¢ and x(¢,x) to the equations f(&,n,cn) =0,
a(c) = z and (18) respectively, and if the initial-boundary value problem (17) for the
heat equation has a unique solution in a certain functional class then the solution of the
initial-boundary value problem (14)—(16) is unique in this functional space.

Example. Let us solve the initial-boundary value problem in a ball of the Hilbert
space H: Q={ze€ H: |z||%} < R?}

() e () (s

=U(t,x)ALU(t,x) in £,

(21) )| =gt leld).

where g(A) = A2 if A >0, g(\) =0 if A < 0.
To apply theorem 3 we note that the function f in (25) has the form

Hence the equation that appears in the condition 2) of theorem 3 has the form

l|=]13=R?

(28) 1’ — &0 + e’ —cén = 0.
The solutions of the equation (28) have the form nn = —¢, n = & and n = 0.
Let us take the solution n = —c. In this case n = ¢(&,¢) = —c. Hence a(c) = —c¢,

B(€) = 1 which yields 6(c) = —c2, p(€) = €.
A solution of the initial-boundary value problem for the heat equation

v (r, , 1
M:ALV(W) in Q V(0,z)=0, V(T,x)‘ =g(r—§llx||?{)

or

is given by the formula

ll=]13,=R?

— 1 2 2
V(ra) = g(r + 5 llel% - B).

11{72)7 oV (r,x) :2\/M'

V(s ‘ - (X —
(7. 2) rex4r Y 2 or
T=X+T
Now the equation (18) (in the condition 6) of theorem 3) takes the form
t— (1 —4T(x))X — 2R?T(x) = 0.

A solution of this equation is given by

It results

t —2R?T(z)

X =x(tz)= 1T ()

and in addition we have x(t, x)‘ =t.
r

Since for such a form of x(t, )

2 _Rr?
V(x(t,z) +T(z), ) :g(X(t’m) _ i): (g(t )

2 1—4T(x))?’
oV (r,z) C 2\/g(t—R2/2)
or 1 -4T(x)
T=x(t,x)+T(z)
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we deduce

— R2 -
a(P(x(t,x))) = W, S((x(t, ) = M'

It results from (19) in theorem 3 that the solution of the problem (25)—(27) has the form

Ut ) ot %)

S 1-2(R?— a]F)
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