BOUNDARY PROBLEMS FOR FULLY NONLINEAR PARABOLIC EQUATIONS WITH LÉVY LAPLACIAN

S. ALBEVERIO, YA. BELOPOLSKAYA, AND M. FELLER

$$
\begin{aligned}
& \text { AbStract. We suggest a method to solve boundary and initial-boundary value prob- } \\
& \text { lems for a class of nonlinear parabolic equations with the infinite dimensional Lévy } \\
& \text { Laplacian } \Delta_{L} \\
& \qquad f\left(U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right)=0 \\
& \text { in fundamental domains of a Hilbert space. }
\end{aligned}
$$

1. Introduction

In the paper by S. Albeverio, Ya. I. Belopolskaya, M. N. Feller [1] we have constructed a solution of the Cauchy problem for a fully nonlinear parabolic equation with the Lévy Laplacian

$$
f\left(U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right)=0, \quad U(0, x)=U_{0}(x),
$$

where $f(\xi, \eta, \zeta)$ is a function on R^{3}.
In the present paper we continue the investigation started in [1]. We develop a method to solve the boundary value problem

$$
f\left(U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right)=0, \quad U(t, x)=G(t, x) \quad \text { on } \quad \Gamma,
$$

and the initial-boundary value problem

$$
f\left(U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right)=0, \quad U(0, x)=U_{0}(x), \quad U(t, x)=G(t, x) \quad \text { on } \quad \Gamma,
$$

in fundamental domains $\Omega \cup \Gamma$ of a Hilbert space.

2. Preliminaries

Let H be a separable real Hilbert space, $F(x)$ be a scalar function defined on H. An infinite dimensional Laplacian was introduced by P. Lévy [2] through the formula

$$
\Delta_{L} F(x)=2 \lim _{\rho \rightarrow 0} \frac{\mathfrak{M} F(x+\rho y)-F(x)}{\rho^{2}},
$$

where $\mathfrak{M} \Phi$ is the mean value of the function $\Phi(y)$ over the sphere $\|y\|_{H}^{2}=1$.
If $F(x)$ is a twice strongly differentiable function at the point x_{0}, then the Lévy Laplacian is defined (when it exists) by the formula

$$
\begin{equation*}
\Delta_{L} F\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(F^{\prime \prime}\left(x_{0}\right) f_{k}, f_{k}\right)_{H}, \tag{1}
\end{equation*}
$$

where $F^{\prime \prime}(x)$ is the Hessian of the function $F(x),\left\{f_{k}\right\}_{1}^{\infty}$ is an orthonormal basis in H.

[^0]In the sequel we need a property of the Lévy Laplacian that has been established in [2], (see as well [3]) which we describe now.

Let

$$
F(x)=f\left(U_{1}(x), \ldots, U_{m}(x)\right)
$$

$f\left(u_{1}, \ldots, u_{m}\right)$ be a twice continuously differentiable function with m arguments defined on the domain $\left\{U_{1}(x), \ldots, U_{m}(x)\right\} \subset R^{m}$, where $\left(U_{1}(x), \ldots, U_{m}(x)\right)$ is a vector of values of the functions $U_{1}(x), \ldots, U_{m}(x)$. Assume that $U_{j}(x)$ are uniformly continuous in a bounded domain $\Omega \subset H$ and twice strongly differentiable functions and $\Delta_{L} U_{j}(x)$ exist $(j=1, \ldots, m)$. Then $\Delta_{L} F(x)$ exists and

$$
\begin{equation*}
\Delta_{L} F(x)=\left.\sum_{j=1}^{m} \frac{\partial f}{\partial u_{j}}\right|_{u_{j}=U_{j}(x)} \Delta_{L} U_{j}(x) \tag{2}
\end{equation*}
$$

Actually the second differential of the function $F(x)$ at the point x in the direction $h \in H$ has the form

$$
\begin{aligned}
d^{2} F(x ; h) & =\left(F^{\prime \prime}(x) h, h\right)_{H}=\left.\sum_{i, j=1}^{m} \frac{\partial^{2} f}{\partial u_{i} \partial u_{j}}\right|_{u_{l}=U_{l}(x)}\left(U_{i}^{\prime}(x), h\right)_{H}\left(U_{j}^{\prime}(x), h\right)_{H} \\
& +\left.\sum_{j=1}^{m} \frac{\partial f}{\partial u_{j}}\right|_{u_{j}=U_{j}(x)}\left(U_{j}^{\prime \prime}(x) h, h\right)_{H}
\end{aligned}
$$

By (1),

$$
\begin{aligned}
\Delta_{L} F(x) & =\left.\sum_{i, j=1}^{m} \frac{\partial^{2} f}{\partial u_{i} \partial u_{j}}\right|_{u_{l}=U_{l}(x)} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(U_{i}^{\prime}(x), f_{k}\right)_{H}\left(U_{j}^{\prime}(x), f_{k}\right)_{H} \\
& +\left.\sum_{j=1}^{m} \frac{\partial f}{\partial u_{j}}\right|_{u_{j}=U_{j}(x)} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(U_{j}^{\prime \prime}(x) f_{k}, f_{k}\right)_{H}
\end{aligned}
$$

But

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(U_{i}^{\prime}(x), f_{k}\right)_{H}\left(U_{j}^{\prime}(x), f_{k}\right)_{H}=0
$$

(since $\left(U_{l}^{\prime}(x), f_{k}\right)_{H} \rightarrow 0$ as $\left.k \rightarrow \infty\right)$, and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(U_{j}^{\prime \prime}(x) f_{k}, f_{k}\right)_{H}=\Delta_{L} U_{j}(x)
$$

From this we obtain

$$
\Delta_{L} F(x)=\left.\sum_{j=1}^{m} \frac{\partial f}{\partial u_{j}}\right|_{u_{j}=U_{j}(x)} \Delta_{L} U_{j}(x)
$$

Let Ω be a bounded domain in the Hilbert space H, that is, a bounded open set in H, and let $\bar{\Omega}=\Omega \bigcup \Gamma$ be the corresponding domain in H with boundary Γ.

In the space H we define a domain Ω with the surface Γ as follows:

$$
\Omega=\left\{x \in H: 0 \leq Q(x)<R^{2}\right\}, \quad \Gamma=\left\{x \in H: Q(x)=R^{2}\right\}
$$

where $Q(x)$ is a twice continuously differentiable function such that $\Delta_{L} Q(x)=\gamma$ for a nonzero positive constant γ. Domains of this type are called fundamental domains.

Let us give some examples of fundamental domains.

1) The ball $\bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$.
2) The ellipsoid $\bar{\Omega}=\left\{x \in H:(B x, x)_{H} \leq R^{2}\right\}$, where $B=\gamma E+S(x), E$ is the identity operator and $S(x)$ is a compact operator on H.

Let us introduce a function $T(x)=\frac{R^{2}-Q(x)}{\gamma}$. This function possesses the following properties:

$$
\begin{gathered}
0<T(x) \leq \frac{R^{2}}{\gamma}, \quad \Delta_{L} T(x)=-1 \quad \text { if } \quad x \in \Omega \\
T(x)=0 \quad \text { if } \quad x \in \Gamma
\end{gathered}
$$

3. THE PROBLEM WITHOUT INITIAL AND BOUNDARY CONDITIONS

Consider the nonlinear equation

$$
\begin{equation*}
f\left(U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right)=0 \tag{3}
\end{equation*}
$$

where $U(t, x)$ is a function on $[0, \mathcal{T}] \times H, f(\xi, \eta, \zeta)$ is a given function with three arguments.

Theorem 1. 1. Let $f(\xi, \eta, \zeta)$ be a continuous twice differentiable function with three arguments taking values in the domain $\left\{U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right\}$ in R^{3}.
2. Assume that one can solve the equation $f(\xi, \eta, c \eta)=0$ with respect to $\eta, \eta=\phi(\xi, c)$ (although the original equation $f(\xi, \eta, \zeta)=0$, in general, might have no solution η) and the solution admits separation of the variables ξ and c, i.e., $\phi(\xi, c)=\alpha(c) \beta(\xi)$ (for some functions $\alpha(c), \beta(\xi)$ on $\left.\mathrm{R}^{1}, \beta(\xi) \neq 0\right)$.

Then a solution of (3) can be given in an implicit form

$$
\begin{equation*}
\varphi(U(t, x))=\alpha(\Psi(x)) t+\delta(\Psi(x)) \frac{\|x\|_{H}^{2}}{2}+\Phi(x) \tag{4}
\end{equation*}
$$

where $\varphi(\xi)=\int \frac{d \xi}{\beta(\xi)}, \delta(c)=c \alpha(c)$, and $\Psi(x), \Phi(x)$ are arbitrary harmonic functions on H.

Proof. We deduce from (4), using (2) and the relation $\delta(\Psi(x))=\Psi(x) \alpha(\Psi(x))$, that

$$
\begin{aligned}
\varphi_{\xi}^{\prime}(U(t, x)) \frac{\partial U(t, x)}{\partial t} & =\alpha(\Psi(x)) \\
\varphi_{\xi}^{\prime}(U(t, x)) \Delta_{L} U(t, x) & =\alpha_{c}^{\prime}(\Psi(x)) \Delta_{L} \Psi(x) t+\Psi(x) \alpha_{c}^{\prime}(\Psi(x)) \Delta_{L} \Psi(x) \frac{\|x\|_{H}^{2}}{2} \\
& +\Delta_{L} \Psi(x) \alpha(\Psi(x)) \frac{\|x\|_{H}^{2}}{2}+\Psi(x) \alpha(\Psi(x)) \frac{1}{2} \Delta_{L}\|x\|_{H}^{2}+\Delta_{L} \Phi(x) \\
& =\Psi(x) \alpha(\Psi(x))
\end{aligned}
$$

(since $\Delta_{L} \Psi(x)=\Delta_{L} \Phi(x)=0$ by harmonicity and $\Delta_{L}\|x\|_{H}^{2}=2$ according to (1)).
Since $\varphi_{\xi}^{\prime}=\frac{1}{\beta(\xi)}$ this implies that

$$
\begin{aligned}
\frac{\partial U(t, x)}{\partial t} & =\alpha(\Psi(x)) \beta(U(t, x))=\phi(U(t, x), \Psi(x)) \\
\Delta_{L} U(t, x) & =\delta(\Psi(x)) \beta(U(t, x))=\Psi(x) \phi(U(t, x), \Psi(x))
\end{aligned}
$$

Substituting these relations into (3) we obtain

$$
f(U(t, x), \phi(U(t, x), \Psi(x)), \Psi(x) \phi(U(t, x), \Psi(x)))=0
$$

Due to condition 2) in the statement of the theorem this yields the identity

$$
\phi(U(t, x), \Psi(x))=\phi(U(t, x), \Psi(x))
$$

4. Boundary problem

Consider the boundary problem

$$
\begin{equation*}
f\left(U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right)=0 \quad \text { in } \quad \Omega \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
U(t, x)=G(t, x) \quad \text { on } \quad \Gamma \tag{6}
\end{equation*}
$$

where $U(t, x)$ is a function on $[0, \mathcal{T}] \times H, f(\xi, \eta, \zeta)$ is a given function having three arguments and $G(t, x)$ is a given function.

Theorem 2. 1. Let $f(\xi, \eta, \zeta)$ be a continuous twice differentiable function with three arguments defined in the domain $\left\{U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right\}$ in R^{3}.
2. Assume that one can solve the equation $f(\xi, \eta, c \eta)=0$ with respect to $\eta, \eta=\phi(\xi, c)$, and the solution admits the separation of variables ξ and c that is $\phi(\xi, c)=\alpha(c) \beta(\xi)$ (for some functions $\alpha(c), \beta(\xi)$ on $\left.\mathrm{R}^{1}, \beta(\xi) \neq 0\right)$.
3. Assume that there exist a primitive $\varphi(\xi)=\int \frac{d \xi}{\beta(\xi)}$ and its inverse function φ^{-1}.
4. Assume that the domain $\bar{\Omega}$ is fundamental.
5. Assume that in some functional space there exists a solution $V(\tau, x)$ of the boundary problem for the heat equation

$$
\begin{equation*}
\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x) \quad \text { in } \quad \Omega,\left.\quad V(\tau, x)\right|_{\Gamma}=G(\tau, x) \tag{7}
\end{equation*}
$$

6. Consider the equation
(8) $\alpha_{c}^{\prime}\left(\alpha^{-1}\left(\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}}{\beta(V(X+T(x), x))}\right)\right)[t-X]-\delta_{c}^{\prime}\left(\alpha^{-1}\left(\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}}{\beta(V(X+T(x), x))}\right)\right) T(x)=0$,
where $\delta(c)=c \alpha(c)$, and assume that it can be solved with respect to $X=\chi(t, x)$, and $\left.\chi(t, x)\right|_{\Gamma}=t$.

Then the solution of the boundary problem (5), (6) in the same functional space is given by the formula
(9) $\varphi(U(t, x))=\alpha(\psi(\chi(t, x)))[t-\chi(t, x)]-\delta(\psi(\chi(t, x)) T(x)+\varphi(V(\chi(t, x)+T(x), x)))$,
where

$$
\begin{equation*}
\psi(\chi(t, x))=\alpha^{-1}\left(\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}}{\beta(V(\chi(t, x)+T(x), x))}\right) \tag{10}
\end{equation*}
$$

$\left(\psi(z)\right.$ is a function on $\left.\mathrm{R}^{1}\right)$.

Proof. Since $\varphi_{\xi}^{\prime}=\frac{1}{\beta(\xi)}$ we deduce from (9)

$$
\begin{aligned}
\varphi_{\xi}^{\prime}(U(t, x)) \frac{\partial U(t, x)}{\partial t} & =\frac{1}{\beta(U(t, x))} \frac{\partial U(t, x)}{\partial t} \\
& =\alpha(\psi(\chi(t, x)))-\alpha(\psi(\chi(t, x))) \frac{\partial \chi(t, x)}{\partial t} \\
& +\alpha_{c}^{\prime}(\psi(\chi(t, x))) \psi_{z}^{\prime}(\chi(t, x)) \frac{\partial \chi(t, x)}{\partial t}[t-\chi(t, x)] \\
& -\delta_{c}^{\prime}(\psi(\chi(t, x))) \psi_{z}^{\prime}(\chi(t, x)) \frac{\partial \chi(t, x)}{\partial t} T(x) \\
& +\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}}{\beta(V(\chi(t, x)+T(x), x))} \frac{\partial \chi(t, x)}{\partial t} \\
& =\alpha(\psi(\chi(t, x)))+\left\{\alpha_{c}^{\prime}(\psi(\chi(t, x)))[t-\chi(t, x)]\right. \\
& \left.-\delta_{c}^{\prime}(\psi(\chi(t, x))) T(x)\right\} \psi_{z}^{\prime}(\chi(t, x)) \frac{\partial \chi(t, x)}{\partial t} \\
& -\left[\alpha(\psi(\chi(t, x)))-\frac{\left.\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)} ^{\beta(V(\chi(t, x)+T(x), x))}\right] \frac{\partial \chi(t, x)}{\partial t} .}{} .\right.
\end{aligned}
$$

Note that $\chi(t, x)$ solves (8) and due to (10) we have

$$
\begin{equation*}
\frac{\partial U(t, x)}{\partial t}=\alpha(\psi(\chi(t, x))) \beta(U(t, x)) \tag{11}
\end{equation*}
$$

Since $\varphi_{\xi}^{\prime}=\frac{1}{\beta(\xi)}$, and $\Delta_{L} T(x)=-1$, applying (2) we deduce from (9)

$$
\begin{aligned}
& \varphi_{\xi}^{\prime}(U(t, x)) \Delta_{L} U(t, x)=\frac{1}{\beta(U(t, x))} \Delta_{L} U(t, x) \\
&=-\alpha(\psi(\chi(t, x))) \Delta_{L} \chi(t, x)+\alpha_{c}^{\prime}(\psi(\chi(t, x))) \psi_{z}^{\prime}(\chi(t, x)) \Delta_{L} \chi(t, x)[t-\chi(t, x)] \\
&-\delta_{c}^{\prime}(\psi(\chi(t, x))) \psi_{z}^{\prime}(\chi(t, x)) \Delta_{L} \chi(t, x) T(x)-\delta(\psi(\chi(t, x))) \Delta_{L} T(x) \\
&+\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}}{\beta(V(\chi(t, x)+T(x), x))}\left[\Delta_{L} \chi(t, x)+\Delta_{L} T(x)\right]+\frac{\left.\Delta_{L} V(\tau, x)\right|_{\tau=\chi(t, x)+T(x)}}{\beta(V(\chi(t, x)+T(x), x))} \\
&=\delta(\psi(\chi(t, x)))+\left\{\alpha_{c}^{\prime}(\psi(\chi(t, x)))[t-\chi(t, x)]\right. \\
&\left.\left.-\delta_{c}^{\prime}(\psi(\chi(t, x)))\right) T(x)\right\} \psi_{z}^{\prime}(\chi(t, x)) \Delta_{L} \chi(t, x) \\
&-\left[\alpha(\psi(\chi(t, x)))-\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}}{\beta(V(\chi(t, x)+T(x), x))}\right] \Delta_{L} \chi(t, x) \\
&-\frac{\left.\left[\frac{\partial V(\tau, x)}{\partial \tau}-\Delta_{L} V(\tau, x)\right]\right|_{\tau=\chi(t, x)+T(x)}}{\beta(V(\chi(t, x)+T(x), x))} .
\end{aligned}
$$

Recall that $\chi(t, x)$ solves (8), $\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x)$, then taking into account (10) we obtain

$$
\begin{equation*}
\Delta_{L} U(t, x)=\delta(\psi(\chi(t, x))) \beta(U(t, x)) \tag{12}
\end{equation*}
$$

Substituting (11) and (12) into (5) we derive

$$
\begin{equation*}
f(U(t, x), \alpha(\psi(\chi(t, x))) \beta(U(t, x)), \psi(\chi(t, x)) \alpha(\psi(\chi(t, x))) \beta(U(t, x)))=0 \tag{13}
\end{equation*}
$$

By condition 2) in the statement of the theorem the identity

$$
\alpha(\psi(\chi(t, x))) \beta(U(t, x))=\alpha(\psi(\chi(t, x))) \beta(U(t, x))
$$

can be deduced from (13).
At the surface Γ we have $T(x)=0$, and $\chi(t, x)=t$. Setting $T(x)=0, \chi(t, x)=t$ in (9) and keeping in mind that $\left.V(t, x)\right|_{\Gamma}=G(t, x)$ we obtain

$$
\varphi\left(\left.U(t, x)\right|_{\Gamma}\right)=\varphi\left(\left.V(t, x)\right|_{\Gamma}\right)=\varphi(G(t, x)) \quad \text { and }\left.\quad U(t, x)\right|_{\Gamma}=G(t, x)
$$

5. Initial-Boundary value problem

Consider an initial-boundary value problem with uniform initial data

$$
\begin{gather*}
f\left(U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right)=0 \quad \text { in } \quad \Omega \tag{14}\\
U(0, x)=0 \tag{15}\\
U(t, x)=G(t, x) \quad \text { on } \quad \Gamma \tag{16}
\end{gather*}
$$

where $U(t, x)$ is a function on $[0, \mathcal{T}] \times H, f(\xi, \eta, \zeta)$ is a given function with three arguments, $G(t, x)$ is a given function.
Theorem 3. 1. Let $f(\xi, \eta, \zeta)$ be a continuous twice differentiable function with three arguments defined in the domain $\left\{U(t, x), \frac{\partial U(t, x)}{\partial t}, \Delta_{L} U(t, x)\right\}$ in R^{3}.
2. Assume that one can solve the equation $f(\xi, \eta, c \eta)=0$ with respect to $\eta, \eta=\phi(\xi, c)$, and the solution admits the separation of variables ξ and c that is $\phi(\xi, c)=\alpha(c) \beta(\xi)$ (for some functions $\alpha(c), \beta(\xi)$ on $\left.\mathrm{R}^{1}, \beta(\xi) \neq 0\right)$.
3. Assume that there exist a primitive $\varphi(\xi)=\int \frac{d \xi}{\beta(\xi)}$ and its inverse function φ^{-1}.
4. Assume that the domain $\bar{\Omega}$ is fundamental.
5. Assume that in some functional space there exists a solution $V(\tau, x)$ of the initialboundary value problem for the heat equation

$$
\begin{equation*}
\left.\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x)\right) \quad \text { in } \quad \Omega, \quad V(0, x)=0,\left.\quad V(\tau, x)\right|_{\Gamma}=G(t, x) \tag{17}
\end{equation*}
$$

6. Assume that the equation
(18) $\alpha_{c}^{\prime}\left(\alpha^{-1}\left(\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}}{\beta(V(X+T(x), x))}\right)\right)[t-X]-\delta_{c}^{\prime}\left(\alpha^{-1}\left(\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}}{\beta(V(X+T(x), x)}\right)\right) T(x)=0$,
where $\delta(c)=c \alpha(c)$, can be solved with respect to $X=\chi(t, x)$, and $\left.\chi(t, x)\right|_{\Gamma}=t, \chi(0, x)<r$.
7. Assume in addition that the function $G(t, x)$ is uniformly continuous in $\bar{\Omega}$ for each $t \in[0, \mathcal{T}]$, and the mean value $\mathfrak{M} G(t, x+\sqrt{2 T(x)} y)$ for all $t \in[0, \mathcal{T}]$ and $G(t, x)=0$, $G_{t}^{\prime}(t, x)=0$ for $t \leq r(r>0)$ exists.

Then the solution of initial-boundary value problem (14)-(16) in this functional space is given by
(19) $\varphi(U(t, x))=\alpha(\psi(\chi(t, x)))[t-\chi(t, x)]-\delta(\psi(\chi(t, x))) T(x)+\varphi(V(\chi(t, x)+T(x), x))$,
where

$$
\begin{equation*}
\psi(\chi(t, x))=\alpha^{-1}\left(\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}}{\beta(V(\chi(t, x)+T(x), x))}\right) \tag{20}
\end{equation*}
$$

$\left(\psi(z)\right.$ is a function on $\left.\mathrm{R}^{1}\right)$.
Proof. We can prove that the function given by (19) satisfies (14) in Ω and at the surface $\Gamma U(t, x)=G(t, x)$, in the similar to the proof of theorem 2.

Let us show that $U(0, x)=0$.
First we prove that if $G(\tau, x)=0$ for $\tau \leq 0$, then under the conditions of the theorem (namely condition (7)) the solution of the problem

$$
\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x) \quad \text { in } \quad \Omega, \quad V(0, x)=0,\left.\quad V(t, x)\right|_{\Gamma}=G(t, x)
$$

can be written in the form

$$
\begin{equation*}
V(t, x)=\mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y) \tag{21}
\end{equation*}
$$

where $\mathfrak{M} \Phi$ is a mean value of the function $\Phi(y)$ over the sphere $\|y\|_{H}^{2}=1$.
Eventually, at one hand

$$
\begin{equation*}
\frac{\partial V(t, x)}{\partial t}=\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial \tau} \tag{22}
\end{equation*}
$$

At the other hand using (2) we derive

$$
\begin{aligned}
& \Delta_{L} V(t, x) \\
& \quad=-\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial \tau} \Delta_{L} T(x)+\left.\Delta_{L} \mathfrak{M} G(\tau, x+\sqrt{2 T(x)} y)\right|_{\tau=t-T(x)} .
\end{aligned}
$$

It was shown in the paper [4] by E. M. Polischuk that if the function $F(x)$ is uniformly continuous in Ω and has a mean value $\mathfrak{M} F(x+\sqrt{2 T(x)} y)$, then this mean value is a harmonic function in Ω, that is $\Delta_{L} \mathfrak{M} F(x+\sqrt{2 T(x)} y)=0(x \in \Omega)$.

Hence taking into account that $\Delta_{L} T(x)=-1$, we obtain

$$
\begin{equation*}
\Delta_{L} V(t, x)=\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial \tau} \tag{23}
\end{equation*}
$$

Substituting (22) and (23) into the equation $\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x)$ we get the identity

$$
\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial \tau}=\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial \tau}
$$

Setting $t=0$ in (21) we obtain $V(0, x)=\mathfrak{M} G(-T(x), x+\sqrt{2 T(x)} y)=0$, since by conditions of the theorem we have $G(\tau, x)=0$ for $\tau \leq 0$.

At the surface $\Gamma T(x)=0$, and (21) yields $\left.V(t, x)\right|_{\Gamma}=\mathfrak{M} G(t, x)=G(t, x)$.
It results from (21) that

$$
V(\chi(t, x)+T(x), x)=\mathfrak{M} G(\chi(t, x), x+\sqrt{2 T(x)} y)
$$

and thus

$$
\begin{equation*}
V(\chi(0, x)+T(x), x)=\mathfrak{M} G(\chi(0, x), x+\sqrt{2 T(x)} y)=0 \tag{24}
\end{equation*}
$$

(since by theorem conditions $\chi(0, x) \leq r$, and $G(\tau, x)=0$ for $\tau \leq r$).
The relation

$$
\alpha(\psi(\chi(t, x)))=\frac{\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}}{\beta(V(\chi(t, x))+T(x), x))}=\frac{\mathfrak{M} G_{\tau}^{\prime}(\chi(t, x), x+\sqrt{2 T(x)} y)}{\beta(V(\chi(t, x))+T(x), x))}
$$

follows from (20) and leads to $\alpha(\psi(\chi(0, x)))=0$ (since by theorem conditions $\chi(0, x)<r$, and $G^{\prime}(\tau, x)=0$ for $\left.\tau \leq r\right)$.

Setting $t=0$ in (19) and taking into account (24) and the existence of φ^{-1}, we deduce $\varphi(U(0, x))=\varphi(V(\chi(0, t)+T(x), x))=\varphi(0)$, that yields $U(0, x)=0$.

Remark. If there exist unique solutions η, c and $\chi(t, x)$ to the equations $f(\xi, \eta, c \eta)=0$, $\alpha(c)=z$ and (18) respectively, and if the initial-boundary value problem (17) for the heat equation has a unique solution in a certain functional class then the solution of the initial-boundary value problem (14)-(16) is unique in this functional space.
Example. Let us solve the initial-boundary value problem in a ball of the Hilbert space $H: \quad \bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$

$$
\begin{gather*}
\left(\frac{\partial U(t, x)}{\partial t}\right)^{3}-U(t, x)\left(\frac{\partial U(t, x)}{\partial t}\right)^{2}+\left(\frac{\partial U(t, x)}{\partial t}\right) \Delta_{L} U(t, x) \tag{25}\\
=U(t, x) \Delta_{L} U(t, x) \quad \text { in } \Omega \\
U(0, x)=0 \tag{26}\\
\left.U(t, x)\right|_{\|x\|_{H}^{2}=R^{2}}=g\left(t-\frac{1}{2}\|x\|_{H}^{2}\right) \tag{27}
\end{gather*}
$$

where $g(\lambda)=\lambda^{2}$ if $\lambda \geq 0, g(\lambda)=0$ if $\lambda \leq 0$.
To apply theorem 3 we note that the function f in (25) has the form

$$
f(\xi, \eta, \zeta)=\eta^{3}-\xi \eta^{2}+\eta \zeta-\xi \zeta
$$

Hence the equation that appears in the condition 2) of theorem 3 has the form

$$
\begin{equation*}
\eta^{3}-\xi \eta^{2}+c \eta^{2}-c \xi \eta=0 \tag{28}
\end{equation*}
$$

The solutions of the equation (28) have the form $\eta=-c, \eta=\xi$ and $\eta=0$.
Let us take the solution $\eta=-c$. In this case $\eta=\phi(\xi, c)=-c$. Hence $\alpha(c)=-c$, $\beta(\xi)=1$ which yields $\delta(c)=-c^{2}, \varphi(\xi)=\xi$.

A solution of the initial-boundary value problem for the heat equation

$$
\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x) \quad \text { in } \quad \Omega, \quad V(0, x)=0,\left.\quad V(\tau, x)\right|_{\|x\|_{H}^{2}=R^{2}}=g\left(\tau-\frac{1}{2}\|x\|_{H}^{2}\right)
$$

is given by the formula

$$
V(\tau, x)=g\left(\tau+\frac{1}{2}\|x\|_{H}^{2}-R^{2}\right)
$$

It results

$$
\left.V(\tau, x)\right|_{\tau=X+T}=g\left(X-\frac{R^{2}}{2}\right),\left.\quad \frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T}=2 \sqrt{g\left(X-R^{2} / 2\right)}
$$

Now the equation (18) (in the condition 6) of theorem 3) takes the form

$$
t-(1-4 T(x)) X-2 R^{2} T(x)=0
$$

A solution of this equation is given by

$$
X=\chi(t, x)=\frac{t-2 R^{2} T(x)}{1-4 T(x)}
$$

and in addition we have $\left.\chi(t, x)\right|_{\Gamma}=t$.
Since for such a form of $\chi(t, x)$

$$
\begin{gathered}
V(\chi(t, x)+T(x), x)=g\left(\chi(t, x)-\frac{R^{2}}{2}\right)=\frac{g\left(t-\frac{R^{2}}{2}\right)}{(1-4 T(x))^{2}} \\
\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}=\frac{2 \sqrt{g\left(t-R^{2} / 2\right)}}{1-4 T(x)}
\end{gathered}
$$

we deduce

$$
\alpha(\psi(\chi(t, x)))=\frac{2 \sqrt{g\left(t-R^{2} / 2\right)}}{1-4 T(x)}, \quad \delta(\psi(\chi(t, x)))=-\frac{4 g\left(t-\frac{R^{2}}{2}\right)}{(1-4 T(x))^{2}} .
$$

It results from (19) in theorem 3 that the solution of the problem (25)-(27) has the form

$$
U(t, x)=\frac{g\left(t-\frac{R^{2}}{2}\right)}{1-2\left(R^{2}-\|x\|_{H}^{2}\right)}
$$

Acknowledgments. The authors gratefully acknowledge the financial support of DFG Grant 436 RUS 113/823.

References

1. S. Albeverio, Ya. I. Belopolskaya, M. N. Feller, The Cauchy problem for nonlinear parabolic equation with Lévy Laplacian, Potential analysis 24 (2006), 125-136.
2. P. Lévy, Problemes Concrets d'Analyse Fonctionnelle, Gauthier-Villars, Paris, 1951.
3. M. N. Feller, The Lévy Laplacian, Cambridge University Press, Cambridge-New York-Melbourne-Madrid-Cape Town—Singapore-Sao Paulo, 2005.
4. E. M. Polishchuk, Continual Means and Boundary Value Problems in Function Spaces, Arademie-Verlag, Berlin, 1988.

Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115, Bonn, Germany; SFB 611, Bonn, Germany; BiBoS, Bielefeld, Germany; CERFIM, Locarno and USI, Switzerland

E-mail address: albeverio@uni-bonn.de
St. Petersburg State University for Architecture and Civil Engineering, 2-Ja Krasnoarmejskaja 4, St. Petersburg, 190005, Russia

E-mail address: yana@YB1569.spb.edu
Obolonsky prospect 7, ap. 108, Kyiv, 04205, Ukraine

[^0]: 2000 Mathematics Subject Classification. 35R15, 46G05.
 Key words and phrases. Lévy Laplacian, nonlinear parabolic equations, boundary problems, initialboundary value problems.

